JP4588561B2 - Hydrodynamic bearing device - Google Patents

Hydrodynamic bearing device Download PDF

Info

Publication number
JP4588561B2
JP4588561B2 JP2005197700A JP2005197700A JP4588561B2 JP 4588561 B2 JP4588561 B2 JP 4588561B2 JP 2005197700 A JP2005197700 A JP 2005197700A JP 2005197700 A JP2005197700 A JP 2005197700A JP 4588561 B2 JP4588561 B2 JP 4588561B2
Authority
JP
Japan
Prior art keywords
bearing
housing
bearing sleeve
groove
dynamic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005197700A
Other languages
Japanese (ja)
Other versions
JP2007016849A (en
Inventor
功 古森
政治 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2005197700A priority Critical patent/JP4588561B2/en
Publication of JP2007016849A publication Critical patent/JP2007016849A/en
Application granted granted Critical
Publication of JP4588561B2 publication Critical patent/JP4588561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、軸受隙間に生じる流体の動圧作用で軸部材を非接触支持する動圧軸受装置に関するものである。この動圧軸受装置は、情報機器、例えばHDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、その他の小型モータ用として好適である。   The present invention relates to a hydrodynamic bearing device that supports a shaft member in a non-contact manner by a hydrodynamic action of a fluid generated in a bearing gap. This hydrodynamic bearing device is a spindle of information equipment, for example, a magnetic disk device such as an HDD, an optical disk device such as a CD-ROM, CD-R / RW, DVD-ROM / RAM, or a magneto-optical disk device such as an MD or MO. It is suitable for motors, polygon scanner motors of laser beam printers (LBP), and other small motors.

上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化等が求められている。これらの要求性能を決定づける構成要素の1つに当該モータのスピンドルを支持する軸受があり、近年では、上記要求性能に優れた特性を有する動圧軸受の使用が検討され、あるいは実際に使用されている。   In addition to high rotational accuracy, the various motors are required to have high speed, low cost, low noise, and the like. One of the components that determine the required performance is a bearing that supports the spindle of the motor. In recent years, the use of a hydrodynamic bearing having characteristics excellent in the required performance has been studied or actually used. Yes.

例えば、HDD等のディスク駆動装置のスピンドルモータに組み込まれる動圧軸受装置では、軸部材をラジアル方向に支持するラジアル軸受部およびスラスト方向に支持するスラスト軸受部の双方を動圧軸受で構成する場合がある。この種の動圧軸受装置におけるスラスト軸受部としては、例えば軸受スリーブの端面に、動圧発生部としての動圧溝を形成すると共に、この軸受スリーブの端面と、これに対向するフランジ部の端面との間にスラスト軸受隙間を形成するものが知られている(例えば、特許文献1を参照)。   For example, in a hydrodynamic bearing device incorporated in a spindle motor of a disk drive device such as an HDD, both the radial bearing portion that supports the shaft member in the radial direction and the thrust bearing portion that supports the axial direction are configured by the hydrodynamic bearing. There is. As a thrust bearing portion in this type of dynamic pressure bearing device, for example, a dynamic pressure groove as a dynamic pressure generating portion is formed on an end surface of the bearing sleeve, and an end surface of the bearing sleeve and an end surface of the flange portion opposed to the end surface A thrust bearing gap is formed between the two (see, for example, Patent Document 1).

また、軸受スリーブの両端面間で潤滑油等の流体を流通させ、上記スラスト軸受隙間を含む軸受内部の圧力バランスを保つ等の目的で、軸受スリーブの外周面に軸方向の溝を形成したものが知られている(例えば、特許文献2を参照)。   In addition, an axial groove is formed on the outer peripheral surface of the bearing sleeve for the purpose of circulating a fluid such as lubricating oil between both end faces of the bearing sleeve and maintaining the pressure balance inside the bearing including the thrust bearing gap. Is known (see, for example, Patent Document 2).

その一方で、上記スラスト軸受隙間を適正に管理して、安定したスラスト支持力を得る目的で、軸受スリーブを固定するハウジングの内周に段部を設けたものが知られている。これによれば、軸受スリーブをハウジングの内周に例えば圧入、接着等の手段により固定する際、軸受スリーブの一端面がハウジングに設けた当接面と軸方向に当接するまで軸受スリーブをハウジングの内周に押し込むことで、軸受スリーブのハウジングに対する軸方向の位置決めが精度良くかつ簡便に行われる(例えば、特許文献3を参照)。
特開2003−239951号公報 特開2003−232353号公報 特開2002−061637号公報
On the other hand, for the purpose of appropriately controlling the thrust bearing gap and obtaining a stable thrust support force, there is known one provided with a step portion on the inner periphery of a housing for fixing the bearing sleeve. According to this, when the bearing sleeve is fixed to the inner periphery of the housing by means of, for example, press-fitting or bonding, the bearing sleeve is moved until the one end surface of the bearing sleeve comes into contact with the contact surface provided in the housing in the axial direction. By pushing into the inner periphery, the axial positioning of the bearing sleeve with respect to the housing is performed accurately and simply (see, for example, Patent Document 3).
JP 2003-239951 A JP 2003-232353 A JP 2002-061637 A

ところで、この種の当接面を備えた動圧軸受装置では、当接面に当接する軸受スリーブの一端面に設けられた動圧発生部、例えば所定形状に配列された複数の動圧溝が、この動圧発生部を設けた軸受スリーブの一端面とこれに対向するフランジ部の端面との間のスラスト軸受隙間と、流体流路とを連通させる機能を果たしている。   By the way, in the hydrodynamic bearing device provided with this kind of contact surface, a dynamic pressure generating portion provided on one end surface of the bearing sleeve that contacts the contact surface, for example, a plurality of dynamic pressure grooves arranged in a predetermined shape is provided. The thrust bearing gap between the one end surface of the bearing sleeve provided with the dynamic pressure generating portion and the end surface of the flange portion facing the bearing sleeve communicates with the fluid flow path.

しかしながら、上述のように、軸受スリーブの軸方向位置決めは、多少の圧入力(押込み力)を伴って行われるのが通常であるから、その押込み力によっては、当接面が弾性変形を生じ、これに当接する軸受スリーブ端面の動圧溝を塞ぐ場合がある。   However, as described above, since the axial positioning of the bearing sleeve is usually performed with some pressure input (pushing force), the abutment surface is elastically deformed depending on the pushing force, In some cases, the dynamic pressure groove on the end surface of the bearing sleeve that abuts against this is blocked.

これでは、たとえ上記流体流路で軸方向の流通が確保されていても、動圧溝部が塞がれることによって、例えば上記スラスト軸受隙間と流体流路との間で半径方向の流体の流通が遮られ、軸受内部における流体の円滑な流通が妨げられる恐れがある。この種の問題は、当接面を、金属製の軸受スリーブに比して軟質な材料、例えば樹脂材料で形成する場合に特に顕著となる。   In this case, even if axial flow is ensured in the fluid flow path, the fluid pressure groove portion is blocked, so that, for example, radial fluid flow is provided between the thrust bearing gap and the fluid flow path. There is a risk that the smooth flow of the fluid inside the bearing may be hindered. This type of problem is particularly noticeable when the contact surface is formed of a soft material, such as a resin material, as compared with a metal bearing sleeve.

本発明の課題は、軸受内部における流体の流通を確保し、高い軸受性能を安定的に発揮し得る動圧軸受装置を提供することである。   An object of the present invention is to provide a fluid dynamic bearing device capable of ensuring fluid flow inside the bearing and stably exhibiting high bearing performance.

