JP2007071312A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device Download PDF

Info

Publication number
JP2007071312A
JP2007071312A JP2005259719A JP2005259719A JP2007071312A JP 2007071312 A JP2007071312 A JP 2007071312A JP 2005259719 A JP2005259719 A JP 2005259719A JP 2005259719 A JP2005259719 A JP 2005259719A JP 2007071312 A JP2007071312 A JP 2007071312A
Authority
JP
Japan
Prior art keywords
thrust
peripheral surface
shaft member
bearing
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005259719A
Other languages
Japanese (ja)
Inventor
Toshiyuki Mizutani
敏幸 水谷
Takahiro Shimizu
隆弘 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005259719A priority Critical patent/JP2007071312A/en
Publication of JP2007071312A publication Critical patent/JP2007071312A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic pressure bearing device capable of fixing a thrust member and a shaft member powerfully without reducing rigidity of a bearing. <P>SOLUTION: Chamfers 9e, 9h and a large diameter inner peripheral face 9f are provided at one end of the inner periphery of the thrust member 9, and a space as an adhesive accumulation part is formed between the large diameter inner peripheral face and an outer peripheral face of the shaft member 2. Consequently, since sufficient volume of adhesive can be kept between an inner peripheral face of the thrust member and the outer peripheral face of the shaft member, strength of adhesive bonding can be increased. Since the adhesive overflowing from the adhesive accumulation part is kept in a space among the chamfers and the outer peripheral face of the shaft member, it is possible to prevent adhesive from going around onto one end face of the thrust member which becomes a thrust bearing face and avoid a defect such as reduction of performance of the thrust bearing. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、動圧軸受装置に関するものである。   The present invention relates to a hydrodynamic bearing device.

動圧軸受装置は、軸受隙間に充填された潤滑流体(例えば潤滑油)に動圧作用を発生させ、この圧力で軸部材を支持する軸受装置である。この動圧軸受装置は、高速回転、高回転精度、低騒音等の特徴を備えるものであり、情報機器、例えばHDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等におけるディスクドライブ用のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイールモータ、あるいは軸流ファンなどの小型モータ用の軸受装置として好適である。   The dynamic pressure bearing device is a bearing device that generates a dynamic pressure action on a lubricating fluid (for example, lubricating oil) filled in a bearing gap and supports a shaft member with this pressure. This hydrodynamic bearing device has features such as high-speed rotation, high rotation accuracy, and low noise. Information equipment such as magnetic disk devices such as HDD, CD-ROM, CD-R / RW, DVD-ROM / For small motors such as optical disk devices such as RAM, spindle motors for disk drives in magneto-optical disk devices such as MD and MO, polygon scanner motors for laser beam printers (LBP), color wheel motors for projectors, and axial fans. It is suitable as a bearing device.

この種の動圧軸受装置として、例えば特許文献1には、スリーブの両端開口部をシールするスラスト板が、ジャーナル(シャフト)に取り付けられている例が示されている。スラスト板は、スリーブの小内径部分の半径方向に延びる表面との間にスラスト軸受隙間となる第2隙間を形成している。
実開平6−54916
As this type of hydrodynamic bearing device, for example, Patent Document 1 shows an example in which a thrust plate for sealing both end openings of a sleeve is attached to a journal (shaft). The thrust plate forms a second gap serving as a thrust bearing gap between the thrust plate and the radially extending surface of the small inner diameter portion of the sleeve.
6-54916

上記のような動圧軸受装置において、スラスト板をジャーナルに取り付ける手段は、固定力を考えると、接着、あるいは接着剤介在の下での圧入(以下、圧入接着と称する)などの接着剤を用いるものが好ましい。これらのように、接着剤を用いて固定する場合には、固定面に均一に接着剤を塗布する必要がある。しかしながら、ジャーナルの外周面とスラスト板の内周面との間は、極めて微小な隙間、あるいは圧入力を得るために負隙間となっており、このような部分に適量の接着剤を均一に塗布することは極めて困難である。もし、接着剤の塗布量が多すぎると、スラスト板の軸方向の押し込みに伴い、余分な接着剤が押し出されてスラスト板の一端面に回りこむ。スラスト板の一端面はスラスト軸受面として作用しているため、回り込んだ接着剤によりスラスト軸受隙間を規定幅に設定できず、あるいはスラスト軸受隙間に面する動圧溝が接着剤で埋まり、スラスト方向の軸受性能に悪影響を及ぼすおそれがある。一方、接着剤の塗布量が少なすぎると、ジャーナルとスラスト板との十分な固定力が得られず、衝撃荷重等によってスラスト板が脱落する危険がある。   In the dynamic pressure bearing device as described above, the means for attaching the thrust plate to the journal uses an adhesive such as adhesion or press-fitting under the presence of an adhesive (hereinafter referred to as press-fit adhesion) in view of the fixing force. Those are preferred. As described above, when fixing using an adhesive, it is necessary to uniformly apply the adhesive to the fixing surface. However, there is a very small gap between the outer peripheral surface of the journal and the inner peripheral surface of the thrust plate, or a negative gap to obtain pressure input, and an appropriate amount of adhesive is uniformly applied to such a portion. It is extremely difficult to do. If the application amount of the adhesive is too large, excess adhesive is pushed out and wraps around one end surface of the thrust plate as the thrust plate is pushed in the axial direction. Since one end surface of the thrust plate acts as a thrust bearing surface, the thrust bearing gap cannot be set to the specified width due to the wraparound adhesive, or the dynamic pressure groove facing the thrust bearing gap is filled with adhesive, The bearing performance in the direction may be adversely affected. On the other hand, if the application amount of the adhesive is too small, a sufficient fixing force between the journal and the thrust plate cannot be obtained, and the thrust plate may fall off due to an impact load or the like.

本発明の課題は、軸受性能を低下させることなく、スラスト部材と軸部材とが強力に固定された動圧軸受装置を提供することである。   An object of the present invention is to provide a hydrodynamic bearing device in which a thrust member and a shaft member are firmly fixed without deteriorating bearing performance.

前記課題を解決するため、本発明の動圧軸受装置は、軸部材と、内周に軸部材が挿入された軸受部材と、軸部材の外周面に接着により固定され、内周の一端にチャンファを有するスラスト部材と、スラスト部材の一端面とこれに対向する軸受スリーブの端面との間のスラスト軸受隙間に生じる潤滑流体の動圧作用で、前記軸部材をスラスト方向に支持するスラスト軸受部を備える動圧軸受装置において、軸部材の外周面とスラスト部材の内周面との間に、スラスト部材のチャンファと軸部材の外周面との間の空間に通じる接着剤溜まりを形成したものである。   In order to solve the above-mentioned problems, a hydrodynamic bearing device according to the present invention includes a shaft member, a bearing member in which a shaft member is inserted into an inner periphery, and an outer peripheral surface of the shaft member fixed by adhesion, and a chamfer is formed at one end of the inner periphery. And a thrust bearing portion that supports the shaft member in the thrust direction by dynamic pressure action of a lubricating fluid generated in a thrust bearing gap between one end surface of the thrust member and the end surface of the bearing sleeve facing the thrust member. In the hydrodynamic bearing device provided, an adhesive reservoir that leads to a space between the chamfer of the thrust member and the outer peripheral surface of the shaft member is formed between the outer peripheral surface of the shaft member and the inner peripheral surface of the thrust member. .

