JP2007263224A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device Download PDF

Info

Publication number
JP2007263224A
JP2007263224A JP2006088698A JP2006088698A JP2007263224A JP 2007263224 A JP2007263224 A JP 2007263224A JP 2006088698 A JP2006088698 A JP 2006088698A JP 2006088698 A JP2006088698 A JP 2006088698A JP 2007263224 A JP2007263224 A JP 2007263224A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
peripheral surface
radial
electroformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006088698A
Other languages
Japanese (ja)
Other versions
JP4937621B2 (en
Inventor
Kenji Ito
健二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006088698A priority Critical patent/JP4937621B2/en
Priority to PCT/JP2007/052834 priority patent/WO2007099790A1/en
Priority to US12/281,431 priority patent/US8876386B2/en
Publication of JP2007263224A publication Critical patent/JP2007263224A/en
Application granted granted Critical
Publication of JP4937621B2 publication Critical patent/JP4937621B2/en
Priority to US13/481,282 priority patent/US8876388B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain cost reduction and high rotational accuracy of a dynamic pressure bearing device. <P>SOLUTION: A bearing member 7 is an injection-molded article whose outer peripheral surface has a mounting face for a base member as a constructional element of a motor. In the bearing member, at least an area of an inner peripheral surface facing a radial bearing clearance is formed of an electro-cast part 8. The electro-cast part 8 is a metallic layer precipitated and formed on a master surface by electrocasting. Because of the characteristics of the electrocasting, high inner peripheral surface accuracy can be secured at low cost. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は動圧軸受装置に関するものである。   The present invention relates to a hydrodynamic bearing device.

動圧軸受装置は、軸受部材と、軸受部材の内周に挿入した軸部材との相対回転により軸受隙間に生じた潤滑流体(例えば、潤滑油)の動圧作用で軸部材を回転自在に非接触支持する軸受装置である。この動圧軸受装置は、高速回転、高回転精度、低騒音等の特徴を備えるものであり、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等におけるディスクドライブのスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイール、パーソナルコンピュータ(PC)のファンモータ、あるいは軸流ファンなどの小型モータに搭載される軸受装置として、近年その用途を拡大しつつある。   The hydrodynamic bearing device is configured so that the shaft member is not rotatable by the dynamic pressure action of the lubricating fluid (for example, lubricating oil) generated in the bearing gap due to the relative rotation between the bearing member and the shaft member inserted in the inner periphery of the bearing member. This is a bearing device that supports contact. This hydrodynamic bearing device has features such as high-speed rotation, high rotation accuracy, and low noise. Information equipment, for example, magnetic disk devices such as HDD and FDD, CD-ROM, CD-R / RW, DVD- Optical disk devices such as ROM / RAM, spindle motors for disk drives in magneto-optical disk devices such as MD and MO, polygon scanner motors for laser beam printers (LBP), color wheels for projectors, fan motors for personal computers (PCs), Or the use is expanding in recent years as a bearing apparatus mounted in small motors, such as an axial fan.

例えば、HDD等のディスク装置用のスピンドルモータに搭載される動圧軸受装置では、軸部材をラジアル方向に回転自在に非接触支持するラジアル軸受部と、軸部材をスラスト方向に回転自在に非接触支持するスラスト軸受部とが設けられる。ラジアル軸受部は、軸受部材の内周面、あるいはラジアル軸受隙間を介して対向する軸部材の外周面に設けられた動圧溝等の動圧発生部(ラジアル動圧発生部)が、ラジアル軸受隙間に潤滑流体の動圧作用で圧力を発生させることにより形成される。また、スラスト軸受部は、軸部材のフランジ部の両端面、あるいはスラスト軸受隙間を介して対向する部材端面(例えば、軸受部材の端面やハウジング内底面等)に設けられた動圧溝等の動圧発生部(スラスト動圧発生部)がスラスト軸受隙間に潤滑流体の動圧作用で圧力を発生させることにより形成される(例えば、特許文献1参照)。
特開2002−61641号公報
For example, in a hydrodynamic bearing device mounted on a spindle motor for a disk device such as an HDD, a radial bearing that supports a shaft member in a non-contact manner in a radial direction and a shaft member in a non-contact manner in a thrust direction. And a supporting thrust bearing. In the radial bearing portion, a dynamic pressure generating portion (radial dynamic pressure generating portion) such as a dynamic pressure groove provided on the inner peripheral surface of the bearing member or the outer peripheral surface of the shaft member opposed via the radial bearing gap is a radial bearing. It is formed by generating pressure in the gap by the dynamic pressure action of the lubricating fluid. In addition, the thrust bearing portion includes dynamic pressure grooves or the like provided on both end surfaces of the flange portion of the shaft member or member end surfaces (for example, the end surface of the bearing member, the inner bottom surface of the housing, etc.) facing each other through the thrust bearing gap. The pressure generating portion (thrust dynamic pressure generating portion) is formed by generating pressure in the thrust bearing gap by the dynamic pressure action of the lubricating fluid (see, for example, Patent Document 1).
JP 2002-61641 A

情報機器の低価格化に伴い、動圧軸受装置に対する低コスト化の要請が厳しさを増している。この要請に対応するため、動圧軸受装置を構成する軸受部材の樹脂化が検討されている。その一方で、情報機器の高性能化に伴って、動圧軸受装置に対する高回転精度化の要請が厳しさを増しており、この種の要請に対応するには軸受隙間を所期の値に管理するのが重要である。しかしながら、樹脂は成形収縮が避けられず、所期の軸受隙間幅を得るには、特に軸受面となる領域に精緻な仕上げ加工を要すため、樹脂化によるコストメリットを十分に享受できない。また、一般に、樹脂は線膨張係数が大きく、軸受運転時の温度変化の影響を受け易い。さらに、金属に比べ耐摩耗性に劣り、特に起動・停止時等における軸部材との摺動接触によって軸受面の摩耗が進行し易い。   Along with the price reduction of information equipment, the demand for cost reduction of the hydrodynamic bearing device is becoming stricter. In order to meet this demand, the use of resin for the bearing member that constitutes the hydrodynamic bearing device has been studied. On the other hand, with the improvement in performance of information equipment, the demand for high rotational accuracy for hydrodynamic bearing devices has become increasingly severe. To meet this type of request, the bearing clearance must be set to the expected value. It is important to manage. However, molding of the resin is unavoidable, and in order to obtain the desired bearing gap width, a precise finishing process is required particularly in the region that becomes the bearing surface, and thus the cost merit by resinization cannot be fully enjoyed. In general, resin has a large coefficient of linear expansion, and is easily affected by temperature changes during bearing operation. Furthermore, it is inferior in wear resistance as compared with metal, and the wear of the bearing surface is likely to proceed due to sliding contact with the shaft member particularly at the time of starting and stopping.

本発明の目的は、動圧軸受装置の低コスト化と高回転精度化を同時に達成可能とすることにある。   An object of the present invention is to make it possible to simultaneously achieve cost reduction and high rotational accuracy of a hydrodynamic bearing device.

上記目的を達成するため、本発明にかかる動圧軸受装置は、ベース部材に取り付けるための取付け面を有する軸受部材と、軸受部材の内周に挿入され、軸部およびフランジ部からなる軸部材と、軸受部材の内周面と軸部材の外周面との間のラジアル軸受隙間に潤滑流体の動圧作用で圧力を発生させるラジアル動圧発生部とを備え、軸受部材が、内周面の少なくともラジアル軸受隙間に面する部分に電鋳部を配した射出成形品であることを特徴とするものである。   In order to achieve the above object, a hydrodynamic bearing device according to the present invention includes a bearing member having a mounting surface for mounting to a base member, and a shaft member that is inserted into the inner periphery of the bearing member and includes a shaft portion and a flange portion. A radial dynamic pressure generating portion that generates pressure by the dynamic pressure action of the lubricating fluid in a radial bearing gap between the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft member, and the bearing member has at least an inner peripheral surface It is an injection molded product in which an electroformed part is arranged in a portion facing a radial bearing gap.

上記のように、本発明では、軸受部材が、内周面の少なくともラジアル軸受隙間に面する部分(ラジアル軸受面)に電鋳部を有している。電鋳部は、マスター表面に金属を析出させて形成した金属層であり、電解メッキあるいは無電解メッキに準じた手法で形成することができる。電鋳加工の特性上、電鋳部の内面にはマスターの表面形状が非常に微細なレベルまで高精度に転写される。従って、マスターの表面精度を高めておけば、特段の仕上げ加工を施すことなく低コストに高精度なラジアル軸受面を得ることができる。また、ラジアル軸受面が金属面となるから、ラジアル軸受面を樹脂で構成する場合と比べ、温度依存性を低減し、また耐摩耗性を高めてラジアル軸受隙間幅の変動を抑制することができる。軸受部材は、上記特性を有する電鋳部をインサートして射出成形されるので、部材同士の組付け作業が不要となり、高精度な軸受部材が低コストに得られる。   As described above, in the present invention, the bearing member has an electroformed portion in at least a portion (radial bearing surface) facing the radial bearing gap on the inner peripheral surface. The electroformed part is a metal layer formed by depositing metal on the master surface, and can be formed by a technique according to electrolytic plating or electroless plating. Due to the characteristics of the electroforming process, the surface shape of the master is transferred to the inner surface of the electroformed part with a very fine level to a very fine level. Therefore, if the surface accuracy of the master is increased, a highly accurate radial bearing surface can be obtained at low cost without any special finishing process. In addition, since the radial bearing surface is a metal surface, the temperature dependency can be reduced and the wear resistance can be increased to suppress fluctuations in the radial bearing gap width compared to the case where the radial bearing surface is made of resin. . Since the bearing member is injection-molded by inserting the electroformed part having the above characteristics, the assembly work between the members becomes unnecessary, and a highly accurate bearing member can be obtained at low cost.

軸受部材は、電鋳部を配した小径内周面と、フランジ部の外径側に位置する大径内周面と、小径内周面と大径内周面との間に設けられた第一端面とを有する構成とすることができる。なお動圧軸受装置の運転中には、内部空間を満たす潤滑流体が一部領域で負圧になる場合があり、かかる負圧の発生は、気泡の発生や潤滑油漏れを招き、軸受性能を低下させる恐れがある。かかる不具合は、軸受部材に、前記第一端面に開口する軸方向の貫通穴を設け、軸受装置の内部空間で潤滑流体が流動する経路を確保することによって解消し得る。   The bearing member is provided between the small-diameter inner peripheral surface provided with the electroformed portion, the large-diameter inner peripheral surface located on the outer-diameter side of the flange portion, and the small-diameter inner peripheral surface and the large-diameter inner peripheral surface. It can be set as the structure which has an end surface. During the operation of the hydrodynamic bearing device, the lubricating fluid that fills the internal space may become negative pressure in some areas, and the generation of such negative pressure leads to the generation of bubbles and the leakage of lubricating oil, and the bearing performance is reduced. There is a risk of lowering. Such a problem can be solved by providing the bearing member with an axial through-hole that opens in the first end surface and securing a path for the lubricating fluid to flow in the internal space of the bearing device.

軸受部材に第一端面を設けた構成では、軸受部材の第一端面とフランジ部の一方の端面との間のスラスト軸受隙間に、潤滑流体の動圧作用で圧力を発生させるスラスト動圧発生部を設けることもでき、これにより軸部材をスラスト方向に非接触支持することができる。この場合、軸受部材の第一端面に電鋳部を配せば、上記同様にして、スラスト軸受隙間に面する部分(スラスト軸受面)も低コストかつ高精度に形成することができ、またスラスト軸受隙間幅の変動量も抑制することができる。   In the configuration in which the first end surface is provided on the bearing member, a thrust dynamic pressure generating portion that generates pressure by the dynamic pressure action of the lubricating fluid in the thrust bearing gap between the first end surface of the bearing member and one end surface of the flange portion. Thus, the shaft member can be supported in a non-contact manner in the thrust direction. In this case, if an electroformed part is arranged on the first end surface of the bearing member, the portion facing the thrust bearing gap (thrust bearing surface) can be formed at low cost and with high accuracy in the same manner as described above. The fluctuation amount of the bearing gap width can also be suppressed.

以上の構成を有する動圧軸受装置は、ロータマグネットと、ステータコイルとを有するモータ、例えばHDD等のディスク駆動装置用のスピンドルモータに好ましく使用することができる。   The hydrodynamic bearing device having the above configuration can be preferably used for a motor having a rotor magnet and a stator coil, for example, a spindle motor for a disk drive device such as an HDD.

以上のように、本発明によれば、動圧軸受装置の低コスト化と高回転精度化を同時に達成することができる。   As described above, according to the present invention, it is possible to simultaneously achieve cost reduction and high rotation accuracy of the hydrodynamic bearing device.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る動圧軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。この情報機器用スピンドルモータは、HDD等のディスク駆動装置に用いられるもので、動圧軸受装置1と、動圧軸受装置1の軸部材2に取り付けられたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ベース部材6を備えている。ステータコイル4はベース部材6の外周に取り付けられ、ロータマグネット5は、ディスクハブ3の内周に取り付けられている。ディスクハブ3は、その外周に磁気ディスク等のディスクDを一または複数枚保持する。ベース部材6の内周に動圧軸受装置1の軸受部材7が装着されている。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する電磁力でロータマグネット5が回転し、それに伴ってディスクハブ3、軸部材2が一体に回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 according to an embodiment of the present invention. This spindle motor for information equipment is used for a disk drive device such as an HDD, and includes a dynamic pressure bearing device 1, a disk hub 3 attached to a shaft member 2 of the dynamic pressure bearing device 1, and a radial gap, for example. The stator coil 4 and the rotor magnet 5 and the base member 6 that are opposed to each other are provided. The stator coil 4 is attached to the outer periphery of the base member 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The disk hub 3 holds one or more disks D such as magnetic disks on the outer periphery thereof. A bearing member 7 of the hydrodynamic bearing device 1 is mounted on the inner periphery of the base member 6. When the stator coil 4 is energized, the rotor magnet 5 is rotated by electromagnetic force generated between the stator coil 4 and the rotor magnet 5, and accordingly, the disk hub 3 and the shaft member 2 are rotated together.

図2に上記動圧軸受装置1の一例を示す。この動圧軸受装置1は、回転中心に軸部2aを有する軸部材2と、ベース部材6に取り付けるための取付け面を外周面に有し、軸部2aをその内周に挿入可能な軸受部材7と、軸受部材7の一端側開口を封口する蓋部材10と、軸受部材7の他端側に位置するシール部材11とを備えている。なお、説明の便宜上、蓋部材10の側を下側、シール部材11の側を上側として以下説明を行う。   FIG. 2 shows an example of the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 has a shaft member 2 having a shaft portion 2a at the center of rotation, a mounting surface for mounting on the base member 6, and a bearing member capable of inserting the shaft portion 2a into the inner periphery thereof. 7, a lid member 10 that seals the opening at one end of the bearing member 7, and a seal member 11 that is positioned at the other end of the bearing member 7. For convenience of explanation, the lid member 10 side will be described below, and the seal member 11 side will be described as an upper side.

軸部材2は、例えばステンレス鋼等の金属材料で、軸部2aとその一端に一体又は別体に設けられたフランジ部2bとで構成される。あるいは、軸部2aを金属、フランジ部2bを樹脂で構成したハイブリッド構造とすることもできる。本実施形態における軸部2aの外周面2a1は、凹凸のない断面真円状に形成されている。また、フランジ部2bの両端面2b1、2b2は、凹凸のない平坦面状に形成されている。   The shaft member 2 is made of, for example, a metal material such as stainless steel, and includes a shaft portion 2a and a flange portion 2b provided at one end of the shaft portion 2a. Or it can also be set as the hybrid structure which comprised the shaft part 2a with the metal and the flange part 2b with resin. In the present embodiment, the outer peripheral surface 2a1 of the shaft portion 2a is formed in a perfect circle shape with no irregularities. Moreover, both end surfaces 2b1 and 2b2 of the flange portion 2b are formed in a flat surface shape without irregularities.

軸受部材7は、後に詳述する電鋳加工で形成された電鋳部8と、該電鋳部8をインサートして射出成形された保持部9とで構成され、この保持部9は、例えば樹脂組成物で形成される。樹脂組成物を構成するベース樹脂は射出可能であれば特に限定はなく、例えば、ポリサルフォン(PSU)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等の非晶性樹脂のほか、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等の結晶性樹脂が使用可能である。これらのベース樹脂には、必要に応じて強化材(繊維状、粉末状等の形態は問わない)や潤滑剤、導電材等の各種充填材が一種または二種以上配合される。   The bearing member 7 is composed of an electroformed portion 8 formed by electroforming, which will be described in detail later, and a holding portion 9 that is injection-molded by inserting the electroformed portion 8. It is formed with a resin composition. The base resin constituting the resin composition is not particularly limited as long as it can be injected. For example, polysulfone (PSU), polyethersulfone (PES), polyphenylsulfone (PPSU), polyetherimide (PEI), etc. In addition to amorphous resins, crystalline resins such as liquid crystal polymer (LCP), polyetheretherketone (PEEK), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS) can be used. These base resins are mixed with one or two or more kinds of fillers such as reinforcing materials (regardless of fiber, powder, etc.), lubricants, conductive materials and the like.

なお、射出材料としては樹脂材料以外に金属材料も使用可能である。金属材料としては、例えば、マグネシウム合金やアルミニウム合金等の低融点金属材料が使用可能である。この他、金属粉とバインダーの混合物で射出成形した後、脱脂・焼結するいわゆるMIM成形で保持部9を成形することもできる。さらにこの他、射出材料としてセラミックを使用することもできる。   In addition to the resin material, a metal material can be used as the injection material. As the metal material, for example, a low melting point metal material such as a magnesium alloy or an aluminum alloy can be used. In addition, the holding part 9 can also be formed by so-called MIM molding in which after the injection molding with a mixture of metal powder and binder, degreasing and sintering. In addition, ceramic can also be used as an injection material.

保持部9は、内周に電鋳部8を配した円筒状のスリーブ部9aと、スリーブ部9aの外径側から下方に伸び、軸部材2のフランジ部2bの外径側に位置する第一大径部9bと、スリーブ部9aの外径側から上方に伸びる第二大径部9cとで構成され、各部9a〜9cは、界面のない一体品として形成されている。なお、図示例では、第一大径部9bと第二大径部9cの内周が同径に形成されているが、異径としてもよい。   The holding portion 9 has a cylindrical sleeve portion 9a having an electroformed portion 8 disposed on the inner periphery, and extends downward from the outer diameter side of the sleeve portion 9a, and is positioned on the outer diameter side of the flange portion 2b of the shaft member 2. The first large-diameter portion 9b and a second large-diameter portion 9c extending upward from the outer diameter side of the sleeve portion 9a are formed, and the respective portions 9a to 9c are formed as an integrated product having no interface. In addition, in the example of illustration, although the inner periphery of the 1st large diameter part 9b and the 2nd large diameter part 9c is formed in the same diameter, it is good also as a different diameter.

軸受部材7(電鋳部8)の内周面(小径内周面)7aには、ラジアル軸受部R1、R2のラジアル軸受面Aとなる上下2つの領域が軸方向に離隔して設けられ、これら2つの領域には、図3に示すように、ラジアル動圧発生部として、例えばヘリングボーン形状に配列された複数の動圧溝7a1、7a2がそれぞれ形成されている。上側の動圧溝7a1は、軸方向中心(上下の傾斜溝間領域の軸方向中心)mに対して軸方向非対称に形成され、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。一方、下側の動圧溝7a2は軸方向対称に形成され、その上下領域の軸方向寸法はそれぞれ上記軸方向寸法X2と等しくなっている。この場合、軸部材2の回転時には、動圧溝による潤滑油の引き込み力(ポンピング力)は下側の対称形の動圧溝7a2に比べ、上側の動圧溝7a1で相対的に大きくなる。なお、このようなポンピング力が不要な場合には、上側の動圧溝7a1を下側の動圧溝7a2と同様、軸方向で対称形状とすることもできる。また、図示例のように軸受部材7の小径内周面7a全面に亘って電鋳部8を設ける他、ラジアル軸受面Aとなる領域にのみ設けることもでき、この場合電鋳部8は、軸方向に非連続となる。   On the inner peripheral surface (small-diameter inner peripheral surface) 7a of the bearing member 7 (electroformed portion 8), two upper and lower regions serving as the radial bearing surface A of the radial bearing portions R1 and R2 are provided separately in the axial direction. As shown in FIG. 3, a plurality of dynamic pressure grooves 7a1 and 7a2 arranged in a herringbone shape, for example, are formed in these two regions as radial dynamic pressure generating portions. The upper dynamic pressure groove 7a1 is formed axially asymmetric with respect to the axial center (the axial center of the upper and lower inclined groove regions) m, and the axial dimension X1 of the upper region from the axial center m is the lower region. It is larger than the axial dimension X2. On the other hand, the lower dynamic pressure grooves 7a2 are formed symmetrically in the axial direction, and the axial dimensions of the upper and lower regions thereof are respectively equal to the axial dimension X2. In this case, when the shaft member 2 rotates, the pulling force (pumping force) of the lubricating oil by the dynamic pressure groove is relatively larger in the upper dynamic pressure groove 7a1 than in the lower symmetrical dynamic pressure groove 7a2. When such a pumping force is not required, the upper dynamic pressure groove 7a1 can be symmetrical in the axial direction, like the lower dynamic pressure groove 7a2. In addition to providing the electroformed portion 8 over the entire surface of the small-diameter inner peripheral surface 7a of the bearing member 7 as shown in the illustrated example, it can also be provided only in the region that becomes the radial bearing surface A. In this case, the electroformed portion 8 is Discontinuous in the axial direction.

また、軸受部材7の下側端面7b(小径内周面7aと第一大径内周面7cとの間に設けられる第一端面)の全部又は一部環状領域には、第1スラスト軸受部T1のスラスト軸受面Bが形成され、当該スラスト軸受面Bには、スラスト動圧発生部として図3(b)に示すようなスパイラル形状に配列した複数の動圧溝7b1が形成されている。   Further, a first thrust bearing portion is provided in the whole or part of the annular region of the lower end surface 7b of the bearing member 7 (the first end surface provided between the small-diameter inner peripheral surface 7a and the first large-diameter inner peripheral surface 7c). A thrust bearing surface B of T1 is formed, and a plurality of dynamic pressure grooves 7b1 arranged in a spiral shape as shown in FIG. 3B are formed on the thrust bearing surface B as thrust dynamic pressure generating portions.

軸受部材7(保持部9)の第一大径部9bの内周面(第一大径内周面)7cには、樹脂または金属材料で形成された有底略円筒状の蓋部材10が固定される。この蓋部材10は、円筒状の側部10aと、側部10aの下端開口を封口する底部10bとを備え、これらは一体形成されている。底部10bの上側端面10b1の全部または一部環状領域には、第2スラスト軸受部T2のスラスト軸受面Cが形成され、該スラスト軸受面Cにはスラスト動圧発生部として、例えばスパイラル形状に配列した複数の動圧溝が形成されている(図示省略)。   On the inner peripheral surface (first large-diameter inner peripheral surface) 7c of the first large-diameter portion 9b of the bearing member 7 (holding portion 9), a bottomed substantially cylindrical lid member 10 made of resin or metal material is provided. Fixed. The lid member 10 includes a cylindrical side portion 10a and a bottom portion 10b that seals a lower end opening of the side portion 10a, and these are integrally formed. A thrust bearing surface C of the second thrust bearing portion T2 is formed in the whole or a part of the annular region of the upper end surface 10b1 of the bottom portion 10b, and the thrust bearing surface C is arranged in a spiral shape, for example, as a thrust dynamic pressure generating portion. A plurality of dynamic pressure grooves are formed (not shown).

蓋部材10は、その外周面10a1が軸受部材7(保持部9)の第一大径部9bの内周面7cに圧入、接着等適宜の手段で固定される。このとき、軸部材2のフランジ部2bは、軸受部材7の下側端面7bと蓋部材10の底部10bの上側端面10b1との間に形成される空間に収容される。蓋部材10の側部10aの上側端面10a2は、軸受部材7の下側端面7bと当接しており、これによって後述のスラスト軸受隙間が規定幅に管理される。   The outer peripheral surface 10a1 of the lid member 10 is fixed to the inner peripheral surface 7c of the first large-diameter portion 9b of the bearing member 7 (holding portion 9) by an appropriate means such as press fitting or adhesion. At this time, the flange portion 2 b of the shaft member 2 is accommodated in a space formed between the lower end surface 7 b of the bearing member 7 and the upper end surface 10 b 1 of the bottom portion 10 b of the lid member 10. The upper end surface 10a2 of the side portion 10a of the lid member 10 is in contact with the lower end surface 7b of the bearing member 7, whereby a later-described thrust bearing gap is managed to a specified width.

軸受部材7(保持部9)の第二大径部9cの内周面7eには、金属材料や樹脂材料で形成された環状のシール部材11が圧入、接着、あるいはこれを併用した適宜の手段で固定される。シール部材11の内周面11aは上方に向かうにつれてテーパ状に拡径しており、この内周面11aと、内周面11aに対向する軸部2aの外周面2a1との間には、上方に向かうにつれて半径方向寸法が漸次拡大する環状のシール空間Sが形成される。シール部材11で密封された動圧軸受装置1の内部空間には、潤滑流体として例えば潤滑油が注油され、動圧軸受装置1内が潤滑油で満たされる。この状態で、潤滑油の油面は常にシール空間Sの範囲内に維持される。なお、部品点数および組立工数の削減のため、シール部材11を軸受部材7と一体に成形することもできる。   On the inner peripheral surface 7e of the second large diameter portion 9c of the bearing member 7 (holding portion 9), an annular seal member 11 formed of a metal material or a resin material is press-fitted, bonded, or an appropriate means using this in combination. It is fixed with. The inner peripheral surface 11a of the seal member 11 increases in diameter in a tapered shape as it goes upward. Between the inner peripheral surface 11a and the outer peripheral surface 2a1 of the shaft portion 2a facing the inner peripheral surface 11a, An annular seal space S in which the radial dimension gradually increases as it goes to is formed. Lubricating oil, for example, is injected as a lubricating fluid into the internal space of the dynamic pressure bearing device 1 sealed with the seal member 11, and the inside of the dynamic pressure bearing device 1 is filled with the lubricating oil. In this state, the oil level of the lubricating oil is always maintained within the range of the seal space S. The seal member 11 can be formed integrally with the bearing member 7 in order to reduce the number of parts and the number of assembly steps.

上記構成の動圧軸受装置1において、軸部材2が回転すると、軸受部材7を構成する電鋳部8の上下二箇所に離隔形成されたラジアル軸受面Aとなる領域は、軸部材2の外周面2a1とラジアル軸受隙間を介して対向する。軸部材2の回転に伴い、各ラジアル軸受隙間に潤滑油の動圧が発生し、その圧力によって軸部材2がラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが形成される。   In the hydrodynamic bearing device 1 having the above-described configuration, when the shaft member 2 rotates, the region that forms the radial bearing surface A that is spaced apart at two upper and lower portions of the electroformed portion 8 that constitutes the bearing member 7 is the outer periphery of the shaft member 2. It faces the surface 2a1 through a radial bearing gap. As the shaft member 2 rotates, a dynamic pressure of lubricating oil is generated in each radial bearing gap, and the shaft member 2 is supported in a non-contact manner in the radial direction by the pressure. As a result, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are formed.

また、軸部材2が回転すると、軸受部材7の下側端面7bに形成されたスラスト軸受面Bとなる領域は、軸部材2のフランジ部2bの上側端面2b1とスラスト軸受隙間を介して対向する。同時に、軸部材2が回転すると、蓋部材10の上側端面10b1に形成されたスラスト軸受面Cとなる領域は、軸部材2のフランジ部2bの下側端面2b2とスラスト軸受隙間を介して対向する。軸部材2の回転に伴い、両スラスト軸受隙間に潤滑油の動圧が発生し、その圧力によって軸部材2が両スラスト方向に回転自在に非接触支持される。これにより、軸部材2をスラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが形成される。   Further, when the shaft member 2 rotates, the region that becomes the thrust bearing surface B formed on the lower end surface 7b of the bearing member 7 faces the upper end surface 2b1 of the flange portion 2b of the shaft member 2 through the thrust bearing gap. . At the same time, when the shaft member 2 rotates, the region that becomes the thrust bearing surface C formed on the upper end surface 10b1 of the lid member 10 faces the lower end surface 2b2 of the flange portion 2b of the shaft member 2 through the thrust bearing gap. . As the shaft member 2 rotates, dynamic pressure of lubricating oil is generated in both thrust bearing gaps, and the shaft member 2 is supported in a non-contact manner so as to be rotatable in both thrust directions. Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which support the shaft member 2 in a non-contact manner so as to be rotatable in the thrust direction are formed.

動圧軸受装置1の運転中には、内部空間に満たされた潤滑油がその一部領域で負圧になる場合がある。かかる負圧の発生は、気泡の発生や潤滑油の漏れ、あるいは振動の発生等を招き、回転性能低下の要因となる。そこで、本実施形態では、局所的な負圧の発生を防止するため、上述のように、軸受部材7内周上側の動圧溝形状を軸方向非対称として、ラジアル軸受隙間を満たす潤滑油に軸方向下向きのポンピング能力を付与すると共に、下側に押し込まれた潤滑油をラジアル軸受隙間の上端に戻す循環路12を設け、潤滑油を動圧軸受装置1の内部で強制的に循環させる構成を採用している。   During operation of the hydrodynamic bearing device 1, the lubricating oil filled in the internal space may become a negative pressure in a part of the region. The generation of such negative pressure causes the generation of bubbles, the leakage of lubricating oil, the generation of vibrations, etc., and causes a decrease in rotational performance. Therefore, in this embodiment, in order to prevent the generation of local negative pressure, the dynamic pressure groove shape on the inner periphery upper side of the bearing member 7 is made asymmetric in the axial direction as described above, and the lubricating oil satisfying the radial bearing clearance is And a circulation path 12 for returning the lubricating oil pushed downward to the upper end of the radial bearing gap to forcibly circulate the lubricating oil inside the hydrodynamic bearing device 1. Adopted.

図2に例示する循環路12は、大気に開放されたシール空間Sから軸受部材7の第一端面7bに開口した軸方向の貫通穴12aと、シール部材11の下側端面11bに形成された第1半径方向流路12bと、軸受部材7の上側端面7dに形成された円環流路12c、および円環流路12cからラジアル軸受隙間の上端に繋がる第2半径方向流路12dとで構成されている。図示例では、第1の半径方向流路12bをシール部材11の下側端面11b、第2の半径方向流路12dを軸受部材7の上側端面7dに形成した場合を例示しているが、これらの半径方向流路12b、12dは、その対向面に形成しても構わない。   The circulation path 12 illustrated in FIG. 2 is formed in the axial through hole 12a opened from the seal space S opened to the atmosphere to the first end surface 7b of the bearing member 7 and the lower end surface 11b of the seal member 11. The first radial flow path 12b, an annular flow path 12c formed on the upper end surface 7d of the bearing member 7, and a second radial flow path 12d connected from the annular flow path 12c to the upper end of the radial bearing gap. Yes. In the illustrated example, the case where the first radial flow path 12b is formed on the lower end face 11b of the seal member 11 and the second radial flow path 12d is formed on the upper end face 7d of the bearing member 7 is illustrated. The radial flow paths 12b and 12d may be formed on the opposing surfaces.

このように、循環路12を設けることで、動圧軸受装置1の運転中には、スラスト軸受隙間→軸方向の貫通穴12a→第1半径方向流路12b→円環流路12c→第2半径方向流路12d→ラジアル軸受隙間の上端、という経路を経て軸受装置内部を潤滑油が循環する。これにより、動圧軸受装置1の内部空間における潤滑油の局所的な負圧発生を防止することができ、高い軸受性能を維持することが可能となる。なお、図示例では貫通穴12aを軸方向で同径に形成しているが、これを軸方向の各部で異径とする(例えば、軸方向上方に向かって漸次縮径させる)こともできる。   Thus, by providing the circulation path 12, during the operation of the hydrodynamic bearing device 1, the thrust bearing gap → the axial through hole 12a → the first radial flow path 12b → the annular flow path 12c → the second radius. Lubricating oil circulates in the bearing device through the path of the directional flow path 12d → the upper end of the radial bearing gap. As a result, local negative pressure generation of the lubricating oil in the internal space of the hydrodynamic bearing device 1 can be prevented, and high bearing performance can be maintained. In the illustrated example, the through holes 12a are formed to have the same diameter in the axial direction. However, the through holes 12a may have different diameters at respective portions in the axial direction (for example, the diameter may be gradually reduced upward in the axial direction).

次に、上記動圧軸受装置1の製造工程を、軸受部材7の製造工程を中心に図面に基づいて説明する。   Next, the manufacturing process of the hydrodynamic bearing device 1 will be described based on the drawings with a focus on the manufacturing process of the bearing member 7.

図4(a)〜(c)は、上記動圧軸受装置1における軸受部材7の製造工程の一部を示すものである。詳述すると、図4(a)はマスター部材13を製作する工程、図4(b)はマスター部材13の所要箇所をマスキングする工程、図4(c)は電鋳加工により電鋳部材15を形成する工程を示すものである。これらの工程を経た後、電鋳部材15の電鋳部8を樹脂材料でモールドする工程、および電鋳部8とマスター部材13とを分離する工程を経て軸受部材7が製作される。   4A to 4C show a part of the manufacturing process of the bearing member 7 in the fluid dynamic bearing device 1. More specifically, FIG. 4 (a) is a process of manufacturing the master member 13, FIG. 4 (b) is a process of masking a required portion of the master member 13, and FIG. 4 (c) is a process of forming the electroformed member 15 by electroforming. The process to form is shown. After these steps, the bearing member 7 is manufactured through a step of molding the electroformed portion 8 of the electroformed member 15 with a resin material and a step of separating the electroformed portion 8 and the master member 13.

図4(a)に示す工程では、導電性材料、例えば焼入処理を施したステンレス鋼、ニッケルクロム鋼、その他のニッケル合金、あるいはクロム合金等で形成された中実軸状のマスター部材13が形成される。マスター部材13は、これら金属材料以外にも、導電処理(例えば、表面に導電性の被膜を形成する)を施されたセラミック等の非鉄金属材料で形成することもできる。   In the process shown in FIG. 4A, a solid shaft-shaped master member 13 formed of a conductive material, for example, stainless steel, nickel chrome steel, other nickel alloy, chromium alloy, or the like that has been subjected to a quenching process is formed. It is formed. In addition to these metal materials, the master member 13 can also be formed of a non-ferrous metal material such as ceramic subjected to a conductive treatment (for example, forming a conductive film on the surface).

マスター部材13の外周面13aの一部領域には、軸受部材7の電鋳部8を成形する成形部Nが形成される。成形部Nは、電鋳部内周面の凹凸パターンが反転した形状をなし、その軸方向二箇所には、動圧溝7a1、7a2間の丘部を成形する凹部13a1、13a2の列が円周方向に形成されている。もちろん凹部13a1、13a2の形状は動圧発生部形状に対応させ、スパイラル形状等に形成してもよい。   Formed in a partial region of the outer peripheral surface 13 a of the master member 13 is a forming portion N for forming the electroformed portion 8 of the bearing member 7. The forming part N has a shape in which the concavo-convex pattern of the inner peripheral surface of the electroformed part is reversed, and in two axial directions, there are circumferential rows of recesses 13a1 and 13a2 forming the hills between the dynamic pressure grooves 7a1 and 7a2. Is formed in the direction. Of course, the shape of the recesses 13a1 and 13a2 may correspond to the shape of the dynamic pressure generating portion and may be formed in a spiral shape or the like.

図4(b)に示す工程では、成形部Nを除いてマスター部材13の外表面にマスキング14(図中、散点模様で示す)が施される(マスキング工程)。マスキング14用の被覆材としては、非導電性、および電解質溶液に対する耐食性を有する既存品が適宜選択使用される。   In the step shown in FIG. 4B, masking 14 (indicated by a dotted pattern in the figure) is applied to the outer surface of the master member 13 except for the molding portion N (masking step). As the covering material for the masking 14, an existing product having non-conductivity and corrosion resistance against the electrolyte solution is appropriately selected and used.

電鋳加工は、NiやCu等の金属イオンを含んだ電解質溶液にマスター部材13を浸漬させた後、マスター部材13に通電して、マスター部材13の外表面のうち、マスキング14が施されていない領域(成形部N)に目的の金属を析出(電解析出)させることにより行われる。電解質溶液には、カーボンやPTFE(ポリテトラフルオロエチレン)などの摺動材、あるいはサッカリン等の応力緩和材を必要に応じて含有させてもよい。電着金属の種類は、動圧軸受の軸受面に求められる硬度、疲れ強さ等の物理的性質や、化学的性質に応じて適宜選択される。   In electroforming, after the master member 13 is immersed in an electrolyte solution containing metal ions such as Ni and Cu, the master member 13 is energized, and the masking 14 is applied to the outer surface of the master member 13. It is carried out by depositing the target metal (electrolytic deposition) in a non-existing region (molded part N). The electrolyte solution may contain a sliding material such as carbon or PTFE (polytetrafluoroethylene) or a stress relaxation material such as saccharin as necessary. The type of electrodeposited metal is appropriately selected according to physical properties such as hardness and fatigue strength required for the bearing surface of the hydrodynamic bearing, and chemical properties.

電鋳部8は、以上に述べた電解メッキに準ずる方法の他、無電解メッキに準ずる方法で形成することもできる。その場合、マスター部材13の導電性やマスキング14の絶縁性は不要となる。   The electroformed part 8 can also be formed by a method according to electroless plating in addition to the method according to the electrolytic plating described above. In that case, the conductivity of the master member 13 and the insulation of the masking 14 are not required.

以上の工程を経ることにより、図4(c)に示すように、マスター部材13の成形部Nに電鋳部8を被着した電鋳部材15が形成される。このとき、電鋳部8の内周面には、成形部Nに形成された凹部13a1、13a2の形状が転写され、図3(a)に示す複数の動圧溝7a1、7a2が軸方向に離隔して形成される。なお、電鋳部8の厚みは、これが厚すぎるとマスター部材13からの剥離性が低下し、逆に薄すぎると電鋳部8の耐久性低下につながるので、求められる軸受性能や軸受サイズ、さらには用途等に応じて最適な厚み(例えば5μm〜200μm程度)に設定される。   By passing through the above process, as shown in FIG.4 (c), the electroformed member 15 which adhered the electroformed part 8 to the shaping | molding part N of the master member 13 is formed. At this time, the shape of the concave portions 13a1 and 13a2 formed in the molding portion N is transferred to the inner peripheral surface of the electroformed portion 8, and the plurality of dynamic pressure grooves 7a1 and 7a2 shown in FIG. Formed apart. In addition, if the thickness of the electroformed part 8 is too thick, the peelability from the master member 13 is lowered. Conversely, if the thickness is too thin, the durability of the electroformed part 8 is reduced. Furthermore, it is set to an optimum thickness (for example, about 5 μm to 200 μm) according to the application.

次に、上記工程を経て形成された電鋳部材15は、モールド工程に移送される。図示は省略するが、モールド工程では、電鋳部材15をインサート部品として所定の金型にセットした後、上記樹脂材料を用いて射出成形(インサート成形)が行われる。樹脂材料の射出後、樹脂材料を固化させて型開きを行うと、図5に示すように、マスター部材13および電鋳部8からなる電鋳部材15と、保持部9とが一体となった成形品が得られる。このとき、軸受部材7の下側端面7bには、図3(b)に示すスパイラル形状に配列された複数の動圧溝7b1が射出成形と同時に型成形される。なお、軸方向の貫通穴12a、円環流路12c、および第2半径方向流路12dも射出成形と同時に形成することもできる。   Next, the electroformed member 15 formed through the above steps is transferred to a molding step. Although illustration is omitted, in the molding process, the electroformed member 15 is set as an insert part in a predetermined mold, and then injection molding (insert molding) is performed using the resin material. After injection of the resin material, when the mold was opened by solidifying the resin material, the electroformed member 15 including the master member 13 and the electroformed portion 8 and the holding portion 9 were integrated as shown in FIG. A molded product is obtained. At this time, on the lower end surface 7b of the bearing member 7, a plurality of dynamic pressure grooves 7b1 arranged in a spiral shape shown in FIG. Note that the axial through hole 12a, the annular flow path 12c, and the second radial flow path 12d can also be formed simultaneously with the injection molding.

この成形品は、その後分離工程に移送され、マスター部材13の外周から電鋳部8が剥離され、電鋳部8および保持部9が一体化したもの(軸受部材7)と、マスター部材13とに分離される。この分離工程では、例えば電鋳部材15あるいは軸受部材7に衝撃を与え、電鋳部8の内周面を半径方向に拡径させてマスター部材13の外周面との間に微小隙間(半径寸法で1μm〜数μm程度)を形成し、マスター部材13を電鋳部8の内周から引抜く。この他、電鋳部8とマスター部材13との熱膨張量差を利用してマスター部材13を分離することもできる。   This molded product is then transferred to the separation step, where the electroformed part 8 is peeled off from the outer periphery of the master member 13, and the electroformed part 8 and the holding part 9 are integrated (bearing member 7), the master member 13, Separated. In this separation step, for example, an impact is applied to the electroformed member 15 or the bearing member 7, and the inner peripheral surface of the electroformed portion 8 is radially expanded to have a minute gap (radial dimension) between the outer peripheral surface of the master member 13. Then, the master member 13 is pulled out from the inner periphery of the electroformed part 8. In addition, the master member 13 can also be separated using the difference in thermal expansion between the electroformed part 8 and the master member 13.

上記のようにしてマスター部材13と分離された軸受部材7に、マスター部材13とは別に製作された軸部材2を挿入し、その他の構成部材を組み付けた後、軸受部材7の内部空間に潤滑油を充満させることにより、図2に示す動圧軸受装置1が完成する。一方、分離されたマスター部材13は、繰り返し電鋳加工に用いることができるので、高精度な軸受部材7を安定してかつ低コストに量産することができる。   The shaft member 2 manufactured separately from the master member 13 is inserted into the bearing member 7 separated from the master member 13 as described above, and other components are assembled, and then the internal space of the bearing member 7 is lubricated. The fluid dynamic bearing device 1 shown in FIG. 2 is completed by filling the oil. On the other hand, since the separated master member 13 can be repeatedly used for electroforming, the highly accurate bearing member 7 can be mass-produced stably and at low cost.

以上に示すように、本発明では、軸受部材7が、内周面の少なくともラジアル軸受隙間に面する部分(ラジアル軸受面A)に電鋳部8を有している。電鋳部8は電鋳加工で形成される金属層であり、電鋳加工の特性上、電鋳部8の内周面には、マスター部材13の表面形状が非常に微細なレベルまで高精度に転写されるため、マスター部材13のうち特に成形部Nを高精度に形成しておけば、電鋳部8のラジアル軸受面Aを特段の後加工を施すことなく高精度かつ低コストに形成することができる。   As described above, in the present invention, the bearing member 7 has the electroformed portion 8 in at least a portion (radial bearing surface A) facing the radial bearing gap on the inner peripheral surface. The electroformed part 8 is a metal layer formed by electroforming. Due to the characteristics of electroforming, the inner peripheral surface of the electroformed part 8 has high accuracy up to a very fine surface shape of the master member 13. Therefore, if the molding part N of the master member 13 is formed with high precision, the radial bearing surface A of the electroformed part 8 can be formed with high precision and low cost without any special post-processing. can do.

また、ラジアル軸受面Aを樹脂部分に設ける従来構成に比べ、ラジアル軸受面Aの線膨張係数が低くなるので、温度変化に伴うラジアル軸受隙間幅の変動量を抑制することができる。さらに、ラジアル軸受面Aの耐摩耗性が高まることから、起動・停止時等、軸部材2との摺動接触を繰り返しても、ラジアル軸受面Aの摩耗量を軽減することができる。以上のことから、本発明によれば動圧軸受装置1の低コスト化と高回転精度化を同時に達成することができる。   Further, since the linear expansion coefficient of the radial bearing surface A is lower than in the conventional configuration in which the radial bearing surface A is provided in the resin portion, the amount of variation in the radial bearing gap width due to temperature change can be suppressed. Further, since the wear resistance of the radial bearing surface A is increased, the amount of wear of the radial bearing surface A can be reduced even if sliding contact with the shaft member 2 is repeated during starting and stopping. From the above, according to the present invention, it is possible to simultaneously achieve cost reduction and high rotation accuracy of the hydrodynamic bearing device 1.

なお、以上の説明では、ラジアル軸受面Aを電鋳部8に設けた構成の動圧軸受装置1について説明を行ったが、ラジアル軸受面Aに加えスラスト軸受面(本実施形態ではスラスト軸受面B)を電鋳部8に設けることもできる。図6は、その一例を示すもので、電鋳部8がラジアル軸受面Aを有するラジアル電鋳部81と、ラジアル電鋳部81と一体に形成されたスラスト軸受面Bを有するスラスト電鋳部82とで構成されている。このようにスラスト軸受面Bも電鋳部8に設けることにより、上述した電鋳加工の特性から、第1スラスト軸受部T1でも高い回転精度を得ることができる。なお、その他の構成部材および機能は、図2に示す動圧軸受装置1と同一であるため、共通の参照番号を付して重複説明を省略する。   In the above description, the hydrodynamic bearing device 1 having a configuration in which the radial bearing surface A is provided in the electroformed portion 8 has been described. However, in addition to the radial bearing surface A, a thrust bearing surface (in this embodiment, a thrust bearing surface). B) can also be provided in the electroformed part 8. FIG. 6 shows an example thereof, in which the electroformed part 8 has a radial electroformed part 81 having a radial bearing surface A, and a thrust electroformed part having a thrust bearing surface B formed integrally with the radial electroformed part 81. 82. By providing the thrust bearing surface B in the electroformed part 8 in this way, high rotational accuracy can be obtained even in the first thrust bearing part T1 due to the above-described characteristics of electroforming. The other constituent members and functions are the same as those of the hydrodynamic bearing device 1 shown in FIG.

図6に示す軸受部材7は、例えば図7に示すようなマスター部材23を用いて形成することができる。このマスター部材23は、小径の第一円柱部23aと、第一円柱部23aと軸方向に連続した大径の第二円柱部23bとで構成されている。第1円柱部23aの外周面のうち、第2円柱部23bの上側端面と連続する一部軸方向領域、および第2円柱部23bの上側端面を除いてマスキング14が施される。このマスター部材23を用いて電鋳加工を行うと、ラジアル電鋳部81およびスラスト電鋳部82が一体に形成された電鋳部材25が得られる。そして、当該電鋳部材25を用いてインサート成形を行うことにより、図6に示す軸受部材7が形成される。   The bearing member 7 shown in FIG. 6 can be formed using, for example, a master member 23 as shown in FIG. The master member 23 includes a first cylindrical portion 23a having a small diameter and a second cylindrical portion 23b having a large diameter continuous with the first cylindrical portion 23a in the axial direction. Masking 14 is applied to the outer peripheral surface of the first cylindrical portion 23a except for a partial axial direction region continuous with the upper end surface of the second cylindrical portion 23b and the upper end surface of the second cylindrical portion 23b. When electroforming is performed using the master member 23, the electroformed member 25 in which the radial electroformed portion 81 and the thrust electroformed portion 82 are integrally formed is obtained. Then, by performing insert molding using the electroformed member 25, the bearing member 7 shown in FIG. 6 is formed.

なお、図6に示す形態では、ラジアル電鋳部81とスラスト電鋳部82とを一体構造としたものを例示したが、両者を別体とすることもできる。両者を別体構造とする場合には、例えば、マスキング14の形成領域を変更すればよい。   In the embodiment shown in FIG. 6, the radial electroformed part 81 and the thrust electroformed part 82 are illustrated as an integral structure, but both may be separated. When both are made into separate structures, the formation area of the masking 14 may be changed, for example.

以上本発明の実施形態を例示したが、本発明は、これらの実施形態に限定されるものではなく、以下示すような動圧軸受装置の構成例においても好適に用いることができる。なお、以下の説明では、図2に示す実施形態と同一機能を有する部材および要素には共通の参照番号を付して重複説明を省略する。   Although the embodiments of the present invention have been exemplified above, the present invention is not limited to these embodiments, and can be suitably used in the configuration examples of the hydrodynamic bearing device as shown below. In the following description, members and elements having the same functions as those in the embodiment shown in FIG.

図8は、動圧軸受装置1の他の実施形態を示すものである。同図における動圧軸受装置1は、主に、第2スラスト軸受部T2が軸受部材7の外径側の上側端面7dと、これに対向するディスクハブ3におけるプレート部3aの下側端面3a1との間に形成されている点、およびシール空間Sが軸受部材7のテーパ状外周面7fとディスクハブ3の円筒部3bの内周面3b1とのに形成されている点で図2に示す実施形態と構成を異にする。なお、同図においては、ラジアル軸受面Aのみを電鋳部8に設けた構成を例示しているが、図6に示す実施形態と同様、第1スラスト軸受部T1を形成するスラスト軸受面B、あるいは第2スラスト軸受部T2を形成するスラスト軸受面Cの何れか一方を、ラジアル軸受面Aと一体または別体の電鋳部8に設けた構成とすることもできる。   FIG. 8 shows another embodiment of the hydrodynamic bearing device 1. In the hydrodynamic bearing device 1 shown in FIG. 1, the second thrust bearing portion T2 mainly includes an upper end surface 7d on the outer diameter side of the bearing member 7, and a lower end surface 3a1 of the plate portion 3a in the disk hub 3 facing the upper end surface 7d. 2 in that the seal space S is formed between the tapered outer peripheral surface 7f of the bearing member 7 and the inner peripheral surface 3b1 of the cylindrical portion 3b of the disk hub 3. Different form and configuration. In addition, in the figure, although the structure which provided only the radial bearing surface A in the electroformed part 8 is illustrated, the thrust bearing surface B which forms 1st thrust bearing part T1 similarly to embodiment shown in FIG. Alternatively, any one of the thrust bearing surfaces C forming the second thrust bearing portion T2 may be provided in the electroformed portion 8 that is integral with or separate from the radial bearing surface A.

図9は、動圧軸受装置1の他の実施形態を示すものである。同図における動圧軸受装置1は、主に、軸部材2の軸方向2箇所にフランジ部21、22が離隔して設けられ、この両フランジ部の一端面と軸受部材7の両端面9a2、9a3との間に両スラスト軸受部T1、T2が設けられる点、およびシール空間が軸受部材7の両端開口部に設けられ、両シール空間S1、S2が両フランジ部21、22の外周面21a、22aと軸受部材7の大径内周面との間に設けられる点で図2に示す実施形態と構成を異にする。なお、本実施形態においても上記図6に示す実施形態と同様、第1スラスト軸受部T1を形成するスラスト軸受面B、あるいは第2スラスト軸受部T2を形成するスラスト軸受面Cの何れか一方を、ラジアル軸受面Aと一体または別体の電鋳部8に設ける構成とすることもできる。   FIG. 9 shows another embodiment of the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 in the figure is mainly provided with flange portions 21 and 22 spaced apart at two axial positions of the shaft member 2, one end surface of both flange portions and both end surfaces 9 a 2 of the bearing member 7, The thrust bearing portions T1 and T2 are provided between 9a3 and the seal space is provided at both end openings of the bearing member 7. The seal spaces S1 and S2 are the outer peripheral surfaces 21a of the flange portions 21 and 22, respectively. 2 is different from the embodiment shown in FIG. 2 in that it is provided between 22a and the large-diameter inner peripheral surface of the bearing member 7. In this embodiment as well, as in the embodiment shown in FIG. 6, either one of the thrust bearing surface B forming the first thrust bearing portion T1 or the thrust bearing surface C forming the second thrust bearing portion T2 is used. Also, it can be configured to be provided in the electroformed portion 8 that is integral with or separate from the radial bearing surface A.

以上に示す実施形態では、ラジアル動圧発生部として、へリングボーン形状やスパイラル形状の動圧溝を例示しているが、本発明はこれに限定されるものではなく、例えば、ラジアル動圧発生部として、複数の円弧面や軸方向溝、あるいは調和波形面を設け、ラジアル軸受部R1、R2の何れか一方又は双方を、いわゆる多円弧軸受やステップ軸受、あるいは非真円軸受を採用することもできる(図示省略)。これらの動圧発生部は、上記の実施形態と同様、軸受部材7の電鋳部8に形成することができるが、その形成方法は、動圧溝を形成する場合の各工程に準じるので詳細な説明は省略する。   In the embodiment described above, the herringbone shape or spiral shape dynamic pressure groove is illustrated as the radial dynamic pressure generating portion, but the present invention is not limited to this, for example, the radial dynamic pressure generation As a portion, a plurality of arc surfaces, axial grooves, or harmonic wave surfaces are provided, and either or both of the radial bearing portions R1, R2 are so-called multi-arc bearings, step bearings, or non-circular bearings. (Not shown). These dynamic pressure generating portions can be formed in the electroformed portion 8 of the bearing member 7 in the same manner as in the above-described embodiment. However, the forming method conforms to each step in forming the dynamic pressure grooves, and thus the details are provided. The detailed explanation is omitted.

以上の説明では、ラジアル軸受部R1、R2のように、ラジアル軸受部を軸方向に2箇所離隔して設けた構成としたが、軸受部材7の内周面の上下領域に亘って1箇所、あるいは3箇所以上のラジアル軸受部を設けた構成としても良い。   In the above description, the radial bearing portions are separated from each other in the axial direction by two locations like the radial bearing portions R1 and R2, but one location is provided over the upper and lower regions of the inner peripheral surface of the bearing member 7. Or it is good also as a structure which provided the radial bearing part of three or more places.

また、以上説明した実施形態では、軸受部材7を構成する電鋳部8に動圧溝等のラジアル動圧発生部を形成した場合を例示したが、ラジアル動圧発生部は、電鋳部8とラジアル軸受隙間を介して対向する軸部2aの外周面2a1に、転造や切削等の機械加工やエッチング、あるいはインクジェット印刷等適宜の手段を用いて形成することもできる。この場合、電鋳部8は、凹凸のない円筒面状に形成される。   Further, in the embodiment described above, the case where a radial dynamic pressure generating portion such as a dynamic pressure groove is formed in the electroformed portion 8 constituting the bearing member 7 is illustrated, but the radial dynamic pressure generating portion is the electroformed portion 8. Can be formed on the outer peripheral surface 2a1 of the shaft portion 2a facing each other via a radial bearing gap using an appropriate means such as machining or etching such as rolling or cutting, or ink jet printing. In this case, the electroformed part 8 is formed in a cylindrical surface shape without irregularities.

さらに、以上の説明ではスラスト動圧発生部として、スパイラル形状やヘリングボーン形状に配列した動圧溝を例示しているが、スラスト動圧発生部としては、この他にも複数の半径方向溝形状の動圧溝を円周方向所定間隔に設け、スラスト軸受部T1、T2の一方又は双方を、いわゆるステップ軸受、いわゆる波型軸受(ステップ型が波型になったもの)等で構成することもできる(図示省略)。また、スラスト動圧発生部は、軸受部材7や蓋部材10とスラスト軸受隙間を介して対向するフランジ部2bの両端面等に形成しても良い。   Further, in the above description, the dynamic pressure grooves arranged in a spiral shape or a herringbone shape are illustrated as the thrust dynamic pressure generating portion. However, the thrust dynamic pressure generating portion includes a plurality of other radial groove shapes. Are provided at predetermined intervals in the circumferential direction, and one or both of the thrust bearing portions T1 and T2 may be constituted by so-called step bearings, so-called wave-type bearings (step-type wave type). Yes (not shown). Moreover, you may form a thrust dynamic pressure generation | occurrence | production part in the both end surfaces of the flange part 2b etc. which oppose the bearing member 7 and the cover member 10 through a thrust bearing clearance gap.

また、以上の実施形態では、動圧軸受装置1の内部に充満する潤滑流体として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧を発生させることができる流体、例えば磁性流体の他、空気等の気体等を使用することもできる。   Further, in the above embodiment, the lubricating oil is exemplified as the lubricating fluid that fills the inside of the hydrodynamic bearing device 1, but other fluids that can generate a dynamic pressure in each bearing gap, such as a magnetic fluid, for example. In addition, a gas such as air can be used.

本発明の構成を有する動圧軸受装置を組み込んだ情報機器用スピンドルモータの一例を示す断面図である。It is sectional drawing which shows an example of the spindle motor for information devices incorporating the hydrodynamic bearing apparatus which has a structure of this invention. 本発明に係る動圧軸受装置の断面図である。It is sectional drawing of the dynamic pressure bearing apparatus which concerns on this invention. (a)図は軸受部材の縦断面図、(b)図は軸受部材の第一端面を示す図である。(A) A figure is a longitudinal cross-sectional view of a bearing member, (b) A figure is a figure which shows the 1st end surface of a bearing member. (a)図はマスター部材の斜視図、(b)図はマスター部材にマスキングを施した状態を示す斜視図、(c)図は電鋳部材の斜視図である。(A) is a perspective view of a master member, (b) is a perspective view showing a state where masking is applied to the master member, and (c) is a perspective view of an electroformed member. インサート成形直後の軸受部材の断面図である。It is sectional drawing of the bearing member immediately after insert molding. 動圧軸受装置の他の形態を示す断面図である。It is sectional drawing which shows the other form of a hydrodynamic bearing apparatus. 電鋳部材の他の形態を示す斜視図である。It is a perspective view which shows the other form of an electroformed member. 動圧軸受装置の他の形態を示す断面図である。It is sectional drawing which shows the other form of a hydrodynamic bearing apparatus. 動圧軸受装置の他の形態を示す断面図である。It is sectional drawing which shows the other form of a hydrodynamic bearing apparatus.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
7 軸受部材
8 電鋳部
9 保持部
13、23 マスター部材
14 マスキング
15、25 電鋳部材
A ラジアル軸受面
B、C スラスト軸受面
7a1、7a2 動圧溝
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S、S1、S2 シール空間
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 7 Bearing member 8 Electroformed part 9 Holding part 13, 23 Master member 14 Masking 15, 25 Electroformed member A Radial bearing surface B, C Thrust bearing surface 7a1, 7a2 Dynamic pressure grooves R1, R2 Radial bearing part T1, T2 Thrust bearing part S, S1, S2 Seal space

Claims (5)

ベース部材に取り付けるための取付け面を有する軸受部材と、軸受部材の内周に挿入され、軸部およびフランジ部からなる軸部材と、軸受部材の内周面と軸部材の外周面との間のラジアル軸受隙間に潤滑流体の動圧作用で圧力を発生させるラジアル動圧発生部とを備える動圧軸受装置において、
軸受部材が、内周面の少なくともラジアル軸受隙間に面する部分に電鋳部を配した射出成形品であることを特徴とする動圧軸受装置。
A bearing member having a mounting surface for mounting to the base member, a shaft member inserted on the inner periphery of the bearing member and including a shaft portion and a flange portion, and between the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft member In a dynamic pressure bearing device comprising a radial dynamic pressure generating section that generates pressure by a dynamic pressure action of a lubricating fluid in a radial bearing gap,
The hydrodynamic bearing device, wherein the bearing member is an injection-molded product in which an electroformed part is arranged at least on a portion of the inner peripheral surface facing the radial bearing gap.
軸受部材が、電鋳部を配した小径内周面と、フランジ部の外径側に位置する大径内周面と、小径内周面と大径内周面との間に設けられた第一端面とを有する請求項1記載の動圧軸受装置。   The bearing member is provided between the small-diameter inner peripheral surface provided with the electroformed portion, the large-diameter inner peripheral surface located on the outer-diameter side of the flange portion, and the small-diameter inner peripheral surface and the large-diameter inner peripheral surface. The hydrodynamic bearing device according to claim 1, further comprising an end surface. 軸受部材に、第一端面に開口する軸方向の貫通穴を設けた請求項2記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 2, wherein the bearing member is provided with an axial through hole that opens in the first end surface. 軸受部材の第一端面とフランジ部の一方の端面との間のスラスト軸受隙間に、潤滑流体の動圧作用で圧力を発生させるスラスト動圧発生部を有する請求項2記載の動圧軸受装置。   3. The hydrodynamic bearing device according to claim 2, further comprising a thrust dynamic pressure generating portion that generates pressure by a dynamic pressure action of a lubricating fluid in a thrust bearing gap between the first end surface of the bearing member and one end surface of the flange portion. 軸受部材の第一端面に電鋳部を配した請求項4記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 4, wherein an electroformed part is disposed on the first end surface of the bearing member.
JP2006088698A 2006-03-02 2006-03-28 Hydrodynamic bearing device Expired - Fee Related JP4937621B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006088698A JP4937621B2 (en) 2006-03-28 2006-03-28 Hydrodynamic bearing device
PCT/JP2007/052834 WO2007099790A1 (en) 2006-03-02 2007-02-16 Fluid bearing device
US12/281,431 US8876386B2 (en) 2006-03-02 2007-02-16 Fluid dynamic bearing device
US13/481,282 US8876388B2 (en) 2006-03-02 2012-05-25 Fluid dynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006088698A JP4937621B2 (en) 2006-03-28 2006-03-28 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2007263224A true JP2007263224A (en) 2007-10-11
JP4937621B2 JP4937621B2 (en) 2012-05-23

Family

ID=38636420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006088698A Expired - Fee Related JP4937621B2 (en) 2006-03-02 2006-03-28 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4937621B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056552A (en) * 2001-08-09 2003-02-26 Akutowan:Kk Resin-made bearing part and method for manufacturing the same
JP2005321089A (en) * 2004-04-09 2005-11-17 Ntn Corp Dynamic pressure bearing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056552A (en) * 2001-08-09 2003-02-26 Akutowan:Kk Resin-made bearing part and method for manufacturing the same
JP2005321089A (en) * 2004-04-09 2005-11-17 Ntn Corp Dynamic pressure bearing device

Also Published As

Publication number Publication date
JP4937621B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
US8876386B2 (en) Fluid dynamic bearing device
US7687951B2 (en) Fluid dynamic bearing device and motor equipped with the same
KR101413550B1 (en) Fluid bearing device
JP2007232140A (en) Fluid bearing device
WO2006123602A1 (en) Bearing and bearing device
JP4937588B2 (en) Bearing device and motor equipped with the same
JP4794922B2 (en) Hydrodynamic bearing device and motor having the same
JP5058516B2 (en) Hydrodynamic bearing device
JP4937621B2 (en) Hydrodynamic bearing device
JP4794964B2 (en) Bearing device and motor equipped with the same
JP4794966B2 (en) Bearing device, motor provided with the same, and method for manufacturing bearing device
JP4813211B2 (en) Sliding bearing, motor equipped with the same, and manufacturing method of sliding bearing
JP4846470B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND MOTOR HAVING THE SAME
JP2007205491A (en) Bearing device for fan motor
JP4804894B2 (en) Bearing device and manufacturing method thereof
JP2007092845A (en) Bearing device
JP4633591B2 (en) Plain bearing
JP4584093B2 (en) Plain bearing
JP4896428B2 (en) Hydrodynamic bearing device and motor having the same
JP2006322502A (en) Bearing member and its manufacturing method
JP2007051718A (en) Fluid bearing device
JP4937675B2 (en) Hydrodynamic bearing device
JP2007113778A (en) Fluid bearing device and motor equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4937621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees