JP4937675B2 - Hydrodynamic bearing device - Google Patents

Hydrodynamic bearing device Download PDF

Info

Publication number
JP4937675B2
JP4937675B2 JP2006223455A JP2006223455A JP4937675B2 JP 4937675 B2 JP4937675 B2 JP 4937675B2 JP 2006223455 A JP2006223455 A JP 2006223455A JP 2006223455 A JP2006223455 A JP 2006223455A JP 4937675 B2 JP4937675 B2 JP 4937675B2
Authority
JP
Japan
Prior art keywords
shaft
bearing
peripheral surface
master
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006223455A
Other languages
Japanese (ja)
Other versions
JP2008045695A (en
Inventor
康裕 山本
功 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2006223455A priority Critical patent/JP4937675B2/en
Priority to PCT/JP2007/052834 priority patent/WO2007099790A1/en
Priority to US12/281,431 priority patent/US8876386B2/en
Publication of JP2008045695A publication Critical patent/JP2008045695A/en
Application granted granted Critical
Publication of JP4937675B2 publication Critical patent/JP4937675B2/en
Priority to US13/481,282 priority patent/US8876388B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

本発明は、流体軸受装置に関する。   The present invention relates to a hydrodynamic bearing device.

流体軸受装置は、相対回転する一対の部材のうち回転側の部材を、軸受隙間に生じる流体の膜で支持するものである。この種の軸受装置は、高速回転、高回転精度、低騒音等の特徴を備えるものであり、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として、より具体的にはHDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等におけるディスクドライブのスピンドルモータ用の軸受装置として、あるいはレーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイールモータ、ファンモータなどのモータ用軸受装置として好適に使用される。   The hydrodynamic bearing device supports a rotating member of a pair of relatively rotating members with a film of fluid generated in a bearing gap. This type of bearing device has features such as high-speed rotation, high rotation accuracy, and low noise, and more specifically as a bearing device for motors installed in various electrical equipment including information equipment. As a bearing device for a spindle motor of a disk drive in an optical disk device such as a magnetic disk device such as CD-ROM, CD-R / RW, DVD-ROM / RAM, or a magneto-optical disk device such as MD or MO, or a laser It is preferably used as a bearing device for a motor such as a polygon scanner motor of a beam printer (LBP), a color wheel motor of a projector, or a fan motor.

例えば、HDD用のスピンドルモータに組み込まれる流体軸受装置においては、軸部材をラジアル方向に支持するラジアル軸受部と、軸部材をスラスト方向に支持するスラスト軸受部の一方または双方を動圧軸受で構成する場合がある。この場合、軸受スリーブの内周面と、これに対向する軸部材の外周面との何れか一方に動圧発生部を構成する動圧溝が形成されると共に、両面間のラジアル軸受隙間にラジアル軸受部が形成されることが多い(例えば、特許文献1を参照)。   For example, in a hydrodynamic bearing device incorporated in a spindle motor for HDD, one or both of a radial bearing portion that supports a shaft member in the radial direction and a thrust bearing portion that supports the shaft member in a thrust direction are configured by a dynamic pressure bearing. There is a case. In this case, a dynamic pressure groove that forms a dynamic pressure generating portion is formed on either the inner peripheral surface of the bearing sleeve or the outer peripheral surface of the shaft member facing the bearing sleeve, and the radial bearing gap between the two surfaces is radial. A bearing part is often formed (see, for example, Patent Document 1).

これら軸部材をはじめとする流体軸受装置の各構成部品には、情報機器の益々の高性能化に伴って必要とされる高い回転性能を確保すべく、高い加工精度や組立て精度が求められる。その一方で、流体軸受装置に対するコスト低減の要求も益々厳しくなっている。   Each component part of the hydrodynamic bearing device including these shaft members is required to have high processing accuracy and assembly accuracy in order to ensure the high rotational performance required as the performance of information equipment increases. On the other hand, the cost reduction requirements for hydrodynamic bearing devices are becoming more and more severe.

流体軸受装置の低コスト化のための対策として、軸部材を樹脂で形成することが提案されている(例えば、特許文献2を参照)。   As a measure for reducing the cost of the hydrodynamic bearing device, it has been proposed to form the shaft member with a resin (see, for example, Patent Document 2).

しかしながら、軸部材を樹脂で形成した場合、温度上昇に伴い軸部材が外径側へ膨張し、結果的にラジアル軸受隙間を減少させる可能性がある。軸受スリーブを同種の樹脂で形成して軸受隙間を維持する手段も考えられるが、樹脂製部品は、成形時の収縮を考慮に入れて成形寸法(金型寸法)を設定する必要があるため、当該部品を高精度に成形することは難しい。ましてや軸受隙間を形成する部材を共に樹脂で形成する場合には、両者の成形寸法のばらつきが影響するため、高精度な軸受隙間を得ることは困難である。
特開2003−239951号公報 特開2000−330066号公報
However, when the shaft member is made of resin, the shaft member expands to the outer diameter side as the temperature rises, and as a result, the radial bearing gap may be reduced. A means to maintain the bearing gap by forming the bearing sleeve with the same kind of resin is also conceivable, but resin parts need to be set with molding dimensions (mold dimensions) taking into account shrinkage during molding. It is difficult to mold the part with high accuracy. In addition, when the members that form the bearing gap are both formed of resin, it is difficult to obtain a highly accurate bearing gap because of variations in the molding dimensions of both.
JP 2003-239951 A JP 2000-330066 A

以上の事情に鑑み、本発明では、高精度な軸受隙間を形成することで高い軸受性能を発揮し得る流体軸受装置を低コストに提供することを技術的課題とする。   In view of the above circumstances, an object of the present invention is to provide a hydrodynamic bearing device that can exhibit high bearing performance by forming a highly accurate bearing gap at low cost.

前記課題を解決するため、本発明は、軸受隙間と、軸受隙間を形成する固定部材と回転部材のうち何れか一方を構成し、外周面が軸受隙間に面する軸とを備え、軸受隙間に形成される流体の膜で回転部材を支持するものにおいて、軸の外周面の軸受隙間に面する領域を、マスター内周に析出した金属からなる金属めっき部で構成すると共に、軸の金属めっき部を除く領域を樹脂で構成し、樹脂部が金属めっき部をイントサート部品とする射出成形品であって、金属めっき部の外周面が、樹脂部の射出成形後に金属めっき部をマスター内周から分離可能とすることで得られた析出開始側の面であることを特徴とする流体軸受装置を提供する。 In order to solve the above-mentioned problems, the present invention comprises a bearing gap, a fixed member that forms the bearing gap, and a rotating member, and an outer peripheral surface that faces the bearing gap. In the structure in which the rotating member is supported by the formed fluid film, the region facing the bearing gap on the outer peripheral surface of the shaft is constituted by a metal plating portion made of metal deposited on the inner periphery of the master, and the metal plating portion of the shaft The resin area is made of resin, and the resin part is an injection molded part with the metal plating part as the insert part. The outer peripheral surface of the metal plating part separates the metal plating part from the master inner periphery after injection molding of the resin part. Provided is a hydrodynamic bearing device characterized in that it is a surface on the deposition start side obtained by making it possible .