このように、軸部材の外周面とスラスト部材の内周面との間に、スラスト部材のチャンファと軸部材の外周面との間の空間に通じる接着剤溜まりを形成することで、軸部材の外周面とスラスト部材の内周面との間に十分な容積の接着剤を保持することが可能となる。これにより、スラスト部材の接着強度を増し、衝撃荷重等によるスラスト部材の軸部材からの脱落を確実に防止することができる。軸部材をスラスト部材の内周に挿入する際、軸部材の押し込みに伴って溢れ出した過剰な接着剤は、接着剤溜まりに捕捉され、さらに過剰な接着剤はチャンファと軸部材の外周面との間の空間(第1空間)に保持されるため、余分な接着剤がスラスト部材の一端面へ回り込むことはなく、スラスト軸受面への接着剤の進入による軸受性能の低下を確実に防ぐことができる。このような接着剤溜まり、さらには第1空間による接着剤の捕捉機能から、接着剤の塗布量にバラツキが許容され、接着剤の塗布工程の簡略化を図ることが可能となる。なお、ここでいう軸受面とは、軸受隙間に対向する面を意味し、この面に動圧溝等の動圧発生部が形成されているか否かは問わない(以下の説明でも同様とする)。   In this way, by forming an adhesive reservoir that leads to the space between the chamfer of the thrust member and the outer peripheral surface of the shaft member between the outer peripheral surface of the shaft member and the inner peripheral surface of the thrust member, It becomes possible to hold a sufficient volume of adhesive between the outer peripheral surface and the inner peripheral surface of the thrust member. Thereby, the adhesive strength of the thrust member can be increased, and the thrust member can be reliably prevented from falling off the shaft member due to impact load or the like. When the shaft member is inserted into the inner periphery of the thrust member, excess adhesive overflowed as the shaft member is pushed in is trapped in the adhesive reservoir, and further excess adhesive is separated from the chamfer and the outer peripheral surface of the shaft member. Since it is held in the space (first space) between them, excess adhesive does not go around to one end face of the thrust member, and it is possible to surely prevent deterioration of bearing performance due to entry of the adhesive into the thrust bearing surface. Can do. Due to such an adhesive reservoir and further, an adhesive capturing function by the first space, variation in the amount of adhesive applied is allowed, and the adhesive application process can be simplified. The bearing surface here means a surface facing the bearing gap, and it does not matter whether a dynamic pressure generating portion such as a dynamic pressure groove is formed on this surface (the same applies to the following description). ).

接着剤を保持するための空間容積を増すだけであれば、例えば、チャンファの面取り深さを増すことで対応することができる。しかし、このように面取り深さを増すと、スラスト軸受面となるスラスト部材の一端面の面積を減少させ、軸受性能、特にスラスト方向の軸受性能に悪影響を与えるおそれがある。これに対し、本発明では、チャンファの面取り深さに影響は及ばないので、この種の問題を回避することができる。   If only the space volume for holding the adhesive is increased, it can be coped with, for example, by increasing the chamfering depth of the chamfer. However, when the chamfering depth is increased in this way, the area of one end surface of the thrust member that becomes the thrust bearing surface is reduced, which may adversely affect the bearing performance, particularly in the thrust direction. On the other hand, in the present invention, since the chamfer chamfering depth is not affected, this type of problem can be avoided.

以上に述べた接着剤溜まりは、軸部材側およびスラスト部材側の何れに形成しても構わない。例えばスラスト部材側に設ける場合、スラスト部材の内周面に、小径内周面と、チャンファにつながった大径内周面とを設ければ、大径内周面と軸部材の外周面とで接着剤溜まりを形成することができる。   The adhesive reservoir described above may be formed on either the shaft member side or the thrust member side. For example, when provided on the thrust member side, if a small-diameter inner peripheral surface and a large-diameter inner peripheral surface connected to the chamfer are provided on the inner peripheral surface of the thrust member, the large-diameter inner peripheral surface and the outer peripheral surface of the shaft member An adhesive reservoir can be formed.

この場合、大径内周面を円筒面に形成するのが望ましい。大径内周面が円筒面であれば、軸部材をスラスト部材に挿入する際、(1)まずスラスト部材のチャンファでのテーパ案内によって軸部材との位置合わせが行われ、(2)次いで大径内周面と軸部材の外周面の円筒面同士の嵌合により両者の芯出しが行われる。従って、その後、軸部材を押し進めても軸部材とスラスト部材の同軸度が狂うことはなく、両部材間で確実に芯合わせを行うことができる。そのため、軸部材とスラスト部材の直角度不良によるスラスト支持力の低下やスラスト部材の早期摩耗等を防止することができる。   In this case, it is desirable to form the large diameter inner peripheral surface in a cylindrical surface. If the large-diameter inner peripheral surface is a cylindrical surface, when the shaft member is inserted into the thrust member, (1) first, alignment with the shaft member is performed by taper guide in the thrust member chamfer, and (2) then large The centering of both the inner peripheral surface and the outer peripheral surface of the shaft member is performed by fitting between the cylindrical surfaces. Therefore, even if the shaft member is pushed forward thereafter, the coaxiality of the shaft member and the thrust member does not go out of alignment, and the centering can be reliably performed between both members. For this reason, it is possible to prevent the thrust support force from being lowered and the thrust member to be worn at an early stage due to the perpendicularity between the shaft member and the thrust member.

スラスト部材の外周にシール空間を形成した構成である場合、スラスト部材と軸部材の直角度が不十分であると、シール空間のバランスが崩れて油漏れが生じるおそれがあるが、本発明であれば、前述のように、両部材間で高い直角度が確保されるので、かかる不具合を防止することができる。   When the seal space is formed on the outer periphery of the thrust member, if the perpendicularity between the thrust member and the shaft member is insufficient, the seal space may be unbalanced and oil leakage may occur. In this case, as described above, a high squareness is ensured between the two members, so that such a problem can be prevented.

以上に述べた動圧軸受装置と、ステータコイルと、ロータマグネットとからなるモータは低コストで製造され、かつ高い回転精度を有する。   The motor comprising the hydrodynamic bearing device, the stator coil, and the rotor magnet described above is manufactured at a low cost and has a high rotational accuracy.

以上のように、本発明によれば、軸受性能を低下させることなく、スラスト部材と軸部材とが強力に固定された動圧軸受装置を提供することができる。   As described above, according to the present invention, it is possible to provide a dynamic pressure bearing device in which the thrust member and the shaft member are strongly fixed without deteriorating the bearing performance.

以下、本発明の第1の実施形態を図1〜7に基づいて説明する。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の第1の実施形態にかかる動圧軸受装置(流体動圧軸受装置)1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。この情報機器用スピンドルモータは、HDD等のディスク駆動装置に用いられるもので、動圧軸受装置1と、動圧軸受装置1の軸部材2に取り付けられたロータ(ディスクハブ)3と、例えば半径方向のギャップを介して対向させたステータコイル4aおよびロータマグネット4bと、ブラケット5とを備えている。ステータコイル4aはブラケット5の外周に取り付けられ、ロータマグネット4bは、ディスクハブ3の内周に取り付けられている。ディスクハブ3は、その外周に磁気ディスク等のディスクDを一枚または複数枚保持する。ステータコイル4aに通電すると、ステータコイル4aとロータマグネット4bとの間に発生する電磁力でロータマグネット4bが回転し、それに伴ってディスクハブ3、および軸部材2が一体となって回転する。   FIG. 1 conceptually shows one configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device (fluid fluid dynamic bearing device) 1 according to a first embodiment of the present invention. This spindle motor for information equipment is used in a disk drive device such as an HDD, and includes a dynamic pressure bearing device 1, a rotor (disk hub) 3 attached to a shaft member 2 of the dynamic pressure bearing device 1, and a radius, for example. A stator coil 4a and a rotor magnet 4b that are opposed to each other with a gap in the direction, and a bracket 5 are provided. The stator coil 4 a is attached to the outer periphery of the bracket 5, and the rotor magnet 4 b is attached to the inner periphery of the disk hub 3. The disk hub 3 holds one or more disks D such as magnetic disks on the outer periphery thereof. When the stator coil 4a is energized, the rotor magnet 4b is rotated by an electromagnetic force generated between the stator coil 4a and the rotor magnet 4b, and the disk hub 3 and the shaft member 2 are rotated together therewith.

図2は、上記スピンドルモータで使用される動圧軸受装置1を示す断面図である。この動圧軸受装置1は、軸部材2と、軸受部材6と、軸部材2の外周面に軸方向に離間して固定された二つのスラスト部材(上側を第1スラスト部材9、下側を第2スラスト部材10とする)とを主要構成部品として構成される。本実施形態では、軸受部材6が、ハウジング7と、ハウジング7の内周に固定された軸受スリーブ8とで構成される場合を例示する。なお、ここで言う上側とはハウジング7の開口部から軸部材2の端部が突出している側を、下側とはその軸方向反対側を指し、以下の説明においても同様とする。   FIG. 2 is a sectional view showing the hydrodynamic bearing device 1 used in the spindle motor. The hydrodynamic bearing device 1 includes a shaft member 2, a bearing member 6, and two thrust members fixed on the outer peripheral surface of the shaft member 2 in the axial direction (the first thrust member 9 on the upper side and the first thrust member 9 on the lower side). The second thrust member 10) is configured as a main component. In this embodiment, the case where the bearing member 6 is comprised with the housing 7 and the bearing sleeve 8 fixed to the inner periphery of the housing 7 is illustrated. In addition, the upper side said here refers to the side from which the edge part of the shaft member 2 protrudes from the opening part of the housing 7, and the lower side refers to the axial direction opposite side, and it is the same also in the following description.

軸受スリーブ8の内周面8aと、軸部材2の外周面2aとの間に第1ラジアル軸受部R1と第2ラジアル軸受部R2とが軸方向に離隔して設けられる。また、軸受スリーブ8の上側端面8bと第1スラスト部材9の下側端面9bとの間に第1スラスト軸受部T1が設けられ、軸受スリーブ8の下側端面8cと第2スラスト部材10の上側端面10bとの間に第2スラスト軸受部T2が設けられる。   Between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a of the shaft member 2, the first radial bearing portion R1 and the second radial bearing portion R2 are provided apart from each other in the axial direction. A first thrust bearing portion T1 is provided between the upper end face 8b of the bearing sleeve 8 and the lower end face 9b of the first thrust member 9, and the lower end face 8c of the bearing sleeve 8 and the upper side of the second thrust member 10 are provided. A second thrust bearing portion T2 is provided between the end surface 10b.

軸部材2は、ステンレス鋼等の金属材料で形成され、あるいは、金属と樹脂のハイブリッド構造とされる。軸部材2は全体として概ね同径の軸状をなし、その中間部分には、他所よりも僅かに小径に形成した逃げ部2bが形成されている。軸部材2の外周面2aのうち、第1および第2スラスト部材9、10の固定位置には、凹部、例えば円周溝2cが形成されている。   The shaft member 2 is made of a metal material such as stainless steel, or has a hybrid structure of metal and resin. The shaft member 2 as a whole has a shaft shape with substantially the same diameter, and an intermediate portion is formed with a relief portion 2b formed to have a slightly smaller diameter than other portions. A concave portion, for example, a circumferential groove 2c is formed at a fixed position of the first and second thrust members 9 and 10 on the outer peripheral surface 2a of the shaft member 2.

ハウジング7は、例えば、樹脂材料を射出成形して円筒状に形成され、その内周面7aは、同径でストレートな円筒面となっている。図1に示すブラケット5の内周面にハウジング7の外周面が圧入、接着、圧入接着等の手段で固定される。   The housing 7 is formed in a cylindrical shape by, for example, injection molding of a resin material, and the inner peripheral surface 7a is a straight cylindrical surface having the same diameter. The outer peripheral surface of the housing 7 is fixed to the inner peripheral surface of the bracket 5 shown in FIG. 1 by means such as press-fitting, bonding, and press-fitting adhesion.

ハウジング7を形成する樹脂は主に熱可塑性樹脂であり、例えば、非晶性樹脂として、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSF)、ポリエーテルイミド(PEI)等、結晶性樹脂として、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等を用いることができる。また、上記の樹脂に充填する充填材の種類も特に限定されないが、例えば、充填材として、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、カーボンファイバー、カーボンブラック、黒鉛、カーボンナノマテリアル、金属粉末等の繊維状又は粉末状の導電性充填材を用いることができる。これらの充填材は、単独で用い、あるいは、二種以上を混合して使用しても良い。この実施形態では、ハウジング7を形成する材料として、結晶性樹脂としての液晶ポリマー(LCP)に、導電性充填材としてのカーボンファイバー又はカーボンナノチューブを2〜8wt%配合した樹脂材料を用いている。   The resin forming the housing 7 is mainly a thermoplastic resin. For example, as an amorphous resin, polysulfone (PSF), polyethersulfone (PES), polyphenylsulfone (PPSF), polyetherimide (PEI) As the crystalline resin, liquid crystal polymer (LCP), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), or the like can be used. The type of filler to be filled in the resin is not particularly limited. For example, as the filler, fibrous filler such as glass fiber, whisker-like filler such as potassium titanate, and scaly filler such as mica. A fibrous or powdery conductive filler such as carbon fiber, carbon black, graphite, carbon nanomaterial, or metal powder can be used. These fillers may be used alone or in combination of two or more. In this embodiment, as a material for forming the housing 7, a resin material in which 2 to 8 wt% of a carbon fiber or a carbon nanotube as a conductive filler is mixed with a liquid crystal polymer (LCP) as a crystalline resin is used.

この他、金属材料(例えば黄銅等の軟質金属材料)、その他の材料でハウジング7を形成することもできる。また、射出成形の一態様として、低融点金属(アルミニウム合金等)の射出成形やMIM成形を採用することもできる。ハウジング7の加工法は上記に例示した方法には限定されず、例えば旋削によってハウジング7を形成することもできる。   In addition, the housing 7 can be formed of a metal material (for example, a soft metal material such as brass) or other materials. Further, as one aspect of injection molding, injection molding or MIM molding of a low melting point metal (such as an aluminum alloy) can be employed. The processing method of the housing 7 is not limited to the method illustrated above, For example, the housing 7 can also be formed by turning.

軸受スリーブ8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体で円筒状に形成され、ハウジング7の内周面7aの所定位置に圧入、接着、あるいは圧入接着等の手段で固定される。なお、軸受スリーブ8は、焼結金属以外にも銅合金等のメタル材料で形成することもできる。   The bearing sleeve 8 is formed in a cylindrical shape, for example, a porous body made of sintered metal, particularly a sintered metal porous body mainly composed of copper, and is press-fitted into a predetermined position on the inner peripheral surface 7a of the housing 7. It is fixed by means such as adhesion or press-fit adhesion. The bearing sleeve 8 can be formed of a metal material such as a copper alloy in addition to the sintered metal.

軸受スリーブ8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2の動圧発生部となる上下2つの領域が軸方向に離隔して設けられ、この2つの領域には、例えば図3(a)に示すようなヘリングボーン形状の動圧溝8a1、8a2がそれぞれ形成される。また、軸受スリーブ8の上側端面8bには、第1スラスト軸受部T1の動圧発生部となる領域が設けられ、この領域には図3(b)に示すようなスパイラル状の動圧溝8b1が形成される。同様に、軸受スリーブ8の下側端面8cには、第2スラスト軸受部T2の動圧発生部となる領域が設けられ、この領域には図3(c)に示すようなスパイラル状の動圧溝8c1が形成される。   The inner peripheral surface 8a of the bearing sleeve 8 is provided with two upper and lower regions that are the dynamic pressure generating portions of the first radial bearing portion R1 and the second radial bearing portion R2, and are separated from each other in the axial direction. For example, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 as shown in FIG. The upper end surface 8b of the bearing sleeve 8 is provided with a region serving as a dynamic pressure generating portion of the first thrust bearing portion T1, and this region has a spiral dynamic pressure groove 8b1 as shown in FIG. Is formed. Similarly, a region serving as a dynamic pressure generating portion of the second thrust bearing portion T2 is provided on the lower end surface 8c of the bearing sleeve 8, and a spiral dynamic pressure as shown in FIG. 3C is provided in this region. A groove 8c1 is formed.

第1スラスト部材9および第2スラスト部材10は、何れも真ちゅう(黄銅)等の軟質金属材料やその他の金属材料、あるいは樹脂材料で、同形状のリング状に形成され、軸部材2の外周面2aの所定位置に固定される。固定方法は、固定力を考慮すると、接着、あるいは圧入接着などの接着剤を用いるものが好ましい。本実施例では、圧入接着により固定する場合を例示する。   Each of the first thrust member 9 and the second thrust member 10 is formed of a soft metal material such as brass (brass), other metal materials, or a resin material in the same ring shape, and the outer peripheral surface of the shaft member 2 2a is fixed at a predetermined position. In consideration of the fixing force, the fixing method is preferably one using an adhesive such as adhesion or press-fit adhesion. In this embodiment, the case of fixing by press-fitting adhesion is illustrated.

以下に第1スラスト部材9の形状を、図4及び図5を参照して説明する。図4は、図2における第1スラスト部材9及びその周辺の拡大断面図、図5は図4のA部分の拡大図である。第1スラスト部材9の内周面には、軸受スリーブ8の上側端面8bとの対向側から順に、第1チャンファ9e、円筒状の大径内周面9f、テーパ部9g、円筒状の小径内周面9d、および第2チャンファ9hが設けられる。第1チャンファ9eは、下方に向けて漸次拡径したテーパ状で、上端は大径内周面9fの下端とつながり、下端は下端面9bに達する。テーパ部9gは、同じく下方に向けて漸次拡径したテーパ状で、大径内周面9fと小径内周面9dとの間に介在している。大径内周面9fは、軸部材2の外径寸法よりも僅かに大径の内径寸法を有し、小径内周面9dは軸部材2の外径寸法よりも圧入代の分だけ小さい内径寸法を有する。以上の構成から、第1チャンファ9eと軸部材2の外周面2aとの間には上方ほど隙間幅を縮径させたテーパ状の第1空間S3が形成される。また、大径内周面9fと軸部材2の外周面2aとの間には、均一幅の第2空間S4が形成され、この第2空間S4は後述のように接着剤溜まりとしての機能を奏する。   Hereinafter, the shape of the first thrust member 9 will be described with reference to FIGS. 4 and 5. 4 is an enlarged cross-sectional view of the first thrust member 9 and its periphery in FIG. 2, and FIG. 5 is an enlarged view of a portion A in FIG. The first thrust member 9 has, in order from the side facing the upper end surface 8b of the bearing sleeve 8, a first chamfer 9e, a cylindrical large-diameter inner peripheral surface 9f, a tapered portion 9g, and a cylindrical small-diameter inner surface. A peripheral surface 9d and a second chamfer 9h are provided. The first chamfer 9e has a tapered shape that gradually increases in diameter downward, the upper end is connected to the lower end of the large-diameter inner peripheral surface 9f, and the lower end reaches the lower end surface 9b. The taper portion 9g is similarly tapered and gradually increases in diameter downward, and is interposed between the large-diameter inner peripheral surface 9f and the small-diameter inner peripheral surface 9d. The large-diameter inner peripheral surface 9f has an inner diameter that is slightly larger than the outer diameter of the shaft member 2, and the small-diameter inner peripheral surface 9d has an inner diameter that is smaller than the outer diameter of the shaft member 2 by the press-fitting allowance. Have dimensions. From the above configuration, a tapered first space S3 is formed between the first chamfer 9e and the outer peripheral surface 2a of the shaft member 2 so that the gap width decreases toward the top. A second space S4 having a uniform width is formed between the large-diameter inner peripheral surface 9f and the outer peripheral surface 2a of the shaft member 2, and the second space S4 functions as an adhesive reservoir as will be described later. Play.

第2スラスト部材10の内周面には、第1スラスト部材9と同様に、軸受スリーブ8の下側端面8cとの対向側から順に、第1チャンファ10e、大径内周面10f、テーパ部(符号は省略)、小径内周面10d、および第2チャンファ10hがそれぞれ形成される(図2参照)。第1チャンファ10eと軸部材2の外周面2aとの間に第1空間S5が形成され、大径内周面10fと軸部材2の外周面2aとの間に第2空間S6が形成される。各部の形状や寸法関係は第1スラスト部材9での説明に準じるので、重複説明および拡大図面は省略する。この第2スラスト部材10は、第1スラスト部材9と同形状であり、第1スラスト部材9を上下反転して軸部材2に装着すれば、第2スラスト部材10となる。   On the inner peripheral surface of the second thrust member 10, similarly to the first thrust member 9, in order from the side facing the lower end surface 8 c of the bearing sleeve 8, a first chamfer 10 e, a large-diameter inner peripheral surface 10 f, and a tapered portion (Reference numerals are omitted), a small-diameter inner peripheral surface 10d, and a second chamfer 10h are formed (see FIG. 2). A first space S5 is formed between the first chamfer 10e and the outer peripheral surface 2a of the shaft member 2, and a second space S6 is formed between the large-diameter inner peripheral surface 10f and the outer peripheral surface 2a of the shaft member 2. . Since the shape and dimensional relationship of each part are in accordance with the description of the first thrust member 9, repeated description and enlarged drawings are omitted. The second thrust member 10 has the same shape as the first thrust member 9. When the first thrust member 9 is turned upside down and attached to the shaft member 2, the second thrust member 10 becomes the second thrust member 10.

第1スラスト部材9の外周面9aは、ハウジング7の上端開口部の内周面7aとの間に所定の容積をもった第1シール空間S1を形成し、第2スラスト部材10の外周面10aは、ハウジング7の下端開口部の内周面7aとの間に所定の容積をもった第2シール空間S2を形成する。この実施形態において、第1スラスト部材9の外周面9aおよび第2スラスト部材10の外周面10aは、それぞれハウジングの開口側に向かって漸次縮径したテーパ面状に形成される。そのため、両シール空間S1、S2は、互いに接近する方向に漸次縮小したテーパ形状を呈する。軸部材2の回転時、両シール空間S1、S2内の潤滑油は毛細管力による引き込み作用と、回転時の遠心力による引き込み作用とにより、シール空間が狭くなる方向に向けて引き込まれる。これにより、ハウジング7の内部からの潤滑油の漏れ出しが効果的に防止される。油漏れをより確実に防止するため、ハウジング7の上側端面7bと下側端面7c、第1スラスト部材9の上側端面9c、および第2スラスト部材10の下側端面10cにそれぞれ撥油剤の被膜を形成することもできる。   The outer peripheral surface 9 a of the first thrust member 9 forms a first seal space S 1 having a predetermined volume with the inner peripheral surface 7 a of the upper end opening of the housing 7, and the outer peripheral surface 10 a of the second thrust member 10. Forms a second seal space S2 having a predetermined volume with the inner peripheral surface 7a of the lower end opening of the housing 7. In this embodiment, the outer peripheral surface 9a of the first thrust member 9 and the outer peripheral surface 10a of the second thrust member 10 are each formed in a tapered surface shape that is gradually reduced in diameter toward the opening side of the housing. Therefore, both the seal spaces S1 and S2 have a tapered shape that is gradually reduced in the direction of approaching each other. When the shaft member 2 is rotated, the lubricating oil in both the seal spaces S1 and S2 is drawn in a direction in which the seal space is narrowed by a drawing action by a capillary force and a drawing action by a centrifugal force at the time of rotation. Thereby, the leakage of the lubricating oil from the inside of the housing 7 is effectively prevented. In order to prevent oil leakage more reliably, the upper end surface 7b and the lower end surface 7c of the housing 7, the upper end surface 9c of the first thrust member 9, and the lower end surface 10c of the second thrust member 10 are respectively coated with an oil repellent coating. It can also be formed.

第1および第2シール空間S1、S2は、ハウジング7の内部空間に充満された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有する。想定される温度変化の範囲内では、油面は常時両シール空間S1、S2内にある。これを実現するために、両シール空間S1、S2の容積の総和は、少なくとも内部空間に充満された潤滑油の温度変化に伴う容積変化量よりも大きく設定される。   The first and second seal spaces S <b> 1 and S <b> 2 have a buffer function that absorbs a volume change amount associated with a temperature change of the lubricating oil filled in the internal space of the housing 7. Within the assumed temperature change range, the oil level is always in both seal spaces S1, S2. In order to achieve this, the sum of the volumes of both the seal spaces S1, S2 is set to be larger than at least the volume change amount associated with the temperature change of the lubricating oil filled in the internal space.

このように、ハウジング7の両端に第1及び第2スラスト部材9、10を配置すると、スラスト部材が一端のみに配置されている場合に比べ、シール空間の総和が大きい分、潤滑油のバッファ機能を高めることができる。よって、第1及び第2スラスト部材9、10の軸方向寸法を縮小することができるため、軸受全体の軸方向寸法を縮小することが可能となる。あるいは、軸受全体の軸方向寸法は変えずに、軸受スリーブの軸方向寸法をスラスト部材の軸方向寸法縮小分だけ拡大し、第1、第2ラジアル軸受部R1、R2の軸方向間隔を増すと、モーメント荷重に対する負荷能力を高めることができる。   As described above, when the first and second thrust members 9 and 10 are arranged at both ends of the housing 7, the total sum of the seal space is larger than the case where the thrust members are arranged only at one end, so that the buffer function of the lubricating oil is increased. Can be increased. Therefore, since the axial dimension of the first and second thrust members 9 and 10 can be reduced, the axial dimension of the entire bearing can be reduced. Alternatively, if the axial dimension of the bearing sleeve is increased by the axial dimension reduction of the thrust member without changing the axial dimension of the entire bearing, and the axial distance between the first and second radial bearing portions R1 and R2 is increased. The load capacity against moment load can be increased.

ここで、第1スラスト部材9の軸部材2への取付工程を図6を参照して説明する。
(1)軸部材2の外周面2a上の、第1スラスト部材9が固定される位置に接着剤を塗布する。この接着剤として、例えば熱硬化性接着剤を使用することができる。
(2)第1スラスト部材9の内周に第1チャンファ9e側から軸部材2を挿入する。第1スラスト部材9の第1チャンファ9eが、挿入方向前方となる向きに挿入すると、第1チャンファ9eのガイドにより、軸部材2とスラスト部材9との位置合わせが行われ、スムーズに挿入される。
(3)挿入を進め、第1スラスト部材9の大径内周面9fと軸部材2の外周面2aとを嵌合させる(図6−a参照)。この嵌合によって、軸部材2と第1スラスト部材9との芯だしが行われる。この芯だしにより、軸部材2の挿入を進めても軸部材2と第1スラスト部材9の同軸度が狂うことはなく、両部材間で確実に芯合わせを行うことができる。
(4)さらに挿入を進めると、第1スラスト部材9の小径内周面9dに軸部材2が圧入される(図6−b参照)。このとき、テーパ部9gにガイドされ、スムーズに圧入を開始できる。
(5)圧入を進めると、軸部材2の外周面2aの接着剤Gの塗布領域が第1スラスト部材9の小径内周面9dとの対向領域に入り、第1スラスト部材9の小径内周面9dと軸部材2の外周面2aとの間に接着剤Gが介在する。このとき、はみ出た余分な接着剤Gは、接着剤溜まりとしての第2空間S4に保持され、さらに過剰の接着剤Gは第1空間S3に保持される(図6−c参照)。こうして、第1スラスト部材9が軸部材2の外周面2aの所定の位置まで圧入されると、過剰の接着剤Gは、第2空間S4及び第1空間S3内に保持される(図6−d参照)。
Here, the process of attaching the first thrust member 9 to the shaft member 2 will be described with reference to FIG.
(1) An adhesive is applied to the position on the outer peripheral surface 2a of the shaft member 2 where the first thrust member 9 is fixed. As this adhesive, for example, a thermosetting adhesive can be used.
(2) The shaft member 2 is inserted into the inner periphery of the first thrust member 9 from the first chamfer 9e side. When the first chamfer 9e of the first thrust member 9 is inserted in a direction that is forward in the insertion direction, the shaft member 2 and the thrust member 9 are aligned by the guide of the first chamfer 9e and inserted smoothly. .
(3) The insertion is advanced to fit the large-diameter inner peripheral surface 9f of the first thrust member 9 and the outer peripheral surface 2a of the shaft member 2 (see FIG. 6A). By this fitting, the shaft member 2 and the first thrust member 9 are centered. With this centering, even if the insertion of the shaft member 2 is advanced, the coaxiality of the shaft member 2 and the first thrust member 9 does not go out of alignment, and the centering can be reliably performed between both members.
(4) When the insertion is further advanced, the shaft member 2 is press-fitted into the small-diameter inner peripheral surface 9d of the first thrust member 9 (see FIG. 6B). At this time, it is guided by the taper portion 9g, and the press-fitting can be started smoothly.
(5) When the press-fitting is advanced, the application region of the adhesive G on the outer peripheral surface 2a of the shaft member 2 enters the region facing the small-diameter inner peripheral surface 9d of the first thrust member 9, and the first thrust member 9 An adhesive G is interposed between the surface 9 d and the outer peripheral surface 2 a of the shaft member 2. At this time, the excess adhesive G that protrudes is held in the second space S4 as an adhesive reservoir, and further excess adhesive G is held in the first space S3 (see FIG. 6C). Thus, when the first thrust member 9 is press-fitted to a predetermined position on the outer peripheral surface 2a of the shaft member 2, the excessive adhesive G is held in the second space S4 and the first space S3 (FIG. 6). d).

第2スラスト部材10は第1スラスト部材9と同様の方法で、軸部材2の下方より挿入され、所定位置に圧入固定される。このとき、余分な接着剤は全て接着剤溜まりとしての第2空間S6、さらには第1空間S5内に保持される(図示省略)。第1スラスト部材9及び第2スラスト部材10が所定の位置まで挿入された後、軸部材2を加熱処理(ベーキング)することで接着剤が硬化し、両スラスト部材を確実に軸部材2に固定することができる。このとき、軸部材2に塗布した接着剤が、接着剤溜まりとしての円周溝2c、第2空間S4(S6)、及び第1空間S3(S5)に保持されて固化することにより、スラスト部材9、10の軸部材2に対する接着強度が向上する。   The second thrust member 10 is inserted from below the shaft member 2 in the same manner as the first thrust member 9, and is press-fitted and fixed at a predetermined position. At this time, all excess adhesive is held in the second space S6 as an adhesive reservoir, and further in the first space S5 (not shown). After the first thrust member 9 and the second thrust member 10 are inserted to a predetermined position, the shaft member 2 is heated (baked) to cure the adhesive, and both thrust members are securely fixed to the shaft member 2. can do. At this time, the adhesive applied to the shaft member 2 is retained and solidified in the circumferential groove 2c as the adhesive reservoir, the second space S4 (S6), and the first space S3 (S5), so that the thrust member The adhesive strength to the shaft member 2 of 9, 10 is improved.

ところで、接着剤を保持するための空間容積を増すだけであれば、例えば、第1チャンファの面取り深さを増すことで対応することができる(図7点線で示す)。しかし、このように第1チャンファ9eの面取り深さを増すと、スラスト軸受面となる第1スラスト部材9の下側端面9bの面積を減少させ、スラスト方向の軸受性能に悪影響を及ぼすおそれがある。本発明では、第1チャンファ9eの面取り深さに影響は及ばないので、このような問題を回避できる(第2スラスト部材10についても同様)。   By the way, if only the space volume for holding the adhesive is increased, for example, it can be coped with by increasing the chamfering depth of the first chamfer (shown by a dotted line in FIG. 7). However, when the chamfering depth of the first chamfer 9e is increased in this way, the area of the lower end surface 9b of the first thrust member 9 serving as the thrust bearing surface is reduced, which may adversely affect the bearing performance in the thrust direction. . In the present invention, since the chamfering depth of the first chamfer 9e is not affected, such a problem can be avoided (the same applies to the second thrust member 10).

以上のように、第1スラスト部材9の大径内周面9fと軸部材2の外周面2aとの間に接着剤溜まりとしての第2空間S4を形成することで、十分な容積の接着剤を保持することが可能となる。これにより、第1スラスト部材9と軸部材2との接着強度が増し、衝撃荷重等による第1スラスト部材9の軸部材2からの脱落を確実に防止することができる。また、溢れ出た接着剤Gは、第2空間S4、さらには第1チャンファ9eと軸部材2の外周面2aとの間に形成された第1空間S3に保持されるため、接着剤Gがスラスト軸受面となる第1スラスト部材9の下側端面9bへ回り込むことを確実に防ぐことができ、スラスト方向の軸受性能の低下を防止できる。このような第1及び第2空間による接着剤Gの捕捉機能から、接着剤Gの塗布量にバラツキが許容され、接着剤Gの塗布工程の簡略化を図ることが可能となる。さらに、組立工程において、第1スラスト部材9の大径内周面9fと軸部材2の外周面2aとの嵌合により、両部材の芯だしが行われるため、軸部材2と第1スラスト部材9の直角度不良によるスラスト支持力の低下やスラスト部材の早期摩耗、シール効果の低下等の不具合を防止することができる(第2スラスト部材10についても同様)。   As described above, by forming the second space S4 as an adhesive reservoir between the large-diameter inner peripheral surface 9f of the first thrust member 9 and the outer peripheral surface 2a of the shaft member 2, an adhesive having a sufficient volume is formed. Can be held. Thereby, the adhesive strength between the first thrust member 9 and the shaft member 2 is increased, and the first thrust member 9 can be reliably prevented from falling off the shaft member 2 due to an impact load or the like. Moreover, since the overflowing adhesive G is held in the second space S4, and further in the first space S3 formed between the first chamfer 9e and the outer peripheral surface 2a of the shaft member 2, the adhesive G It is possible to reliably prevent the first thrust member 9 serving as the thrust bearing surface from entering the lower end surface 9b, and to prevent a decrease in bearing performance in the thrust direction. Due to such a function of capturing the adhesive G by the first and second spaces, the application amount of the adhesive G is allowed to vary, and the application process of the adhesive G can be simplified. Further, in the assembling process, since the centering of both members is performed by fitting the large-diameter inner peripheral surface 9f of the first thrust member 9 and the outer peripheral surface 2a of the shaft member 2, the shaft member 2 and the first thrust member It is possible to prevent problems such as a decrease in thrust support force, early wear of the thrust member, and a decrease in the sealing effect due to the perpendicularity defect 9 (the same applies to the second thrust member 10).

上記のようにして、軸部材2に軸受スリーブ8を挟んでスラスト部材9,10を固定した後、この組み付け体をハウジング7の内周面7aに挿入し、軸受スリーブ8の外周面をハウジング7の内周面7aに固定する。軸受スリーブ8のハウジング7に対する固定は、接着、圧入、圧入接着、溶着(超音波溶着)等の適宜の手段によって行うことができる。このようにして組立が完了すると、第1及び第2スラスト部材9、10で密閉されたハウジング7の内部空間に、軸受スリーブ8の内部気孔も含め、潤滑流体として例えば潤滑油を充満させる。   As described above, after the thrust members 9 and 10 are fixed to the shaft member 2 with the bearing sleeve 8 interposed therebetween, this assembly is inserted into the inner peripheral surface 7a of the housing 7, and the outer peripheral surface of the bearing sleeve 8 is connected to the housing 7 The inner peripheral surface 7a is fixed. The bearing sleeve 8 can be fixed to the housing 7 by an appropriate means such as adhesion, press-fitting, press-fitting adhesion, welding (ultrasonic welding) or the like. When the assembly is completed in this way, the internal space of the housing 7 sealed with the first and second thrust members 9 and 10 is filled with, for example, lubricating oil as a lubricating fluid including the internal pores of the bearing sleeve 8.

潤滑油の注油は、例えば未注油状態の動圧軸受装置を真空槽内で潤滑油中に浸漬した後、大気圧に開放することにより行われる。このとき、図1に示すように、ハウジング7の両端が開放されているので、ハウジングの一端を閉じた場合に比べ、内部空間のエアを確実に潤滑油で置換することができ、残存エアによる弊害、例えば高温時の油漏れ等を確実に回避することができる。また、このような減圧を利用した注油方法だけでなく、常圧下での注油(例えば潤滑油の加圧注油)も可能となり、注油装置および工程を簡略化して製造コストの低廉化を図ることができる。   Lubricating oil is injected by, for example, immersing an unlubricated hydrodynamic bearing device in the lubricating oil in a vacuum chamber and then releasing it to atmospheric pressure. At this time, as shown in FIG. 1, since both ends of the housing 7 are open, the air in the internal space can be surely replaced with lubricating oil, compared with the case where one end of the housing is closed, Detrimental effects such as oil leakage at high temperatures can be reliably avoided. In addition to such a lubrication method using reduced pressure, lubrication under normal pressure (for example, pressurized lubrication of lubricating oil) is possible, and the lubrication device and process can be simplified to reduce manufacturing costs. it can.

軸部材2の回転時には、ラジアル軸受隙間に潤滑油の動圧が発生し、軸部材2がラジアル軸受隙間内に形成される潤滑油の油膜によってラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが構成される。同時に、スラスト軸受隙間に潤滑油の動圧が発生し、軸部材2およびスラスト部材9、10が上記スラスト軸受隙間内に形成される潤滑油の油膜によってスラスト方向に回転自在に非接触支持される。これにより、軸部材2をスラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが構成される。   When the shaft member 2 rotates, a dynamic pressure of lubricating oil is generated in the radial bearing gap, and the shaft member 2 is supported in a non-contact manner in the radial direction by a lubricating oil film formed in the radial bearing gap. Thus, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are configured. At the same time, the dynamic pressure of the lubricating oil is generated in the thrust bearing gap, and the shaft member 2 and the thrust members 9, 10 are supported in a non-contact manner so as to be rotatable in the thrust direction by the lubricating oil film formed in the thrust bearing gap. . Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which non-contact-support the shaft member 2 rotatably in a thrust direction are comprised.

図8は、本発明の第2の実施形態に係る動圧軸受装置21を示している。動圧軸受装置21が第1の実施形態に係る動圧軸受装置1と異なる点は、ハウジングと軸受スリーブとを一体化し、軸受部材26を単一部品とすることで、部品点数および組立工数の削減を通じて更なる低コスト化を図った点にある。この軸受部材26は、軟質金属、その他の金属材料の鍛造や機械加工で形成するほか、樹脂や低融点金属の射出成形、さらにはMIM成形で形成することができる。   FIG. 8 shows a hydrodynamic bearing device 21 according to a second embodiment of the present invention. The hydrodynamic bearing device 21 is different from the hydrodynamic bearing device 1 according to the first embodiment in that the housing and the bearing sleeve are integrated and the bearing member 26 is a single component, so that the number of components and the number of assembly steps can be reduced. The cost is further reduced through reduction. The bearing member 26 can be formed by forging or machining a soft metal or other metal material, or can be formed by injection molding of a resin or a low melting point metal, or further by MIM molding.

この場合、軸受部材26のうち、スリーブ部28の内周面28aと軸部材2の外周面2aとの間に第1および第2ラジアル軸受部R1、R2が設けられ、スリーブ部28の上側端面28bとスラスト部材9の下側端面9bとの間に第1スラスト軸受部T1が、スリーブ部28の下側端面28cとスラスト部材10の上側端面10bとの間に第2スラスト軸受部T2がそれぞれ設けられる。また、軸受部材26の両端開口部(ハウジングに相当する部分27の両端開口部)の内周面27aと第1及び第2スラスト部材9、10の外周面9a、10aとの間にそれぞれシール空間S1、S2が形成される。   In this case, in the bearing member 26, the first and second radial bearing portions R1 and R2 are provided between the inner peripheral surface 28a of the sleeve portion 28 and the outer peripheral surface 2a of the shaft member 2, and the upper end surface of the sleeve portion 28 is provided. The first thrust bearing portion T1 is between the lower end surface 9b of the thrust member 9 and the second thrust bearing portion T2 is between the lower end surface 28c of the sleeve portion 28 and the upper end surface 10b of the thrust member 10. Provided. Further, a seal space is provided between the inner peripheral surface 27a of the opening at both ends of the bearing member 26 (both ends of the opening 27 of the portion 27 corresponding to the housing) and the outer peripheral surfaces 9a, 10a of the first and second thrust members 9, 10. S1 and S2 are formed.

図9は、本発明の第3の実施形態に係る動圧軸受装置31を示している。動圧軸受装置31は、ハウジング37の下側の開口部が密閉されたコップ状に形成されており、軸部材2の外周面2aの一箇所のみにスラスト部材9が設けられ、軸部材2の下端にフランジ部2dが形成されている点で、他の実施形態と異なる。軸部材2の回転時には、フランジ部2dの上側端面2d1と軸受スリーブ8の下側端面8cとの間に第2スラスト軸受部T2が形成される。   FIG. 9 shows a hydrodynamic bearing device 31 according to a third embodiment of the present invention. The hydrodynamic bearing device 31 is formed in a cup shape in which the lower opening of the housing 37 is sealed, and the thrust member 9 is provided only at one location on the outer peripheral surface 2 a of the shaft member 2. It differs from other embodiment by the point by which the flange part 2d is formed in the lower end. When the shaft member 2 rotates, a second thrust bearing portion T2 is formed between the upper end surface 2d1 of the flange portion 2d and the lower end surface 8c of the bearing sleeve 8.

上記の動圧軸受装置31において、軸部材2のフランジ部2dは必ずしも形成される必要はなく、軸部材2をストレート形状としても良い。この場合、第1スラスト部材9の下側端面9bと軸受スリーブ8の上側端面8bとの間に形成される第1スラスト軸受部T1のみで軸部材2をスラスト方向に支持する(図示省略)。   In the fluid dynamic bearing device 31 described above, the flange portion 2d of the shaft member 2 is not necessarily formed, and the shaft member 2 may have a straight shape. In this case, the shaft member 2 is supported in the thrust direction only by the first thrust bearing portion T1 formed between the lower end surface 9b of the first thrust member 9 and the upper end surface 8b of the bearing sleeve 8 (not shown).

動圧軸受装置1を組み込んだモータの一例を示す断面図である。It is sectional drawing which shows an example of the motor incorporating the dynamic pressure bearing apparatus. 本発明の第1の実施形態にかかる動圧軸受装置1を示す断面図である。1 is a cross-sectional view showing a fluid dynamic bearing device 1 according to a first embodiment of the present invention. (a)軸受スリーブ8の断面図である。(b)(a)図中のb矢印方向から見た平面図である。(c)(a)図中のc矢印方向から見た平面図である。(A) It is sectional drawing of the bearing sleeve 8. FIG. (B) (a) It is the top view seen from the b arrow direction in a figure. (C) (a) It is the top view seen from the c arrow direction in a figure. 第1スラスト部材9及びその周辺の拡大断面図である。It is an expanded sectional view of the 1st thrust member 9 and its circumference. 図4のA部分の拡大図である。It is an enlarged view of the A part of FIG. 軸部材2と第1スラスト部材9との組立工程を示す図である。FIG. 5 is a diagram illustrating an assembly process of the shaft member 2 and the first thrust member 9. 本発明に係るスラスト部材と従来品との比較図である。It is a comparison figure of the thrust member concerning the present invention, and a conventional product. 本発明の第2の実施形態にかかる動圧軸受装置21を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus 21 concerning the 2nd Embodiment of this invention. 本発明の第3の実施形態にかかる動圧軸受装置31を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus 31 concerning the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
3 ディスクハブ
4a ステータコイル
4b ロータマグネット
5 ブラケット
6 軸受部材
7 ハウジング
8 軸受スリーブ
9 第1スラスト部材
9d 小径内周面
9e 第1チャンファ
9f 大径内周面
9g テーパ部
9h 第2チャンファ
10 第2スラスト部材
G 接着剤
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S1、S2 シール空間
S3、S5 第1空間
S4、S6 第2空間(接着剤溜まり)

DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 3 Disc hub 4a Stator coil 4b Rotor magnet 5 Bracket 6 Bearing member 7 Housing 8 Bearing sleeve 9 First thrust member 9d Small diameter inner peripheral surface 9e First chamfer 9f Large diameter inner peripheral surface 9g Taper part 9h Second chamfer 10 Second thrust member G Adhesives R1, R2 Radial bearing T1, T2 Thrust bearing S1, S2 Seal space S3, S5 First space S4, S6 Second space (adhesive reservoir)

Claims (5)

軸部材と、内周に軸部材が挿入された軸受部材と、軸部材の外周面に接着により固定され、内周の一端にチャンファを有するスラスト部材と、スラスト部材の一端面とこれに対向する軸受スリーブの端面との間のスラスト軸受隙間に生じる潤滑流体の動圧作用で、前記軸部材をスラスト方向に支持するスラスト軸受部を備える動圧軸受装置において、
軸部材の外周面とスラスト部材の内周面との間に、スラスト部材のチャンファと軸部材の外周面との間の空間に通じる接着剤溜まりを形成したことを特徴とする動圧軸受装置。
A shaft member, a bearing member in which the shaft member is inserted on the inner periphery, a thrust member fixed to the outer peripheral surface of the shaft member by adhesion, and having a chamfer at one end of the inner periphery, and one end surface of the thrust member facing the thrust member In the hydrodynamic bearing device comprising a thrust bearing portion that supports the shaft member in the thrust direction by the hydrodynamic action of the lubricating fluid generated in the thrust bearing gap between the end surface of the bearing sleeve,
A hydrodynamic bearing device characterized in that an adhesive reservoir that leads to a space between a chamfer of a thrust member and an outer peripheral surface of the shaft member is formed between the outer peripheral surface of the shaft member and the inner peripheral surface of the thrust member.
スラスト部材の内周面が、小径内周面と、前記チャンファにつながった大径内周面とを備え、大径内周面と軸部材の外周面とで前記接着剤溜まりを形成した請求項1記載の動圧軸受装置。   The inner peripheral surface of the thrust member includes a small-diameter inner peripheral surface and a large-diameter inner peripheral surface connected to the chamfer, and the adhesive reservoir is formed by the large-diameter inner peripheral surface and the outer peripheral surface of the shaft member. 1. The hydrodynamic bearing device according to 1. 上記大径内周面が円筒面である請求項2記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 2, wherein the large-diameter inner peripheral surface is a cylindrical surface. スラスト部材の外周面にシール空間を形成した請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a seal space is formed on an outer peripheral surface of the thrust member. 請求項1〜4の何れかに記載の動圧軸受装置と、ステータコイルと、ロータマグネットとを有するモータ。

A motor comprising the hydrodynamic bearing device according to claim 1, a stator coil, and a rotor magnet.

JP2005259719A 2005-09-07 2005-09-07 Dynamic pressure bearing device Pending JP2007071312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259719A JP2007071312A (en) 2005-09-07 2005-09-07 Dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259719A JP2007071312A (en) 2005-09-07 2005-09-07 Dynamic pressure bearing device

Publications (1)

Publication Number Publication Date
JP2007071312A true JP2007071312A (en) 2007-03-22

Family

ID=37932941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259719A Pending JP2007071312A (en) 2005-09-07 2005-09-07 Dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JP2007071312A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263232A (en) * 2006-03-28 2007-10-11 Ntn Corp Fluid bearing device
JP2008261396A (en) * 2007-04-11 2008-10-30 Ntn Corp Fluid bearing device and its manufacturing method
JP2008286367A (en) * 2007-05-21 2008-11-27 Alphana Technology Kk Bearing device and motor provided with same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339956A (en) * 2001-05-17 2002-11-27 Riraiaru:Kk Dynamic pressure bearing device, and manufacturing method therefor
JP2003056555A (en) * 2001-08-14 2003-02-26 Nippon Densan Corp Dynamic pressure bearing device, and method for fixing thrust plate to shaft

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339956A (en) * 2001-05-17 2002-11-27 Riraiaru:Kk Dynamic pressure bearing device, and manufacturing method therefor
JP2003056555A (en) * 2001-08-14 2003-02-26 Nippon Densan Corp Dynamic pressure bearing device, and method for fixing thrust plate to shaft

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263232A (en) * 2006-03-28 2007-10-11 Ntn Corp Fluid bearing device
JP2008261396A (en) * 2007-04-11 2008-10-30 Ntn Corp Fluid bearing device and its manufacturing method
JP2008286367A (en) * 2007-05-21 2008-11-27 Alphana Technology Kk Bearing device and motor provided with same

Similar Documents

Publication Publication Date Title
JP5274820B2 (en) Hydrodynamic bearing device
US8356938B2 (en) Fluid dynamic bearing apparatus
JP4738868B2 (en) Hydrodynamic bearing device
JP5318344B2 (en) Hydrodynamic bearing device and manufacturing method thereof
US8016488B2 (en) Fluid dynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP4476670B2 (en) Hydrodynamic bearing device
JP4762757B2 (en) Hydrodynamic bearing device
JP2007024089A (en) Dynamic pressure bearing device and motor
JP5133131B2 (en) Hydrodynamic bearing device
JP2007071274A (en) Dynamic pressure bearing device
JP2007071312A (en) Dynamic pressure bearing device
JP4754418B2 (en) Hydrodynamic bearing device
JP4828908B2 (en) Hydrodynamic bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP2009228873A (en) Fluid bearing device
JP5318343B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2011007336A (en) Dynamic pressure bearing device and motor
JP5122205B2 (en) Method for assembling hydrodynamic bearing device
JP5231095B2 (en) Hydrodynamic bearing device
JP4588561B2 (en) Hydrodynamic bearing device
JP2008064123A (en) Fluid bearing device, and its manufacturing method
JP4689567B2 (en) Method for manufacturing hydrodynamic bearing device
JP5188942B2 (en) Fluid dynamic bearing device
JP2006214542A (en) Fluid bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080805

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100901