JP2005321089A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device Download PDF

Info

Publication number
JP2005321089A
JP2005321089A JP2005017068A JP2005017068A JP2005321089A JP 2005321089 A JP2005321089 A JP 2005321089A JP 2005017068 A JP2005017068 A JP 2005017068A JP 2005017068 A JP2005017068 A JP 2005017068A JP 2005321089 A JP2005321089 A JP 2005321089A
Authority
JP
Japan
Prior art keywords
bearing
seal member
housing
shaft
bearing sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005017068A
Other languages
Japanese (ja)
Inventor
Toshiyuki Mizutani
敏幸 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005017068A priority Critical patent/JP2005321089A/en
Priority to US11/547,641 priority patent/US20070286538A1/en
Priority to KR1020067019885A priority patent/KR101213552B1/en
Priority to PCT/JP2005/006847 priority patent/WO2005098252A1/en
Publication of JP2005321089A publication Critical patent/JP2005321089A/en
Priority to US13/373,883 priority patent/US8782901B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Support Of The Bearing (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the axial dimension of a seal space. <P>SOLUTION: This dynamic pressure bearing device comprises a seal member 9 fixed to a specified position on an outer peripheral surface 2a1 of a shaft portion 2a. During the rotation of a shaft member 2, a lower end surface 9b of the seal member 9 is opposite an upper end surface 8b of a bearing sleeve 8 with a specified thrust bearing clearance in between to form a second thrust bearing clearance T2. Further, an outer peripheral surface 9a on the seal member 9 forms a seal space S with a specified volume between itself and an upper end section inner peripheral surface 7a1 of a housing 7. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、軸受隙間に生じる流体(潤滑流体)の動圧作用によって回転部材を非接触支持する動圧軸受装置に関する。この軸受装置は、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置などのスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、あるいは電気機器、例えば軸流ファンなどの小型モータ用として好適である。   The present invention relates to a hydrodynamic bearing device that supports a rotating member in a non-contact manner by a hydrodynamic action of a fluid (lubricating fluid) generated in a bearing gap. This bearing device is a spindle of information equipment such as magnetic disk devices such as HDD and FDD, optical disk devices such as CD-ROM, CD-R / RW and DVD-ROM / RAM, and magneto-optical disk devices such as MD and MO. It is suitable for a motor, a polygon scanner motor of a laser beam printer (LBP), or an electric device such as a small motor such as an axial fan.

上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化などが求められている。これらの要求性能を決定づける構成要素の一つに当該モータのスピンドルを支持する軸受があり、近年では、この種の軸受として、上記要求性能に優れた特性を有する動圧軸受の使用が検討され、あるいは実際に使用されている。   In addition to high rotational accuracy, the various motors are required to have high speed, low cost, low noise, and the like. One of the components that determine the required performance is a bearing that supports the spindle of the motor, and in recent years, as this type of bearing, the use of a hydrodynamic bearing having characteristics excellent in the required performance has been studied. Or it is actually used.

例えば、HDD等のディスク駆動装置のスピンドルモータに組込まれる動圧軸受装置では、軸部材をラジアル方向に非接触支持するラジアル軸受部と、軸部材をスラスト方向に非接触支持するスラスト軸受部とが設けられ、ラジアル軸受部として、軸受スリーブの内周面又は軸部材の外周面に動圧発生用の溝(動圧溝)を設けた動圧軸受が用いられる。スラスト軸受部としては、例えば、軸部材のフランジ部の両端面、又は、これに対向する面(軸受スリーブの端面や、ハウジングに固定されるスラスト部材の端面等)に動圧溝を設けた動圧軸受が用いられる(例えば、特許文献1〜2参照)。   For example, in a hydrodynamic bearing device incorporated in a spindle motor of a disk drive device such as an HDD, a radial bearing portion that supports a shaft member in a non-contact manner in the radial direction, and a thrust bearing portion that supports the shaft member in a non-contact manner in a thrust direction. As the radial bearing portion, a dynamic pressure bearing in which a groove for generating dynamic pressure (dynamic pressure groove) is provided on the inner peripheral surface of the bearing sleeve or the outer peripheral surface of the shaft member is used. As the thrust bearing portion, for example, a motion in which dynamic pressure grooves are provided on both end surfaces of the flange portion of the shaft member, or surfaces facing the flange portion (the end surface of the bearing sleeve, the end surface of the thrust member fixed to the housing, etc.). A pressure bearing is used (for example, refer to Patent Documents 1 and 2).

通常、軸受スリーブはハウジングの内周の所定位置に固定され、また、ハウジングの内部空間に注入した流体(例えば、潤滑油)が外部に漏れるのを防止するために、ハウジングの開口部にシール部材を配設する場合が多い。シール部材の内周面は、軸部材の外周面との間にシール空間を形成し、このシール空間の容積は、ハウジングの内部空間に充満された潤滑油が使用温度範囲内での熱膨張・収縮によって容積変化する量よりも大きくなるように設定される。従って、温度変化に伴う潤滑油の容積変化があった場合でも、潤滑油の油面は常にシール空間内に維持される(特許文献1参照)。
特開2003―65324号公報 特開2003−336636号公報
Usually, the bearing sleeve is fixed at a predetermined position on the inner periphery of the housing, and a seal member is provided at the opening of the housing in order to prevent fluid (for example, lubricating oil) injected into the inner space of the housing from leaking outside. Is often provided. The inner peripheral surface of the seal member forms a seal space between the outer peripheral surface of the shaft member, and the volume of the seal space is determined by the thermal expansion of the lubricating oil filled in the inner space of the housing within the operating temperature range. It is set to be larger than the amount of volume change due to the contraction. Therefore, even when there is a change in the volume of the lubricating oil accompanying a change in temperature, the oil level of the lubricating oil is always maintained in the seal space (see Patent Document 1).
JP 2003-65324 A JP 2003-336636 A

上述のように、従来の動圧軸受装置では、ハウジングの開口部に固定したシール部材の内周面と軸部材の外周面との間にシール空間を形成しているが、このシール空間に、温度変化に伴う潤滑油の容積変化量を吸収する機能を持たせようとすると、シール空間(シール部材)の軸方向寸法を比較的大きく確保する必要がある。そのために、設計上、ハウジングの内部において、軸受スリーブの軸方向中心位置を相対的にハウジングの底部側に下げる必要があり、これにより、ラジアル軸受部の軸受中心と回転体重心との離間距離が大きくなり、使用条件等によっては、モーメント荷重に対する負荷能力が不足する場合が起こり得る。また、軸部材のフランジ部の両側にスラスト軸受部を設けた構成では、両スラスト軸受部間の軸方向距離が比較的小さくなるので、その分、スラスト軸受部によるモーメント荷重の負荷能力が低くなる傾向がある。特に、ディスク駆動装置に用いられる動圧軸受装置の場合、ロータ(ロータハブ、ロータマグネット、ディスク、クランパ等が組み付けられた回転体)の回転に伴って比較的大きなモーメント荷重が軸部材に作用するので、耐モーメント荷重性は重要な特性である。   As described above, in the conventional hydrodynamic bearing device, the seal space is formed between the inner peripheral surface of the seal member fixed to the opening of the housing and the outer peripheral surface of the shaft member. In order to provide a function of absorbing the volume change amount of the lubricating oil accompanying the temperature change, it is necessary to ensure a relatively large axial dimension of the seal space (seal member). Therefore, it is necessary to lower the axial center position of the bearing sleeve relative to the bottom side of the housing in the interior of the housing by design, so that the separation distance between the bearing center of the radial bearing portion and the center of gravity of the rotating body is reduced. Depending on the use conditions, the load capacity for moment load may be insufficient. Further, in the configuration in which the thrust bearing portions are provided on both sides of the flange portion of the shaft member, the axial distance between the thrust bearing portions is relatively small, and accordingly, the load capacity of the moment load by the thrust bearing portion is reduced accordingly. Tend. In particular, in the case of a hydrodynamic bearing device used in a disk drive device, a relatively large moment load acts on the shaft member as the rotor (rotor mounted with a rotor hub, rotor magnet, disk, clamper, etc.) rotates. Moment load resistance is an important characteristic.

また、この種の動圧軸受装置において、スラスト軸受部のスラスト軸受隙間は部品精度や組立精度等の影響を受けることから、所望値に管理することが難しく、そのために、複雑な組立作業が強いられているのが実状である。   Further, in this type of hydrodynamic bearing device, the thrust bearing gap of the thrust bearing portion is affected by component accuracy, assembly accuracy, etc., so that it is difficult to manage to a desired value, and therefore complicated assembly work is strong. It is the reality.

本発明の課題は、この種の動圧軸受装置において、上記のシール空間の軸方向寸法を小さくすることを可能にし、これにより、動圧軸受装置のモーメント荷重に対する負荷能力を高め、あるいは、動圧軸受装置の軸方向寸法をコンパクトにすることである。   An object of the present invention is to make it possible to reduce the axial dimension of the seal space in this type of hydrodynamic bearing device, thereby increasing the load capacity against the moment load of the hydrodynamic bearing device, or It is to make the axial dimension of the pressure bearing device compact.

本発明の他の課題は、スラスト軸受部によるモーメント荷重の負荷能力を高めることである。   Another object of the present invention is to increase the load capacity of the moment load by the thrust bearing portion.

本発明の更なる課題は、この種の動圧軸受装置におけるスラスト軸受隙間を簡易にかつ精度良く設定することができる方法を提供することである。   A further object of the present invention is to provide a method capable of easily and accurately setting a thrust bearing gap in this type of hydrodynamic bearing device.

上記課題を解決するため、本発明は、ハウジングと、ハウジングの内部に固定された軸受スリーブと、ハウジング及び軸受スリーブに対して相対回転する軸部材と、ハウジングの一端部の側に位置するシール部材と、軸受スリーブと軸部材との間のラジアル軸受隙間に生じる流体の動圧作用で軸部材をラジアル方向に非接触支持するラジアル軸受部とを備えた動圧軸受装置において、軸部材は、軸受スリーブの内周面に挿入される軸部と、軸部に設けられたフランジ部とを有し、シール部材は軸部材に固定され、シール部材の外周面の側にシール空間が形成され、シール部材の一端面とこれに対向する軸受スリーブの一端面との間に第1スラスト軸受部が設けられ、第1スラスト軸受部はスラスト軸受隙間に生じる流体の動圧作用でシール部材及び軸部材をスラスト方向に非接触支持し、フランジ部の一端面とこれに対向する軸受スリーブの他端面との間に第2スラスト軸受部が設けられ、第2スラスト軸受部はスラスト軸受隙間に生じる流体の動圧作用で軸部材をスラスト方向に非接触支持する構成を提供する。   In order to solve the above-described problems, the present invention provides a housing, a bearing sleeve fixed inside the housing, a shaft member that rotates relative to the housing and the bearing sleeve, and a seal member that is positioned on one end of the housing. And a radial bearing unit that supports the shaft member in a radial contactless manner by a fluid dynamic pressure action generated in a radial bearing gap between the bearing sleeve and the shaft member. It has a shaft portion inserted into the inner peripheral surface of the sleeve and a flange portion provided in the shaft portion, the seal member is fixed to the shaft member, a seal space is formed on the outer peripheral surface side of the seal member, and the seal A first thrust bearing portion is provided between one end surface of the member and one end surface of the bearing sleeve facing the member, and the first thrust bearing portion is sealed by a dynamic pressure action of fluid generated in the thrust bearing gap. The shaft member is supported in a non-contact manner in the thrust direction, and a second thrust bearing portion is provided between one end surface of the flange portion and the other end surface of the bearing sleeve facing the flange portion, and the second thrust bearing portion is provided in the thrust bearing gap. Provided is a configuration in which a shaft member is supported in a non-contact manner in a thrust direction by a dynamic pressure action of a generated fluid.

ここで、上記の流体(潤滑流体)としては、潤滑油(又は潤滑グリース)、磁性流体等の液体の他、エアー等の気体を用いることができる。   Here, as the fluid (lubricating fluid), a liquid such as lubricating oil (or lubricating grease) or a magnetic fluid, or a gas such as air can be used.

上記構成によれば、軸部に設けられたシール部材の外周面の側にシール空間を設けているので、ハウジングの内部空間に充満された流体の温度変化に伴う容積変化量を吸収しうる容積をシール空間において確保するにあたり、シール空間(シール部材)の軸方向寸法を従来よりも小さくすることが可能となる。そのため、ハウジングの内部において、軸受スリーブの軸方向中心位置を従来よりも相対的にハウジングの一端部側に近づけて設定することができ(軸受スリーブを従来よりもハウジングの一端部の側に近づけて配置する、あるいは、軸受スリーブの軸方向寸法を従来よりも大きくする。)、これにより、ラジアル軸受部の軸受中心と回転体重心との離間距離を小さくして、モーメント荷重に対する負荷能力を高めることができる。また、軸受スリーブを従来よりもハウジングの一端部側に近づけて配置する場合、動圧軸受装置の軸方向寸法を従来よりも小さくすることが可能である。   According to the above configuration, since the seal space is provided on the outer peripheral surface side of the seal member provided in the shaft portion, the volume capable of absorbing the volume change amount accompanying the temperature change of the fluid filled in the internal space of the housing. In the sealing space, it is possible to make the axial dimension of the sealing space (seal member) smaller than the conventional one. Therefore, in the housing, the axial center position of the bearing sleeve can be set relatively closer to one end of the housing than before (the bearing sleeve is closer to one end of the housing than before). Or the axial dimension of the bearing sleeve is made larger than before.) This reduces the distance between the bearing center of the radial bearing and the center of gravity of the rotating body, and increases the load capacity for moment load. Can do. In addition, when the bearing sleeve is disposed closer to the one end side of the housing than in the past, the axial dimension of the hydrodynamic bearing device can be made smaller than in the past.

また、第1スラスト軸受部と第2スラスト軸受部とが、軸受スリーブを軸方向両側から挟み込むように設けられているため、フランジ部の両側にスラスト軸受部を設けた構成に比べて、両スラスト軸受部間の軸方向離間距離が大きくなり、その分、スラスト軸受部によるモーメント荷重の負荷能力が高くなる。   In addition, since the first thrust bearing portion and the second thrust bearing portion are provided so as to sandwich the bearing sleeve from both sides in the axial direction, both thrusts are compared with the configuration in which the thrust bearing portions are provided on both sides of the flange portion. The axial separation distance between the bearing portions increases, and the load capacity of the moment load by the thrust bearing portion increases accordingly.

シール空間の幅(半径方向寸法)は軸方向に均一であっても良いが、シール性を高める観点から、シール空間はハウジング内部方向に向かって漸次縮小したテーパ形状を有していることが好ましい。すなわち、シール空間が上記のテーパ形状を有していると、シール空間内の流体はシール空間が狭くなる方向(ハウジングの内部方向)に向けて毛細管力によって引き込まれる。そのため、ハウジング内部から外部への流体の漏れ出しが効果的に防止される。このような構成を実現する手段として、シール部材の外周面に、ハウジングの外部方向に向かって漸次縮径したテーパ面を形成する手段、シール部材の外周面とシール空間を介して対向する面、例えばハウジングの一端部の内周面に、ハウジングの外部方向に向かって漸次拡径したテーパ面を形成する手段がある。特に、前者の手段によれば、シール部材が軸部材と伴に回転することにより、上記の毛細管力によるよる引き込み作用に加え、回転時の遠心力による引き込み作用も得られるので(いわゆる遠心力シール)、ハウジング内部から外部への流体の漏れ出しがより一層効果的に防止される。   Although the width (radial dimension) of the seal space may be uniform in the axial direction, it is preferable that the seal space has a tapered shape that gradually decreases toward the inside of the housing from the viewpoint of improving the sealing performance. . That is, when the seal space has the above tapered shape, the fluid in the seal space is drawn by the capillary force toward the direction in which the seal space becomes narrower (inner direction of the housing). Therefore, the leakage of fluid from the inside of the housing to the outside is effectively prevented. As a means for realizing such a configuration, a means for forming a tapered surface gradually reducing in diameter toward the outside of the housing on the outer peripheral surface of the seal member, a surface facing the outer peripheral surface of the seal member through the seal space, For example, there is a means for forming a tapered surface that gradually increases in diameter toward the outside of the housing on the inner peripheral surface of one end of the housing. In particular, according to the former means, since the seal member rotates together with the shaft member, in addition to the pull-in action by the capillary force described above, the pull-in action by the centrifugal force during rotation can be obtained (so-called centrifugal force seal) ), Leakage of fluid from the inside of the housing to the outside is more effectively prevented.

シール部材の軸部材に対する固定は、接着、接着と圧入の併用、溶着(超音波溶着)等の適宜の固定手段によって行うことができる。固定手段として、接着(又は接着と圧入の併用)を採用する場合は、シール部材及び軸部材のうち少なくとも一方の接着部位に接着剤が充填される凹部を設けても良い。この凹部は、円周溝の形態で設けても良いし、あるいは、円周方向の1箇所又は複数箇所に窪み状の形態で設けても良い。接着剤が接着部位の凹部にも充填されて固化することにより、シール部材の軸部材に対する固定強度が向上する。   The seal member can be fixed to the shaft member by an appropriate fixing means such as adhesion, combined use of adhesion and press-fitting, and welding (ultrasonic welding). When bonding (or a combination of bonding and press-fitting) is employed as the fixing means, at least one bonding site of the seal member and the shaft member may be provided with a recess filled with an adhesive. The recess may be provided in the form of a circumferential groove, or may be provided in the form of a depression at one place or a plurality of places in the circumferential direction. The adhesive is also filled in the concave portion of the adhesion site and solidifies, whereby the fixing strength of the seal member to the shaft member is improved.

また、本発明は、上記課題を解決するため、ハウジングと、ハウジングの内部に固定された軸受スリーブと、ハウジング及び軸受スリーブに対して相対回転する軸部材と、ハウジングの一端部の側に位置するシール部材と、軸受スリーブと軸部材との間のラジアル軸受隙間に生じる流体の動圧作用で軸部材をラジアル方向に非接触支持するラジアル軸受部とを備えた動圧軸受装置において、シール部材は軸部材に設けられており、シール部材の一端面は、軸受スリーブの一端面とスラスト軸受隙間を介して対向し、シール部材の外周面は、ハウジングの外部方向に向かって漸次縮径し、かつ、シール空間に臨むテーパ面を備えている構成を提供する。   In order to solve the above problems, the present invention is located on the housing, a bearing sleeve fixed inside the housing, a shaft member that rotates relative to the housing and the bearing sleeve, and one end of the housing. In a hydrodynamic bearing device including a seal member and a radial bearing portion that supports the shaft member in a radial direction by a hydrodynamic action of fluid generated in a radial bearing gap between the bearing sleeve and the shaft member, the seal member is Provided on the shaft member, one end surface of the seal member is opposed to one end surface of the bearing sleeve via a thrust bearing gap, and the outer peripheral surface of the seal member is gradually reduced in diameter toward the outside of the housing, and A configuration having a tapered surface facing the seal space is provided.

上記構成を備えた動圧軸受装置において、ラジアル軸受部は、ヘリングボーン形状やスパイラル形状等の軸方向に傾斜した形状の動圧溝を設けた動圧軸受、ラジアル軸受隙間を円周方向の一方又は双方にくさび状に縮小させた動圧軸受(多円弧軸受)、複数の軸方向溝形状の動圧溝を円周方向所定間隔に設けた動圧軸受(ステップ軸受)で構成することができる。   In the hydrodynamic bearing device having the above-described configuration, the radial bearing portion includes a hydrodynamic groove provided with a hydrodynamic groove having a shape inclined in the axial direction, such as a herringbone shape or a spiral shape, and a radial bearing gap in one of the circumferential directions. Alternatively, it can be composed of a dynamic pressure bearing (multi-arc bearing) reduced in a wedge shape on both sides, or a dynamic pressure bearing (step bearing) in which a plurality of axial groove-shaped dynamic pressure grooves are provided at predetermined intervals in the circumferential direction. .

以上の構成を備える動圧軸受装置は、情報機器、例えばディスク装置等に用いられるスピンドルモータ用の動圧軸受装置として、好ましく用いることができる。   The fluid dynamic bearing device having the above configuration can be preferably used as a fluid dynamic bearing device for a spindle motor used in information equipment, for example, a disk device or the like.

また、上記課題を解決するため、本発明は、ハウジングと、ハウジングの内部に固定される軸受スリーブと、軸受スリーブの内周面に挿入される軸部、及び、軸部に設けられたフランジ部とを有する軸部材と、軸部材に固定されるシール部材と、軸受スリーブの内周面と軸部材の外周面との間のラジアル軸受隙間に生じる流体の動圧作用で軸部材をラジアル方向に非接触支持するラジアル軸受部と、シール部材の一端面と軸受スリーブの一端面との間のスラスト軸受隙間に生じる流体の動圧作用でシール部材及び軸部材をスラスト方向に非接触支持する第1スラスト軸受部と、フランジ部の一端面と軸受スリーブの他端面との間のスラスト軸受隙間に生じる流体の動圧作用で軸部材をスラスト方向に非接触支持する第2スラスト軸受部とを備えた動圧軸受装置の製造方法であって、軸部材の軸部を軸受スリーブの内周面に挿入すると共に、軸部にシール部材を装着し、これにより、軸受スリーブをシール部材の一端面とフランジ部の一端面との間に介装する工程と、前記工程の後、軸部とシール部材との軸方向相対位置を調整して、軸受スリーブとシール部材の一端面及びフランジ部の一端面との間に、第1スラスト軸受部及び第2スラスト軸受部のスラスト軸受隙間の合計量に相当する量の隙間を形成する工程と、前記工程の後、シール部材を軸部に固定する工程と、前記工程により組付けられた、軸受スリーブ、軸部材、及びシール部材を含む組付体をハウジングの内部に収容する工程とを有する構成を提供する。   In order to solve the above problems, the present invention provides a housing, a bearing sleeve fixed inside the housing, a shaft portion inserted into the inner peripheral surface of the bearing sleeve, and a flange portion provided in the shaft portion. The shaft member in the radial direction due to the hydrodynamic action of fluid generated in the radial bearing gap between the inner peripheral surface of the bearing sleeve and the outer peripheral surface of the shaft member. A non-contact supporting radial bearing portion and a first member that non-contact supports the seal member and the shaft member in the thrust direction by a dynamic pressure action of a fluid generated in a thrust bearing gap between one end surface of the seal member and one end surface of the bearing sleeve. A thrust bearing portion, and a second thrust bearing portion for supporting the shaft member in a thrust direction in a thrust direction by a dynamic pressure action of a fluid generated in a thrust bearing gap between the one end surface of the flange portion and the other end surface of the bearing sleeve. In addition, the shaft portion of the shaft member is inserted into the inner peripheral surface of the bearing sleeve, and the seal member is attached to the shaft portion, whereby the bearing sleeve is connected to one end surface of the seal member. A step of interposing between one end surface of the flange portion, and after the step, adjusting the axial relative position of the shaft portion and the seal member to adjust one end surface of the bearing sleeve and the seal member and one end surface of the flange portion; A step of forming a gap corresponding to the total amount of the thrust bearing gaps of the first thrust bearing portion and the second thrust bearing portion, and a step of fixing the seal member to the shaft portion after the step; And a step of housing the assembly including the bearing sleeve, the shaft member, and the seal member assembled in the above-described process inside the housing.

上記構成によれば、軸受スリーブ、軸部材、及びシール部材を予め組付ける段階でスラスト軸受隙間を設定するので、スラスト軸受隙間を簡易にかつ精度良く設定することができる。そして、スラスト軸受隙間を設定した後は、軸受スリーブ、軸部材、及びシール部材を含む組付体をハウジングの内部に収容すると、部材同士の組付作業が完了するので、組付け作業も簡素化される。   According to the above configuration, since the thrust bearing gap is set at the stage where the bearing sleeve, the shaft member, and the seal member are assembled in advance, the thrust bearing gap can be set easily and accurately. After setting the thrust bearing clearance, the assembly work including the bearing sleeve, shaft member, and seal member is accommodated inside the housing, so that the assembly work between the members is completed, and the assembly work is simplified. Is done.

本発明によれば、動圧軸受装置のモーメント荷重に対する負荷能力を高め、あるいは、動圧軸受装置の軸方向寸法をコンパクトにすることができる。従って、この動圧軸受装置を備えた情報機器、例えばディスク装置に用いるスピンドルモータの小型化を図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the load capability with respect to the moment load of a dynamic pressure bearing apparatus can be improved, or the axial direction dimension of a dynamic pressure bearing apparatus can be made compact. Accordingly, it is possible to reduce the size of a spindle motor used in an information device including the dynamic pressure bearing device, for example, a disk device.

また、本発明によれば、スラスト軸受部によるモーメント荷重の負荷能力を高めることができる。   Further, according to the present invention, the load capacity of moment load by the thrust bearing portion can be enhanced.

さらに、本発明によれば、この種の動圧軸受装置におけるスラスト軸受隙間を簡易にかつ精度良く設定することができる。   Furthermore, according to the present invention, the thrust bearing gap in this type of hydrodynamic bearing device can be set easily and accurately.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、この実施形態に係る動圧軸受装置(流体動圧軸受装置)1を組み込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に装着されたロータ(ディスクハブ)3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はブラケット6の外周に取付けられ、ロータマグネット5はディスクハブ3の内周に取付けられる。動圧軸受装置1のハウジング7は、ブラケット6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが一又は複数枚保持される。ステータ4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、ディスクハブ3および軸部材2が一体となって回転する。   FIG. 1 conceptually shows one configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device (fluid fluid dynamic bearing device) 1 according to this embodiment. This spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports the shaft member 2 in a non-contact manner, a rotor (disk hub) 3 mounted on the shaft member 2, For example, a stator coil 4 and a rotor magnet 5 are provided to face each other with a gap in the radial direction. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is attached to the inner periphery of the bracket 6. The disk hub 3 holds one or more disks D such as magnetic disks. When the stator 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the disk hub 3 and the shaft member 2 are rotated together.

図2は、動圧軸受装置1を示している。この動圧軸受装置1は、ハウジング7と、ハウジング7に固定された軸受スリーブ8と、軸部材2と、軸部材2に固定されたシール部材9とを構成部品して構成される。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 is configured by constituting a housing 7, a bearing sleeve 8 fixed to the housing 7, a shaft member 2, and a seal member 9 fixed to the shaft member 2.

軸受スリーブ8の内周面8aと軸部材2の軸部2aの外周面2a1との間に第1ラジアル軸受部R1と第2ラジアル軸受部R2とが軸方向に離隔して設けられる。また、軸受スリーブ8の上側端面8bとシール部材9の下側端面9bとの間に第1スラスト軸受部T1が設けられ、軸受スリーブ8の下側端面8cと軸部材2のフランジ部2bの上側端面2b1との間に第2スラスト軸受部T2が設けられる。尚、説明の便宜上、ハウジング7の底部7bの側を下側、ハウジング7の開口部の側(底部7bと反対の側)を上側として説明を進める。   Between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a of the shaft member 2, the first radial bearing portion R1 and the second radial bearing portion R2 are provided apart from each other in the axial direction. A first thrust bearing portion T1 is provided between the upper end surface 8b of the bearing sleeve 8 and the lower end surface 9b of the seal member 9, and the lower end surface 8c of the bearing sleeve 8 and the upper side of the flange portion 2b of the shaft member 2 are provided. A second thrust bearing portion T2 is provided between the end surface 2b1. For convenience of explanation, the description will proceed with the bottom 7b side of the housing 7 as the lower side and the opening side of the housing 7 (the side opposite to the bottom 7b) as the upper side.

ハウジング7は、例えば、樹脂材料を射出成形して有底筒状に形成され、円筒状の側部7aと、側部7aの下端に一体に設けられた底部7bとを備えている。また、底部7bの内底面から軸方向上方に所定寸法だけ離れた位置に段部7dが一体に形成されている。   For example, the housing 7 is formed into a bottomed cylindrical shape by injection molding of a resin material, and includes a cylindrical side portion 7a and a bottom portion 7b provided integrally with a lower end of the side portion 7a. Further, a stepped portion 7d is integrally formed at a position separated from the inner bottom surface of the bottom portion 7b by a predetermined dimension in the axially upper direction.

ハウジングを形成する樹脂は主に熱可塑性樹脂であり、例えば、非晶性樹脂として、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等、結晶性樹脂として、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等を用いることができる。また、上記の樹脂に充填する充填材の種類も特に限定されないが、例えば、充填材として、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、カーボンファイバー、カーボンブラック、黒鉛、カーボンナノマテリアル、金属粉末等の繊維状又は粉末状の導電性充填材を用いることができる。これらの充填材は、単独で用い、あるいは、二種以上を混合して使用しても良い。この実施形態では、ハウジング7を形成する材料として、結晶性樹脂としての液晶ポリマー(LCP)に、導電性充填材としてのカーボンファイバー又はカーボンナノチューブを2〜8wt%配合した樹脂材料を用いている。   The resin forming the housing is mainly a thermoplastic resin. For example, as an amorphous resin, polysulfone (PSF), polyethersulfone (PES), polyphenylsulfone (PPSU), polyetherimide (PEI), etc. As the crystalline resin, liquid crystal polymer (LCP), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), or the like can be used. The type of filler to be filled in the resin is not particularly limited. For example, as the filler, fibrous filler such as glass fiber, whisker-like filler such as potassium titanate, and scaly filler such as mica. A fibrous or powdery conductive filler such as carbon fiber, carbon black, graphite, carbon nanomaterial, or metal powder can be used. These fillers may be used alone or in combination of two or more. In this embodiment, as a material for forming the housing 7, a resin material in which 2 to 8 wt% of a carbon fiber or a carbon nanotube as a conductive filler is mixed with a liquid crystal polymer (LCP) as a crystalline resin is used.

軸部材2は、例えば、ステンレス鋼等の金属材料で形成され、あるいは、金属と樹脂とのハイブリッド構造とされ、軸部2aと、軸部2aの下端に一体又は別体に設けられたフランジ部2bとを備えている。また、この実施形態において、シール部材9が固定される軸部2aの外周面2a1の所定位置には、凹部、例えば円周溝2a2が形成されている。   The shaft member 2 is made of, for example, a metal material such as stainless steel, or has a hybrid structure of metal and resin, and is provided with a shaft portion 2a and a flange portion provided integrally or separately at the lower end of the shaft portion 2a. 2b. In this embodiment, a concave portion, for example, a circumferential groove 2a2 is formed at a predetermined position on the outer peripheral surface 2a1 of the shaft portion 2a to which the seal member 9 is fixed.

軸受スリーブ8は、焼結金属からなる多孔質体、特に銅を主成分とする燒結金属の多孔質体で円筒状に形成され、ハウジング7の内周面7cの所定位置に固定される。なお、焼結金属に限らず、多孔質体ではない他の金属材料、例えば黄銅等の軟質金属で軸受スリーブ8を形成することも可能である。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body made of sintered metal, particularly a sintered body of sintered metal mainly composed of copper, and is fixed to a predetermined position on the inner peripheral surface 7 c of the housing 7. Note that the bearing sleeve 8 can be formed of not only a sintered metal but also a metal material other than a porous body, for example, a soft metal such as brass.

軸受スリーブ8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面となる上下2つの領域が軸方向に離隔して設けられ、該2つの領域には、例えば図3に示すようなヘリングボーン形状の動圧溝8a1、8a2がそれぞれ形成される。上側の動圧溝8a1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。また、軸受スリーブ8の外周面8dには、1又は複数本の軸方向溝8d1が軸方向全長に亙って形成される。この例では、3本の軸方向溝8d1を円周方向等間隔に形成している。   The inner peripheral surface 8a of the bearing sleeve 8 is provided with two upper and lower regions that are radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2, and are separated from each other in the axial direction. For example, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 as shown in FIG. 3 are formed. The upper dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions), and the axial dimension X1 of the upper region is lower than the axial center m. It is larger than the axial dimension X2 of the side region. Further, one or a plurality of axial grooves 8d1 are formed on the outer peripheral surface 8d of the bearing sleeve 8 over the entire axial length. In this example, three axial grooves 8d1 are formed at equal intervals in the circumferential direction.

第1スラスト軸受部T1のスラスト軸受面となる、軸受スリーブ8の上側端面8bには、例えば図3に示すようなスパイラル形状の動圧溝8b1が形成される。同様に、第2スラスト軸受部T2のスラスト軸受面となる、軸受スリーブ8の下側端面8cには、例えば図3に示すようなスパイラル形状の動圧溝8c1が形成される。   For example, a spiral dynamic pressure groove 8b1 as shown in FIG. 3 is formed on the upper end surface 8b of the bearing sleeve 8 serving as a thrust bearing surface of the first thrust bearing portion T1. Similarly, a spiral-shaped dynamic pressure groove 8c1 as shown in FIG. 3, for example, is formed on the lower end surface 8c of the bearing sleeve 8 that becomes the thrust bearing surface of the second thrust bearing portion T2.

シール部材9は、例えば、真ちゅう(黄銅)等の軟質金属材料やその他の金属材料、あるいは、樹脂材料でリング状に形成され、軸部2aの外周面2a1の所定位置に、例えば接着剤で固定される。軸部材2の回転時、シール部材9の下側端面9bは、軸受スリーブ8の上側端面8bと所定のスラスト軸受隙間を介して対向し、第1スラスト軸受部T1を構成する。また、シール部材9の外周面9aは、ハウジング7の上端部(開口部)内周面7a1との間に所定の容積をもったシール空間Sを形成する。シール部材9の外周面9aの側にシール空間Sを形成しているので、ハウジング7の内部空間に充満された流体の温度変化に伴う容積変化量を吸収しうる容積をシール空間Sにおいて確保するにあたり、シール空間S(シール部材9)の軸方向寸法を従来よりも小さくすることが可能である。そのため、例えば、軸受スリーブ8の軸方向長さを従来よりも大きくして、第1ラジアル軸受部R1の動圧溝8a1の軸方向中心mを上側端面8bの側に移行させ、あるいは、軸受スリーブ8の軸方向寸法を従来よりも縮小することが可能となる。前者によれば、第1ラジアル軸受部R1の動圧溝8a1の軸方向中心mと第2ラジアル軸受部R2の動圧溝8a2の軸方向中心との軸方向離間距離が大きくなるので、モーメント荷重に対する負荷能力を高めることができる。一方、後者によれば、動圧軸受装置の軸方向寸法を従来よりも小さくすることができる。   The seal member 9 is formed in a ring shape from, for example, a soft metal material such as brass (brass), other metal materials, or a resin material, and is fixed to a predetermined position on the outer peripheral surface 2a1 of the shaft portion 2a with an adhesive, for example. Is done. When the shaft member 2 rotates, the lower end surface 9b of the seal member 9 faces the upper end surface 8b of the bearing sleeve 8 via a predetermined thrust bearing gap, thereby constituting a first thrust bearing portion T1. Further, the outer peripheral surface 9 a of the seal member 9 forms a seal space S having a predetermined volume with the upper end (opening) inner peripheral surface 7 a 1 of the housing 7. Since the seal space S is formed on the outer peripheral surface 9a side of the seal member 9, a volume capable of absorbing the volume change amount due to the temperature change of the fluid filled in the internal space of the housing 7 is secured in the seal space S. In this case, the axial dimension of the seal space S (seal member 9) can be made smaller than before. Therefore, for example, the axial length of the bearing sleeve 8 is made larger than before, and the axial center m of the dynamic pressure groove 8a1 of the first radial bearing portion R1 is shifted to the upper end face 8b side. Thus, the axial dimension of 8 can be reduced as compared with the conventional case. According to the former, since the axial separation distance between the axial center m of the dynamic pressure groove 8a1 of the first radial bearing portion R1 and the axial center of the dynamic pressure groove 8a2 of the second radial bearing portion R2 increases, the moment load It is possible to increase the load capacity. On the other hand, according to the latter, the axial dimension of the hydrodynamic bearing device can be made smaller than before.

この実施形態において、シール部材9の外周面9aは、ハウジング7の外部方向に向かって漸次縮径したテーパ面9a1を備えており、そのため、シール空間Sは、ハウジング7の内部方向に向かって漸次縮小したテーパ形状を呈する。軸部材2の回転時、シール空間S内の流体は毛細管力による引き込み作用と、回転時の遠心力による引き込み作用により、シール空間Sが狭くなる方向(ハウジングの内部方向)に向けて引き込まれる。これにより、ハウジング7の内部からの潤滑油の漏れ出しが効果的に防止される。   In this embodiment, the outer peripheral surface 9 a of the seal member 9 includes a tapered surface 9 a 1 that is gradually reduced in diameter toward the outside of the housing 7, so that the seal space S gradually increases toward the inside of the housing 7. Presents a reduced taper shape. When the shaft member 2 rotates, the fluid in the seal space S is drawn toward the direction in which the seal space S is narrowed (inner direction of the housing) due to the pull-in action due to the capillary force and the pull-in action due to the centrifugal force during the rotation. Thereby, the leakage of the lubricating oil from the inside of the housing 7 is effectively prevented.

この実施形態の動圧軸受装置1は、例えば、次のような工程で組立てる。   The hydrodynamic bearing device 1 of this embodiment is assembled by the following process, for example.

まず、軸部材2と、軸受スリーブ8と、シール部材9とをアッセンブリする。例えば図4に示すように、基台10の上面に載置した軸部材2の軸部2aに軸受スリーブ8を装着し、軸受スリーブ8の下側端面8cをフランジ部2bの上側端面2b1に当接させる。そして、軸部2bに接着剤、例えば熱硬化性接着剤を塗布した後、軸部2aにシール部材9を装着し、シール部材9の下側端面9bを軸受スリーブ8の上側端面8bに当接させる。これにより、軸受スリーブ8がシール部材9の下側端面9bとフランジ部2bの上側端面2b1との間に介装された状態になる。   First, the shaft member 2, the bearing sleeve 8, and the seal member 9 are assembled. For example, as shown in FIG. 4, the bearing sleeve 8 is attached to the shaft portion 2a of the shaft member 2 placed on the upper surface of the base 10, and the lower end surface 8c of the bearing sleeve 8 is brought into contact with the upper end surface 2b1 of the flange portion 2b. Make contact. Then, after applying an adhesive, for example, a thermosetting adhesive, to the shaft portion 2b, the seal member 9 is attached to the shaft portion 2a, and the lower end surface 9b of the seal member 9 is brought into contact with the upper end surface 8b of the bearing sleeve 8. Let As a result, the bearing sleeve 8 is interposed between the lower end surface 9b of the seal member 9 and the upper end surface 2b1 of the flange portion 2b.

つぎに、スラスト軸受隙間を設定する。スラスト軸受隙間の設定は、軸部材2とシール部材9との軸方向相対位置を調整することによって行う。例えば、上記の状態、すなわち、軸受スリーブ8の下側端面8cをフランジ部2bの上側端面2b1に当接させ、かつ、シール部材9の下側端面9bを軸受スリーブ8の上側端面8bに当接させた状態(スラスト軸受隙間がゼロの状態)から、軸部材2を軸受スリーブ8及びシール部材9に対して、第1スラスト軸受部T1のスラスト軸受隙間(大きさをδ1とする。)と第2スラスト軸受部T2のスラスト軸受隙間(大きさをδ2とする。)との合計量δ(=δ1+δ2)に相当する量だけ軸方向に相対移動させる。   Next, a thrust bearing gap is set. The thrust bearing gap is set by adjusting the axial relative position between the shaft member 2 and the seal member 9. For example, in the above state, that is, the lower end surface 8c of the bearing sleeve 8 is brought into contact with the upper end surface 2b1 of the flange portion 2b, and the lower end surface 9b of the seal member 9 is brought into contact with the upper end surface 8b of the bearing sleeve 8 From this state (the state where the thrust bearing gap is zero), the shaft member 2 with respect to the bearing sleeve 8 and the seal member 9 has a thrust bearing gap (with a size of δ1) of the first thrust bearing portion T1. The axial movement is performed by an amount corresponding to the total amount δ (= δ1 + δ2) with the thrust bearing gap (the size is δ2) of the two thrust bearing portions T2.

具体的には、例えば図5に示すように、所定深さW2の段差部11aを設けた冶具11の上面に、上記の状態で組付けた組付体を載置し、軸受スリーブ8の下側端面8cが冶具11の上面に当接し、フランジ部2bが段差部11aに収容された状態にする。そして、この状態で、軸部材2を上方から押圧して、軸受スリーブ8及びシール部材9に対して所定量δだけ軸方向に相対移動させる。この場合、段差部11aの深さW2を、フランジ部2bの軸方向寸法W1に対して、W2=W1+δとなるように精度良く管理しておくと、フランジ部2bの下側端面2b2が段差部11aの底面11a1に当接するまで、軸部材2を押し進めるだけで、スラスト軸受隙間δ(=δ1+δ2)を簡易にかつ精度良く設定することができる。したがって、スラスト軸受隙間の設定に関する作業及び装置が簡素になる。あるいはW2>W1+δにし、軸部材2の軸方向相対移動量を管理することによって、スラスト軸受隙間δ(=δ1+δ2)を設定することもできる。   Specifically, for example, as shown in FIG. 5, the assembly body assembled in the above-described state is placed on the upper surface of the jig 11 provided with the step portion 11 a having the predetermined depth W <b> 2, and the bottom of the bearing sleeve 8. The side end face 8c comes into contact with the upper surface of the jig 11, and the flange portion 2b is accommodated in the step portion 11a. Then, in this state, the shaft member 2 is pressed from above and moved relative to the bearing sleeve 8 and the seal member 9 in the axial direction by a predetermined amount δ. In this case, if the depth W2 of the stepped portion 11a is accurately managed so that W2 = W1 + δ with respect to the axial dimension W1 of the flange portion 2b, the lower end surface 2b2 of the flange portion 2b becomes the stepped portion. The thrust bearing gap δ (= δ1 + δ2) can be set easily and accurately by simply pushing the shaft member 2 until it contacts the bottom surface 11a1 of 11a. Therefore, the work and apparatus for setting the thrust bearing gap are simplified. Alternatively, the thrust bearing gap δ (= δ1 + δ2) can be set by setting W2> W1 + δ and managing the amount of axial relative movement of the shaft member 2.

あるいは、スラスト軸受隙間の設定は、軸受スリーブ8の下側端面8cをフランジ部2bの上側端面2b1に当接させ、この時の軸受スリーブ8の上側端面8bを基準として、シール部材9の下側端面9bが、上記合計量δ(=δ1+δ2)に相当する量だけ上側端面8bから軸方向に離隔した位置に来るように、シール部材9の軸方向位置を調整することによって行うこともできる。このようなシール部材9の軸方向位置調整は、例えば、幅寸法が上記合計量δに等しい寸法に精度良く管理されたスペーサを、軸受スリーブ8の上側端面8bとシール部材9の下側端面9bとの間に介装することによって簡易にかつ精度良く行うことができる。   Alternatively, the thrust bearing gap is set by bringing the lower end surface 8c of the bearing sleeve 8 into contact with the upper end surface 2b1 of the flange portion 2b, and the lower side of the seal member 9 with respect to the upper end surface 8b of the bearing sleeve 8 at this time. It can also be carried out by adjusting the axial position of the seal member 9 so that the end face 9b comes to a position separated from the upper end face 8b in the axial direction by an amount corresponding to the total amount δ (= δ1 + δ2). Such axial position adjustment of the seal member 9 is performed, for example, by using a spacer whose width dimension is accurately controlled to a dimension equal to the total amount δ, using an upper end face 8b of the bearing sleeve 8 and a lower end face 9b of the seal member 9. Can be performed easily and accurately.

上記のようにして、軸部2とシール部材9との軸方向相対位置を調整して、スラスト軸受隙間(δ)を設定した後、シール部材9をその位置で軸部2aに固定する。この実施形態では、軸部2aに塗布した熱硬化性接着剤を加熱処理(ベーキング)することによって、シール部材9を軸部2aに接着固定する。このとき、軸部2aに塗布した接着剤が外周面2a1の円周溝2a2にも充填されて固化することにより、シール部材9の軸部材2に対する接着強度が向上する。   As described above, the axial relative position between the shaft portion 2 and the seal member 9 is adjusted to set the thrust bearing gap (δ), and then the seal member 9 is fixed to the shaft portion 2a at that position. In this embodiment, the seal member 9 is bonded and fixed to the shaft portion 2a by heat-treating (baking) the thermosetting adhesive applied to the shaft portion 2a. At this time, the adhesive applied to the shaft portion 2a is filled in the circumferential groove 2a2 of the outer peripheral surface 2a1 and solidified, whereby the adhesive strength of the seal member 9 to the shaft member 2 is improved.

つぎに、図6に示すように、上記工程により組付けた、軸部材2、軸受スリーブ8、及びシール部材9からなる組付体をハウジング7の内周面7cに挿入し、軸受スリーブ8の下側端面8cをハウジング7の段部7dに当接させ、この状態で、軸受スリーブ8の外周面8dをハウジング7の内周面7cに固定する。軸受スリーブ8のハウジング7に対する固定は、接着、圧入、接着と圧入の併用、溶着(超音波溶着等)等の適宜の手段によって行うことができる。尚、同図では、δの大きさはかなり誇張して図示されている。   Next, as shown in FIG. 6, the assembly comprising the shaft member 2, the bearing sleeve 8, and the seal member 9 assembled by the above process is inserted into the inner peripheral surface 7 c of the housing 7. The lower end surface 8 c is brought into contact with the step 7 d of the housing 7, and the outer peripheral surface 8 d of the bearing sleeve 8 is fixed to the inner peripheral surface 7 c of the housing 7 in this state. The bearing sleeve 8 can be fixed to the housing 7 by an appropriate means such as adhesion, press-fitting, a combination of adhesion and press-fitting, or welding (ultrasonic welding or the like). In the figure, the magnitude of δ is shown in a considerably exaggerated manner.

上記のようにして組立が完了すると、軸部材2の軸部2aは軸受スリーブ8の内周面8aに挿入され、フランジ部2bは軸受スリーブ8の下側端面8cとハウジング7の底部7bの内底面との間の空間部に収容された状態となる。また、シール部材9の外周面9aと、ハウジング7の上端部内周面7a1との間に所定の容積をもったシール空間Sが形成される。その後、シール部材9で密封されたハウジング7の内部空間に、軸受スリーブ8の内部気孔を含め、流体として、例えば潤滑油を充満させる。潤滑油の油面は、シール空間Sの範囲内に常に維持される。   When the assembly is completed as described above, the shaft portion 2a of the shaft member 2 is inserted into the inner peripheral surface 8a of the bearing sleeve 8, and the flange portion 2b is inserted into the lower end surface 8c of the bearing sleeve 8 and the bottom portion 7b of the housing 7. It will be in the state accommodated in the space part between a bottom face. Further, a seal space S having a predetermined volume is formed between the outer peripheral surface 9 a of the seal member 9 and the inner peripheral surface 7 a 1 of the upper end portion of the housing 7. Thereafter, the internal space of the housing 7 sealed by the seal member 9 is filled with, for example, lubricating oil as a fluid including the internal pores of the bearing sleeve 8. The oil level of the lubricating oil is always maintained within the range of the seal space S.

軸部材2の回転時、軸受スリーブ8の内周面8aのラジアル軸受面となる領域(上下2箇所の領域)は、それぞれ、軸部2aの外周面2a1とラジアル軸受隙間を介して対向する。また、軸受スリーブ8の上側端面8bのスラスト軸受面となる領域は、シール部材9の下側端面9bとスラスト軸受隙間を介して対向し、軸受スリーブ8の下側端面8cのスラスト軸受面となる領域は、フランジ部2bの上側端面2b1とスラスト軸受隙間を介して対向する。そして、軸部材2の回転に伴い、上記ラジアル軸受隙間に潤滑油の動圧が発生し、軸部材2の軸部2aが上記ラジアル軸受隙間内に形成される潤滑油の油膜によってラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが構成される。同時に、上記スラスト軸受隙間に潤滑油の動圧が発生し、軸部材2及びシール部材9が上記スラスト軸受隙間内に形成される潤滑油の油膜によってスラスト方向に回転自在に非接触支持される。これにより、軸部材2をスラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが構成される。第1スラスト軸受部T1のスラスト軸受隙間(δ1)と第2スラスト軸受部T2のスラスト軸受隙間(δ2)は、上記の組立工程において、δ=δ1+δ2として精度良く管理されているので、安定したスラスト軸受機能が得られる。   When the shaft member 2 rotates, the regions (two upper and lower regions) of the inner peripheral surface 8a of the bearing sleeve 8 are opposed to the outer peripheral surface 2a1 of the shaft portion 2a via the radial bearing gap. Further, the region serving as the thrust bearing surface of the upper end surface 8b of the bearing sleeve 8 is opposed to the lower end surface 9b of the seal member 9 through the thrust bearing gap, and becomes the thrust bearing surface of the lower end surface 8c of the bearing sleeve 8. The region faces the upper end surface 2b1 of the flange portion 2b through a thrust bearing gap. As the shaft member 2 rotates, the dynamic pressure of the lubricating oil is generated in the radial bearing gap, and the shaft portion 2a of the shaft member 2 is rotated in the radial direction by the lubricating oil film formed in the radial bearing gap. It is supported non-contact freely. Thus, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are configured. At the same time, the dynamic pressure of the lubricating oil is generated in the thrust bearing gap, and the shaft member 2 and the seal member 9 are supported in a non-contact manner so as to be rotatable in the thrust direction by the oil film of the lubricating oil formed in the thrust bearing gap. Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which non-contact-support the shaft member 2 rotatably in a thrust direction are comprised. Since the thrust bearing gap (δ1) of the first thrust bearing portion T1 and the thrust bearing gap (δ2) of the second thrust bearing portion T2 are accurately managed as δ = δ1 + δ2 in the above assembly process, stable thrust is achieved. Bearing function can be obtained.

また、前述したように、第1ラジアル軸受部R1の動圧溝8a1は、軸方向中心mに対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている(図3参照)。そのため、軸部材2の回転時、動圧溝8a1による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。そして、この引き込み力の差圧によって、軸受スリーブ8の内周面8aと軸部2aの外周面2a1との間の隙間に満たされた潤滑油が下方に流動し、第2スラスト軸受部T2のスラスト軸受隙間→軸方向溝8d1→第1スラスト軸受部T1のスラスト軸受隙間という経路を循環して、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。このように、潤滑油がハウジング7の内部空間を流動循環するように構成することで、内部空間内の潤滑油の圧力が局部的に負圧になる現象を防止して、負圧発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。また、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際にシール空間S内の潤滑油の油面(気液界面)から外気に排出されるので、気泡による悪影響はより一層効果的に防止される。   Further, as described above, the dynamic pressure groove 8a1 of the first radial bearing portion R1 is formed to be axially asymmetric with respect to the axial center m, and the axial dimension X1 in the region above the axial center m is lower. It is larger than the axial dimension X2 of the side region (see FIG. 3). Therefore, when the shaft member 2 rotates, the lubricating oil pulling force (pumping force) by the dynamic pressure groove 8a1 is relatively larger in the upper region than in the lower region. Then, due to the differential pressure of the pulling force, the lubricating oil filled in the gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a flows downward, and the second thrust bearing portion T2 It circulates through the path of the thrust bearing gap → the axial groove 8d1 → the thrust bearing gap of the first thrust bearing portion T1, and is again drawn into the radial bearing gap of the first radial bearing portion R1. In this way, the structure in which the lubricating oil flows and circulates in the internal space of the housing 7 prevents a phenomenon in which the pressure of the lubricating oil in the internal space becomes a negative pressure locally, resulting in the generation of negative pressure. Problems such as generation of bubbles, leakage of lubricating oil and generation of vibration due to generation of bubbles can be solved. In addition, even if bubbles are mixed in the lubricating oil for some reason, when the bubbles circulate with the lubricating oil, it is discharged from the oil surface (gas-liquid interface) of the lubricating oil in the seal space S to the outside air. The adverse effects due to the bubbles are more effectively prevented.

さらに、第1スラスト軸受部T1の動圧溝8b1による潤滑油の内径側への引き込み力(ポンピング力)が第1ラジアル軸受部R1のラジアル軸受隙間の潤滑油にも作用するので、第1ラジアル軸受部R1における上記の引き込み力の差圧は相対的に低いものであっても、潤滑油の良好な流動循環は確保される。その結果、第1ラジアル軸受部R1の動圧溝8a1における軸方向非対称を従来よりも小さくすることができ、例えば、動圧溝8a1の上側領域の軸方向寸法X1を従来よりも縮小して、動圧溝8a1の軸方向中心mを上側端面8bの側に移行させ、あるいは、軸受スリーブ8の軸方向寸法を縮小することが可能となる。前者によれば、第1ラジアル軸受部R1の動圧溝8a1の軸方向中心mと第2ラジアル軸受部R2の動圧溝8a2の軸方向中心との軸方向離間距離が大きくなるので、モーメント荷重に対する負荷能力を高めることができる。一方、後者によれば、動圧軸受装置の軸方向寸法を従来よりも小さくすることができる。   Further, since the pulling force (pumping force) of the lubricating oil toward the inner diameter side by the dynamic pressure groove 8b1 of the first thrust bearing portion T1 also acts on the lubricating oil in the radial bearing gap of the first radial bearing portion R1, the first radial Even if the differential pressure of the pull-in force in the bearing portion R1 is relatively low, good fluid circulation of the lubricating oil is ensured. As a result, the axial asymmetry in the dynamic pressure groove 8a1 of the first radial bearing portion R1 can be made smaller than in the prior art. For example, the axial dimension X1 of the upper region of the dynamic pressure groove 8a1 can be made smaller than in the past, The axial center m of the dynamic pressure groove 8a1 can be shifted to the upper end face 8b side, or the axial dimension of the bearing sleeve 8 can be reduced. According to the former, since the axial separation distance between the axial center m of the dynamic pressure groove 8a1 of the first radial bearing portion R1 and the axial center of the dynamic pressure groove 8a2 of the second radial bearing portion R2 increases, the moment load It is possible to increase the load capacity. On the other hand, according to the latter, the axial dimension of the hydrodynamic bearing device can be made smaller than before.

図7は、他の実施形態に係る動圧軸受装置(流体動圧軸受装置)21を示している。この実施形態の動圧軸受装置21が上述した実施形態の動圧軸受装置1と異なる点は、軸受スリーブを上側軸受スリーブ81と下側軸受スリーブ82で構成し、両者の間にスペーサ部材83を介装した点にある。スペーサ部材83は、真ちゅう(黄銅)等の軟質金属材料やその他の金属材料、あるいは、樹脂材料でリング状に形成され、上側軸受スリーブ81や下側軸受スリーブ82のような多孔質組織は有していない。   FIG. 7 shows a hydrodynamic bearing device (fluid hydrodynamic bearing device) 21 according to another embodiment. The hydrodynamic bearing device 21 of this embodiment is different from the hydrodynamic bearing device 1 of the above-described embodiment in that the bearing sleeve is composed of an upper bearing sleeve 81 and a lower bearing sleeve 82, and a spacer member 83 is provided therebetween. It is in the point where it intervenes. The spacer member 83 is formed in a ring shape from a soft metal material such as brass (brass), other metal materials, or a resin material, and has a porous structure such as the upper bearing sleeve 81 and the lower bearing sleeve 82. Not.

上側軸受スリーブ81の内周面81aと軸部材2の軸部2aの外周面2a1との間に第1ラジアル軸受部R1が設けられ、下側軸受スリーブ82の内周面82aと軸部2aの外周面2a1との間に第2ラジアル軸受部R2が設けられる。また、上側軸受スリーブ81の上側端面81bとシール部材9の下側端面9bとの間に第1スラスト軸受部T1が設けられ、下側軸受スリーブ82の下側端面82cと軸部材2のフランジ部2bの上側端面2b1との間に第2スラスト軸受部T2が設けられる。尚、上側軸受スリーブ81の下側端面には、下側軸受スリーブ82との識別に供される環状溝(V溝)が形成されている。また、上側軸受スリーブ81の外周面81d、下側軸受スリーブ82の外周面82d、スペーサ部材83の外周面には、それぞれ、1又は複数本の軸方向溝81d1、82d1、83dが軸方向全長に亙って形成される。これらの軸方向溝81d1、82d1、83dは円周方向の位相を揃えて形成され、軸方向に相互に連通する。   A first radial bearing portion R1 is provided between the inner peripheral surface 81a of the upper bearing sleeve 81 and the outer peripheral surface 2a1 of the shaft portion 2a of the shaft member 2, and the inner peripheral surface 82a of the lower bearing sleeve 82 and the shaft portion 2a A second radial bearing portion R2 is provided between the outer peripheral surface 2a1. A first thrust bearing portion T1 is provided between the upper end surface 81b of the upper bearing sleeve 81 and the lower end surface 9b of the seal member 9, and the lower end surface 82c of the lower bearing sleeve 82 and the flange portion of the shaft member 2 are provided. A second thrust bearing portion T2 is provided between the upper end surface 2b1 of 2b. An annular groove (V-groove) is formed on the lower end surface of the upper bearing sleeve 81 for identification with the lower bearing sleeve 82. Further, one or more axial grooves 81d1, 82d1, and 83d are formed on the outer circumferential surface 81d of the upper bearing sleeve 81, the outer circumferential surface 82d of the lower bearing sleeve 82, and the outer circumferential surface of the spacer member 83, respectively. Formed. These axial grooves 81d1, 82d1, and 83d are formed with the phases in the circumferential direction aligned and communicate with each other in the axial direction.

上側軸受スリーブ81と下側軸受スリーブ82との間に、多孔質組織を有さないスペーサ部材83を介装しているので、上述した実施形態の動圧軸受装置1に比べて、ハウジング7の内部空間に充満される潤滑油の総油量が少なくて済む(スペーサ部材83の内部には潤滑油が含浸されないため)。一方、潤滑油の熱膨張・収縮に伴う容積変化量は、ハウジング7の内部空間に充満された潤滑油の総油量に比例するので、総油量が少なくなる分、シール空間Sの容積を小さくすることができる。したがって、この実施形態の動圧軸受装置21は、シール空間S(シール部材9)の軸方向寸法をさらに小さくすることが可能である。その他の事項は、上述した実施形態に準じるので、重複する説明を省略する。   Since the spacer member 83 having no porous structure is interposed between the upper bearing sleeve 81 and the lower bearing sleeve 82, the housing 7 has a structure higher than that of the fluid dynamic bearing device 1 of the above-described embodiment. The total amount of lubricating oil filled in the internal space can be small (because the lubricating oil is not impregnated in the spacer member 83). On the other hand, the volume change amount due to the thermal expansion / contraction of the lubricating oil is proportional to the total amount of the lubricating oil filled in the internal space of the housing 7, so the volume of the seal space S is reduced by the amount of the total oil amount. Can be small. Therefore, the hydrodynamic bearing device 21 of this embodiment can further reduce the axial dimension of the seal space S (seal member 9). Since other matters are the same as those in the above-described embodiment, a duplicate description is omitted.

以上の説明では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、ヘリングボーン形状やスパイラル形状の動圧溝により潤滑油の動圧作用を発生させる構成を例示しているが、本発明はこれに限定されるものではない。   In the above description, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are exemplified by the configuration in which the dynamic pressure action of the lubricating oil is generated by the dynamic pressure grooves having a herringbone shape or a spiral shape. Is not limited to this.

例えば、ラジアル軸受部R1、R2として、いわゆるステップ軸受や多円弧軸受を採用しても良い。   For example, so-called step bearings or multi-arc bearings may be employed as the radial bearing portions R1 and R2.

図8は、ラジアル軸受部R1、R2の一方又は双方をステップ軸受で構成した場合の一例を示している。この例では、軸受スリーブ8の内周面8aのラジアル軸受面となる領域に、複数の軸方向溝形状の動圧溝8a3が円周方向所定間隔に設けられている。   FIG. 8 shows an example in which one or both of the radial bearing portions R1 and R2 are configured by step bearings. In this example, a plurality of axial groove-shaped dynamic pressure grooves 8a3 are provided at predetermined intervals in the circumferential direction in a region that becomes a radial bearing surface of the inner peripheral surface 8a of the bearing sleeve 8.

図9は、ラジアル軸受部R1、R2の一方又は双方を多円弧軸受で構成した場合の一例を示している。この例では、軸受スリーブ8の内周面8aのラジアル軸受面となる領域が、3つの円弧面8a4、8a5、8a6で構成されている(いわゆる3円弧軸受)。3つの円弧面8a4、8a5、8a6の曲率中心は、それぞれ、軸受スリーブ8(軸部2a)の軸中心Oから等距離オフセットされている。3つの円弧面8a4、8a5、8a6で区画される各領域において、ラジアル軸受隙間は、円周方向の両方向に対して、それぞれ楔状に漸次縮小した形状を有している。そのため、軸受スリーブ8と軸部2aとが相対回転すると、その相対回転の方向に応じて、ラジアル軸受隙間内の潤滑油が楔状に縮小した最小隙間側に押し込まれて、その圧力が上昇する。このような潤滑油の動圧作用によって、軸受スリーブ8と軸部2aとが非接触支持される。尚、3つの円弧面8a4、8a5、8a6の相互間の境界部に、分離溝と称される、一段深い軸方向溝を形成しても良い。   FIG. 9 shows an example of a case where one or both of the radial bearing portions R1 and R2 are constituted by multi-arc bearings. In this example, the region that becomes the radial bearing surface of the inner peripheral surface 8a of the bearing sleeve 8 is configured by three arc surfaces 8a4, 8a5, and 8a6 (so-called three arc bearings). The centers of curvature of the three arcuate surfaces 8a4, 8a5, 8a6 are offset from the shaft center O of the bearing sleeve 8 (shaft portion 2a) by an equal distance. In each region defined by the three arcuate surfaces 8a4, 8a5, and 8a6, the radial bearing gap has a shape gradually reduced in a wedge shape in both circumferential directions. Therefore, when the bearing sleeve 8 and the shaft portion 2a rotate relative to each other, the lubricating oil in the radial bearing gap is pushed into the minimum gap side reduced in a wedge shape in accordance with the direction of the relative rotation, and the pressure rises. The bearing sleeve 8 and the shaft portion 2a are supported in a non-contact manner by the dynamic pressure action of the lubricating oil. Note that a deeper axial groove called a separation groove may be formed at the boundary between the three arcuate surfaces 8a4, 8a5, 8a6.

図10は、ラジアル軸受部R1、R2の一方又は双方を多円弧軸受で構成した場合の他の例を示している。この例においても、軸受スリーブ8の内周面8aのラジアル軸受面となる領域が、3つの円弧面8a7、8a8、8a9で構成されているが(いわゆる3円弧軸受)、3つの円弧面8a7、8a8、8a9で区画される各領域において、ラジアル軸受隙間は、円周方向の一方向に対して、それぞれ楔状に漸次縮小した形状を有している。このような構成の多円弧軸受は、テーパ軸受と称されることもある。また、3つの円弧面8a7、8a8、8a9の相互間の境界部に、分離溝と称される、一段深い軸方向溝8a10、8a11、8a12が形成されている。そのため、軸受スリーブ8と軸部2aとが所定方向に相対回転すると、ラジアル軸受隙間内の潤滑油が楔状に縮小した最小隙間側に押し込まれて、その圧力が上昇する。このような潤滑油の動圧作用によって、軸受スリーブ8と軸部2aとが非接触支持される。   FIG. 10 shows another example in the case where one or both of the radial bearing portions R1 and R2 are configured by multi-arc bearings. In this example as well, the region that becomes the radial bearing surface of the inner peripheral surface 8a of the bearing sleeve 8 is configured by three arc surfaces 8a7, 8a8, and 8a9 (so-called three arc bearings), but the three arc surfaces 8a7, In each region partitioned by 8a8 and 8a9, the radial bearing gap has a shape gradually reduced in a wedge shape with respect to one direction in the circumferential direction. The multi-arc bearing having such a configuration may be referred to as a taper bearing. Further, deeper axial grooves 8a10, 8a11, and 8a12 called separation grooves are formed at boundaries between the three arcuate surfaces 8a7, 8a8, and 8a9. For this reason, when the bearing sleeve 8 and the shaft portion 2a are relatively rotated in a predetermined direction, the lubricating oil in the radial bearing gap is pushed into the minimum gap side reduced in a wedge shape, and the pressure rises. The bearing sleeve 8 and the shaft portion 2a are supported in a non-contact manner by the dynamic pressure action of the lubricating oil.

図11は、ラジアル軸受部R1、R2の一方又は双方を多円弧軸受で構成した場合の他の例を示している。この例では、図10に示す構成において、3つの円弧面8a7、8a8、8a9の最小隙間側の所定領域θが、それぞれ、軸受スリーブ8(軸部2a)の軸中心Oを曲率中心とする同心の円弧で構成されている。従って、各所定領域θにおいて、ラジアル軸受隙間(最小隙間)は一定になる。このような構成の多円弧軸受は、テーパ・フラット軸受と称されることもある。   FIG. 11 shows another example in the case where one or both of the radial bearing portions R1 and R2 are configured by multi-arc bearings. In this example, in the configuration shown in FIG. 10, the predetermined regions θ on the minimum gap side of the three arcuate surfaces 8a7, 8a8, 8a9 are concentric with the axis O of the bearing sleeve 8 (shaft portion 2a) as the center of curvature. It is composed of arcs. Therefore, in each predetermined area θ, the radial bearing gap (minimum gap) is constant. The multi-arc bearing having such a configuration may be referred to as a tapered flat bearing.

以上の各例における多円弧軸受は、いわゆる3円弧軸受であるが、これに限らず、いわゆる4円弧軸受、5円弧軸受、さらに6円弧以上の数の円弧面で構成された多円弧軸受を採用しても良い。また、ラジアル軸受部をステップ軸受や多円弧軸受で構成する場合、ラジアル軸受部R1、R2のように、2つのラジアル軸受部を軸方向に離隔して設けた構成とする他、軸受スリーブ8の内周面8aの上下領域に亘って1つのラジアル軸受部を設けた構成としても良い。   The multi-arc bearings in the above examples are so-called three-arc bearings, but are not limited to this, and so-called four-arc bearings, five-arc bearings, and multi-arc bearings composed of more than six arc surfaces are adopted. You may do it. Further, when the radial bearing portion is constituted by a step bearing or a multi-arc bearing, in addition to the configuration in which the two radial bearing portions are separated from each other in the axial direction as in the radial bearing portions R1 and R2, the bearing sleeve 8 It is good also as a structure which provided the one radial bearing part over the up-and-down area | region of the internal peripheral surface 8a.

また、スラスト軸受部T1、T2の一方又は双方は、例えば、スラスト軸受面となる領域に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、いわゆる波型軸受(ステップ型が波型になったもの)等で構成することもできる。   Further, one or both of the thrust bearing portions T1 and T2 are, for example, so-called step bearings, so-called wave bearings, in which a plurality of radial groove-shaped dynamic pressure grooves are provided at predetermined intervals in the circumferential direction in a region serving as a thrust bearing surface. It can also be constituted by a mold bearing (a step type having a wave shape) or the like.

以上の実施形態では、動圧軸受装置1の内部に充満し、軸受スリーブ8と軸部材2との間のラジアル軸受隙間や、軸受スリーブ8と軸部材2及びシール部材9との間のスラスト軸受隙間に動圧を発生させる流体として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧を発生させることができる流体、例えば空気等の気体や、磁性流体等を使用することもできる。   In the above embodiment, the inside of the hydrodynamic bearing device 1 is filled, and the radial bearing gap between the bearing sleeve 8 and the shaft member 2 and the thrust bearing between the bearing sleeve 8 and the shaft member 2 and the seal member 9 are filled. Lubricating oil is exemplified as the fluid that generates the dynamic pressure in the gap, but other fluids that can generate the dynamic pressure in each bearing gap, for example, gas such as air, magnetic fluid, etc. may be used. it can.

さらに、以上の説明では、ラジアル軸受面を軸受スリーブ8の内周面8aに形成する場合を例示したが、ラジアル軸受隙間を介して対向する面、すなわち軸部2aの外周面2a1に形成することもできる。さらに、スラスト軸受面を軸受スリーブの両端面8b、8cに形成する場合を例示したが、スラスト軸受隙間を介して対向する面、すなわちシール部材9の下側端面9bおよび軸部材2のフランジ部2bの上側端面2b1に形成することもできる。   Further, in the above description, the case where the radial bearing surface is formed on the inner peripheral surface 8a of the bearing sleeve 8 is exemplified, but the radial bearing surface is formed on the surface facing the radial bearing gap, that is, the outer peripheral surface 2a1 of the shaft portion 2a. You can also. Furthermore, although the case where the thrust bearing surface is formed on both end surfaces 8b and 8c of the bearing sleeve is illustrated, the surfaces facing each other through the thrust bearing gap, that is, the lower end surface 9b of the seal member 9 and the flange portion 2b of the shaft member 2 are illustrated. It can also be formed on the upper end surface 2b1.

本発明の実施形態に係る動圧軸受装置を組み込んだ情報機器用スピンドルモータの断面図である。1 is a cross-sectional view of a spindle motor for information equipment incorporating a fluid dynamic bearing device according to an embodiment of the present invention. 本発明の実施形態に係る動圧軸受装置を示す断面図である。It is sectional drawing which shows the dynamic pressure bearing apparatus which concerns on embodiment of this invention. 軸受スリーブの断面図、下側端面と上側端面を示す図である。It is sectional drawing of a bearing sleeve, and is a figure which shows a lower side end surface and an upper side end surface. 組立工程を示す図である。It is a figure which shows an assembly process. 組立工程を示す図である。It is a figure which shows an assembly process. 組立工程を示す図である。It is a figure which shows an assembly process. 本発明の他の実施形態に係る動圧軸受装置を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus which concerns on other embodiment of this invention. ラジアル軸受部の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of a radial bearing part. ラジアル軸受部の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of a radial bearing part. ラジアル軸受部の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of a radial bearing part. ラジアル軸受部の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of a radial bearing part.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
2a 軸部
2b フランジ部
7 ハウジング
8 軸受スリーブ
8a 内周面
8b 上側端面
8c 下側端面
9 シール部材
9a 外周面
9a1 テーパ面
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 2a Shaft part 2b Flange part 7 Housing 8 Bearing sleeve 8a Inner peripheral surface 8b Upper end surface 8c Lower end surface 9 Seal member 9a Outer peripheral surface 9a1 Tapered surface R1, R2 Radial bearing part T1, T2 Thrust bearing Part S Seal space

Claims (8)

ハウジングと、該ハウジングの内部に固定された軸受スリーブと、前記ハウジング及び軸受スリーブに対して相対回転する軸部材と、前記ハウジングの一端部の側に位置するシール部材と、前記軸受スリーブと前記軸部材との間のラジアル軸受隙間に生じる流体の動圧作用で前記軸部材をラジアル方向に非接触支持するラジアル軸受部とを備えた動圧軸受装置において、
前記軸部材は、前記軸受スリーブの内周面に挿入される軸部と、該軸部に設けられたフランジ部とを有し、
前記シール部材は前記軸部材に固定され、前記シール部材の外周面の側にシール空間が形成され、
前記シール部材の一端面とこれに対向する前記軸受スリーブの一端面との間に第1スラスト軸受部が設けられ、該第1スラスト軸受部はスラスト軸受隙間に生じる流体の動圧作用で前記シール部材及び軸部材をスラスト方向に非接触支持し、
前記フランジ部の一端面とこれに対向する前記軸受スリーブの他端面との間に第2スラスト軸受部が設けられ、該第2スラスト軸受部はスラスト軸受隙間に生じる流体の動圧作用で前記軸部材をスラスト方向に非接触支持することを特徴とする動圧軸受装置。
A housing, a bearing sleeve fixed inside the housing, a shaft member rotating relative to the housing and the bearing sleeve, a seal member located on one end of the housing, the bearing sleeve and the shaft In a hydrodynamic bearing device comprising a radial bearing portion that supports the shaft member in a non-contact manner in a radial direction by a hydrodynamic action of a fluid generated in a radial bearing gap between the members,
The shaft member has a shaft portion inserted into the inner peripheral surface of the bearing sleeve, and a flange portion provided on the shaft portion,
The seal member is fixed to the shaft member, a seal space is formed on the outer peripheral surface side of the seal member,
A first thrust bearing portion is provided between one end surface of the seal member and one end surface of the bearing sleeve facing the seal member, and the first thrust bearing portion is formed by the dynamic pressure action of fluid generated in a thrust bearing gap. Non-contact support of the member and shaft member in the thrust direction,
A second thrust bearing portion is provided between one end surface of the flange portion and the other end surface of the bearing sleeve opposed to the flange portion, and the second thrust bearing portion is formed by the dynamic pressure action of fluid generated in a thrust bearing gap. A hydrodynamic bearing device characterized in that a member is supported in a non-contact manner in a thrust direction.
前記シール部材の外周面に、前記ハウジングの外部方向に向かって漸次縮径したテーパ面が形成されていることを特徴とする請求項1に記載の動圧軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein a taper surface that is gradually reduced in diameter toward the outside of the housing is formed on an outer peripheral surface of the seal member. 前記シール部材は前記軸部材に接着材で固定され、前記シール部材及び前記軸部材のうち少なくとも一方の接着部位に接着剤が充填される凹部が設けられていることを特徴とする請求項1に記載の動圧軸受装置。   The seal member is fixed to the shaft member with an adhesive, and at least one of the seal member and the shaft member is provided with a recess filled with an adhesive. The hydrodynamic bearing device described. ハウジングと、該ハウジングの内部に固定された軸受スリーブと、前記ハウジング及び軸受スリーブに対して相対回転する軸部材と、前記ハウジングの一端部の側に位置するシール部材と、前記軸受スリーブと前記軸部材との間のラジアル軸受隙間に生じる流体の動圧作用で前記軸部材をラジアル方向に非接触支持するラジアル軸受部とを備えた動圧軸受装置において、
前記シール部材は前記軸部材に設けられており、
前記シール部材の一端面は、前記軸受スリーブの一端面とスラスト軸受隙間を介して対向し、
前記シール部材の外周面は、前記ハウジングの外部方向に向かって漸次縮径し、かつ、シール空間に臨むテーパ面を備えていることを特徴とする動圧軸受装置。
A housing, a bearing sleeve fixed inside the housing, a shaft member rotating relative to the housing and the bearing sleeve, a seal member located on one end of the housing, the bearing sleeve and the shaft In a hydrodynamic bearing device comprising a radial bearing portion that supports the shaft member in a non-contact manner in a radial direction by a hydrodynamic action of a fluid generated in a radial bearing gap between the members,
The seal member is provided on the shaft member;
One end surface of the seal member is opposed to one end surface of the bearing sleeve via a thrust bearing gap,
The outer peripheral surface of the seal member is provided with a tapered surface that gradually decreases in diameter toward the outside of the housing and faces the seal space.
前記ラジアル軸受部が、動圧発生手段として動圧溝を有することを特徴とする請求項1〜4の何れかに記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the radial bearing portion includes a hydrodynamic groove as a hydrodynamic pressure generating unit. 前記ラジアル軸受部が、多円弧軸受で構成されていることを特徴とする請求項1〜4の何れかに記載の動圧軸受装置。   The hydrodynamic bearing device according to any one of claims 1 to 4, wherein the radial bearing portion is a multi-arc bearing. 請求項1〜6の何れかに記載の動圧軸受装置を備えたディスク装置のスピンドルモータ。   A spindle motor of a disk device comprising the fluid dynamic bearing device according to claim 1. ハウジングと、該ハウジングの内部に固定される軸受スリーブと、該軸受スリーブの内周面に挿入される軸部、及び、該軸部に設けられたフランジ部とを有する軸部材と、該軸部材に固定されるシール部材と、前記軸受スリーブの内周面と前記軸部材の外周面との間のラジアル軸受隙間に生じる流体の動圧作用で前記軸部材をラジアル方向に非接触支持するラジアル軸受部と、前記シール部材の一端面と前記軸受スリーブの一端面との間のスラスト軸受隙間に生じる流体の動圧作用で前記シール部材及び軸部材をスラスト方向に非接触支持する第1スラスト軸受部と、前記フランジ部の一端面と前記軸受スリーブの他端面との間のスラスト軸受隙間に生じる流体の動圧作用で前記軸部材をスラスト方向に非接触支持する第2スラスト軸受部とを備えた動圧軸受装置の製造方法であって、
前記軸部材の軸部を前記軸受スリーブの内周面に挿入すると共に、前記軸部に前記シール部材を装着し、これにより、前記軸受スリーブを前記シール部材の一端面と前記フランジ部の一端面との間に介装する工程と、
前記工程の後、前記軸部と前記シール部材との軸方向相対位置を調整して、前記軸受スリーブと前記シール部材の一端面及びフランジ部の一端面との間に、前記第1スラスト軸受部及び第2スラスト軸受部のスラスト軸受隙間の合計量に相当する量の隙間を形成する工程と、
前記工程の後、前記シール部材を前記軸部に固定する工程と、
前記工程により組付けられた、前記軸受スリーブ、前記軸部材、及び前記シール部材を含む組付け体を前記ハウジングの内部に収容する工程とを含むことを特徴とする動圧軸受装置の製造方法。
A shaft member having a housing, a bearing sleeve fixed inside the housing, a shaft portion inserted into the inner peripheral surface of the bearing sleeve, and a flange portion provided on the shaft portion, and the shaft member And a radial bearing that supports the shaft member in a radial direction in a radial direction by a dynamic pressure action of a fluid generated in a radial bearing gap between an inner peripheral surface of the bearing sleeve and an outer peripheral surface of the shaft member And a first thrust bearing portion that non-contact supports the seal member and the shaft member in the thrust direction by a dynamic pressure action of a fluid generated in a thrust bearing gap between one end surface of the seal member and one end surface of the bearing sleeve And a second thrust bearing portion that non-contact supports the shaft member in a thrust direction by a dynamic pressure action of a fluid generated in a thrust bearing gap between one end surface of the flange portion and the other end surface of the bearing sleeve. A method of manufacturing a dynamic pressure bearing apparatus having,
The shaft portion of the shaft member is inserted into the inner peripheral surface of the bearing sleeve, and the seal member is attached to the shaft portion, whereby the bearing sleeve is attached to one end surface of the seal member and one end surface of the flange portion. A process of interposing with
After the step, the first thrust bearing portion is adjusted between the bearing sleeve and one end surface of the seal member and one end surface of the flange portion by adjusting an axial relative position between the shaft portion and the seal member. And forming a gap having an amount corresponding to the total amount of thrust bearing gaps of the second thrust bearing portion;
After the step, fixing the seal member to the shaft portion;
And a step of housing the assembly including the bearing sleeve, the shaft member, and the seal member assembled in the step in the housing.
JP2005017068A 2004-04-09 2005-01-25 Dynamic pressure bearing device Pending JP2005321089A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005017068A JP2005321089A (en) 2004-04-09 2005-01-25 Dynamic pressure bearing device
US11/547,641 US20070286538A1 (en) 2004-04-09 2005-04-07 Dynamic Bearing Device
KR1020067019885A KR101213552B1 (en) 2004-04-09 2005-04-07 Dynamic pressure bearing device
PCT/JP2005/006847 WO2005098252A1 (en) 2004-04-09 2005-04-07 Dynamic pressure bearing device
US13/373,883 US8782901B2 (en) 2004-04-09 2011-12-05 Dynamic bearing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004115695 2004-04-09
JP2005017068A JP2005321089A (en) 2004-04-09 2005-01-25 Dynamic pressure bearing device

Publications (1)

Publication Number Publication Date
JP2005321089A true JP2005321089A (en) 2005-11-17

Family

ID=35468506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005017068A Pending JP2005321089A (en) 2004-04-09 2005-01-25 Dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JP2005321089A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072775A1 (en) * 2005-12-22 2007-06-28 Ntn Corporation Fluid bearing device
JP2007225062A (en) * 2006-02-24 2007-09-06 Ntn Corp Fluid bearing device
WO2007099790A1 (en) * 2006-03-02 2007-09-07 Ntn Corporation Fluid bearing device
WO2007102359A1 (en) * 2006-03-09 2007-09-13 Ntn Corporation Fluid bearing device
JP2007239920A (en) * 2006-03-09 2007-09-20 Ntn Corp Fluid bearing device
JP2007255651A (en) * 2006-03-24 2007-10-04 Ntn Corp Dynamic pressure bearing device
WO2007111218A1 (en) * 2006-03-24 2007-10-04 Ntn Corporation Fluid bearing device
JP2007263224A (en) * 2006-03-28 2007-10-11 Ntn Corp Dynamic pressure bearing device
WO2007142062A1 (en) * 2006-06-07 2007-12-13 Ntn Corporation Fluid bearing device and its manufacturing method
JP2007321966A (en) * 2006-06-05 2007-12-13 Ntn Corp Fluid bearing device
JP2008008472A (en) * 2006-06-30 2008-01-17 Ntn Corp Fluid bearing device
WO2008050608A1 (en) * 2006-10-27 2008-05-02 Nidec Corporation Dynamic pressure bearing device
DE102007054271A1 (en) * 2007-11-14 2009-05-28 Minebea Co., Ltd. Fluid dynamic bearing system for turnable mounting of electric motor, has large cylindrical bearing bush with bearing bore and shaft is mounted in bearing bore around rotational axis in rotating manner
JP2015172384A (en) * 2014-03-11 2015-10-01 Ntn株式会社 Sintered bearing, fluid dynamic-pressure bearing device and motor having the bearing, and sintered bearing manufacturing method
US9303653B2 (en) 2011-06-30 2016-04-05 Nidec Corporation Dynamic pressure bearing apparatus and fan

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339956A (en) * 2001-05-17 2002-11-27 Riraiaru:Kk Dynamic pressure bearing device, and manufacturing method therefor
JP2003056555A (en) * 2001-08-14 2003-02-26 Nippon Densan Corp Dynamic pressure bearing device, and method for fixing thrust plate to shaft
JP2003239974A (en) * 2002-02-20 2003-08-27 Ntn Corp Dynamic pressure bearing device and manufacturing method therefor
JP2003305616A (en) * 2002-04-15 2003-10-28 Nippon Densan Corp Method and device for electrochemical machining of dynamic pressure groove in dynamic pressure bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339956A (en) * 2001-05-17 2002-11-27 Riraiaru:Kk Dynamic pressure bearing device, and manufacturing method therefor
JP2003056555A (en) * 2001-08-14 2003-02-26 Nippon Densan Corp Dynamic pressure bearing device, and method for fixing thrust plate to shaft
JP2003239974A (en) * 2002-02-20 2003-08-27 Ntn Corp Dynamic pressure bearing device and manufacturing method therefor
JP2003305616A (en) * 2002-04-15 2003-10-28 Nippon Densan Corp Method and device for electrochemical machining of dynamic pressure groove in dynamic pressure bearing

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072775A1 (en) * 2005-12-22 2007-06-28 Ntn Corporation Fluid bearing device
JP2007225062A (en) * 2006-02-24 2007-09-06 Ntn Corp Fluid bearing device
WO2007099790A1 (en) * 2006-03-02 2007-09-07 Ntn Corporation Fluid bearing device
US8876388B2 (en) 2006-03-02 2014-11-04 Ntn Corporation Fluid dynamic bearing device
US8876386B2 (en) 2006-03-02 2014-11-04 Ntn Corporation Fluid dynamic bearing device
US8177434B2 (en) 2006-03-09 2012-05-15 Ntn Corporation Fluid dynamic bearing device
WO2007102359A1 (en) * 2006-03-09 2007-09-13 Ntn Corporation Fluid bearing device
JP2007239920A (en) * 2006-03-09 2007-09-20 Ntn Corp Fluid bearing device
US8562219B2 (en) 2006-03-24 2013-10-22 Ntn Corporation Fluid dynamic bearing device
US8215843B2 (en) 2006-03-24 2012-07-10 Ntn Corporation Fluid dynamic bearing device
KR101460573B1 (en) 2006-03-24 2014-11-20 엔티엔 가부시키가이샤 Fluid bearing device
JP2007255651A (en) * 2006-03-24 2007-10-04 Ntn Corp Dynamic pressure bearing device
WO2007111218A1 (en) * 2006-03-24 2007-10-04 Ntn Corporation Fluid bearing device
KR101413550B1 (en) * 2006-03-24 2014-07-01 엔티엔 가부시키가이샤 Fluid bearing device
JP2007263224A (en) * 2006-03-28 2007-10-11 Ntn Corp Dynamic pressure bearing device
JP2007321966A (en) * 2006-06-05 2007-12-13 Ntn Corp Fluid bearing device
US8529132B2 (en) 2006-06-07 2013-09-10 Ntn Corporation Fluid dynamic bearing device and method of manufacturing the same
WO2007142062A1 (en) * 2006-06-07 2007-12-13 Ntn Corporation Fluid bearing device and its manufacturing method
JP2008008472A (en) * 2006-06-30 2008-01-17 Ntn Corp Fluid bearing device
US8016488B2 (en) 2006-10-27 2011-09-13 Ntn Corporation Fluid dynamic bearing device
JP2008111448A (en) * 2006-10-27 2008-05-15 Nippon Densan Corp Dynamic pressure bearing device
WO2008050608A1 (en) * 2006-10-27 2008-05-02 Nidec Corporation Dynamic pressure bearing device
DE102007054271A1 (en) * 2007-11-14 2009-05-28 Minebea Co., Ltd. Fluid dynamic bearing system for turnable mounting of electric motor, has large cylindrical bearing bush with bearing bore and shaft is mounted in bearing bore around rotational axis in rotating manner
DE102007054271B4 (en) * 2007-11-14 2020-09-03 Minebea Mitsumi Inc. Fluid dynamic storage system
US9303653B2 (en) 2011-06-30 2016-04-05 Nidec Corporation Dynamic pressure bearing apparatus and fan
US9822787B2 (en) 2011-06-30 2017-11-21 Nidec Corporation Dynamic pressure bearing apparatus and fan
JP2015172384A (en) * 2014-03-11 2015-10-01 Ntn株式会社 Sintered bearing, fluid dynamic-pressure bearing device and motor having the bearing, and sintered bearing manufacturing method

Similar Documents

Publication Publication Date Title
KR101213552B1 (en) Dynamic pressure bearing device
JP2005321089A (en) Dynamic pressure bearing device
US8356938B2 (en) Fluid dynamic bearing apparatus
KR20100089073A (en) Fluid dynamic-pressure bearing device
JP2007024146A (en) Dynamic pressure bearing device
JP5318344B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP4738868B2 (en) Hydrodynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2005282779A (en) Fluid bearing device
JP2007051717A (en) Manufacturing method of dynamic pressure bearing device
JP2007071274A (en) Dynamic pressure bearing device
JP2007327588A (en) Fluid bearing device
JP2005114164A (en) Dynamic pressure bearing device
JP4754418B2 (en) Hydrodynamic bearing device
JP2006258123A (en) Dynamic pressure bearing device
JP4588561B2 (en) Hydrodynamic bearing device
JP2007100834A (en) Hydrodynamic bearing device
JP5231095B2 (en) Hydrodynamic bearing device
JP4615328B2 (en) Hydrodynamic bearing device
JP2006300178A (en) Fluid bearing device
JP2006242363A (en) Dynamic pressure bearing device
JP2006200584A (en) Dynamic pressure bearing device
JP4647585B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2006214542A (en) Fluid bearing device
JP2007192316A (en) Dynamic pressure bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071121

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Effective date: 20091106

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A131 Notification of reasons for refusal

Effective date: 20100430

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100709