前記課題を解決するため、本発明は、ハウジングと、ハウジングの内周に固定され、一端面に動圧発生部を設けた軸受スリーブと、ハウジングおよび軸受スリーブに対して相対回転する軸部材と、軸受スリーブの一端面とこれに対向する軸部材との間のスラスト軸受隙間に生じる流体の動圧作用で軸部材をスラスト方向に非接触支持するスラスト軸受部と、ハウジングの内周と軸受スリーブの外周との間に設けられ、軸受スリーブの両端面間で流体を流通可能とする流体流路とを備えたものにおいて、軸受スリーブの一端面に、動圧発生部として複数の動圧溝を配列した領域が形成されハウジングは樹脂材料で底部を一体に有する形状に形成され、このハウジングの内周面に軸受スリーブが圧入又は圧入接着で固定され、ハウジングに、軸受スリーブの一端面と当接してハウジングに対する軸受スリーブの軸方向の位置決めを行うための当接面が設けられ、軸受スリーブをハウジングの底部側に向けて押し込むことで、軸受スリーブの一端面と当接する当接面が弾性変形しており、かつこの当接面に、スラスト軸受隙間と流体流路とを連通させるものであって、動圧溝よりも溝深さを大きくとった径方向溝が形成されることを特徴とする動圧軸受装置を提供する。 In order to solve the above problems, the present invention provides a housing, a bearing sleeve fixed to the inner periphery of the housing and provided with a dynamic pressure generating portion on one end surface, a shaft member that rotates relative to the housing and the bearing sleeve, A thrust bearing portion for supporting the shaft member in a thrust non-contact manner by a dynamic pressure action of a fluid generated in a thrust bearing gap between the one end surface of the bearing sleeve and the shaft member opposed thereto; an inner periphery of the housing; and a bearing sleeve A plurality of dynamic pressure grooves as a dynamic pressure generating portion are arranged on one end face of the bearing sleeve , provided with a fluid flow path that is provided between the outer circumference and allows fluid to flow between both end faces of the bearing sleeve. is the region forming the housing is formed in a shape having a bottom integrally with a resin material, the bearing sleeve is fixed in press-fit or press-bonded to the inner peripheral surface of the housing, the housing, the shaft Abutment surface is provided for by contact with one end surface of the sleeve for positioning in the axial direction of the bearing sleeve relative to the housing, by pushing towards the bearing sleeve on the bottom side of the housing, one end face of the bearing sleeve and those The abutting contact surface is elastically deformed, and the thrust bearing gap and the fluid flow path are communicated with the abutting surface , and a radial groove having a groove depth larger than the dynamic pressure groove is provided. Provided is a hydrodynamic bearing device characterized by being formed.

このように、本発明では、ハウジングの当接面に、スラスト軸受隙間と流体流路との間を連通させる径方向溝を形成するようにした。これによれば、上述のように、軸受スリーブ端面の動圧溝(動圧発生部)が、押込み力に伴い弾性変形した当接面によって塞がれるといった事態を避け、軸受内部における流体の円滑な流通を確保することができる。従って、軸受内部における流体の圧力バランスが適正に保たれ、安定した軸受性能を長期に亘って発揮することが可能となる。   As described above, in the present invention, the radial groove that communicates between the thrust bearing gap and the fluid flow path is formed on the contact surface of the housing. According to this, as described above, the dynamic pressure groove (dynamic pressure generating portion) on the end surface of the bearing sleeve is prevented from being blocked by the contact surface that is elastically deformed due to the pushing force, and the fluid inside the bearing is smooth. Secure distribution. Therefore, the pressure balance of the fluid inside the bearing is properly maintained, and stable bearing performance can be exhibited over a long period of time.

また、この種の径方向溝は、ハウジングと一体に型成形、例えば樹脂や金属の射出成形で形成することができる。これにより、径方向溝を高精度かつ低コストに形成することができる。また、ハウジング本体の成形後に、別途切削等の機械加工を施す手間を省き、かつ切粉の発生を避けることで、成形後の洗浄作業を簡素化し、かかる作業効率の向上およびコンタミの発生防止とを図ることができる。   Also, this type of radial groove can be formed integrally with the housing, for example, by resin or metal injection molding. Thereby, the radial groove can be formed with high accuracy and at low cost. In addition, after molding the housing body, it eliminates the need for machining such as cutting and avoids the generation of chips, simplifying the cleaning work after molding, improving the work efficiency and preventing the occurrence of contamination. Can be achieved.

上記径方向溝は、軸受スリーブの一端面に設けられた動圧発生部が所定形状に配列された複数の動圧溝からなる場合に特に有効である。すなわち、動圧発生部として形成される動圧溝は、その溝深さが数μm〜数十μmとそれほど深くないので、弾性変形を生じた当接面によって容易に塞がれる可能性がある。これに対して、本発明のように、径方向溝をハウジングの当接面に形成すれば、動圧溝に比べて溝深さを大きくとることができる。従って、当接面の弾性変形によって、動圧溝が塞がれるといった事態を確実に回避し、かつ軸受内部の流体の流通量に合わせて、適宜径方向溝のサイズ(溝深さ)を設定することができる。   The radial groove is particularly effective when a dynamic pressure generating portion provided on one end surface of the bearing sleeve is composed of a plurality of dynamic pressure grooves arranged in a predetermined shape. In other words, the dynamic pressure groove formed as the dynamic pressure generating portion is not so deep as several μm to several tens of μm, and may be easily blocked by the contact surface that has undergone elastic deformation. . On the other hand, if the radial groove is formed on the contact surface of the housing as in the present invention, the groove depth can be made larger than that of the dynamic pressure groove. Therefore, it is possible to reliably avoid the situation where the dynamic pressure groove is blocked by the elastic deformation of the contact surface, and appropriately set the size of the radial groove (groove depth) according to the fluid flow rate inside the bearing. can do.

ハウジングの内周と軸受スリーブの外周との間に形成される流体流路は、例えば軸受スリーブの外周に形成された軸方向溝で構成することができ、またハウジングの内周に形成された軸方向溝で構成することもできる。後者の場合、軸方向溝および径方向溝を共にハウジングと一体に型成形することにより、加工工程を簡略化して、さらなる低コスト化を図ることができる。また、これら軸方向溝の形成位置と、径方向溝の形成位置とを円周方向で一致させることで、流体の流体流路が遮断され、あるいは迂回するといった事態を避け、より効率的に流体の流通を図ることができる。   The fluid flow path formed between the inner periphery of the housing and the outer periphery of the bearing sleeve can be constituted by, for example, an axial groove formed on the outer periphery of the bearing sleeve, and the shaft formed on the inner periphery of the housing It can also consist of directional grooves. In the latter case, both the axial groove and the radial groove are molded integrally with the housing, thereby simplifying the machining process and further reducing the cost. In addition, by making the formation position of these axial grooves and the formation position of the radial grooves coincide with each other in the circumferential direction, a situation in which the fluid flow path of the fluid is blocked or detoured is avoided, and the fluid is more efficiently flowed. Can be distributed.

上記構成の動圧軸受装置は、この動圧軸受装置を備えたディスク装置のスピンドルモータとして提供することもできる。   The fluid dynamic bearing device having the above-described configuration can also be provided as a spindle motor of a disk device including the fluid dynamic bearing device.

このように、本発明によれば、軸受内部における流体の流通を確保し、高い軸受性能を安定的に発揮し得る動圧軸受装置を低コストに提供することができる。   As described above, according to the present invention, it is possible to provide a fluid dynamic bearing device capable of ensuring fluid flow inside the bearing and stably exhibiting high bearing performance at low cost.

以下、本発明の一実施形態を図1〜図4に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の一実施形態に係る動圧軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、ディスクハブ3を取付けた軸部材2を回転自在に非接触支持する動圧軸受装置1と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、モータブラケット6とを備えている。ステータコイル4はモータブラケット6の外周に取付けられ、ロータマグネット5はディスクハブ3の外周に取付けられている。動圧軸受装置1のハウジング7は、モータブラケット6の内周に固定される。ディスクハブ3には、磁気ディスク等のディスク状情報記録媒体(以下、単にディスクという。)Dが1又は複数枚保持される。このように構成されたスピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する電磁力でロータマグネット5が回転し、これに伴って、ディスクハブ3およびディスクハブ3に保持されたディスクDが軸部材2と一体に回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 according to an embodiment of the present invention. This spindle motor is used in a disk drive device such as an HDD, and is opposed to the hydrodynamic bearing device 1 that rotatably supports the shaft member 2 to which the disk hub 3 is attached via a radial gap, for example. The stator coil 4 and the rotor magnet 5 and the motor bracket 6 are provided. The stator coil 4 is attached to the outer periphery of the motor bracket 6, and the rotor magnet 5 is attached to the outer periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is fixed to the inner periphery of the motor bracket 6. The disk hub 3 holds one or a plurality of disk-shaped information recording media (hereinafter simply referred to as disks) D such as magnetic disks. In the spindle motor configured as described above, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force generated between the stator coil 4 and the rotor magnet 5. The disk D held by the hub 3 rotates integrally with the shaft member 2.

図2は、動圧軸受装置1を示している。この動圧軸受装置1は、底部7bを有するハウジング7と、ハウジング7に固定された軸受スリーブ8と、ハウジング7および軸受スリーブ8に対して相対回転する軸部材2とを主な構成要素として構成される。なお、説明の便宜上、ハウジング7の底部7bの側を下側、底部7bと反対の側を上側として以下説明する。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a housing 7 having a bottom portion 7b, a bearing sleeve 8 fixed to the housing 7, and a shaft member 2 that rotates relative to the housing 7 and the bearing sleeve 8 as main components. Is done. For convenience of explanation, the bottom 7b side of the housing 7 will be described below, and the side opposite to the bottom 7b will be described as the upper side.

軸部材2は、例えばSUS鋼などの金属材料で形成され、軸部2aと、軸部2aの下端に一体又は別体に設けられるフランジ部2bとを備える。なお、軸部材2は、金属材料と樹脂材料とのハイブリッド構造とすることもでき、その場合、軸部2aの少なくとも外周面2a1を含む鞘部が上記金属で形成され、残りの箇所(例えば軸部2aの芯部やフランジ部2b)が樹脂で形成される。なお、フランジ部2bの強度を確保するため、フランジ部2bを樹脂・金属のハイブリッド構造とし、軸部2aの鞘部と共に、フランジ部2bの芯部を金属製とすることもできる。   The shaft member 2 is formed of, for example, a metal material such as SUS steel, and includes a shaft portion 2a and a flange portion 2b provided integrally or separately at the lower end of the shaft portion 2a. In addition, the shaft member 2 can also have a hybrid structure of a metal material and a resin material. In this case, the sheath portion including at least the outer peripheral surface 2a1 of the shaft portion 2a is formed of the metal, and the remaining portion (for example, the shaft portion) The core part of the part 2a and the flange part 2b) are formed of resin. In order to secure the strength of the flange portion 2b, the flange portion 2b can be made of a resin / metal hybrid structure, and the core portion of the flange portion 2b can be made of metal together with the sheath portion of the shaft portion 2a.

軸受スリーブ8は、例えば金属製の非孔質体あるいは焼結金属からなる多孔質体で円筒状に形成される。この実施形態では、銅を主成分とする焼結金属の多孔質体で円筒状に形成される。もちろん、非孔質と多孔質とを問わず、軸受スリーブ8を樹脂やセラミック等、金属以外の材料で形成することも可能である。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body made of, for example, a metal non-porous body or sintered metal. In this embodiment, a sintered metal porous body mainly composed of copper is formed in a cylindrical shape. Of course, the bearing sleeve 8 can be formed of a material other than metal, such as resin or ceramic, regardless of whether it is non-porous or porous.

軸受スリーブ8の内周面8aの全面又は一部円筒領域には、ラジアル動圧発生部として、例えば図3(a)に示すように、複数の動圧溝8a1、8a2をヘリングボーン形状に配列した領域が軸方向に離隔して2箇所形成される。この動圧溝8a1、8a2の形成領域はラジアル軸受面として、軸部2aの外周面2a1と対向し、軸部材2の回転時には、外周面2a1との間に後述するラジアル軸受部R1、R2のラジアル軸受隙間を形成する(図2を参照)。また、上側の動圧溝8a1の形成領域では、動圧溝8a1が、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。   As shown in FIG. 3A, for example, as shown in FIG. 3A, a plurality of dynamic pressure grooves 8a1 and 8a2 are arranged in a herringbone shape on the entire inner surface 8a of the bearing sleeve 8 or a partial cylindrical region. The two regions are formed at two positions apart in the axial direction. The formation region of the dynamic pressure grooves 8a1 and 8a2 is a radial bearing surface that faces the outer peripheral surface 2a1 of the shaft portion 2a, and when the shaft member 2 rotates, between the outer peripheral surface 2a1 and radial bearing portions R1 and R2 described later. A radial bearing gap is formed (see FIG. 2). In the formation region of the upper dynamic pressure groove 8a1, the dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions). The axial dimension X1 of the area above m is larger than the axial dimension X2 of the lower area.

軸受スリーブ8の外周面8bには、軸方向に延びる溝10bが軸方向全長に亘って1又は複数本形成される。この実施形態では、3本の軸方向溝10bを円周方向等間隔に形成している。これら軸方向溝10bは、軸受スリーブ8をハウジング7の内周に固定した状態では、対向するハウジング7の内周面7cとの間に潤滑油の流体流路を構成する(図2を参照)。また、これら軸方向溝10bは、例えば軸受スリーブ8本体をなす圧粉体の成形型に予め軸方向溝10bに対応する箇所を設けておくことで、軸受スリーブ8本体の圧粉体成形と同時に成形することができる。   On the outer peripheral surface 8b of the bearing sleeve 8, one or more grooves 10b extending in the axial direction are formed over the entire length in the axial direction. In this embodiment, three axial grooves 10b are formed at equal intervals in the circumferential direction. These axial grooves 10b constitute a fluid flow path for lubricating oil between the bearing sleeve 8 and the inner peripheral surface 7c of the opposing housing 7 in a state where the bearing sleeve 8 is fixed to the inner periphery of the housing 7 (see FIG. 2). . Further, these axial grooves 10b are provided simultaneously with the green compacting of the bearing sleeve 8 main body by providing a portion corresponding to the axial groove 10b in advance in a green compact forming die forming the main body of the bearing sleeve 8 for example. Can be molded.

軸受スリーブ8の下端面8cの全面または一部環状領域には、スラスト動圧発生部として、図3(b)に示すように、複数の動圧溝8c1をスパイラル形状に配列した領域が形成される。この動圧溝8c1の形成領域はスラスト軸受面として、フランジ部2bの上端面2b1と対向し、軸部材2の回転時には、上端面2b1との間に後述する第2スラスト軸受部T2のスラスト軸受隙間を形成する(図2を参照)。   As shown in FIG. 3B, a region where a plurality of dynamic pressure grooves 8c1 are arranged in a spiral shape is formed as a thrust dynamic pressure generating portion on the entire lower surface 8c of the bearing sleeve 8 or a partial annular region. The The formation region of the dynamic pressure groove 8c1 is a thrust bearing surface that faces the upper end surface 2b1 of the flange portion 2b, and a thrust bearing of a second thrust bearing portion T2, which will be described later, between the upper end surface 2b1 when the shaft member 2 rotates. A gap is formed (see FIG. 2).

軸受スリーブ8の上端面8dの、径方向の略中央部には、図3(a)に示すように、V字断面の周方向溝8d1が全周に亘って形成される。周方向溝8d1によって区画された上端面8dの内径側領域には、1又は複数本の半径方向溝8d2が形成される。この半径方向溝8d2は、図2に示すように、軸受スリーブ8にシール部9を当接させた状態では、周方向溝8d1と軸受スリーブ8の内周面8a上端との間を連通する。   As shown in FIG. 3A, a circumferential groove 8d1 having a V-shaped cross section is formed over the entire circumference of the upper end surface 8d of the bearing sleeve 8 at a substantially central portion in the radial direction. One or a plurality of radial grooves 8d2 are formed in the inner diameter side region of the upper end surface 8d defined by the circumferential groove 8d1. As shown in FIG. 2, the radial groove 8 d 2 communicates between the circumferential groove 8 d 1 and the upper end of the inner peripheral surface 8 a of the bearing sleeve 8 when the seal portion 9 is in contact with the bearing sleeve 8.

ハウジング7は、LCPやPPS、PEEK等の結晶性樹脂、あるいはPSU、PES、PEI等の非晶性樹脂をベース樹脂とする樹脂組成物で射出成形され、例えば図2に示すように、側部7aと、側部7aの下端に一体に形成された底部7bとを有する。ハウジング7を形成する上記樹脂組成物としては、例えば、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカ状充填材、マイカ等の鱗片状充填材、カーボン繊維、カーボンブラック、黒鉛、カーボンナノマテリアル、各種金属粉等の繊維状または粉末状の導電性充填材を、目的に応じて上記ベース樹脂に適量配合したものが使用可能である。   The housing 7 is injection-molded with a resin composition based on a crystalline resin such as LCP, PPS, or PEEK, or an amorphous resin such as PSU, PES, or PEI. For example, as shown in FIG. 7a and a bottom portion 7b formed integrally with the lower end of the side portion 7a. Examples of the resin composition forming the housing 7 include fibrous fillers such as glass fibers, whisker-like fillers such as potassium titanate, scaly fillers such as mica, carbon fibers, carbon black, graphite, carbon A material in which an appropriate amount of a fibrous or powdery conductive filler such as nanomaterials or various metal powders is blended with the base resin according to the purpose can be used.

底部7bの上端面7b1の全面又は一部環状領域には、スラスト動圧発生部として、例えば図4に示すように、複数の動圧溝7b11をスパイラル形状に配列した領域が形成される。この動圧溝7b11の形成領域はスラスト軸受面として、フランジ部2bの下端面2b2と対向し、軸部材2の回転時には、下端面2b2との間に後述する第2スラスト軸受部T2のスラスト軸受隙間を形成する(図2を参照)。   As shown in FIG. 4, for example, as shown in FIG. 4, a region where a plurality of dynamic pressure grooves 7b11 are arranged in a spiral shape is formed on the entire upper surface 7b1 of the bottom portion 7b or a partial annular region. The formation region of the dynamic pressure groove 7b11 is a thrust bearing surface that faces the lower end surface 2b2 of the flange portion 2b, and a thrust bearing of a second thrust bearing portion T2, which will be described later, between the lower end surface 2b2 when the shaft member 2 rotates. A gap is formed (see FIG. 2).

ハウジング7の内周面7cには、軸受スリーブ8の外周面8bが、例えば接着(ルーズ接着や圧入接着を含む)、圧入、溶着等の適宜の手段で固定される。   The outer peripheral surface 8b of the bearing sleeve 8 is fixed to the inner peripheral surface 7c of the housing 7 by appropriate means such as bonding (including loose bonding and press-fitting bonding), press-fitting, and welding.

内周面7cの下端には、側部7aよりも小径な小径部7dが形成される。この実施形態では、小径部7dの内周面7d1と側部7aの内周面7cとの間の段差が、軸受スリーブ8の動圧発生部を設けた下端面8cと当接する当接面7eとなる。これにより、小径部7dの軸方向寸法は、当接面7eに軸受スリーブ8の下端面8cを当接させた状態では、軸受スリーブ8の下端面8cから底部7bの上端面7b1までの軸方向幅に一致する。   A small diameter portion 7d having a smaller diameter than the side portion 7a is formed at the lower end of the inner peripheral surface 7c. In this embodiment, the step between the inner peripheral surface 7d1 of the small diameter portion 7d and the inner peripheral surface 7c of the side portion 7a is in contact with the lower end surface 8c provided with the dynamic pressure generating portion of the bearing sleeve 8. It becomes. Thereby, the axial dimension of the small diameter portion 7d is the axial direction from the lower end surface 8c of the bearing sleeve 8 to the upper end surface 7b1 of the bottom portion 7b when the lower end surface 8c of the bearing sleeve 8 is in contact with the contact surface 7e. Match the width.

小径部7dの上端面となる当接面7eには、放射状に延びる径方向の溝10aが1又は複数本形成される。径方向溝10aは、この実施形態では、図4に示すように、円周方向等間隔に3箇所設けられる。これら径方向溝10aは、軸受スリーブ8の下端面8cを当接面7eに当接させた状態では、その外径端が軸方向溝10bを介して軸受スリーブ8の上端面8dと連通する。また、径方向溝10aの内径端が、小径部7dとフランジ部2bとの径方向隙間を介して、軸受スリーブ8の下端面8cとフランジ部2bの上端面2b1との軸方向隙間(第1スラスト軸受部T1のスラスト軸受隙間となる領域)にも連通する(何れも図2を参照)。これら径方向溝10aは、例えば底部7bの上端面7b1の動圧溝7b11と共に、ハウジング7を成形する成形型の所要部位(当接面7eや上端面7b1を成形する部位)に、径方向溝10aおよび動圧溝7b11を成形する溝型を加工しておくことで、ハウジング7と同時に型成形することができる。   One or a plurality of radial grooves 10a extending radially are formed on the contact surface 7e serving as the upper end surface of the small diameter portion 7d. In this embodiment, three radial grooves 10a are provided at equal intervals in the circumferential direction as shown in FIG. These radial grooves 10a communicate with the upper end surface 8d of the bearing sleeve 8 through the axial groove 10b when the lower end surface 8c of the bearing sleeve 8 is in contact with the contact surface 7e. Further, the inner diameter end of the radial groove 10a has an axial gap (first gap) between the lower end surface 8c of the bearing sleeve 8 and the upper end surface 2b1 of the flange portion 2b via the radial gap between the small diameter portion 7d and the flange portion 2b. It also communicates with a thrust bearing gap of the thrust bearing portion T1 (see FIG. 2 for both). These radial grooves 10a, for example, together with the dynamic pressure grooves 7b11 on the upper end surface 7b1 of the bottom portion 7b, are formed on the required portions of the mold for forming the housing 7 (the portions for forming the contact surface 7e and the upper end surface 7b1). By processing the groove mold for forming the 10 a and the dynamic pressure groove 7 b 11, the mold can be formed simultaneously with the housing 7.

上記構成の小径部7dおよび当接面7eが形成されたハウジング7の内周に軸受スリーブ8を、その内周に軸部材2を挿入した状態で、ハウジング7の内周に所定の圧入代でもって押し込んで行き、軸受スリーブ8の下端面8cが小径部7dの上端面、すなわち当接面7eと当接したところで軸受スリーブ8のハウジング7に対する軸方向位置を決定する。その後、例えばハウジング7の内周面7cに予め塗布しておいた接着剤を固化させることで、軸受スリーブ8の外周面8bをハウジング7の内周面7cに接着固定する。この際、軸受スリーブ8の下方への押込みに伴い、樹脂製の当接面7eが弾性変形し、当接する下端面8cに設けた動圧溝8c1を塞いだ場合であっても、当接面7eの側に設けた径方向溝10aによって、軸方向溝10bと、上記スラスト軸受隙間となる領域との間で連通状態が確保される。また、上述の理由から、軸受スリーブ8の下端面8cの、当接面7eとの当接部位に位置する動圧溝8c1は省略することもできる。   With the bearing sleeve 8 inserted into the inner periphery of the housing 7 in which the small-diameter portion 7d and the contact surface 7e having the above structure are formed, and with the shaft member 2 inserted into the inner periphery thereof, the inner periphery of the housing 7 is provided with a predetermined press-fitting allowance. Then, when the lower end surface 8c of the bearing sleeve 8 comes into contact with the upper end surface of the small diameter portion 7d, that is, the contact surface 7e, the axial position of the bearing sleeve 8 with respect to the housing 7 is determined. Thereafter, for example, the outer peripheral surface 8 b of the bearing sleeve 8 is bonded and fixed to the inner peripheral surface 7 c of the housing 7 by solidifying an adhesive previously applied to the inner peripheral surface 7 c of the housing 7. At this time, even if the resin contact surface 7e is elastically deformed as the bearing sleeve 8 is pushed downward, and the dynamic pressure groove 8c1 provided on the lower end surface 8c is closed, the contact surface The radial groove 10a provided on the 7e side ensures a communication state between the axial groove 10b and the region serving as the thrust bearing gap. For the above-described reason, the dynamic pressure groove 8c1 positioned at the contact portion of the lower end surface 8c of the bearing sleeve 8 with the contact surface 7e can be omitted.

また、この実施形態では、径方向溝10aと軸方向溝10bの位置が周方向で一致するように、軸受スリーブ8をハウジング7の内周に固定しているが、軸方向溝10bと径方向溝10aの円周方向位置は必ずしも一致させる必要はなく、円周方向にずれていてもよい。この場合、径方向溝10aと軸方向溝10b間での流体(潤滑油)の流通は、軸受スリーブ8の下端外周に設けられたチャンファ8eと、当接面7e、および側部7aの内周面7cとの間の隙間を介して行われる(図2を参照)。   In this embodiment, the bearing sleeve 8 is fixed to the inner periphery of the housing 7 so that the positions of the radial groove 10a and the axial groove 10b coincide with each other in the circumferential direction. The circumferential direction positions of the grooves 10a are not necessarily matched, and may be shifted in the circumferential direction. In this case, the fluid (lubricating oil) between the radial groove 10a and the axial groove 10b flows through the chamfer 8e provided on the outer periphery of the lower end of the bearing sleeve 8, the contact surface 7e, and the inner periphery of the side portion 7a. This is done through a gap between the surface 7c (see FIG. 2).

シール手段としてのシール部9は、図2に示すように、例えば金属材料や樹脂材料でハウジング7とは別体に形成され、ハウジング7の側部7aの上端部内周に圧入、接着、溶着、溶接等の手段で固定される。この実施形態では、シール部9の固定は、シール部9の下端面9bを軸受スリーブ8の上端面8dに当接させた状態で行われる(図2を参照)。   As shown in FIG. 2, the seal portion 9 as a sealing means is formed separately from the housing 7 with, for example, a metal material or a resin material, and is press-fitted, adhered, welded to the inner periphery of the upper end portion of the side portion 7a of the housing 7, It is fixed by means such as welding. In this embodiment, the seal portion 9 is fixed in a state where the lower end surface 9b of the seal portion 9 is in contact with the upper end surface 8d of the bearing sleeve 8 (see FIG. 2).

シール部9の内周面9aにはテーパ面が形成されており、このテーパ面と、テーパ面に対向する軸部2aの外周面2a1との間には、上方に向けて半径方向寸法が漸次拡大する環状のシール空間Sが形成される。シール部9で密封されたハウジング7の内部空間には、潤滑油が注油され、ハウジング7内が潤滑油で満たされる(図2中の散点領域)。この状態では、潤滑油の油面はシール空間Sの範囲内に維持される。   A taper surface is formed on the inner peripheral surface 9a of the seal portion 9, and the radial dimension gradually increases between the taper surface and the outer peripheral surface 2a1 of the shaft portion 2a facing the taper surface. An expanding annular seal space S is formed. Lubricating oil is injected into the internal space of the housing 7 sealed by the seal portion 9, and the inside of the housing 7 is filled with the lubricating oil (a dotted area in FIG. 2). In this state, the oil level of the lubricating oil is maintained within the range of the seal space S.

上記構成の動圧軸受装置1において、軸部材2の回転時、軸受スリーブ8のラジアル軸受面(内周面8aの動圧溝8a1、8a2形成領域)は、軸部2aの外周面2a1とラジアル軸受隙間を介して対向する。そして、軸部材2の回転に伴い、上記ラジアル軸受隙間の潤滑油が動圧溝8a1、8a2の軸方向中心m側に押し込まれ、その圧力が上昇する。このような動圧溝8a1、8a2の動圧作用によって、軸部材2をラジアル方向に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが構成される。   In the dynamic pressure bearing device 1 configured as described above, when the shaft member 2 rotates, the radial bearing surface of the bearing sleeve 8 (the dynamic pressure grooves 8a1 and 8a2 forming region of the inner peripheral surface 8a) is radially aligned with the outer peripheral surface 2a1 of the shaft portion 2a. Opposing through the bearing gap. As the shaft member 2 rotates, the lubricating oil in the radial bearing gap is pushed toward the axial center m of the dynamic pressure grooves 8a1 and 8a2, and the pressure rises. By such dynamic pressure action of the dynamic pressure grooves 8a1 and 8a2, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner in the radial direction are configured.

これと同時に、軸受スリーブ8のスラスト軸受面(下端面8cの動圧溝8c1形成領域)とこれに対向するフランジ部2bの上端面2b1との間のスラスト軸受隙間、およびハウジング7のスラスト軸受面(上端面7b1の動圧溝7b11形成領域)とこれに対向するフランジ部2bの下端面2b2との間のスラスト軸受隙間に、動圧溝7b11、8c1の動圧作用により潤滑油の油膜がそれぞれ形成される。そして、これら油膜の圧力によって、軸部材2をスラスト方向に非接触支持する第1スラスト軸受部T1と、第2スラスト軸受部T2とが構成される。この際、第1、第2スラスト軸受部T1、T2のスラスト軸受隙間(の総和)は、常に小径部7dの軸方向幅からフランジ部2bの軸方向幅を減じた値に設定される。これにより、両スラスト軸受隙間(の総和)が精度良く管理される。   At the same time, the thrust bearing clearance between the thrust bearing surface of the bearing sleeve 8 (the dynamic pressure groove 8c1 formation region of the lower end surface 8c) and the upper end surface 2b1 of the flange portion 2b opposed thereto, and the thrust bearing surface of the housing 7 In the thrust bearing gap between the (lower region 2b2 formation region of the upper end surface 7b1) and the lower end surface 2b2 of the flange portion 2b facing this, an oil film of lubricating oil is formed by the dynamic pressure action of the dynamic pressure grooves 7b11, 8c1, respectively. It is formed. The pressure of these oil films forms a first thrust bearing portion T1 and a second thrust bearing portion T2 that support the shaft member 2 in a non-contact manner in the thrust direction. At this time, the thrust bearing gap (total) of the first and second thrust bearing portions T1, T2 is always set to a value obtained by subtracting the axial width of the flange portion 2b from the axial width of the small diameter portion 7d. Thereby, both thrust bearing clearances (total) are managed with high accuracy.

上述のように、軸受スリーブ8の外周に軸受スリーブ8両端面間の流体流路となる軸方向溝10bを、ハウジング7の当接面7eに径方向溝10aをそれぞれ設けることで、これら軸方向溝10b、径方向溝10aを介して、ハウジング7の下端内部に位置するスラスト軸受部T1、T2のスラスト軸受隙間と、ハウジング7の開口側に形成されるシール空間Sとの間が連通状態となる。これによれば、例えば何らかの理由でスラスト軸受部T1、T2の側の流体(潤滑油)圧力が過度に高まり、あるいは低下するといった事態を避けて、軸部材2をスラスト方向に安定して非接触支持することが可能となる。   As described above, the axial grooves 10b serving as the fluid flow paths between the both end faces of the bearing sleeve 8 are provided on the outer periphery of the bearing sleeve 8, and the radial grooves 10a are provided on the contact surface 7e of the housing 7, whereby these axial directions are provided. Via the groove 10b and the radial groove 10a, the thrust bearing gaps of the thrust bearing portions T1 and T2 located inside the lower end of the housing 7 and the seal space S formed on the opening side of the housing 7 are in communication with each other. Become. According to this, for example, the shaft (2) is stably non-contacted in the thrust direction while avoiding a situation in which the fluid (lubricating oil) pressure on the thrust bearing portions T1, T2 side is excessively increased or decreased for some reason. It becomes possible to support.

また、この実施形態では、第1ラジアル軸受部R1の動圧溝8a1は、軸方向中心mに対して軸方向非対称(X1>X2)に形成されているため(図3参照)、軸部材2の回転時、動圧溝8a1による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。そして、この引き込み力の差圧によって、軸受スリーブ8の内周面8aと軸部2aの外周面2a1との間の隙間に満たされた潤滑油が下方に流動し、第1スラスト軸受部T1のスラスト軸受隙間→径方向溝10a→軸方向溝10b→上端面8dと下端面9b外径側領域との間の軸方向隙間→周方向溝8d1→半径方向溝8d2という経路を循環して、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。このように、潤滑油がハウジング7の内部空間を流動循環するように構成することで、各軸受隙間をはじめとする軸受内部の圧力バランスが適正に保たれる。また、軸受内部空間の潤滑油の好ましくない流れ、例えば潤滑油の圧力が局部的に負圧になる現象を防止して、負圧発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。   Further, in this embodiment, the dynamic pressure groove 8a1 of the first radial bearing portion R1 is formed to be axially asymmetric (X1> X2) with respect to the axial center m (see FIG. 3). At the time of rotation, the lubricating oil pulling force (pumping force) by the dynamic pressure groove 8a1 is relatively larger in the upper region than in the lower region. Then, due to the differential pressure of the pulling force, the lubricating oil filled in the gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a flows downward, and the first thrust bearing portion T1 Thrust bearing clearance → radial groove 10a → axial groove 10b → axial clearance between upper end face 8d and lower end face 9b outer diameter side region → circumferential groove 8d1 → radial groove 8d2 It is drawn again into the radial bearing gap of the one radial bearing portion R1. In this way, by configuring the lubricating oil to flow and circulate in the internal space of the housing 7, the pressure balance inside the bearings including the bearing gaps is properly maintained. Also, an undesirable flow of the lubricating oil in the bearing internal space, for example, a phenomenon in which the pressure of the lubricating oil becomes a negative pressure locally is prevented, and bubbles are generated due to the generation of the negative pressure. Problems such as leakage and vibration can be solved.

以上、本発明の一実施形態を説明したが、本発明は、この実施形態に限定されず、他の構成にも適用することができる。   Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment and can be applied to other configurations.

上記実施形態では、軸方向溝10bを、軸受スリーブ8の外周面8bに設けた場合を説明したが、軸方向溝10bは流体流路としてハウジング7の内周と軸受スリーブ8の外周との間に形成されていればよく、例えば図5に示すように、ハウジング7の内周面7cに形成することもできる。この場合には、軸受内部の流体を循環流通させるための径方向溝10aおよび軸方向溝10bを、何れもハウジング7の側に形成することができるので、軸受スリーブ8の外周面8bに軸方向溝10bを形成する手間が省ける。特に、軸受スリーブ8を焼結金属で形成する場合、この種の溝の成形は、圧粉体の成形と同時に行われるため、圧粉成形金型のダイやパンチには軸方向溝10bに対応したものが必要とされるが、ハウジング7の側に設けることで当該金型を簡素化でき、かかるコストの低減化が可能となる。   In the above-described embodiment, the case where the axial groove 10b is provided on the outer peripheral surface 8b of the bearing sleeve 8 has been described. However, the axial groove 10b serves as a fluid flow path between the inner periphery of the housing 7 and the outer periphery of the bearing sleeve 8. For example, as shown in FIG. 5, it may be formed on the inner peripheral surface 7 c of the housing 7. In this case, since both the radial groove 10a and the axial groove 10b for circulating and circulating the fluid inside the bearing can be formed on the housing 7 side, the axial direction is formed on the outer peripheral surface 8b of the bearing sleeve 8. The trouble of forming the groove 10b can be saved. In particular, when the bearing sleeve 8 is formed of sintered metal, this type of groove forming is performed simultaneously with the forming of the green compact, so that it corresponds to the axial groove 10b for the die or punch of the green mold. However, by providing it on the housing 7 side, the mold can be simplified and the cost can be reduced.

また、上記実施形態では、径方向溝10aが形成される当接面7eを、ハウジング7と一体に設けた場合を説明したが、特にこの形態に限ることはなく、例えば当接面7eをハウジング7と別体に設けることも可能である。例えば図6は、ハウジング7の底部7bをハウジング7の側部7aと別体に形成し、かつ底部7bの側に当接面7eを設けた場合を図示している。同図において、当接面7eは、別体としての底部7bの外周から軸受スリーブ8側(図中上方向)に突出した円筒状の突出部7fの上端面を構成する。また、シール部9は、例えば樹脂の射出成形などでハウジング7と一体に形成される。   In the above embodiment, the case where the contact surface 7e on which the radial groove 10a is formed is provided integrally with the housing 7 is described. However, the present invention is not particularly limited to this configuration. 7 can be provided separately. For example, FIG. 6 illustrates a case where the bottom 7b of the housing 7 is formed separately from the side 7a of the housing 7 and a contact surface 7e is provided on the bottom 7b. In the figure, the contact surface 7e constitutes the upper end surface of a cylindrical protruding portion 7f protruding from the outer periphery of a separate bottom portion 7b toward the bearing sleeve 8 (upward in the figure). The seal portion 9 is formed integrally with the housing 7 by, for example, resin injection molding.

この場合、予め軸受スリーブ8を、上端面8dを側部7aと一体形成されたシール部9の下端面9bと当接させた状態でハウジング7の内周に固定する。そして、別体としての底部7bをハウジング7の内周に押し込んで行き、軸受スリーブ8の下端面8cが底部7bの当接面7eと当接したところで軸受スリーブ8のハウジング7に対する軸方向位置を決定する。その後、例えばハウジング7の内周面7cに予め塗布しておいた接着剤を固化させることで、底部7bをハウジング7の内周に接着固定する。   In this case, the bearing sleeve 8 is fixed to the inner periphery of the housing 7 in a state where the upper end surface 8d is in contact with the lower end surface 9b of the seal portion 9 formed integrally with the side portion 7a. Then, the bottom portion 7b as a separate body is pushed into the inner periphery of the housing 7, and the axial position of the bearing sleeve 8 relative to the housing 7 is determined when the lower end surface 8c of the bearing sleeve 8 abuts against the abutment surface 7e of the bottom portion 7b. decide. Then, for example, the bottom portion 7 b is bonded and fixed to the inner periphery of the housing 7 by solidifying an adhesive previously applied to the inner peripheral surface 7 c of the housing 7.

このように、別体としての底部7bをハウジング7に固定する場合であっても、当接面7eの側に径方向溝10aを設けることで、底部7bの押込みに伴う動圧溝8c1の閉塞の有無に依らず、軸方向溝10bと、各スラスト軸受隙間となる領域との間での連通状態を確保することができる。従って、常に軸受内部の圧力バランスを保ち、安定した軸受性能を発揮することができる。   As described above, even when the bottom portion 7b as a separate body is fixed to the housing 7, by providing the radial groove 10a on the contact surface 7e side, the dynamic pressure groove 8c1 is closed due to the pressing of the bottom portion 7b. Regardless of the presence or absence of this, it is possible to ensure the communication state between the axial groove 10b and the region serving as the thrust bearing gap. Therefore, the pressure balance inside the bearing can always be maintained and stable bearing performance can be exhibited.

また、以上の実施形態では、軸受スリーブ8の側に周方向溝8d1や半径方向溝8d2を設けた場合を例示したが、これらの溝を対向するシール部9の側に設けることもできる。これによれば、軸受スリーブ8の、内周面8aおよび下端面8cを除く外表面を全て平滑な面とすることができるので、成形金型をさらに簡素化して、かかるコストをより一層低減することができる。さらには、内周面8aや下端面8cに形成される動圧溝8a1、8a2、8c1を対向する軸部材2の側に設けることで、軸受スリーブ8の外表面を全て平滑な面とすることもできる。   Moreover, although the case where the circumferential direction groove | channel 8d1 and the radial direction groove | channel 8d2 were provided in the side of the bearing sleeve 8 was illustrated in the above embodiment, these grooves can also be provided in the side of the seal part 9 which opposes. According to this, since all the outer surfaces of the bearing sleeve 8 excluding the inner peripheral surface 8a and the lower end surface 8c can be made smooth, the molding die can be further simplified and the cost can be further reduced. be able to. Furthermore, by providing the dynamic pressure grooves 8a1, 8a2, 8c1 formed on the inner peripheral surface 8a and the lower end surface 8c on the side of the opposing shaft member 2, the outer surface of the bearing sleeve 8 is all made smooth. You can also.

また、以上の実施形態では、ハウジング7に形成される径方向溝10aを、断面V字状としたものを例示したが、もちろんこれ以外の溝形状(溝断面形状)とすることも可能である。また、径方向溝10aの本数についても、図示のように3本に限ることなく、2本あるいは4本以上設けることも可能である。また、径方向溝10aを設ける箇所は、樹脂製あるいは金属製とすることもでき、成形方法として、例えば樹脂や金属の射出成形、あるいは金属のプレス成形、鍛造成形等を採用することができる。   Moreover, although the radial direction groove | channel 10a formed in the housing 7 illustrated what made the cross-section V shape in the above embodiment, of course, it is also possible to set it as other groove shapes (groove cross-sectional shape). . Further, the number of the radial grooves 10a is not limited to three as shown in the figure, and two or four or more may be provided. Further, the location where the radial groove 10a is provided can be made of resin or metal, and as a molding method, for example, resin or metal injection molding, metal press molding, forging molding or the like can be adopted.

また、以上の実施形態では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、へリングボーン形状やスパイラル形状の動圧溝により潤滑流体の動圧作用を発生させる構成を例示しているが、本発明はこれに限定されるものではない。   In the above embodiment, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are configured to generate the dynamic pressure action of the lubricating fluid by the herringbone shape or spiral shape dynamic pressure grooves. However, the present invention is not limited to this.

例えば、ラジアル軸受部R1、R2として、いわゆるステップ軸受や多円弧軸受を採用してもよい。なお、以下に示す図示例は、何れも軸受スリーブ8の内周面8aに動圧発生部を設けた場合を例示しているが、上述のように、これら動圧発生部を、内周面8aと対向する軸部2aの外周面2a1に設けても構わない。   For example, so-called step bearings or multi-arc bearings may be employed as the radial bearing portions R1 and R2. In addition, although the example shown below has illustrated the case where all provide the dynamic-pressure generation | occurrence | production part in the inner peripheral surface 8a of the bearing sleeve 8, as above-mentioned, these dynamic-pressure generation | occurrence | production parts are connected to the inner peripheral surface. You may provide in the outer peripheral surface 2a1 of the axial part 2a facing 8a.

図7は、ラジアル軸受部R1、R2の一方又は双方を多円弧軸受で構成した場合の一例を示している。同図において、軸受スリーブ8の内周面8aのラジアル軸受面となる領域は、複数の円弧面8a3(この図では3円弧面)で構成されている。各円弧面8a3は、回転軸心Oからそれぞれ等距離オフセットした点を中心とする偏心円弧面であり、円周方向で等間隔に形成される。各偏心円弧面8a3の間には軸方向の分離溝8a4がそれぞれ形成される。   FIG. 7 shows an example of a case where one or both of the radial bearing portions R1 and R2 are constituted by multi-arc bearings. In the same figure, the area | region used as the radial bearing surface of the internal peripheral surface 8a of the bearing sleeve 8 is comprised by several arc surface 8a3 (this figure 3 arc surface). Each arc surface 8a3 is an eccentric arc surface centered at a point offset from the rotation axis O by an equal distance, and is formed at equal intervals in the circumferential direction. An axial separation groove 8a4 is formed between each eccentric arc surface 8a3.

軸受スリーブ8の内周面8aに軸部材2の軸部2aを挿入することにより、軸受スリーブ8の偏心円弧面8a3および分離溝8a4と、軸部2aの真円状外周面2a1との間に、第1および第2ラジアル軸受部R1、R2の各ラジアル軸受隙間がそれぞれ形成される。ラジアル軸受隙間のうち、偏心円弧面8a3と真円状外周面2a1とで形成される領域は、隙間幅を円周方向の一方で漸次縮小させたくさび状隙間8a5となる。くさび状隙間8a5の縮小方向は軸部材2の回転方向に一致している。   By inserting the shaft portion 2a of the shaft member 2 into the inner peripheral surface 8a of the bearing sleeve 8, the eccentric arc surface 8a3 and the separation groove 8a4 of the bearing sleeve 8 and the perfect circular outer peripheral surface 2a1 of the shaft portion 2a are interposed. The radial bearing gaps of the first and second radial bearing portions R1 and R2 are respectively formed. In the radial bearing gap, a region formed by the eccentric arc surface 8a3 and the perfect circular outer peripheral surface 2a1 is a wedge-shaped gap 8a5 in which the gap width is gradually reduced in the circumferential direction. The reduction direction of the wedge-shaped gap 8a5 coincides with the rotation direction of the shaft member 2.

図8は、第1および第2ラジアル軸受部R1、R2を構成する多円弧軸受の他の実施形態を示すものである。この実施形態では、図7に示す構成において、各偏心円弧面8a3の最小隙間側の所定領域θが、それぞれ回転軸心Oを中心とする同心の円弧で構成されている。従って、各所定領域θにおけるラジアル軸受隙間(最小隙間)8a6は一定となる。このような構成の多円弧軸受は、テーパ・フラット軸受と称されることもある。   FIG. 8 shows another embodiment of the multi-arc bearing that constitutes the first and second radial bearing portions R1, R2. In this embodiment, in the configuration shown in FIG. 7, the predetermined area θ on the minimum gap side of each eccentric arc surface 8a3 is configured by a concentric arc centering around the rotation axis O. Accordingly, the radial bearing gap (minimum gap) 8a6 in each predetermined region θ is constant. The multi-arc bearing having such a configuration may be referred to as a tapered flat bearing.

図8では、軸受スリーブ8の内周面8aのラジアル軸受面となる領域が3つの円弧面8a7で形成されると共に、3つの円弧面8a7の中心は、回転軸心Oから等距離オフセットされている。3つの偏心円弧面8a7で区画される各領域において、ラジアル軸受隙間8a8は、円周方向の両方向に対してそれぞれ漸次縮小した形状を有している。   In FIG. 8, a region that is a radial bearing surface of the inner peripheral surface 8 a of the bearing sleeve 8 is formed by three arc surfaces 8 a 7, and the centers of the three arc surfaces 8 a 7 are offset from the rotation axis O by an equal distance. Yes. In each region defined by the three eccentric arc surfaces 8a7, the radial bearing gap 8a8 has a shape that is gradually reduced with respect to both circumferential directions.

以上説明した第1および第2ラジアル軸受部R1、R2の多円弧軸受は、何れもいわゆる3円弧軸受であるが、これに限らず、いわゆる4円弧軸受、5円弧軸受、さらには6円弧以上の数の円弧面で構成された多円弧軸受を採用してもよい。また、ラジアル軸受部R1、R2のように、2つのラジアル軸受部を軸方向に離隔して設けた構成とする他、軸受スリーブ8の内周面8aの上下領域に亘って1つのラジアル軸受部を設けた構成としてもよい。   The multi-arc bearings of the first and second radial bearing portions R1 and R2 described above are all so-called three-arc bearings, but are not limited thereto, so-called four-arc bearings, five-arc bearings, and more than six arcs. You may employ | adopt the multi-arc bearing comprised by the several circular arc surface. Further, in addition to the configuration in which the two radial bearing portions are separated from each other in the axial direction as in the radial bearing portions R1 and R2, one radial bearing portion extends over the upper and lower regions of the inner peripheral surface 8a of the bearing sleeve 8. It is good also as a structure which provided.

また、スラスト軸受部T1、T2の一方又は双方は、例えば図示は省略するが、スラスト軸受面となる領域に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、あるいは波型軸受(ステップ型が波型になったもの)等で構成することもできる。   One or both of the thrust bearing portions T1 and T2, for example, are not shown in the figure, but a plurality of radial groove-shaped dynamic pressure grooves are provided at predetermined intervals in the circumferential direction in a region serving as a thrust bearing surface. A step bearing or a corrugated bearing (the step mold is a corrugated one) can also be used.

また、以上の実施形態では、ラジアル軸受部R1、R2やスラスト軸受部T1、T2を動圧軸受で構成した場合を説明したが、これ以外の軸受で構成することもできる。例えば、ラジアル軸受面となる軸受スリーブ8の内周面8aを、動圧発生部としての動圧溝8a1や円弧面8a3を設けない真円内周面とし、この内周面と対向する軸部2aの真円状外周面2a1とで、いわゆる真円軸受を構成することができる。   Moreover, although the radial bearing part R1 and R2 and the thrust bearing part T1 and T2 were comprised by the dynamic pressure bearing in the above embodiment, it can also comprise by bearings other than this. For example, the inner peripheral surface 8a of the bearing sleeve 8 serving as a radial bearing surface is a perfect circular inner peripheral surface not provided with the dynamic pressure groove 8a1 or the circular arc surface 8a3 as a dynamic pressure generating portion, and the shaft portion opposed to the inner peripheral surface A so-called perfect circle bearing can be constituted by the perfect circular outer peripheral surface 2a1 of 2a.

また、以上の実施形態では、動圧軸受装置1の内部に充満し、ラジアル軸受隙間や、スラスト軸受隙間に動圧作用を生じる流体として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧作用を発生可能な流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。   Further, in the above embodiment, the lubricating oil is exemplified as the fluid that fills the inside of the hydrodynamic bearing device 1 and causes the hydrodynamic action in the radial bearing gap or the thrust bearing gap. In addition, a fluid capable of generating a dynamic pressure action, for example, a gas such as air, a fluid lubricant such as a magnetic fluid, or lubricating grease may be used.

本発明の一実施形態に係る動圧軸受装置を組込んだ情報機器用スピンドルモータの断面図である。1 is a cross-sectional view of a spindle motor for information equipment incorporating a fluid dynamic bearing device according to an embodiment of the present invention. 動圧軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus. (a)は軸受スリーブの縦断面図、(b)は下端面図である。(A) is a longitudinal cross-sectional view of a bearing sleeve, (b) is a bottom end view. ハウジングのA−A断面図である。It is AA sectional drawing of a housing. 動圧軸受装置の他の構成例を示す図である。It is a figure which shows the other structural example of a hydrodynamic bearing apparatus. 動圧軸受装置の他の構成例を示す図である。It is a figure which shows the other structural example of a hydrodynamic bearing apparatus. ラジアル軸受部の他の構成例を示す図である。It is a figure which shows the other structural example of a radial bearing part. ラジアル軸受部の他の構成例を示す図である。It is a figure which shows the other structural example of a radial bearing part. ラジアル軸受部の他の構成例を示す図である。It is a figure which shows the other structural example of a radial bearing part.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
2a 軸部
2b フランジ部
3 ディスクハブ
4 ステータコイル
5 ロータマグネット
7 ハウジング
7a 側部
7b 底部
7c 内周面
7d 小径部
7e 当接面
8 軸受スリーブ
8a 内周面
8a1、8a2 動圧溝
8a3、8a7 偏心円弧面
8b 外周面
8c 下端面
8c1 動圧溝
8d 上端面
8d1 周方向溝
8d2 半径方向溝
9 シール部
10a 径方向溝
10b 軸方向溝
S シール空間
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 2a Shaft part 2b Flange part 3 Disc hub 4 Stator coil 5 Rotor magnet 7 Housing 7a Side part 7b Bottom part 7c Inner peripheral surface 7d Small diameter part 7e Contact surface 8 Bearing sleeve 8a Inner peripheral surface 8a1, 8a2 Dynamic pressure grooves 8a3, 8a7 Eccentric arc surface 8b Outer peripheral surface 8c Lower end surface 8c1 Dynamic pressure groove 8d Upper end surface 8d1 Circumferential groove 8d2 Radial groove 9 Seal portion 10a Radial groove 10b Axial groove S Seal space R1, R2 Radial bearing T1, T2 Thrust bearing

Claims (7)

ハウジングと、ハウジングの内周に固定され、一端面に動圧発生部を設けた軸受スリーブと、ハウジングおよび軸受スリーブに対して相対回転する軸部材と、軸受スリーブの一端面とこれに対向する軸部材との間のスラスト軸受隙間に生じる流体の動圧作用で軸部材をスラスト方向に非接触支持するスラスト軸受部と、ハウジングの内周と軸受スリーブの外周との間に設けられ、軸受スリーブの両端面間で流体を流通可能とする流体流路とを備えたものにおいて、
軸受スリーブの一端面に、動圧発生部として複数の動圧溝を配列した領域が形成され
ハウジングは樹脂材料で底部を一体に有する形状に形成され、このハウジングの内周面に軸受スリーブが圧入又は圧入接着で固定され、
ハウジングに、軸受スリーブの一端面と軸方向で当接してハウジングに対する軸受スリーブの軸方向の位置決めを行うための当接面が設けられ、軸受スリーブをハウジングの底部側に向けて押し込むことで、軸受スリーブの一端面と当接する当接面が弾性変形しており、かつこの当接面に、スラスト軸受隙間と流体流路とを連通させるものであって、動圧溝よりも溝深さを大きくとった径方向溝が形成されることを特徴とする動圧軸受装置。
A housing, a bearing sleeve fixed to the inner periphery of the housing and provided with a dynamic pressure generating portion on one end face, a shaft member that rotates relative to the housing and the bearing sleeve, an end face of the bearing sleeve, and a shaft facing the shaft A thrust bearing portion that supports the shaft member in a non-contact manner in the thrust direction by the dynamic pressure action of the fluid generated in the thrust bearing gap between the member and the inner periphery of the housing and the outer periphery of the bearing sleeve. In what has a fluid flow path that allows fluid to flow between both end faces,
On one end face of the bearing sleeve, a region in which a plurality of dynamic pressure grooves as dynamic pressure generating portion is formed,
The housing is formed of a resin material in a shape having an integral bottom, and a bearing sleeve is fixed to the inner peripheral surface of the housing by press-fitting or press-fitting adhesion,
The housing, the abutment surface is provided for positioning in the axial direction of the bearing sleeve relative to the housing by contact with one end face in the axial direction of the bearing sleeve, by pushing towards the bearing sleeve on the bottom side of the housing, The abutting surface that abuts one end surface of the bearing sleeve is elastically deformed, and the thrust bearing gap and the fluid passage are communicated with the abutting surface , and the groove depth is larger than that of the dynamic pressure groove. A hydrodynamic bearing device characterized in that a large radial groove is formed.
流体流路は、軸受スリーブの外周に形成される軸方向溝で構成される請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the fluid flow path is configured by an axial groove formed on an outer periphery of the bearing sleeve. 流体流路は、ハウジングの内周に形成される軸方向溝で構成される請求項1記載の動圧軸受装置。   The fluid dynamic bearing device according to claim 1, wherein the fluid flow path is configured by an axial groove formed in an inner periphery of the housing. 軸方向溝と径方向溝の位置が周方向で一致している請求項2又は3記載の動圧軸受装置。   4. The hydrodynamic bearing device according to claim 2, wherein positions of the axial groove and the radial groove coincide with each other in the circumferential direction. 径方向溝はハウジングと一体に型成形される請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the radial groove is molded integrally with the housing. ハウジングは、樹脂の射出成形で形成される請求項5記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 5, wherein the housing is formed by resin injection molding. 請求項1〜の何れかに記載の動圧軸受装置を備えたディスク装置のスピンドルモータ。 A spindle motor of a disk device comprising the fluid dynamic bearing device according to any one of claims 1 to 6 .
JP2005197700A 2005-07-06 2005-07-06 Hydrodynamic bearing device Expired - Fee Related JP4588561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005197700A JP4588561B2 (en) 2005-07-06 2005-07-06 Hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005197700A JP4588561B2 (en) 2005-07-06 2005-07-06 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2007016849A JP2007016849A (en) 2007-01-25
JP4588561B2 true JP4588561B2 (en) 2010-12-01

Family

ID=37754186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005197700A Expired - Fee Related JP4588561B2 (en) 2005-07-06 2005-07-06 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4588561B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101444554B1 (en) 2012-12-26 2014-09-25 삼성전기주식회사 Hydrodynamic bearing assembly and spindle motor having the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239974A (en) * 2002-02-20 2003-08-27 Ntn Corp Dynamic pressure bearing device and manufacturing method therefor
JP2004116667A (en) * 2002-09-26 2004-04-15 Ntn Corp Dynamic pressure bearing device
JP2004324834A (en) * 2003-04-28 2004-11-18 Sankyo Seiki Mfg Co Ltd Bearing device and motor using the same
JP2005121052A (en) * 2003-10-14 2005-05-12 Ntn Corp Dynamic pressure bearing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239974A (en) * 2002-02-20 2003-08-27 Ntn Corp Dynamic pressure bearing device and manufacturing method therefor
JP2004116667A (en) * 2002-09-26 2004-04-15 Ntn Corp Dynamic pressure bearing device
JP2004324834A (en) * 2003-04-28 2004-11-18 Sankyo Seiki Mfg Co Ltd Bearing device and motor using the same
JP2005121052A (en) * 2003-10-14 2005-05-12 Ntn Corp Dynamic pressure bearing device

Also Published As

Publication number Publication date
JP2007016849A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
KR101213552B1 (en) Dynamic pressure bearing device
JP2005321089A (en) Dynamic pressure bearing device
JP4236891B2 (en) Hydrodynamic bearing device
KR20100036252A (en) Fluid dynamic bearing device and its assembling method
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP5095111B2 (en) Hydrodynamic bearing device
JP5312895B2 (en) Hydrodynamic bearing device
US20100166346A1 (en) Dynamic bearing device
JP4657734B2 (en) Hydrodynamic bearing device
JP4588561B2 (en) Hydrodynamic bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP2008190711A (en) Manufacturing process for hydrodynamic bearing unit
JP2009228873A (en) Fluid bearing device
JP5318343B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2008144847A (en) Dynamic pressure bearing device
JP2006258123A (en) Dynamic pressure bearing device
JP2007071312A (en) Dynamic pressure bearing device
JP5122205B2 (en) Method for assembling hydrodynamic bearing device
JP5231095B2 (en) Hydrodynamic bearing device
JP4615328B2 (en) Hydrodynamic bearing device
JP2008298235A (en) Fluid bearing device and its assembling method
JP2008075687A (en) Fluid bearing device
JP2005210896A (en) Spindle motor of disc drive
JP4498932B2 (en) Hydrodynamic bearing device
JP2006214542A (en) Fluid bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080605

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R150 Certificate of patent or registration of utility model

Ref document number: 4588561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees