JP2007071274A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device Download PDF

Info

Publication number
JP2007071274A
JP2007071274A JP2005257852A JP2005257852A JP2007071274A JP 2007071274 A JP2007071274 A JP 2007071274A JP 2005257852 A JP2005257852 A JP 2005257852A JP 2005257852 A JP2005257852 A JP 2005257852A JP 2007071274 A JP2007071274 A JP 2007071274A
Authority
JP
Japan
Prior art keywords
bearing
shaft
peripheral surface
bearing device
flange portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005257852A
Other languages
Japanese (ja)
Inventor
Kazuto Shimizu
一人 清水
Seiji Hori
政治 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005257852A priority Critical patent/JP2007071274A/en
Publication of JP2007071274A publication Critical patent/JP2007071274A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic pressure bearing device at low cost having high shaft strength and capable of maintaining desired rotation precision. <P>SOLUTION: A first flange part 9 and a second flange part 10 are bonded and fixed at a predetermined position on an outer peripheral face 2a1 of a shaft part 2a. An adhesive clearance is provided among an inner peripheral face 9d of the first flange part 9, an inner peripheral face 10d of the second flange part 10, and the outer peripheral face 2a1 of the shaft part 2a in a bonding and fixing part 14 of the first flange part 9, the second flange part 10, and the shaft part 2a. Adhesive 13 is filled into the adhesive clearance and a spiral channel 12 and is solidified. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、動圧軸受装置に関するものである。   The present invention relates to a hydrodynamic bearing device.

動圧軸受装置は、軸部材と軸受部材との相対回転により、軸受隙間に生じた潤滑流体の動圧作用によって軸部材を非接触支持する軸受装置である。この動圧軸受装置は、高速回転、高回転精度、低騒音等の特徴を有するものであり、近年ではその特徴を活かして、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等に搭載するスピンドルモータ用、レーザビームプリンタ(LBP)などに搭載するポリゴンスキャナモータ用、パーソナルコンピュータ(PC)などに搭載するファンモータ用、あるいは軸流ファンなどの電気機器に搭載する小型モータ用の軸受として広く用いられている。   The hydrodynamic bearing device is a bearing device that supports the shaft member in a non-contact manner by the dynamic pressure action of the lubricating fluid generated in the bearing gap due to the relative rotation between the shaft member and the bearing member. This hydrodynamic bearing device has characteristics such as high-speed rotation, high rotation accuracy, and low noise. In recent years, utilizing these characteristics, information devices such as magnetic disk devices such as HDD and FDD, CD-ROM, For spindle motors mounted on optical disk devices such as CD-R / RW and DVD-ROM / RAM, magneto-optical disk devices such as MD, MO, etc., for polygon scanner motors mounted on laser beam printers (LBP), etc., personal computers It is widely used as a bearing for a fan motor mounted on a (PC) or the like, or a small motor mounted on an electric device such as an axial fan.

上記の動圧軸受装置は、ラジアル軸受部を動圧軸受で構成すると共に、スラスト軸受部をピボット軸受で構成する接触タイプと、ラジアル軸受部とスラスト軸受部の双方を動圧軸受で構成する非接触タイプとに大別され、使用用途に応じて適宜使い分けられている。   The above-mentioned hydrodynamic bearing device is a non-contact type in which the radial bearing portion is constituted by a hydrodynamic bearing, the thrust bearing portion is constituted by a pivot bearing, and both the radial bearing portion and the thrust bearing portion are constituted by dynamic pressure bearings. They are broadly classified into contact types and are properly used according to the intended use.

このうち、非接触タイプの動圧軸受装置の一例として、図6に示す形態を挙げることができる。この形態の動圧軸受装置で用いられる軸部材20は、軸部20aと、軸部20aの外径側に張り出したフランジ部20bとで構成される。ラジアル軸受部Rは、軸部20aの外周面と軸受部材70を構成するスリーブ部80の内周面との間のラジアル軸受隙間に形成される。また、スラスト軸受部Tは、フランジ部20bの上側端面とスリーブ部80の下側端面との間およびフランジ部20bの下側端面とスラスト部材71の上側端面との間のスラスト軸受隙間に形成される。   Among these, the form shown in FIG. 6 can be given as an example of a non-contact type hydrodynamic bearing device. The shaft member 20 used in the dynamic pressure bearing device of this embodiment includes a shaft portion 20a and a flange portion 20b projecting to the outer diameter side of the shaft portion 20a. The radial bearing portion R is formed in a radial bearing gap between the outer peripheral surface of the shaft portion 20 a and the inner peripheral surface of the sleeve portion 80 constituting the bearing member 70. The thrust bearing portion T is formed in a thrust bearing gap between the upper end surface of the flange portion 20b and the lower end surface of the sleeve portion 80 and between the lower end surface of the flange portion 20b and the upper end surface of the thrust member 71. The

近年、上記の情報機器は急速に高性能化が図られており、これに伴って動圧軸受装置に対する益々の高回転精度化が求められている。動圧軸受装置の回転精度を高めるには、ラジアル軸受隙間やスラスト軸受隙間の隙間管理が重要で、このうち、特にスラスト軸受隙間の隙間管理の適正化は、軸部20aとフランジ部20b間の結合強度に影響される。また、フランジ部20bは、軸部材20の抜け止め機能をも有するものであるから、この点でも軸部20aとフランジ部20b間の結合強度が重要である。このように、軸部とフランジ部との間には高い結合強度が必要とされるので、軸部材は、例えば特開2003−307221号公報(特許文献1)で提案されているように、切削等の機械加工で一体成形される場合が多い。   In recent years, the above-described information equipment has been rapidly improved in performance, and accordingly, higher rotational accuracy is required for the hydrodynamic bearing device. In order to increase the rotational accuracy of the hydrodynamic bearing device, it is important to manage the clearance of the radial bearing gap and the thrust bearing gap. Of these, the optimization of the clearance management of the thrust bearing gap is particularly important between the shaft portion 20a and the flange portion 20b. Influenced by bond strength. Further, since the flange portion 20b also has a function of preventing the shaft member 20 from coming off, the coupling strength between the shaft portion 20a and the flange portion 20b is also important in this respect. As described above, since a high bonding strength is required between the shaft portion and the flange portion, the shaft member is cut as proposed in, for example, Japanese Patent Laid-Open No. 2003-307221 (Patent Document 1). In many cases, it is integrally formed by machining such as.

また、軸部とフランジ部とを別体で形成し、フランジ部を軸部に圧入固定することが特開2000−291649号公報(特許文献2)に記載されている。
特開2003−307221号公報 特開2000−291649号公報
Japanese Patent Laid-Open No. 2000-291649 (Patent Document 2) describes that the shaft portion and the flange portion are formed separately and the flange portion is press-fitted and fixed to the shaft portion.
JP 2003-307221 A JP 2000-291649 A

高性能化の一方で、情報機器は急速に低価格化が進行しており、これに伴って動圧軸受装置に対するコスト低減の要求も厳しさを増している。しかしながら、上記特許文献1のように軸部材を一体成形するには、高度な加工設備や加工技術が必要であるため、加工コストが高騰し、低コスト化の要求に対応することが困難な場合がある。   On the other hand, the price of information equipment is rapidly decreasing along with the improvement in performance, and the cost reduction for the hydrodynamic bearing device is also becoming more severe. However, when the shaft member is integrally formed as in Patent Document 1, since advanced processing equipment and processing technology are required, the processing cost increases and it is difficult to meet the demand for cost reduction. There is.

また、軸部とフランジ部とを別体で形成し、フランジ部を軸部に圧入固定する構成では、両者の高い結合強度を得ると同時に圧入作業を容易にするために、圧入代を精度良く管理する必要があり、その結果、部品加工コストが上昇する。   In addition, the shaft part and the flange part are formed separately, and the flange part is press-fitted and fixed to the shaft part. As a result, the part processing cost increases.

そこで、本発明は、軸部とフランジ部とを別体構造とすると共に、両者の高い結合強度を比較的容易に得ることを可能にし、それによって所期の軸受性能を維持可能な動圧軸受装置を低コストに提供することを目的とする。   Accordingly, the present invention provides a hydrodynamic bearing in which the shaft portion and the flange portion are separated from each other, and a high coupling strength between them can be obtained relatively easily, thereby maintaining the desired bearing performance. The object is to provide a device at low cost.

上記課題を解決するため、本発明にかかる動圧軸受装置は、スリーブ部を備えた軸受部材と、前記スリーブ部の内周に挿入した前記軸部および該軸部の外径側に突出させて設けられたフランジ部を備える軸部材と、前記スリーブ部の内周面と前記軸部の外周面との間のラジアル軸受隙間に生じる潤滑流体の動圧作用で前記軸部材をラジアル方向に非接触支持するラジアル軸受部と、前記スリーブ部の端面と前記フランジ部の端面との間のスラスト軸受隙間に生じる潤滑流体の動圧作用で前記軸部材をスラスト方向に非接触支持するスラスト軸受部とを備えるものであって、前記フランジ部は前記軸部の外周面に接着固定され、該接着固定部に接着剤充填部が形成されたことを特徴とするものである。   In order to solve the above problems, a hydrodynamic bearing device according to the present invention includes a bearing member having a sleeve portion, the shaft portion inserted into the inner periphery of the sleeve portion, and an outer diameter side of the shaft portion. The shaft member is not contacted in the radial direction by the dynamic pressure action of the lubricating fluid generated in the radial bearing gap between the shaft member having the provided flange portion and the inner peripheral surface of the sleeve portion and the outer peripheral surface of the shaft portion. A radial bearing portion to be supported, and a thrust bearing portion for supporting the shaft member in a thrust direction in a thrust direction by a dynamic pressure action of a lubricating fluid generated in a thrust bearing gap between an end surface of the sleeve portion and an end surface of the flange portion. The flange portion is adhesively fixed to the outer peripheral surface of the shaft portion, and an adhesive filling portion is formed in the adhesive fixing portion.

上記本発明の構成によれば、軸部とフランジ部とが接着固定により結合一体化されるので、両者を一体成形する場合と比べ、軸部材の製造コストを低減することができる。しかも、軸部とフランジ部との接着固定部に接着剤充填部を設けているので、接着面積の増加に加え、接着剤充填部に充填された接着剤のアンカー効果によって、両者の結合強度を高めることができる。また、軸部とフランジ部の間の組み付け精度(例えば、直角度)を高めておけば、スラスト軸受隙間幅を常時高精度に管理し、維持することが可能となる。   According to the configuration of the present invention, since the shaft portion and the flange portion are joined and integrated by adhesive fixing, the manufacturing cost of the shaft member can be reduced as compared with a case where both are integrally formed. In addition, since the adhesive filling part is provided in the adhesive fixing part between the shaft part and the flange part, in addition to the increase in the adhesion area, the anchor effect of the adhesive filled in the adhesive filling part increases the bond strength between the two. Can be increased. Further, if the assembly accuracy (for example, squareness) between the shaft portion and the flange portion is increased, the thrust bearing gap width can always be managed and maintained with high accuracy.

上記の接着剤充填部は、軸部の外周面およびフランジ部の内周面のうち少なくとも何れか一方に設けられた螺旋溝によって形成することができる。このように接着剤充填部を螺旋溝で形成すれば、単に円周溝を設けるよりも接着面積の増加およびアンカー効果による結合強度の大幅な向上が図られる。また、特に使用環境における温度変化によって接着力が低下し、フランジ部に軸方向のせん断力が作用する場合にも、安定した効果を発揮することができる。   The adhesive filling portion can be formed by a spiral groove provided on at least one of the outer peripheral surface of the shaft portion and the inner peripheral surface of the flange portion. If the adhesive filling portion is formed of a spiral groove in this manner, the bonding area can be increased and the bond strength can be greatly improved by the anchor effect rather than simply providing a circumferential groove. In addition, a stable effect can be exhibited even when the adhesive force decreases due to a temperature change in the use environment and an axial shearing force acts on the flange portion.

なお、接着固定部は、接着剤充填部を除く領域において、フランジ部の内周面が軸部の外周面に接着剤層を介して接着されている場合と(いわゆるルーズ接着)、フランジ部の内周面が軸部の外周面に圧入されている場合とがある。前者の場合は、いわゆるルーズ接着になり、後者の場合は、軸部とフランジ部とが接着と圧入との併用によって相互に固定されることになる。   In addition, in the region excluding the adhesive filling portion, the adhesive fixing portion includes a case where the inner peripheral surface of the flange portion is bonded to the outer peripheral surface of the shaft portion via an adhesive layer (so-called loose bonding), and The inner peripheral surface may be press-fitted into the outer peripheral surface of the shaft portion. In the former case, so-called loose bonding is performed, and in the latter case, the shaft portion and the flange portion are fixed to each other by a combination of bonding and press-fitting.

上記本発明の構成は、例えばフランジ部が、スリーブ部の両端に配置されている構成の動圧軸受装置、すなわちスラスト軸受部がスリーブ部の軸方向両側に設けられる構成の動圧軸受装置にも好ましく適用することができる。   The above configuration of the present invention is also applied to a hydrodynamic bearing device having a configuration in which, for example, the flange portion is disposed at both ends of the sleeve portion, that is, a hydrodynamic bearing device in which the thrust bearing portion is provided on both axial sides of the sleeve portion. It can be preferably applied.

また、上記本発明の構成は、フランジ部の外周に、大気に開放されたシール空間を設けた構成の動圧軸受装置にも好ましく適用することができる。この場合、フランジ部はスラスト軸受部を形成するためだけでなく、シール空間を形成する部材としても機能する。このような構成においても、軸部とフランジ部間の結合強度が確保されていることから、シール空間の幅(半径方向幅)は常時適正値に管理されるので、潤滑流体の漏れ出しを確実に防止することができる。なお、このとき、図6に示す構成の動圧軸受装置よりも部品点数を削減することができるので、動圧軸受装置の低コスト化を図ることができる。   The configuration of the present invention can also be preferably applied to a dynamic pressure bearing device having a configuration in which a seal space opened to the atmosphere is provided on the outer periphery of the flange portion. In this case, the flange portion functions not only for forming the thrust bearing portion but also as a member for forming the seal space. Even in such a configuration, since the coupling strength between the shaft portion and the flange portion is ensured, the width of the seal space (radial width) is always controlled to an appropriate value, so that the lubricating fluid can be surely leaked out. Can be prevented. At this time, since the number of parts can be reduced as compared with the fluid dynamic bearing device having the configuration shown in FIG. 6, the cost of the fluid dynamic bearing device can be reduced.

上記構成の動圧軸受装置は、ロータマグネットとステータコイルとを有するモータ、例えばHDD用のスピンドルモータ等に好ましく用いることができる。   The hydrodynamic bearing device having the above configuration can be preferably used for a motor having a rotor magnet and a stator coil, for example, a spindle motor for HDD.

以上より、本発明によれば、軸部とフランジ部とを比較的容易に高い結合強度で固定することができ、それによって所期の軸受性能を維持可能な動圧軸受装置を低コストに提供するができる。   As described above, according to the present invention, it is possible to provide a hydrodynamic bearing device that can fix the shaft portion and the flange portion with relatively high coupling strength, thereby maintaining the desired bearing performance at low cost. I can do it.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係る動圧軸受装置(流体動圧軸受装置)1を組み込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に装着されたロータ(ディスクハブ)3と、例えば半径方向のギャップを介して対向させたステータコイル4aおよびロータマグネット4bを備えている。ステータコイル4aはブラケット5の外周に取付けられ、ロータマグネット4bはディスクハブ3の内周に取付けられる。動圧軸受装置1のハウジング7は、ブラケット5の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが一又は複数枚保持される。ステータコイル4aに通電すると、ステータコイル4aとロータマグネット4bとの間の電磁力でロータマグネット4bが回転し、それによって、ディスクハブ3および軸部材2が一体となって回転する。   FIG. 1 conceptually shows one configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device (fluid fluid dynamic bearing device) 1 according to the present invention. This spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports the shaft member 2 in a non-contact manner, a rotor (disk hub) 3 mounted on the shaft member 2, For example, a stator coil 4a and a rotor magnet 4b that are opposed to each other via a gap in the radial direction are provided. The stator coil 4 a is attached to the outer periphery of the bracket 5, and the rotor magnet 4 b is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is mounted on the inner periphery of the bracket 5. The disk hub 3 holds one or more disks D such as magnetic disks. When the stator coil 4a is energized, the rotor magnet 4b is rotated by the electromagnetic force between the stator coil 4a and the rotor magnet 4b, whereby the disk hub 3 and the shaft member 2 are rotated together.

図2は、上記スピンドルモータで使用される動圧軸受装置1の一例を示すものである。この動圧軸受装置1は、回転側の軸部材2と、固定側の軸受部材6とを主要な構成部品として備える。本実施形態において、軸部材2は、軸部2aと、軸部2aに固定された第1フランジ部9および第2フランジ部10とで構成されており、また軸受部材6は、ハウジング7と、スリーブ部8とで別体に構成されている。なお、以下説明の便宜上、軸受部材6の開口部から軸部材2(軸部2a)の端部が突出している側を上側、その軸方向反対側を下側として説明を進める。   FIG. 2 shows an example of the hydrodynamic bearing device 1 used in the spindle motor. The hydrodynamic bearing device 1 includes a rotation-side shaft member 2 and a fixed-side bearing member 6 as main components. In the present embodiment, the shaft member 2 includes a shaft portion 2a, a first flange portion 9 and a second flange portion 10 fixed to the shaft portion 2a, and the bearing member 6 includes a housing 7, The sleeve portion 8 is configured separately. For convenience of explanation, the description will be given with the side where the end of the shaft member 2 (shaft 2a) projects from the opening of the bearing member 6 as the upper side and the opposite side in the axial direction as the lower side.

本実施形態では、スリーブ部8の内周面8aと軸部材2を構成する軸部2aの外周面2a1との間に第1ラジアル軸受部R1と第2ラジアル軸受部R2とが軸方向に離隔して設けられる。また、スリーブ部8の上側端面8bと第1フランジ部9の下側端面9bとの間に第1スラスト軸受部T1が設けられ、スリーブ部8の下側端面8cと第2フランジ部10の上側端面10bとの間に第2スラスト軸受部T2が設けられる。本実施形態の動圧軸受装置1は、スラスト軸受部がスリーブ部8の両端に形成されているので、図6に示す形態の動圧軸受装置よりも両スラスト軸受部間の軸方向離間距離が大きくなり、その分、スラスト軸受部におけるモーメント荷重に対する負荷能力を高めることができる。   In the present embodiment, the first radial bearing portion R1 and the second radial bearing portion R2 are separated in the axial direction between the inner peripheral surface 8a of the sleeve portion 8 and the outer peripheral surface 2a1 of the shaft portion 2a constituting the shaft member 2. Provided. A first thrust bearing portion T1 is provided between the upper end surface 8b of the sleeve portion 8 and the lower end surface 9b of the first flange portion 9, and the lower end surface 8c of the sleeve portion 8 and the upper side of the second flange portion 10 are provided. A second thrust bearing portion T2 is provided between the end surface 10b. In the hydrodynamic bearing device 1 of the present embodiment, the thrust bearing portions are formed at both ends of the sleeve portion 8, so that the axial separation distance between the thrust bearing portions is larger than that of the hydrodynamic bearing device of the configuration shown in FIG. 6. The load capacity with respect to the moment load in the thrust bearing portion can be increased accordingly.

ハウジング7は、例えば、樹脂材料を射出成形して円筒状に形成され、その内周面7aは、同径でストレートな円筒面となっている。図1に示すブラケット5の内周面にハウジング7の外周面が圧入、接着、圧入接着等の手段で固定される。   The housing 7 is formed in a cylindrical shape by, for example, injection molding of a resin material, and the inner peripheral surface 7a is a straight cylindrical surface having the same diameter. The outer peripheral surface of the housing 7 is fixed to the inner peripheral surface of the bracket 5 shown in FIG. 1 by means such as press-fitting, bonding, and press-fitting adhesion.

ハウジング7を形成する樹脂材料は射出成形可能な樹脂材料であれば非晶性樹脂・結晶性樹脂を問わず使用可能で、例えば、非晶性樹脂として、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等、結晶性樹脂として、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等を用いることができる。もちろんこれらは一例にすぎず、軸受の用途や使用環境に適したその他の樹脂材料を使用することもできる。上記の樹脂材料には、必要に応じて強化材(繊維状、粉末上等の形態は問わない)や潤滑剤、導電材等の各種充填材が一種または二種以上配合される。   The resin material forming the housing 7 can be used regardless of whether it is an injection-moldable resin material, such as an amorphous resin or a crystalline resin. For example, as the amorphous resin, polysulfone (PSF), polyethersulfone ( Liquid crystalline polymer (LCP), polyetheretherketone (PEEK), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS) as crystalline resins such as PES), polyphenylsulfone (PPSU), polyetherimide (PEI) Etc. can be used. Of course, these are only examples, and other resin materials suitable for the application and use environment of the bearing can also be used. One or more kinds of various fillers such as a reinforcing material (fibrous, powdery form, etc.), a lubricant, and a conductive material are blended in the resin material as necessary.

この他、黄銅やアルミニウム合金等の軟質金属材料、その他の金属材料でハウジング7を形成することもできる。   In addition, the housing 7 can also be formed of a soft metal material such as brass or an aluminum alloy, or other metal materials.

スリーブ部8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする燒結金属の多孔質体で円筒状に形成され、ハウジング7の内周面7aの所定位置に圧入、接着、あるいは圧入接着等の手段で固定される。なお、焼結金属に限らず、多孔質体ではない他の金属材料、例えば黄銅等の軟質金属でスリーブ部8を形成することも可能である。   The sleeve portion 8 is formed, for example, in a cylindrical shape with a porous body made of sintered metal, particularly a sintered body of sintered metal mainly composed of copper, and is press-fitted and bonded to a predetermined position on the inner peripheral surface 7 a of the housing 7. Alternatively, it is fixed by means such as press-fit adhesion. Note that the sleeve portion 8 can be formed of not only a sintered metal but also a metal material other than a porous body, for example, a soft metal such as brass.

スリーブ部8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面となる上下2つの領域が軸方向に離隔して設けられ、該2つの領域には、例えば図3(b)に示すようなヘリングボーン形状の動圧溝8a1、8a2がそれぞれ形成される。動圧溝形状としては、公知のその他の形状、例えばスパイラル形状等に形成することもできる。   The inner peripheral surface 8a of the sleeve portion 8 is provided with two upper and lower regions that are radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2, and are separated in the axial direction. For example, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 as shown in FIG. 3B are formed. As the dynamic pressure groove shape, other known shapes such as a spiral shape can also be formed.

また、スリーブ部8の上側端面8bの一部または全部環状領域には、第1スラスト軸受部T1のスラスト軸受面が形成され、当該スラスト軸受面となる領域には、例えば図3(a)に示すようなスパイラル形状の動圧溝8b1が形成される。同様に、スリーブ部8の下側端面8cの一部または全部環状領域には、第2スラスト軸受部T2のスラスト軸受面が形成され、当該スラスト軸受面となる領域には、例えば図3(c)に示すようなスパイラル形状の動圧溝8c1が形成される。なお、動圧溝形状は、上記スパイラル形状の他、例えばヘリングボーン形状等に形成することもできる。   Further, a thrust bearing surface of the first thrust bearing portion T1 is formed in a part or all of the annular region of the upper end surface 8b of the sleeve portion 8, and the region serving as the thrust bearing surface is, for example, as shown in FIG. A spiral dynamic pressure groove 8b1 as shown is formed. Similarly, a thrust bearing surface of the second thrust bearing portion T2 is formed in a part or all of the annular region of the lower end surface 8c of the sleeve portion 8, and the region serving as the thrust bearing surface includes, for example, FIG. The spiral dynamic pressure groove 8c1 as shown in FIG. The dynamic pressure groove shape can be formed in, for example, a herringbone shape in addition to the spiral shape.

軸部材2は、ステンレス鋼等の金属材料、あるいは、金属と樹脂のハイブリッド構造とされた軸部2aと、該軸部2aの外径側に張り出した第1フランジ部9および第2フランジ部10とで構成される。軸部2aは全体として概ね同径の軸状をなし、その中間部分には、他所よりも僅かに小径の逃げ部2a2が形成されている。   The shaft member 2 includes a metal material such as stainless steel, or a shaft portion 2a having a hybrid structure of metal and resin, and a first flange portion 9 and a second flange portion 10 projecting to the outer diameter side of the shaft portion 2a. It consists of. The shaft portion 2a as a whole has a shaft shape with substantially the same diameter, and a relief portion 2a2 having a slightly smaller diameter than the other portions is formed in the middle portion thereof.

第1フランジ部9および第2フランジ部10は、何れも黄銅等の軟質金属材料やその他の金属材料、あるいは樹脂材料で軸部2aとは別体のリング状に形成され、軸部2aの所定位置に接着固定される。この実施形態では、第1フランジ部9の内周面9dおよび第2フランジ部10の内周面10dの一部又は全部領域には、図2の拡大図(図中、右側の拡大図)に示すように、接着剤充填部としての螺旋溝12が形成されている。螺旋溝12の傾斜角や溝幅は、接着固定時に高い結合力を発揮できるよう、任意の傾斜角や溝幅に形成される。なお、接着剤充填部としては、その他の溝形状、例えば、一または複数の円周溝を設けた構成とすることもできる。   The first flange portion 9 and the second flange portion 10 are both formed of a soft metal material such as brass, other metal materials, or a resin material in a ring shape that is separate from the shaft portion 2a. Glued in place. In this embodiment, a part or all of the inner peripheral surface 9d of the first flange portion 9 and the inner peripheral surface 10d of the second flange portion 10 are shown in the enlarged view of FIG. 2 (the enlarged view on the right side in the drawing). As shown, a spiral groove 12 as an adhesive filling portion is formed. The inclination angle and groove width of the spiral groove 12 are formed to have an arbitrary inclination angle and groove width so that a high bonding force can be exerted at the time of adhesion and fixation. In addition, as an adhesive agent filling part, it can also be set as the structure which provided other groove shape, for example, one or some circumferential groove.

第1フランジ部9および第2フランジ部10と軸部2aとの接着固定部14において、第1フランジ部9の内周面9dおよび第2フランジ部10の内周面10dと軸部2aの外周面2a1との間に接着隙間が設けられており、接着剤13は、この接着隙間と螺旋溝12に充填されて固化している。   In the adhesive fixing portion 14 between the first flange portion 9 and the second flange portion 10 and the shaft portion 2a, the inner peripheral surface 9d of the first flange portion 9 and the inner peripheral surface 10d of the second flange portion 10 and the outer periphery of the shaft portion 2a An adhesive gap is provided between the surface 2a1 and the adhesive 13 is filled in the adhesive gap and the spiral groove 12 to be solidified.

第1フランジ部9の外周面9aは、ハウジング7の上端開口部の内周面7aとの間に所定容積の第1シール空間S1を形成し、また第2フランジ部10の外周面10aは、ハウジング7の下端開口部の内周面7aとの間に所定容積の第2シール空間S2を形成する。本実施形態において、第1フランジ部9の外周面9aおよび第2フランジ部10の外周面10aは、それぞれ軸受装置の外部側に向かって漸次縮径したテーパ面状に形成される。そのため、両シール空間S1、S2は、互いに接近する方向(ハウジング7の内部方向)に漸次縮径したテーパ形状となる。軸部材2の回転時、両シール空間S1、S2内の潤滑油は毛細管力による引き込み作用と、回転時の遠心力により引き込み作用とにより、シール空間が狭くなる方向(ハウジング7の内部方向)に向けて引き込まれる。これにより、ハウジング7の内部からの潤滑油の漏れ出しが効果的に防止される。油漏れを確実に防止するため、図2の拡大図(図中、左側の拡大図)に示すように、ハウジング7の上側端面7bと下側端面7c、第1フランジ部9の上側端面9c、および第2フランジ部10の下側端面10cにそれぞれ撥油剤からなる被膜11を形成することもできる。   A first seal space S1 having a predetermined volume is formed between the outer peripheral surface 9a of the first flange portion 9 and the inner peripheral surface 7a of the upper end opening of the housing 7, and the outer peripheral surface 10a of the second flange portion 10 is A second seal space S <b> 2 having a predetermined volume is formed between the inner peripheral surface 7 a of the lower end opening of the housing 7. In this embodiment, the outer peripheral surface 9a of the 1st flange part 9 and the outer peripheral surface 10a of the 2nd flange part 10 are each formed in the taper surface shape gradually diameter-reduced toward the outer side of the bearing apparatus. Therefore, both the seal spaces S1 and S2 have a tapered shape that is gradually reduced in diameter in a direction approaching each other (inner direction of the housing 7). When the shaft member 2 is rotated, the lubricating oil in both the seal spaces S1 and S2 is drawn in a direction (inside the housing 7) in which the seal space is narrowed by a drawing action by a capillary force and a drawing action by a centrifugal force at the time of rotation. It is drawn toward. Thereby, the leakage of the lubricating oil from the inside of the housing 7 is effectively prevented. In order to reliably prevent oil leakage, as shown in the enlarged view of FIG. 2 (the enlarged view on the left side in the figure), the upper end face 7b and the lower end face 7c of the housing 7, the upper end face 9c of the first flange portion 9, The coating 11 made of an oil repellent agent can also be formed on the lower end surface 10c of the second flange portion 10, respectively.

第1および第2シール空間S1、S2は、ハウジング7の内部空間に充満された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有する。想定される温度変化の範囲内では、油面は常時両シール空間S1、S2内にある。これを実現するために、両シール空間S1、S2の容積の総和は、少なくとも内部空間に充満された潤滑油の温度変化に伴う容積変化量よりも大きく設定される。   The first and second seal spaces S <b> 1 and S <b> 2 have a buffer function that absorbs a volume change amount associated with a temperature change of the lubricating oil filled in the internal space of the housing 7. Within the assumed temperature change range, the oil level is always in both seal spaces S1, S2. In order to achieve this, the sum of the volumes of both the seal spaces S1, S2 is set to be larger than at least the volume change amount associated with the temperature change of the lubricating oil filled in the internal space.

以上の構成部材からなる動圧軸受装置1は、例えば次のようにして組立てられる。   The hydrodynamic bearing device 1 composed of the above constituent members is assembled as follows, for example.

スリーブ部8の内周に軸部2aを挿入した後、スリーブ部8を挟むように第1フランジ部9および第2フランジ部10を軸部2aの所定箇所に接着固定する。例えば、両フランジ部9、10の内周面に接着剤13として熱硬化性接着剤を塗布した状態で、両フランジ部9、10を軸部2aに外挿し、軸部2aの所定位置までそれぞれ移動させて位置決めを行なう。その後、加熱処理(ベーキング)をすると、上記の接着隙間及び螺旋溝12に充填された接着剤13が固化して、軸部2aに両フランジ部9、10が接着固定される。そして、このようにして形成された組付け体をハウジング7の内周に挿入し、スリーブ部8の外周面をハウジング7の内周面7aに接着、圧入、圧入接着、溶着(超音波溶着)等適宜の手段で固定する。このようにして組立が完了すると、両フランジ部9、10で密閉されたハウジング7の内部空間に、スリーブ部8の内部気孔も含め、潤滑流体として例えば潤滑油を充満させる。   After the shaft portion 2a is inserted into the inner periphery of the sleeve portion 8, the first flange portion 9 and the second flange portion 10 are bonded and fixed to predetermined portions of the shaft portion 2a so as to sandwich the sleeve portion 8. For example, in a state in which a thermosetting adhesive is applied as the adhesive 13 to the inner peripheral surfaces of the both flange portions 9 and 10, the both flange portions 9 and 10 are extrapolated to the shaft portion 2a, and each of the shaft portions 2a reaches a predetermined position. Move to perform positioning. Thereafter, when heat treatment (baking) is performed, the adhesive 13 filled in the bonding gap and the spiral groove 12 is solidified, and the flange portions 9 and 10 are bonded and fixed to the shaft portion 2a. The assembly formed in this way is inserted into the inner periphery of the housing 7, and the outer peripheral surface of the sleeve portion 8 is bonded, press-fitted, press-fitted, and welded (ultrasonic welding) to the inner peripheral surface 7 a of the housing 7. Etc. are fixed by appropriate means. When the assembly is completed in this manner, the internal space of the housing 7 sealed by the flange portions 9 and 10 is filled with, for example, lubricating oil as a lubricating fluid including the internal pores of the sleeve portion 8.

なお、図示例の動圧軸受装置1における潤滑油の注油は、例えば未注油状態の動圧軸受装置を真空槽内で潤滑油中に浸漬した後、大気圧に開放することにより行われる。本実施形態の動圧軸受装置1は、ハウジング7の両端が開放されているので、ハウジング7の一端を閉じた構成(図6参照)に比べ、内部空間のエアを確実に潤滑油で置換することができ、残存エアによる弊害、例えば高温時の油漏れ等を確実に回避することができる。また、このような減圧を利用した注油方法だけでなく、常圧下での注油(例えば、潤滑油の加圧注油)も可能となり、注油装置および工程を簡略化して製造コストの低廉化を図ることができる。   In addition, lubrication of the lubricating oil in the illustrated dynamic pressure bearing device 1 is performed, for example, by immersing the unlubricated dynamic pressure bearing device in the lubricating oil in a vacuum chamber and then releasing it to atmospheric pressure. In the hydrodynamic bearing device 1 of the present embodiment, since both ends of the housing 7 are open, the air in the internal space is reliably replaced with lubricating oil as compared with a configuration in which one end of the housing 7 is closed (see FIG. 6). It is possible to reliably avoid adverse effects caused by residual air, such as oil leakage at high temperatures. In addition to such a lubrication method using reduced pressure, it is possible to lubricate under normal pressure (for example, pressurized lubrication of lubricating oil), simplifying the lubrication equipment and processes, and reducing manufacturing costs. Can do.

上記構成の動圧軸受装置1において、軸部材2が回転すると、スリーブ部8の内周面8aのラジアル軸受面となる上下2箇所に離隔して設けられる領域は、それぞれ軸部材2の外周面2aとラジアル軸受隙間を介して対向する。そして、軸部材2の回転に伴い、上記ラジアル軸受隙間に形成された潤滑油膜は、動圧溝の動圧作用によってその油膜剛性が高められ、軸部材2がラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが形成される。   In the dynamic pressure bearing device 1 having the above-described configuration, when the shaft member 2 rotates, the regions provided separately at the two upper and lower positions serving as the radial bearing surface of the inner peripheral surface 8a of the sleeve portion 8 are the outer peripheral surfaces of the shaft member 2, respectively. It faces 2a via a radial bearing gap. As the shaft member 2 rotates, the lubricating oil film formed in the radial bearing gap is increased in rigidity by the dynamic pressure action of the dynamic pressure groove, and the shaft member 2 is supported in a non-contact manner so as to be rotatable in the radial direction. Is done. As a result, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are formed.

また、軸部材2が回転すると、スリーブ部8の上側端面8bのスラスト軸受面となる領域が第1フランジ部9の下側端面9bと所定のスラスト軸受隙間を介して対向し、スリーブ部8の下側端面8cのスラスト軸受面となる領域が第2フランジ部10の上側端面10bと所定のスラスト軸受隙間を介して対向する。そして軸部材2の回転に伴い、上記スラスト軸受隙間に形成された潤滑油膜は、動圧溝の動圧作用によってその油膜剛性が高められ、軸部材2がスラスト方向に回転自在に非接触支持される。これにより、軸部材2をスラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが形成される。   Further, when the shaft member 2 rotates, the region that becomes the thrust bearing surface of the upper end surface 8b of the sleeve portion 8 faces the lower end surface 9b of the first flange portion 9 via a predetermined thrust bearing gap, and the sleeve portion 8 A region serving as a thrust bearing surface of the lower end surface 8c faces the upper end surface 10b of the second flange portion 10 via a predetermined thrust bearing gap. As the shaft member 2 rotates, the oil film rigidity of the lubricating oil film formed in the thrust bearing gap is increased by the dynamic pressure action of the dynamic pressure groove, and the shaft member 2 is supported in a non-contact manner so as to be rotatable in the thrust direction. The Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which support the shaft member 2 in a non-contact manner so as to be rotatable in the thrust direction are formed.

なお、図2では、接着剤充填部としての螺旋溝12をフランジ部9、10の内周面に形成した形態を例示したが、螺旋溝12は、図4(a)に示すように軸部2aの外周面2a1に形成する他、図4(b)に示すように、軸部2aの外周面2a1およびフランジ部の内周面の双方に形成してもよい。また、以上で説明を行った構成は、第1フランジ部9の内周面9dおよび第2フランジ部10の内周面10dと軸部2aの外周面2a1との間に接着隙間を設けたものであるが(ルーズ接着)、例えば、図4(c)に示すように、第1フランジ部9の内周面9d(第2フランジ部10の内周面10d)の螺旋溝12を除く領域を軸部2aの外周面2a1に圧入するようにしても良い。   2 illustrates the form in which the spiral groove 12 as the adhesive filling portion is formed on the inner peripheral surfaces of the flange portions 9 and 10, the spiral groove 12 has a shaft portion as shown in FIG. In addition to being formed on the outer peripheral surface 2a1 of 2a, as shown in FIG. 4B, it may be formed on both the outer peripheral surface 2a1 of the shaft portion 2a and the inner peripheral surface of the flange portion. In the configuration described above, an adhesive gap is provided between the inner peripheral surface 9d of the first flange portion 9 and the inner peripheral surface 10d of the second flange portion 10 and the outer peripheral surface 2a1 of the shaft portion 2a. However, as shown in FIG. 4C, for example, an area excluding the spiral groove 12 on the inner peripheral surface 9d of the first flange portion 9 (inner peripheral surface 10d of the second flange portion 10) is used. You may make it press-fit in the outer peripheral surface 2a1 of the axial part 2a.

図5は、動圧軸受装置1の第2実施形態を示している。図示例の動圧軸受装置1は、図2では、別体のハウジング7とスリーブ部8とで構成された軸受部材6が、一体のハウジング7およびスリーブ部8とで構成されている。このように軸受部材6を単一部品とすることで、部品点数および組立工数の削減を通じて一層低コスト化を図ることもできる。この軸受部材6は、軟質金属、その他の金属材料の鍛造や機械加工で形成するほか、樹脂や低融点金属の射出成形、さらにはMIM成形で形成することもできる。   FIG. 5 shows a second embodiment of the hydrodynamic bearing device 1. In the illustrated dynamic pressure bearing device 1, in FIG. 2, a bearing member 6 constituted by a separate housing 7 and a sleeve portion 8 is constituted by an integral housing 7 and a sleeve portion 8. Thus, by making the bearing member 6 into a single component, it is possible to further reduce the cost by reducing the number of components and the number of assembly steps. The bearing member 6 can be formed by forging or machining a soft metal or other metal material, or can be formed by injection molding of a resin or a low melting point metal, or by MIM molding.

この場合、軸受部材6のうち、スリーブ部8の内周面と軸部材2の外周面との間にラジアル軸受隙間が形成され、スリーブ部8の上側端面8bと第1フランジ部9の下側端面9bとの間、およびスリーブ部8の下側端面8cと第2シール部10の上側端面10bとの間にそれぞれスラスト軸受隙間が形成される。また、軸受部材6の両端開口部(ハウジングに相当する部分7の両端開口部)の内周面7aとフランジ部9、10の外周面との間にそれぞれシール空間S1、S2が形成される。   In this case, in the bearing member 6, a radial bearing gap is formed between the inner peripheral surface of the sleeve portion 8 and the outer peripheral surface of the shaft member 2, and the upper end surface 8 b of the sleeve portion 8 and the lower side of the first flange portion 9. Thrust bearing gaps are formed between the end surface 9 b and between the lower end surface 8 c of the sleeve portion 8 and the upper end surface 10 b of the second seal portion 10. Further, seal spaces S1 and S2 are formed between the inner peripheral surface 7a of the both end openings of the bearing member 6 (both end openings of the portion 7 corresponding to the housing) and the outer peripheral surfaces of the flange portions 9 and 10, respectively.

以上の説明では、フランジ部をスリーブ部の両端に配置する形態を例示したが、もちろんフランジ部をスリーブ部の一端のみに配置する形態(例えば、図6に示す形態)の動圧軸受装置にも本発明の構成を好ましく適用することができる。   In the above description, the form in which the flange part is disposed at both ends of the sleeve part is illustrated, but of course, the hydrodynamic bearing device in the form in which the flange part is disposed only at one end of the sleeve part (for example, the form shown in FIG. 6). The configuration of the present invention can be preferably applied.

また、以上の説明では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、ヘリングボーン形状やスパイラル形状の動圧溝により潤滑油の動圧作用を発生させる構成を例示しているが、本発明はこれに限定されるものではない。   In the above description, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are exemplified by the configuration in which the dynamic pressure action of the lubricating oil is generated by the herringbone shape and spiral shape dynamic pressure grooves. The present invention is not limited to this.

例えば、ラジアル軸受部R1、R2として、いわゆるステップ軸受や多円弧軸受を採用しても良い。   For example, so-called step bearings or multi-arc bearings may be employed as the radial bearing portions R1 and R2.

図7は、ラジアル軸受部R1、R2の一方又は双方をステップ軸受で構成した場合の一例を示している。この例では、スリーブ部8の内周面8aのラジアル軸受面となる領域に、複数の軸方向溝形状の動圧溝8a3が円周方向所定間隔に設けられている。   FIG. 7 shows an example in which one or both of the radial bearing portions R1 and R2 are configured by step bearings. In this example, a plurality of axial groove-shaped dynamic pressure grooves 8a3 are provided at predetermined intervals in the circumferential direction in a region serving as a radial bearing surface of the inner peripheral surface 8a of the sleeve portion 8.

図8は、ラジアル軸受部R1、R2の一方又は双方を多円弧軸受で構成した場合の一例を示している。この例では、スリーブ部8の内周面8aのラジアル軸受面となる領域が、3つの円弧面8a4、8a5、8a6で構成されている(いわゆる3円弧軸受)。3つの円弧面8a4、8a5、8a6の曲率中心は、それぞれ、スリーブ部8(軸部2a)の軸中心Oから等距離オフセットされている。3つの円弧面8a4、8a5、8a6で区画される各領域において、ラジアル軸受隙間は、円周方向の両方向に対して、それぞれ楔状に漸次縮小した形状を有している。そのため、スリーブ部8と軸部2aとが相対回転すると、その相対回転の方向に応じて、ラジアル軸受隙間内の潤滑油が楔状に縮小した最小隙間側に押し込まれて、その圧力が上昇する。このような潤滑油の動圧作用によって、スリーブ部8と軸部2aとが非接触支持される。尚、3つの円弧面8a4、8a5、8a6の相互間の境界部に、分離溝と称される、一段深い軸方向溝を形成しても良い。   FIG. 8 shows an example of a case where one or both of the radial bearing portions R1 and R2 are configured by multi-arc bearings. In this example, a region serving as a radial bearing surface of the inner peripheral surface 8a of the sleeve portion 8 is configured by three arc surfaces 8a4, 8a5, and 8a6 (so-called three arc bearings). The centers of curvature of the three arcuate surfaces 8a4, 8a5, and 8a6 are offset by the same distance from the axis center O of the sleeve portion 8 (shaft portion 2a). In each region defined by the three arcuate surfaces 8a4, 8a5, and 8a6, the radial bearing gap has a shape gradually reduced in a wedge shape in both circumferential directions. Therefore, when the sleeve portion 8 and the shaft portion 2a rotate relative to each other, the lubricating oil in the radial bearing gap is pushed into the minimum gap side reduced in a wedge shape according to the direction of the relative rotation, and the pressure rises. By such a dynamic pressure action of the lubricating oil, the sleeve portion 8 and the shaft portion 2a are supported in a non-contact manner. Note that a deeper axial groove called a separation groove may be formed at the boundary between the three arcuate surfaces 8a4, 8a5, 8a6.

図9は、ラジアル軸受部R1、R2の一方又は双方を多円弧軸受で構成した場合の他の例を示している。この例においても、スリーブ部8の内周面8aのラジアル軸受面となる領域が、3つの円弧面8a7、8a8、8a9で構成されているが(いわゆる3円弧軸受)、3つの円弧面8a7、8a8、8a9で区画される各領域において、ラジアル軸受隙間は、円周方向の一方向に対して、それぞれ楔状に漸次縮小した形状を有している。このような構成の多円弧軸受は、テーパ軸受と称されることもある。また、3つの円弧面8a7、8a8、8a9の相互間の境界部に、分離溝と称される、一段深い軸方向溝8a10、8a11、8a12が形成されている。そのため、スリーブ部8と軸部2aとが所定方向に相対回転すると、ラジアル軸受隙間内の潤滑油が楔状に縮小した最小隙間側に押し込まれて、その圧力が上昇する。このような潤滑油の動圧作用によって、スリーブ部8と軸部2aとが非接触支持される。   FIG. 9 shows another example in the case where one or both of the radial bearing portions R1 and R2 are configured by multi-arc bearings. Also in this example, the region that becomes the radial bearing surface of the inner peripheral surface 8a of the sleeve portion 8 is configured by three arc surfaces 8a7, 8a8, and 8a9 (so-called three arc bearings), but the three arc surfaces 8a7, In each region partitioned by 8a8 and 8a9, the radial bearing gap has a shape gradually reduced in a wedge shape with respect to one direction in the circumferential direction. The multi-arc bearing having such a configuration may be referred to as a taper bearing. Further, deeper axial grooves 8a10, 8a11, and 8a12 called separation grooves are formed at boundaries between the three arcuate surfaces 8a7, 8a8, and 8a9. Therefore, when the sleeve portion 8 and the shaft portion 2a are relatively rotated in a predetermined direction, the lubricating oil in the radial bearing gap is pushed into the minimum gap side reduced in a wedge shape, and the pressure rises. By such a dynamic pressure action of the lubricating oil, the sleeve portion 8 and the shaft portion 2a are supported in a non-contact manner.

図10は、ラジアル軸受部R1、R2の一方又は双方を多円弧軸受で構成した場合の他の例を示している。この例では、図9に示す構成において、3つの円弧面8a7、8a8、8a9の最小隙間側の所定領域θが、それぞれ、スリーブ部8(軸部2a)の軸中心Oを曲率中心とする同心の円弧で構成されている。従って、各所定領域θにおいて、ラジアル軸受隙間(最小隙間)は一定になる。このような構成の多円弧軸受は、テーパ・フラット軸受と称されることもある。   FIG. 10 shows another example in the case where one or both of the radial bearing portions R1 and R2 are configured by multi-arc bearings. In this example, in the configuration shown in FIG. 9, the predetermined areas θ on the minimum gap side of the three arcuate surfaces 8a7, 8a8, 8a9 are concentric with the center O of the sleeve 8 (the shaft 2a) as the center of curvature. It is composed of arcs. Therefore, in each predetermined area θ, the radial bearing gap (minimum gap) is constant. The multi-arc bearing having such a configuration may be referred to as a tapered flat bearing.

以上の各例における多円弧軸受は、いわゆる3円弧軸受であるが、これに限らず、いわゆる4円弧軸受、5円弧軸受、さらに6円弧以上の数の円弧面で構成された多円弧軸受を採用しても良い。また、ラジアル軸受部をステップ軸受や多円弧軸受で構成する場合、ラジアル軸受部R1、R2のように、2つのラジアル軸受部を軸方向に離隔して設けた構成とする他、スリーブ部8の内周面8aの上下領域に亘って1つのラジアル軸受部を設けた構成としても良い。   The multi-arc bearings in the above examples are so-called three-arc bearings, but are not limited to this, and so-called four-arc bearings, five-arc bearings, and multi-arc bearings composed of more than six arc surfaces are adopted. You may do it. Further, when the radial bearing portion is configured by a step bearing or a multi-arc bearing, the radial bearing portions R1 and R2 are configured such that two radial bearing portions are provided apart from each other in the axial direction. It is good also as a structure which provided the one radial bearing part over the up-and-down area | region of the internal peripheral surface 8a.

また、スラスト軸受部T1、T2の一方又は双方は、例えば、スラスト軸受面となる領域に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、いわゆる波型軸受(ステップ型が波型になったもの)等で構成することもできる(図示省略)。   Further, one or both of the thrust bearing portions T1 and T2 are, for example, so-called step bearings, so-called wave bearings, in which a plurality of radial groove-shaped dynamic pressure grooves are provided at predetermined intervals in the circumferential direction in a region serving as a thrust bearing surface. It can also be constituted by a mold bearing (a step type having a wave shape) or the like (not shown).

以上の実施形態では、動圧軸受装置1の内部に充満し、スリーブ部8と軸部材2(軸部2a)との間のラジアル軸受隙間や、スリーブ部8と軸部材2(両フランジ部9、10)との間のスラスト軸受隙間に動圧を発生させる流体として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧を発生させることができる流体、例えば空気等の気体や、磁性流体等を使用することもできる。   In the above embodiment, the inside of the hydrodynamic bearing device 1 is filled, and the radial bearing gap between the sleeve portion 8 and the shaft member 2 (shaft portion 2a) or the sleeve portion 8 and the shaft member 2 (both flange portions 9) are filled. 10), the lubricating oil is exemplified as the fluid that generates the dynamic pressure in the thrust bearing gap between them, but other fluids that can generate the dynamic pressure in each bearing gap, for example, gas such as air, A magnetic fluid or the like can also be used.

さらに、以上の説明では、ラジアル軸受面をスリーブ部8の内周面8aに形成する場合を例示したが、ラジアル軸受隙間を介して対向する面、すなわち軸部2aの外周面2a1に形成することもできる。さらに、スラスト軸受面をスリーブ部8の両端面8b、8cに形成する場合を例示したが、スラスト軸受隙間を介して対向する面、すなわち第1フランジ部9の下側端面9bおよび第2フランジ部10の上側端面10bに形成することもできる。   Furthermore, in the above description, the case where the radial bearing surface is formed on the inner peripheral surface 8a of the sleeve portion 8 is exemplified. However, the radial bearing surface is formed on the surface facing the radial bearing gap, that is, the outer peripheral surface 2a1 of the shaft portion 2a. You can also. Furthermore, although the case where the thrust bearing surface is formed on both end surfaces 8b and 8c of the sleeve portion 8 is illustrated, the surfaces facing each other through the thrust bearing gap, that is, the lower end surface 9b and the second flange portion of the first flange portion 9. 10 may be formed on the upper end face 10b.

本発明の実施形態に係る動圧軸受装置を組み込んだ情報機器用スピンドルモータの断面図である。1 is a cross-sectional view of a spindle motor for information equipment incorporating a fluid dynamic bearing device according to an embodiment of the present invention. 本発明の実施形態に係る動圧軸受装置を示す断面図である。It is sectional drawing which shows the dynamic pressure bearing apparatus which concerns on embodiment of this invention. (a)図はスリーブ部の上側断面を示す図、(b)図はスリーブ部の断面図、(c)図はスリーブ部の下側端面を示す図である。(A) A figure is a figure which shows the upper side cross section of a sleeve part, (b) A figure is sectional drawing of a sleeve part, (c) A figure is a figure which shows the lower end surface of a sleeve part. (a)〜(c)図は、図2に示す拡大断面図の他の構成を示す図である。(A)-(c) figure is a figure which shows the other structure of the expanded sectional view shown in FIG. 本発明の実施形態に係る動圧軸受装置の第2実施形態を示す図である。It is a figure which shows 2nd Embodiment of the hydrodynamic bearing apparatus which concerns on embodiment of this invention. 従来構成の動圧軸受装置を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus of a conventional structure. ラジアル軸受部の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of a radial bearing part. ラジアル軸受部の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of a radial bearing part. ラジアル軸受部の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of a radial bearing part. ラジアル軸受部の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of a radial bearing part.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
2a 軸部
6 軸受部材
7 ハウジング
8 スリーブ部
9 第1フランジ部
10 第2フランジ部
12 螺旋溝
13 接着剤
14 接着固定部
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S1、S2 シール空間
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 2a Shaft part 6 Bearing member 7 Housing 8 Sleeve part 9 1st flange part 10 2nd flange part 12 Spiral groove 13 Adhesive 14 Adhesive fixing part R1, R2 Radial bearing part T1, T2 Thrust bearing Part S1, S2 Seal space

Claims (5)

スリーブ部を備えた軸受部材と、前記スリーブ部の内周に挿入した軸部および該軸部の外径側に突出させて設けられたフランジ部を備える軸部材と、前記スリーブ部の内周面と前記軸部の外周面との間のラジアル軸受隙間に生じる潤滑流体の動圧作用で前記軸部材をラジアル方向に非接触支持するラジアル軸受部と、前記スリーブ部の端面と前記フランジ部の端面との間のスラスト軸受隙間に生じる潤滑流体の動圧作用で前記軸部材をスラスト方向に非接触支持するスラスト軸受部とを備える動圧軸受装置において、
前記フランジ部は前記軸部の外周面に接着固定され、該接着固定部に接着剤充填部が形成されたことを特徴とする動圧軸受装置。
A bearing member provided with a sleeve portion, a shaft member inserted on the inner periphery of the sleeve portion, a shaft member provided with a flange portion protruding from the outer diameter side of the shaft portion, and an inner peripheral surface of the sleeve portion And a radial bearing portion that supports the shaft member in a non-contact manner in a radial direction by a dynamic pressure action of a lubricating fluid generated in a radial bearing gap between the shaft portion and an outer peripheral surface of the shaft portion, an end surface of the sleeve portion, and an end surface of the flange portion A dynamic bearing device comprising a thrust bearing portion that supports the shaft member in a thrust direction in a thrust direction by a dynamic pressure action of a lubricating fluid generated in a thrust bearing gap between
The hydrodynamic bearing device according to claim 1, wherein the flange portion is bonded and fixed to the outer peripheral surface of the shaft portion, and an adhesive filling portion is formed in the adhesive fixing portion.
前記接着剤充填部が、前記軸部の外周面および前記フランジ部の内周面のうち、少なくとも何れか一方に設けられた螺旋溝で形成されたことを特徴とする請求項1記載の動圧軸受装置。   2. The dynamic pressure according to claim 1, wherein the adhesive filling portion is formed by a spiral groove provided in at least one of an outer peripheral surface of the shaft portion and an inner peripheral surface of the flange portion. Bearing device. 前記フランジ部が、前記スリーブ部の両端に配置されていることを特徴とする請求項1又は2の何れかに記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the flange portion is disposed at both ends of the sleeve portion. 前記フランジ部の外周に、大気に開放されたシール空間を形成したことを特徴とする請求項1〜3の何れかに記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a seal space that is open to the atmosphere is formed on an outer periphery of the flange portion. 請求項1〜4の何れかに記載の動圧軸受装置と、ステータコイルと、ロータマグネットとを有するモータ。   A motor comprising the fluid dynamic bearing device according to claim 1, a stator coil, and a rotor magnet.
JP2005257852A 2005-09-06 2005-09-06 Dynamic pressure bearing device Pending JP2007071274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005257852A JP2007071274A (en) 2005-09-06 2005-09-06 Dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005257852A JP2007071274A (en) 2005-09-06 2005-09-06 Dynamic pressure bearing device

Publications (1)

Publication Number Publication Date
JP2007071274A true JP2007071274A (en) 2007-03-22

Family

ID=37932910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005257852A Pending JP2007071274A (en) 2005-09-06 2005-09-06 Dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JP2007071274A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8562219B2 (en) * 2006-03-24 2013-10-22 Ntn Corporation Fluid dynamic bearing device
CN103683652A (en) * 2012-09-21 2014-03-26 日本电产株式会社 Spindle motor and disc driving device
JP2017207102A (en) * 2016-05-16 2017-11-24 有限会社イノン Arm member
CN111396460A (en) * 2020-03-13 2020-07-10 江苏理工学院 Gear transmission supporting and protecting bearing device
CN112815013A (en) * 2020-12-30 2021-05-18 东莞市鸿盈电子科技有限公司 Novel well tubular construction of installation ball bearing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168413A (en) * 1989-11-24 1991-07-22 Toshiba Corp Bearing device
JP2002155913A (en) * 2000-11-20 2002-05-31 Matsushita Electric Ind Co Ltd Fitting junction body
JP2002339956A (en) * 2001-05-17 2002-11-27 Riraiaru:Kk Dynamic pressure bearing device, and manufacturing method therefor
JP2004286121A (en) * 2003-03-20 2004-10-14 Tokai Rubber Ind Ltd Shaft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168413A (en) * 1989-11-24 1991-07-22 Toshiba Corp Bearing device
JP2002155913A (en) * 2000-11-20 2002-05-31 Matsushita Electric Ind Co Ltd Fitting junction body
JP2002339956A (en) * 2001-05-17 2002-11-27 Riraiaru:Kk Dynamic pressure bearing device, and manufacturing method therefor
JP2004286121A (en) * 2003-03-20 2004-10-14 Tokai Rubber Ind Ltd Shaft

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8562219B2 (en) * 2006-03-24 2013-10-22 Ntn Corporation Fluid dynamic bearing device
CN103683652A (en) * 2012-09-21 2014-03-26 日本电产株式会社 Spindle motor and disc driving device
JP2017207102A (en) * 2016-05-16 2017-11-24 有限会社イノン Arm member
CN111396460A (en) * 2020-03-13 2020-07-10 江苏理工学院 Gear transmission supporting and protecting bearing device
CN111396460B (en) * 2020-03-13 2021-06-15 江苏理工学院 Gear transmission supporting and protecting bearing device
CN112815013A (en) * 2020-12-30 2021-05-18 东莞市鸿盈电子科技有限公司 Novel well tubular construction of installation ball bearing

Similar Documents

Publication Publication Date Title
KR101213552B1 (en) Dynamic pressure bearing device
JP4531584B2 (en) Fluid dynamic bearing device and motor provided with the same
KR101519426B1 (en) Fluid dynamic-pressure bearing device
US8356938B2 (en) Fluid dynamic bearing apparatus
JP4738868B2 (en) Hydrodynamic bearing device
JP2005321089A (en) Dynamic pressure bearing device
JP2007024146A (en) Dynamic pressure bearing device
JP5306747B2 (en) Hydrodynamic bearing device
US8016488B2 (en) Fluid dynamic bearing device
KR20080079242A (en) Fluid bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
KR20090085026A (en) Fluid bearing device and process for manufacturing the same
JP2007071274A (en) Dynamic pressure bearing device
US7699528B2 (en) Dynamic bearing device
JP4762757B2 (en) Hydrodynamic bearing device
JP2006112614A (en) Dynamic pressure bearing device
WO2012144288A1 (en) Fluid dynamic pressure bearing device
KR20090015081A (en) Fluid bearing device
JP4828908B2 (en) Hydrodynamic bearing device
JP2007071312A (en) Dynamic pressure bearing device
JP4579013B2 (en) Hydrodynamic bearing device
JP2008008472A (en) Fluid bearing device
JP4615328B2 (en) Hydrodynamic bearing device
JP5247987B2 (en) Hydrodynamic bearing device
JP4522869B2 (en) Hydrodynamic bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Effective date: 20100427

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100708

A521 Written amendment

Effective date: 20101008

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101018

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20101105

Free format text: JAPANESE INTERMEDIATE CODE: A912