上述のように、本発明は、固定部材と回転部材の何れか一方を構成する軸の外周面の、軸受隙間に面する領域を金属めっき部で形成することを特徴とするものである。この構成によれば、軸の外周面のうち軸受隙間に面する領域が金属めっき部で覆われるので、例えば高温時、軸の樹脂形成領域が膨張する場合であっても、これを覆う金属めっき部で樹脂部の外径側への膨張を抑えて、軸受隙間の変動を最小限に抑えることができる。従って、上記構成の軸であれば、小型化を図りつつも、高精度な軸受隙間を確保することができる。また、金属めっき部であれば非常に薄肉に形成することができるので、樹脂部の割合を極力増やして樹脂化による低コスト化のメリットを享受できる。   As described above, the present invention is characterized in that the region facing the bearing gap on the outer peripheral surface of the shaft constituting one of the fixed member and the rotating member is formed by the metal plating portion. According to this configuration, since the region facing the bearing gap in the outer peripheral surface of the shaft is covered with the metal plating portion, for example, even when the resin forming region of the shaft expands at high temperatures, the metal plating that covers this By suppressing the expansion of the resin part to the outer diameter side at the part, it is possible to minimize the fluctuation of the bearing gap. Therefore, with the shaft having the above-described configuration, it is possible to ensure a highly accurate bearing gap while reducing the size. Moreover, since it can form very thinly if it is a metal plating part, the ratio of the resin part can be increased as much as possible, and the merit of cost reduction by resinization can be enjoyed.

なお、本発明における金属めっき部は、電解めっき加工に準じる方法により形成されたものの他、無電解めっき加工に準じる方法で形成されたものも含む。ここでいう無電解めっき加工は、電気を用いず、金属塩の水溶液に加えた還元剤の作用により金属の析出を行う方法を意味する。もちろん、後述の電鋳部に関しても同様の方法で形成されたものが含まれる。   In addition, the metal plating part in this invention contains what was formed by the method according to the electroless-plating process other than what was formed by the method according to electroplating process. The electroless plating mentioned here means a method in which metal is deposited by the action of a reducing agent added to an aqueous solution of a metal salt without using electricity. Of course, the electroformed part described later includes those formed by the same method.

軸の外周面のうち軸受隙間に面する領域を、例えば金属めっき部の析出開始側の面で形成することもできる。このような構成をなすものは電鋳部と呼ばれ、母型(マスター)の表面に金属を電解析出させて形成した後、マスターから剥離させることで得られる。このようにして形成された電鋳部であれば、上記各種めっき加工の特性上、電鋳部のマスター側の表面(析出開始側の面)にマスターの表面形状が非常に微細なレベルまで高精度に転写される。そのため、マスターの表面精度を高め、かつ電鋳部の析出開始側の面を軸受隙間を形成する面として使用すれば、特段の後加工を施すことなく、高い面精度を有する軸受面を低コストに得ることができる。また、その加工精度(面精度)は対応するマスターの面精度にのみ依存し、そのサイズには依存しない。従って、電鋳部を備えた軸であれば、小型化を図りつつも、高い加工精度(面精度)を確保することができる。   A region facing the bearing gap in the outer peripheral surface of the shaft can be formed, for example, on the surface on the deposition start side of the metal plating portion. What has such a configuration is called an electroformed part, and is obtained by electrolytically depositing a metal on the surface of a master (master) and then peeling it off from the master. In the case of the electroformed part formed in this way, the surface shape of the master is high to a very fine level on the master side surface (deposition start side surface) of the electroformed part due to the characteristics of the above various plating processes. Transferred with accuracy. Therefore, if the surface accuracy of the master is increased and the surface on the deposition start side of the electroformed part is used as a surface for forming the bearing gap, a bearing surface with high surface accuracy can be produced at low cost without any special post-processing. Can get to. Further, the processing accuracy (surface accuracy) depends only on the surface accuracy of the corresponding master, and does not depend on the size. Therefore, a shaft provided with an electroformed part can ensure high processing accuracy (surface accuracy) while achieving downsizing.

また、上述のように、軸の外周に金属めっき部を形成する場合、樹脂部に、金属めっき部と軸方向で係合する係合部を設けるのが好ましい。樹脂部の成形時、収縮は軸中心側に向けて生じるため、樹脂部の外周に形成した金属めっき部との間で密着力が低下し、場合によっては抜け落ちを生じる恐れがあるが、上述のように、係合部を設けておくことで、金属めっき部の抜止めを図ることができる。かかる係合部は、金属めっき部の形成前に、係合部に対応する箇所を設けた(例えば環状の段部を設けた)成形金型を用いて樹脂部を成形することで形成することができる。あるいは、電鋳部(およびマスター)をインサート部品とする樹脂部の射出成形を行う場合であれば、電鋳部の軸方向両端に樹脂を回り込ませるようにして樹脂部を成形することで係合部を形成することもできる。   Further, as described above, when the metal plating part is formed on the outer periphery of the shaft, it is preferable to provide the resin part with an engaging part that engages with the metal plating part in the axial direction. At the time of molding the resin part, shrinkage occurs toward the axis center side, so the adhesion with the metal plating part formed on the outer periphery of the resin part is lowered, and in some cases, there is a risk of falling off, but the above-mentioned As described above, by providing the engagement portion, it is possible to prevent the metal plating portion from being removed. Such an engaging portion is formed by forming a resin portion using a molding die provided with a portion corresponding to the engaging portion (for example, provided with an annular step portion) before forming the metal plating portion. Can do. Alternatively, if the resin part is injection-molded using the electroformed part (and master) as an insert part, the resin part is formed by molding the resin part so that the resin wraps around both ends of the electroformed part in the axial direction. A part can also be formed.

上記構成の軸は回転部材と固定部材の何れを構成するものであってもよい。また、この場合、軸を設けた側の部材(回転部材あるいは固定部材)の少なくとも一部を軸の樹脂部と一体に形成することも可能である。   The shaft configured as described above may constitute either a rotating member or a fixed member. In this case, it is also possible to form at least a part of the shaft-side member (rotating member or fixed member) integrally with the resin portion of the shaft.

また、金属めっき部(電鋳部)を形成するのに使用したマスターで、電鋳部の外周面との間に軸受隙間を形成することもできる。あるいは、マスターをインサート部品とする樹脂の射出成形でハウジングと一体に固定部材を形成することも可能である。これらは何れもマスターをそのまま軸受スリーブとして使用するものであるから、互いに軸受隙間を形成する電鋳部の外周面とマスターの内周面とは転写元の面と転写先の面との関係にある。そのため、電鋳部とマスターとで軸受隙間を構成すれば、非常にばらつきの少ない高精度な軸受隙間を得ることができ、通常であれば行う可能性のある軸と軸受スリーブとのマッチング工程を省略することができる。   Moreover, it is the master used for forming a metal plating part (electroformed part), and a bearing clearance can also be formed between the outer peripheral surfaces of the electroformed part. Alternatively, the fixing member can be formed integrally with the housing by resin injection molding using the master as an insert part. Since both of these use the master as a bearing sleeve as it is, the outer peripheral surface of the electroformed part and the inner peripheral surface of the master that form a bearing gap with each other are in the relationship between the transfer source surface and the transfer destination surface. is there. Therefore, if the bearing gap is configured with the electroformed part and the master, a highly accurate bearing gap with very little variation can be obtained, and a matching process between the shaft and the bearing sleeve that may be normally performed is performed. Can be omitted.

上記構成をなす流体軸受装置は、例えば当該軸受装置を備えたモータとして使用でき、例えば軸流ファンなど小型のモータに対しても好適に使用することができる。   The hydrodynamic bearing device having the above-described configuration can be used as, for example, a motor including the bearing device, and can be suitably used for a small motor such as an axial fan.

以上のように、本発明によれば、高精度な軸受隙間を形成することで高い軸受性能を発揮し得る流体軸受装置を低コストに提供することが可能となる。   As described above, according to the present invention, it is possible to provide a hydrodynamic bearing device that can exhibit high bearing performance by forming a highly accurate bearing gap at low cost.

以下、本発明の一実施形態を図1〜図5に基づいて説明する。なお、以下の説明における『上下』方向は単に各図における上下方向を便宜的に示すもので、流体軸受装置の設置方向や使用態様等を特定するものではない。図6以降で示す他の実施形態に係る説明についても同様である。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. The “up and down” direction in the following description merely indicates the up and down direction in each drawing for the sake of convenience, and does not specify the installation direction, usage mode, or the like of the hydrodynamic bearing device. The same applies to the description of other embodiments shown in FIG.

図1は、本発明の一実施形態に係る流体軸受装置1を具備したモータの断面図を示している。このモータは、例えば同図に示すように、ファンを備えた冷却用のモータとして用いられるもので、軸2を回転自在に支持する流体軸受装置1と、軸2の一端に設けられたロータプレート部3と、例えば半径方向のギャップを介して対向させたステータコイル4aおよびロータマグネット4bとからなる駆動部4と、流体軸受装置1のハウジング8を内周に固定したベース5とを備える。ロータプレート部3の内径側にはヨーク7を介してロータマグネット4bが固定されると共に、その外径側には1又は複数枚のファン(羽根)6が配設される。ファン6はロータプレート部3と一体に形成することもでき、別体に形成したものを後付けでロータプレート部3に固定することもできる。   FIG. 1 shows a cross-sectional view of a motor provided with a hydrodynamic bearing device 1 according to an embodiment of the present invention. This motor is used as a cooling motor provided with a fan, for example, as shown in the figure. A hydrodynamic bearing device 1 that rotatably supports a shaft 2 and a rotor plate provided at one end of the shaft 2 are used. For example, a drive unit 4 including a stator coil 4a and a rotor magnet 4b opposed to each other via a radial gap, and a base 5 that fixes a housing 8 of the hydrodynamic bearing device 1 to the inner periphery. A rotor magnet 4b is fixed to the inner diameter side of the rotor plate portion 3 via a yoke 7, and one or more fans (blades) 6 are disposed on the outer diameter side thereof. The fan 6 can be formed integrally with the rotor plate portion 3 or can be fixed to the rotor plate portion 3 by retrofitting it.

上記構成のモータにおいて、ステータコイル4aに通電すると、ステータコイル4aとロータマグネット4bとの間の励磁力でロータマグネット4bが回転し、それによって、ロータプレート部3およびロータプレート部3に固定されたファン6が軸2と一体に回転する。この回転により、ファン6はモータの回転軸方向への空気流を生じ、この空気流を冷却対象となる部品(図示は省略)に向けて送り込むことで、当該部品を冷却するようになっている。   In the motor having the above configuration, when the stator coil 4a is energized, the rotor magnet 4b is rotated by the exciting force between the stator coil 4a and the rotor magnet 4b, and is thereby fixed to the rotor plate portion 3 and the rotor plate portion 3. The fan 6 rotates integrally with the shaft 2. By this rotation, the fan 6 generates an air flow in the direction of the rotation axis of the motor, and the air flow is sent toward a component to be cooled (not shown) to cool the component. .

図2は、流体軸受装置1を示している。この流体軸受装置1は、ベース5に固定されるハウジング8と、ハウジング8の内周に配設される軸受部材9と、ハウジング8および軸受部材9に対して相対回転する軸2と、ハウジング8の一端開口側に位置し、軸2とハウジング8との間で流体をシールするシール部10とを備える。この実施形態では、ロータプレート部3を一体に有する軸2で回転部材が構成される。また、ハウジング8と軸受部材9、およびシール部10とで固定部材が構成される。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a housing 8 fixed to a base 5, a bearing member 9 disposed on an inner periphery of the housing 8, a shaft 2 that rotates relative to the housing 8 and the bearing member 9, and a housing 8. And a seal portion 10 that seals fluid between the shaft 2 and the housing 8. In this embodiment, the rotating member is constituted by the shaft 2 integrally having the rotor plate portion 3. The housing 8, the bearing member 9, and the seal portion 10 constitute a fixing member.

ハウジング8は有底筒状をなすもので、例えば樹脂材料で形成される。この実施形態では、ハウジング8は、内周側に配置した軸受部材9をインサート部品として、シール部10と一体に樹脂の射出成形で形成される。ハウジング8の底部の上端面8aは、軸2を軸受部材9の内周に挿入した状態では、軸2の一端面12aと当接し、軸2を回転させた状態では、軸2との間に後述するピボット軸受を構成する。   The housing 8 has a bottomed cylindrical shape, and is formed of, for example, a resin material. In this embodiment, the housing 8 is formed by resin injection molding integrally with the seal portion 10 using the bearing member 9 disposed on the inner peripheral side as an insert part. The upper end surface 8a at the bottom of the housing 8 is in contact with one end surface 12a of the shaft 2 when the shaft 2 is inserted into the inner periphery of the bearing member 9, and between the shaft 2 when the shaft 2 is rotated. A pivot bearing described later is configured.

軸受部材9はスリーブ状をなすもので、例えばCuとFeの何れか一方または双方を主成分とする焼結金属で形成される。軸受部材9の内周面9aは、後述する金属めっき部としての電鋳部11の外周面11aとの間にラジアル軸受隙間を形成するようになっている。この実施形態では、図示は省略するが、内周面9aの全面あるいは一部領域に、動圧発生部として、複数の動圧溝を所定形状(例えばヘリングボーン形状など)に配列した領域が設けられる。なお、軸受部材9を焼結金属以外の金属(鋳鉄や発泡金属など)、あるいは樹脂やセラミック等、金属以外の材料で形成しても構わない。また、内部に空孔を有する場合、当該空孔の量やサイズは問わない。   The bearing member 9 has a sleeve shape, and is formed of, for example, a sintered metal whose main component is one or both of Cu and Fe. A radial bearing gap is formed between the inner peripheral surface 9a of the bearing member 9 and the outer peripheral surface 11a of the electroformed portion 11 as a metal plating portion to be described later. In this embodiment, although not shown, a region in which a plurality of dynamic pressure grooves are arranged in a predetermined shape (for example, a herringbone shape) is provided as a dynamic pressure generating portion on the entire surface or a partial region of the inner peripheral surface 9a. It is done. The bearing member 9 may be formed of a metal other than sintered metal (such as cast iron or foam metal), or a material other than metal such as resin or ceramic. Moreover, when it has a void | hole inside, the quantity and size of the said void | hole are not ask | required.

シール部10は、軸受部材9と軸2との間に形成されるラジアル軸受隙間の一端開放側に配設される。シール部10の内周面10aは大気開放側に向けて漸次拡径する形状をなしており、この面に対向する軸2の外周面(ここでは樹脂部12の大径面12c)との間にテーパ状のシール空間Sを形成する。   The seal portion 10 is disposed on one end open side of a radial bearing gap formed between the bearing member 9 and the shaft 2. The inner peripheral surface 10a of the seal portion 10 has a shape that gradually increases in diameter toward the open side to the atmosphere, and between the outer peripheral surface of the shaft 2 (here, the large diameter surface 12c of the resin portion 12) facing this surface. A tapered seal space S is formed.

軸2は、金属めっき部としての電鋳部11と樹脂部12とからなる。詳細には、軸2の外周面のうち少なくともラジアル軸受隙間に面する領域が電鋳部11で構成され、かつ軸2の電鋳部11を除く領域が樹脂部12で構成される。この実施形態では、筒状をなす電鋳部11をインサート部品として、樹脂部12およびロータプレート部3を一体に有する軸2が樹脂の射出成形で形成される。なお、ラジアル軸受隙間の半径幅寸法は、軸2や軸受部材9の半径幅寸法に比べれば僅かであるが、図2では、理解の容易化のため、実際の寸法よりも拡大して描いている。後述する図6および図9のラジアル軸受隙間についても同様である。   The axis | shaft 2 consists of the electroformed part 11 and the resin part 12 as a metal plating part. Specifically, at least a region facing the radial bearing gap in the outer peripheral surface of the shaft 2 is configured by the electroformed portion 11, and a region excluding the electroformed portion 11 of the shaft 2 is configured by the resin portion 12. In this embodiment, the shaft 2 having the resin portion 12 and the rotor plate portion 3 integrally is formed by resin injection molding using the cylindrical electroformed portion 11 as an insert part. The radial width dimension of the radial bearing gap is slightly smaller than the radial width dimension of the shaft 2 and the bearing member 9, but in FIG. 2, it is drawn larger than the actual dimension for ease of understanding. Yes. The same applies to the radial bearing gaps of FIGS. 6 and 9 described later.

上記構成の軸2は、例えば以下の工程を経て製造される。   The shaft 2 having the above configuration is manufactured through the following steps, for example.

軸2は、電解めっき加工で使用するマスター21の表面を絶縁性材料でマスキングする工程、マスキングを施したマスター21に電解めっき加工を行って電鋳部11を形成する工程、電鋳部11およびマスター21をインサート部品として軸2の型成形(インサート成形)を行う工程、電鋳部11をマスター21から分離する工程とを順に経て製造される。   The shaft 2 includes a step of masking the surface of the master 21 used in electrolytic plating with an insulating material, a step of forming an electroformed portion 11 by performing electrolytic plating on the masked master 21, and the electroformed portion 11 and It is manufactured through a process of performing mold forming (insert molding) of the shaft 2 using the master 21 as an insert part and a process of separating the electroformed part 11 from the master 21.

電鋳部11の母型となるマスター21は、例えばステンレス鋼でスリーブ状に形成される。マスター21の表面のうち、内周面21aの電鋳部11の形成予定領域は、析出形成すべき電鋳部11の外周面11aに倣った形状をなす。この実施形態では、図3に示すように、電鋳部11の外周面11aが断面真円形状となるよう、これに対応した形状の内周面21aが形成される。この場合、内周面21aの面精度は、ラジアル軸受面となる電鋳部11の外周面11aの面精度を直接左右するので、なるべく高精度に仕上げておくことが望ましい。   The master 21 serving as a mother mold of the electroformed part 11 is formed in a sleeve shape from, for example, stainless steel. Of the surface of the master 21, a region where the electroformed part 11 is to be formed on the inner peripheral surface 21 a has a shape that follows the outer peripheral surface 11 a of the electroformed part 11 to be deposited. In this embodiment, as shown in FIG. 3, an inner peripheral surface 21a having a shape corresponding to the outer peripheral surface 11a of the electroformed part 11 is formed so as to have a perfect circular cross section. In this case, since the surface accuracy of the inner peripheral surface 21a directly affects the surface accuracy of the outer peripheral surface 11a of the electroformed part 11 serving as a radial bearing surface, it is desirable that the surface accuracy be finished as high as possible.

マスター21の材料としては、ステンレス鋼以外にも、例えばクロム系合金やニッケル系合金など、マスキング性、導電性、耐薬品性を有するものであれば金属、非金属を問わず任意に選択可能である。   As a material of the master 21, in addition to stainless steel, for example, a chromium-based alloy or a nickel-based alloy can be arbitrarily selected regardless of a metal or a non-metal as long as it has masking property, conductivity, and chemical resistance. is there.

マスター21の表面には、図3に示すように、電鋳部11の形成予定領域を除き、マスキングが施される。この実施形態では、スリーブ状をなすマスター21の外周面と両端面、および内周面21aの電鋳部11の形成予定領域を除いた領域にマスキング部22が形成される(図3中散点模様で示す領域)。マスキング部22形成用の被覆材としては、絶縁性、および電解質溶液に対する耐食性を有する材料が選択使用される。   As shown in FIG. 3, the surface of the master 21 is masked except for the area where the electroformed part 11 is to be formed. In this embodiment, the masking part 22 is formed in the area | region except the outer peripheral surface of a master 21 which makes | forms a sleeve shape, both end surfaces, and the formation area of the electroformed part 11 of the internal peripheral surface 21a (a dotted point in FIG. 3). Area shown by pattern). As the covering material for forming the masking portion 22, a material having insulating properties and corrosion resistance against the electrolyte solution is selectively used.

電解めっき加工は、NiやCu等の金属イオンを含んだ電解質溶液にマスター21を浸漬し、電解質溶液に通電して目的の金属をマスター21の内周面21aのうち、マスキング部22を除く領域に電解析出させることにより行われる。電解質溶液には、PTFEやカーボンなどの摺動材、あるいはサッカリン等の応力緩和材を必要に応じて含有させることも可能である。この実施形態では、PTFE粒子を摺動材として電解質溶液中に含有させたものを使用している。析出金属の種類は、軸受の軸受面に求められる硬度、あるいは潤滑油に対する耐性(耐油性)など、必要とされる特性に応じて適宜選択される。   In the electroplating process, the master 21 is immersed in an electrolyte solution containing metal ions such as Ni and Cu, and the target metal is energized in the electrolyte solution to remove the target metal from the inner peripheral surface 21a of the master 21. It is carried out by electrolytic deposition. The electrolyte solution can contain a sliding material such as PTFE or carbon, or a stress relaxation material such as saccharin, if necessary. In this embodiment, PTFE particles are used as a sliding material in an electrolyte solution. The kind of the deposited metal is appropriately selected according to required properties such as hardness required for the bearing surface of the bearing or resistance to lubricating oil (oil resistance).

以上の工程を経ることにより、図4に示すように、マスター内周面21aのマスキング部22で被覆されていない領域に薄肉円筒状の電鋳部11が形成される。なお、電鋳部11の厚みは、これが薄すぎると軸受面(外周面11a)の耐久性低下等につながり、厚すぎるとマスター21からの剥離性が低下する可能性があるので、求められる軸受性能や軸受サイズ、用途等に応じて最適な厚み、例えば5μm〜200μmの範囲に設定される。なお、電鋳部11の形成手段として、上述の電解めっきに準じる方法の他、還元剤の作用により目的の金属をマスター表面に析出形成する、いわゆる無電解めっきに準じる方法を採用することも可能である。   By passing through the above process, as shown in FIG. 4, the thin cylindrical electroformed part 11 is formed in the area | region which is not coat | covered with the masking part 22 of the master internal peripheral surface 21a. If the thickness of the electroformed part 11 is too thin, the durability of the bearing surface (outer peripheral surface 11a) will be reduced, and if it is too thick, the peelability from the master 21 may be lowered. The optimum thickness is set in accordance with performance, bearing size, application, etc., for example, in the range of 5 μm to 200 μm. In addition to the method according to the above-described electrolytic plating, it is possible to adopt a method according to so-called electroless plating in which a target metal is deposited on the master surface by the action of a reducing agent, as a method for forming the electroformed part 11. It is.

上記工程を経て形成された電鋳部11は、樹脂部12をインサート成形する成形型内に例えばマスター21と一体にインサート部品として供給配置される。この場合、使用される成形金型23、24は、型締め時、図4に示すように、軸2(およびロータプレート部3)に倣ったキャビティ25を有する。この成形金型23、24を用いて例えばゲート26より溶融樹脂をキャビティ25内に充填し、これを固化させることで、同図に示す形状の樹脂部12と電鋳部11、さらにこの実施形態ではロータプレート部3とを一体に有する軸2が成形される。   The electroformed part 11 formed through the above steps is supplied and arranged as an insert part integrally with, for example, the master 21 in a mold for insert molding the resin part 12. In this case, the molding dies 23 and 24 to be used have a cavity 25 that follows the shaft 2 (and the rotor plate portion 3) as shown in FIG. By using the molding dies 23, 24, for example, the molten resin is filled into the cavity 25 from the gate 26 and solidified, whereby the resin portion 12 and the electroformed portion 11 having the shapes shown in FIG. Then, the shaft 2 integrally having the rotor plate portion 3 is formed.

樹脂部12の材料、すなわち成形金型23、24のキャビティ25内に充填される材料は、電鋳部11の材料よりも低い凝固点を有する材料であればよく、例えば樹脂や金属等が使用可能である。このうち、樹脂材料としては、例えば液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリアセタール(POM)、ポリアミド(PA)等の結晶性樹脂、あるいは、ポリフェニルサルフォン(PPSU)、ポリエーテルサルフォン(PES)、ポリエーテルイミド(PEI)、ポリアミドイミド(PAI)等の非晶性樹脂がベース樹脂として使用可能である。また、必要に応じて強化材(繊維状、粉末状等の形態は問わない)や潤滑剤、導電化剤等の各種充填材を加えてもよい。   The material of the resin part 12, that is, the material filled in the cavity 25 of the molding dies 23, 24 may be a material having a lower freezing point than the material of the electroformed part 11, and for example, resin or metal can be used. It is. Among these, examples of the resin material include crystalline resins such as liquid crystal polymer (LCP), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyacetal (POM), polyamide (PA), or polyphenylsulfone. Amorphous resins such as (PPSU), polyethersulfone (PES), polyetherimide (PEI), and polyamideimide (PAI) can be used as the base resin. Moreover, you may add various fillers, such as a reinforcement (regardless of forms, such as a fiber form and a powder form), a lubrication agent, and a electrically conductive agent as needed.

成形後、マスター21と電鋳部11、および樹脂部12(この実施形態では、樹脂部12とロータプレート部3)とが一体となった成形品を金型23、24から脱型する。この成形品は、その後の分離工程において軸2とマスター21とに分離される。   After the molding, the molded product in which the master 21, the electroformed part 11, and the resin part 12 (in this embodiment, the resin part 12 and the rotor plate part 3) are integrated is removed from the molds 23 and 24. This molded product is separated into the shaft 2 and the master 21 in a subsequent separation step.

分離工程では、例えばマスター21あるいは電鋳部11に衝撃を加えることで、電鋳部11の外周面11aをマスター21の内周面21aから剥離させる。これにより、マスター21が電鋳部11および樹脂部12から引抜かれ、完成品としての軸2が得られる。   In the separation step, for example, the outer peripheral surface 11 a of the electroformed part 11 is peeled off from the inner peripheral surface 21 a of the master 21 by applying an impact to the master 21 or the electroformed part 11. Thereby, the master 21 is pulled out from the electroformed part 11 and the resin part 12, and the axis | shaft 2 as a finished product is obtained.

なお、電鋳部11の分離手段としては、上記手段以外に、例えば電鋳部11とマスター21とを加熱(又は冷却)し、両者間に熱膨張量差を生じさせることによる方法、あるいは両手段(衝撃と加熱)を併用する手段等が使用可能である。   As the separating means for the electroformed part 11, in addition to the above means, for example, the electroformed part 11 and the master 21 are heated (or cooled), and a difference in thermal expansion amount is produced between them, or both. Means using both means (impact and heating) can be used.

上述の如く形成された軸2を、ハウジング8に固定された軸受部材9の内周に挿入し、ラジアル軸受隙間の大気開放側(シール部10の側)から潤滑油を注油する。これにより、ラジアル軸受隙間を含む軸受内部空間を潤滑油で充満した流体軸受装置1が完成する。また、シール部10の内周面10aとこれに対向する軸2の外周面(ここでは樹脂部12の大径面12c)との間にはシール空間Sが形成されるが、上述のように軸受内部空間を潤滑油で満たした状態では、潤滑油の油面が常時シール空間S内に維持されるようになっている。   The shaft 2 formed as described above is inserted into the inner periphery of the bearing member 9 fixed to the housing 8, and lubricating oil is injected from the air release side (the seal portion 10 side) of the radial bearing gap. Thereby, the hydrodynamic bearing device 1 in which the bearing internal space including the radial bearing gap is filled with the lubricating oil is completed. Further, a seal space S is formed between the inner peripheral surface 10a of the seal portion 10 and the outer peripheral surface of the shaft 2 (here, the large-diameter surface 12c of the resin portion 12), but as described above. In a state where the bearing internal space is filled with the lubricating oil, the oil level of the lubricating oil is always maintained in the seal space S.

上記構成の流体軸受装置1において、軸2の回転時、電鋳部11の外周面11aはラジアル軸受面として、軸受部材9の内周面9aと対向する。また、内周面9aに形成された動圧溝配列領域(図示は省略)と、電鋳部11の外周面11aとの間にはラジアル軸受隙間が形成される。軸2の回転に伴い、軸受内部空間の潤滑油が内周面9aに形成された動圧溝によりラジアル軸受隙間に引き込まれ、この隙間における圧力が上昇する。このような動圧発生部(動圧溝)の動圧作用によって、ラジアル軸受隙間に軸2をラジアル方向に非接触支持するラジアル軸受部Rが形成される。同時に、軸2の一端面12aが、これに対向するハウジング8底部の上端面8aにより接触支持(ピボット支持)され、これにより両面12a、8a間に、軸2をスラスト方向に回転自在に支持するスラスト軸受部Tが形成される。   In the hydrodynamic bearing device 1 configured as described above, when the shaft 2 rotates, the outer peripheral surface 11a of the electroformed part 11 faces the inner peripheral surface 9a of the bearing member 9 as a radial bearing surface. A radial bearing gap is formed between the dynamic pressure groove array region (not shown) formed on the inner peripheral surface 9 a and the outer peripheral surface 11 a of the electroformed part 11. As the shaft 2 rotates, the lubricating oil in the bearing inner space is drawn into the radial bearing gap by the dynamic pressure groove formed in the inner peripheral surface 9a, and the pressure in the gap increases. By such a dynamic pressure action of the dynamic pressure generating portion (dynamic pressure groove), a radial bearing portion R for supporting the shaft 2 in the radial direction in a non-contact manner is formed in the radial bearing gap. At the same time, the one end surface 12a of the shaft 2 is contact-supported (pivot supported) by the upper end surface 8a of the bottom portion of the housing 8 facing this, thereby supporting the shaft 2 rotatably between the both surfaces 12a and 8a in the thrust direction. A thrust bearing portion T is formed.

このように、ラジアル軸受面を含む軸2の外周部分を金属めっき部(ここでは電鋳部11)で形成し、軸2の電鋳部11を除く残りの部分を樹脂部12で構成することで、樹脂部12の外径側への膨張を外径側に設けた電鋳部11によって抑制することができる。そのため、温度上昇に伴い軸2が外径側に膨張し、軸受部材9の内周面9aとの間に形成されるラジアル軸受隙間が大きく変動する事態を避けて、当該軸受隙間を適正な間隔に維持することができる。   As described above, the outer peripheral portion of the shaft 2 including the radial bearing surface is formed by the metal plating portion (here, the electroformed portion 11), and the remaining portion excluding the electroformed portion 11 of the shaft 2 is configured by the resin portion 12. Thus, expansion of the resin portion 12 to the outer diameter side can be suppressed by the electroformed portion 11 provided on the outer diameter side. Therefore, the shaft 2 expands to the outer diameter side as the temperature rises, and a situation in which the radial bearing gap formed between the inner peripheral surface 9a of the bearing member 9 fluctuates greatly is avoided, and the bearing gap is kept at an appropriate interval. Can be maintained.

また、電鋳部11は、上述の如く、電解めっき加工あるいは無電解めっき加工に準じる方法で形成されるものであるから、当該加工の特性上、電鋳部11の析出開始側の面(外周面11a)にマスター21の表面形状(ここでは内周面21aの面形状)が非常に微細なレベルまで高精度に転写される。そのため、マスター21の内周面21aの表面精度を高め、かつ電鋳部11の析出開始側の面をラジアル軸受面として使用すれば、特に面仕上げ等の後加工を施すことなく、高精度な外周面11aを低コストに得ることができる。また、その加工精度(面精度)は対応するマスター21の面精度にのみ依存し、そのサイズには依存しないため、軸2を小型化した場合であっても、高い面精度を有する電鋳部11の外周面11aを得ることができる。そのため、小型化を図りつつも、高い面精度ひいては高精度な軸受隙間を有する流体軸受装置1を低コストに形成することができる。   Moreover, since the electroformed part 11 is formed by the method according to the electrolytic plating process or the electroless plating process as described above, the surface (outer periphery) of the electroformed part 11 on the deposition start side due to the characteristics of the process. The surface shape of the master 21 (here, the surface shape of the inner peripheral surface 21a) is transferred to the surface 11a) with high accuracy to a very fine level. Therefore, if the surface accuracy of the inner peripheral surface 21a of the master 21 is increased and the surface on the deposition start side of the electroformed part 11 is used as a radial bearing surface, it is highly accurate without performing post-processing such as surface finishing. The outer peripheral surface 11a can be obtained at low cost. Further, since the processing accuracy (surface accuracy) depends only on the surface accuracy of the corresponding master 21 and does not depend on the size, the electroformed part having high surface accuracy even when the shaft 2 is downsized. 11 outer peripheral surfaces 11a can be obtained. Therefore, it is possible to form the hydrodynamic bearing device 1 having a high surface accuracy and thus a high-accuracy bearing gap at a low cost while reducing the size.

また、この種の形状をなすマスター21に対して電解めっき加工を行う際、マスター21内周に形成した電鋳部11の最外表面(ここでは内周面11b)が粗くなる傾向を利用して、電鋳部11の抜止め作用を軸2に付与することができる。すなわち、電鋳部11の内周面11bを適度に粗くした状態で樹脂部12を成形することで、電鋳部11との密着面となる樹脂部12の小径面12bとの密着力を高め、これにより電鋳部11の抜止めを図ることができる。   Further, when electrolytic plating is performed on the master 21 having this type of shape, the tendency is that the outermost surface (in this case, the inner peripheral surface 11b) of the electroformed part 11 formed on the inner periphery of the master 21 becomes rough. Thus, the retaining action of the electroformed part 11 can be imparted to the shaft 2. That is, by forming the resin portion 12 in a state where the inner peripheral surface 11b of the electroformed portion 11 is appropriately roughened, the adhesion force with the small diameter surface 12b of the resin portion 12 that becomes the close contact surface with the electroformed portion 11 is increased. Thus, it is possible to prevent the electroformed part 11 from being removed.

また、この実施形態では、電鋳部11をインサート部品として軸2を型成形することで、軸2の電鋳部11以外の箇所(樹脂部12)の成形と、これらの組付けとを一工程で同時に行うことができ、コストダウンにもつながる。また、電鋳部11をマスター21と一体にインサートすることで、電鋳部11の肉厚が薄い場合であっても、樹脂部12と容易に一体成形することができ、電鋳部11単体のハンドリング性を考慮せずに済む。   In this embodiment, the shaft 2 is die-molded using the electroformed part 11 as an insert part, so that the part (resin part 12) other than the electroformed part 11 of the shaft 2 is molded and assembled. It can be performed simultaneously in the process, leading to cost reduction. In addition, by inserting the electroformed part 11 integrally with the master 21, even when the electroformed part 11 is thin, it can be easily formed integrally with the resin part 12, and the electroformed part 11 alone It is not necessary to consider the handling characteristics.

また、軸2を、電鋳部11をインサート部品とする樹脂の射出成形で形成することで、例えばロータプレート部3など、軸2の一端に取り付けるべき部材を軸2と一体的に形成することができる。そのため、流体軸受装置1の使用時、軸2と軸2の一端に取り付ける部材との間(固定面間)から潤滑油が漏れ出すのを防止することができる。   Further, by forming the shaft 2 by resin injection molding using the electroformed part 11 as an insert part, a member to be attached to one end of the shaft 2 such as the rotor plate part 3 is formed integrally with the shaft 2. Can do. Therefore, when the hydrodynamic bearing device 1 is used, it is possible to prevent the lubricating oil from leaking from between the shaft 2 and a member attached to one end of the shaft 2 (between the fixed surfaces).

以上、本発明の一実施形態を説明したが、本発明は上記実施形態に限られるものではなく、軸2を、ラジアル軸受隙間に面する金属めっき部と樹脂部12とで構成するものである限り、他の形態を採ることも可能である。   As mentioned above, although one Embodiment of this invention was described, this invention is not restricted to the said embodiment, The axis | shaft 2 is comprised with the metal plating part and resin part 12 which face a radial bearing clearance gap. As long as other forms are possible.

上記実施形態では、軸2を構成する樹脂部12を異径形状とし、小径部の外周に電鋳部11を固定することで一体化した場合を説明したが、電鋳部11の抜止め力向上のため、これ以外の構成を採ることも可能である。例えば、キャビティ25の、樹脂部12の一端を予め大径に形成しておくことで、電鋳部11の上下端に樹脂を回りこませるようにして樹脂部12を形成することができる。これにより、例えば図6に示すように、樹脂部12の一端側(軸2の先端側)に、電鋳部11を外周に設けた小径部より大径の大径部12dを設けて、大径部12dを係合部として電鋳部11と軸方向で係合させることができる。従って、電鋳部11の抜止め力向上を図ることが可能となる。また、同図に示すように、電鋳部11を軸方向両側から挟持することで、さらなる抜止め力の向上を図ることができる。   Although the said embodiment demonstrated the case where the resin part 12 which comprises the axis | shaft 2 was made into different diameter shape and integrated by fixing the electroformed part 11 to the outer periphery of a small diameter part, the retaining force of the electroformed part 11 was demonstrated. It is possible to adopt other configurations for improvement. For example, by forming one end of the resin portion 12 of the cavity 25 in a large diameter in advance, the resin portion 12 can be formed so that the resin wraps around the upper and lower ends of the electroformed portion 11. Thus, for example, as shown in FIG. 6, a large diameter portion 12d having a larger diameter than the small diameter portion having the electroformed portion 11 provided on the outer periphery is provided on one end side of the resin portion 12 (the tip end side of the shaft 2). The diameter part 12d can be engaged with the electroformed part 11 in the axial direction using the engaging part. Therefore, it becomes possible to improve the retaining force of the electroformed part 11. Moreover, as shown in the figure, by further clamping the electroformed part 11 from both sides in the axial direction, it is possible to further improve the retaining force.

あるいは、図7に示すように、マスター内周面21aの電鋳部11形成予定領域内の一部にマスキング部27(同図では2箇所)を設けておき、これらマスキングを施した領域22、27以外の領域に電鋳部11を形成する。このように、マスキング部27上に電鋳部11を形成させずに残すことで、筒状をなす電鋳部11の、マスキング部27に対応する箇所に凹部(ここでは孔)28を形成することができる。従って、この凹部28を有する電鋳部11をインサートして軸2(樹脂部12)を成形することで、溶融樹脂がマスキング部27により形成された空間(凹部28)に流れ込み、固化する。凹部28に流れ込んで固化した部分は、電鋳部11と軸方向で係合する係合部として作用するため、これをもって電鋳部11の抜止めとすることが可能となる。なお、電鋳部11に対する抜止めとして作用する限り、凹部28の形状は任意である。図8に示す孔状の他、円周方向に延びる帯状など、種々の形状が採用可能である。もちろん、電鋳部11に限らず、金属めっき部が形成されていれば、例えば樹脂部11の金型形状を工夫するなどして、上述の係合部を形成することも可能である。   Alternatively, as shown in FIG. 7, a masking portion 27 (two locations in the figure) is provided in a part of the area planned to form the electroformed portion 11 of the master inner peripheral surface 21 a, and the regions 22 subjected to these masking, The electroformed part 11 is formed in a region other than 27. In this way, by leaving the electroformed part 11 on the masking part 27 without forming it, a recess (here, a hole) 28 is formed at a location corresponding to the masking part 27 of the cylindrical electroformed part 11. be able to. Therefore, by inserting the electroformed part 11 having the recess 28 and molding the shaft 2 (resin part 12), the molten resin flows into the space (recess 28) formed by the masking part 27 and solidifies. Since the portion that has flowed into the recess 28 and solidified acts as an engaging portion that engages with the electroformed portion 11 in the axial direction, this can be used to prevent the electroformed portion 11 from being removed. In addition, as long as it acts as a retaining for the electroformed part 11, the shape of the recess 28 is arbitrary. In addition to the hole shape shown in FIG. 8, various shapes such as a belt shape extending in the circumferential direction can be adopted. Needless to say, not only the electroformed part 11 but also a metal plating part can be formed, for example, by devising the mold shape of the resin part 11 to form the engaging part.

また、上記実施形態では、軸2のインサート成形後、電鋳部11をマスター21から分離して引き抜いたものを、ハウジング8に一体的に固定された軸受部材9の内周に挿入することで、流体軸受装置1を構成した場合を例示したが、マスター21をそのまま軸受部材9として使用することも可能である。例えば図示は省略するが、電鋳部11をマスター21から分離して引き抜いた後、マスター21を成形金型にインサートした状態で図2に示すハウジング8を樹脂で一体に成形する。このようにしてハウジング8の内周側に配設されたマスター21の内周に軸2を挿入することで、マスター21を軸受部材として使用することができる。もちろん、電鋳部11をマスター21と分離した後、電鋳部11(を備えた軸2)を引き抜くことなく、そのままマスター21を軸受部材9として使用することもできる。この場合、互いにラジアル軸受隙間を形成する電鋳部11の外周面11aとマスター21の内周面21aとは転写元の面と転写先の面との関係にある。そのため、電鋳部とマスターとで軸受隙間を構成すれば、非常にばらつきの少ない高精度な軸受隙間を得ることができる。また、実際には、製品ごとに寸法上のばらつきが生じるため、例えばラジアル軸受隙間が所定の範囲に収まるよう、作製した複数の軸2と軸受部材9との間でマッチングを行うのが通常であるが、この種の方法で軸受隙間を形成するのであれば、上述のマッチング工程を省略することができ、効率的である。   Moreover, in the said embodiment, after insert-molding of the axis | shaft 2, what separated and extracted the electroformed part 11 from the master 21 is inserted in the inner periphery of the bearing member 9 fixed to the housing 8 integrally. Although the case where the fluid dynamic bearing device 1 is configured is illustrated, the master 21 can be used as the bearing member 9 as it is. For example, although illustration is omitted, after the electroformed part 11 is separated from the master 21 and pulled out, the housing 8 shown in FIG. 2 is integrally molded with resin in a state where the master 21 is inserted into a molding die. Thus, the master 21 can be used as a bearing member by inserting the shaft 2 into the inner periphery of the master 21 disposed on the inner periphery side of the housing 8. Of course, after separating the electroformed part 11 from the master 21, the master 21 can be used as the bearing member 9 as it is without pulling out the electroformed part 11 (the shaft 2 having the electroformed part 11). In this case, the outer peripheral surface 11a of the electroformed part 11 and the inner peripheral surface 21a of the master 21 that form a radial bearing gap are in a relationship between the transfer source surface and the transfer destination surface. Therefore, if a bearing gap is formed by the electroformed part and the master, a highly accurate bearing gap with very little variation can be obtained. Moreover, in practice, since dimensional variations occur for each product, for example, it is normal to perform matching between the plurality of shafts 2 and the bearing member 9 so that the radial bearing gap is within a predetermined range. However, if the bearing gap is formed by this kind of method, the above-described matching process can be omitted, which is efficient.

また、上記実施形態では、電鋳部11および樹脂部12からなる軸2で流体軸受装置1の回転部材を構成した場合を説明したが、これとは逆に、流体軸受装置1の固定部材を軸2で構成することも可能である。図9はその一例を示すもので、同図に示す流体軸受装置1では、電鋳部11および樹脂部12からなる軸2がハウジング8と一体的に形成されている。また、軸受部材9をインサート部品とする筒部13が形成されており、この筒部13がロータプレート部3に一体的に設けられている。シール部10は、筒部13と一体に形成されている。従って、この実施形態では、軸2とハウジング8とで固定部材が構成されると共に、軸受部材9とシール部10、および筒部13とで回転部材が構成されている。この場合、筒部13の上端側を覆う蓋部13aの下端面13bが、これと対向する軸2の一端面12aにより接触支持(ピボット支持)され、これにより軸受部材9および筒部13を有する回転部材がスラスト方向に回転自在に支持される。上述の構成は、電鋳部11に限らず、金属めっき部を軸2に設けたものである限り適用可能である。   Moreover, although the said embodiment demonstrated the case where the rotating member of the hydrodynamic bearing device 1 was comprised with the axis | shaft 2 which consists of the electroformed part 11 and the resin part 12, on the contrary, the fixing member of the hydrodynamic bearing device 1 was used. It is also possible to configure with the shaft 2. FIG. 9 shows an example thereof. In the hydrodynamic bearing device 1 shown in FIG. 9, the shaft 2 composed of the electroformed portion 11 and the resin portion 12 is formed integrally with the housing 8. Further, a cylindrical portion 13 having the bearing member 9 as an insert part is formed, and this cylindrical portion 13 is provided integrally with the rotor plate portion 3. The seal portion 10 is formed integrally with the tube portion 13. Accordingly, in this embodiment, the shaft 2 and the housing 8 constitute a fixing member, and the bearing member 9, the seal portion 10, and the cylindrical portion 13 constitute a rotating member. In this case, the lower end surface 13b of the lid portion 13a covering the upper end side of the cylindrical portion 13 is contact-supported (pivot supported) by the one end surface 12a of the shaft 2 facing this, thereby having the bearing member 9 and the cylindrical portion 13. The rotating member is supported so as to be rotatable in the thrust direction. The above-described configuration is not limited to the electroformed part 11 but can be applied as long as a metal plating part is provided on the shaft 2.

以上、本発明の流体軸受装置1への適用例について説明したが、上記構成の流体軸受装置1は、例示のファンモータだけでなく、HDD用のスピンドルモータをはじめとするディスクドライブ用スピンドルモータの軸受装置など、種々の電気機器用モータの軸受装置として好適に適用可能である。例えば、HDD用のモータに本発明に係る流体軸受装置1を適用する場合、ディスクを搭載するハブを、また、ポリゴンスキャナモータに流体軸受装置1を使用する場合、ポリゴンミラーを保持するターンテーブル等がそれぞれ軸2に取り付けられ、あるい図示のように軸2と一体に形成される。なお、この際、電鋳部11やマスター21以外の部品、例えばヨーク7やこれを備えたロータマグネット4bを一体に形成することも可能である。   As described above, the application example of the present invention to the hydrodynamic bearing device 1 has been described. The hydrodynamic bearing device 1 having the above-described configuration is not limited to the illustrated fan motor, but includes a spindle motor for a disk drive including an HDD spindle motor. The present invention can be suitably applied as a bearing device for various electric motors such as a bearing device. For example, when the hydrodynamic bearing device 1 according to the present invention is applied to an HDD motor, a hub for mounting a disk is used. When the hydrodynamic bearing device 1 is used for a polygon scanner motor, a turntable that holds a polygon mirror, etc. Are attached to the shaft 2 or formed integrally with the shaft 2 as shown. At this time, parts other than the electroformed part 11 and the master 21, for example, the yoke 7 and the rotor magnet 4b including the yoke 7 can be integrally formed.

また、以上の説明では、ラジアル軸受部Rを構成する動圧発生部として、複数の動圧溝を所定の形状(へリングボーン形状など)に配列したものを例示しているが、本発明はこれに限定されるものではない。すなわち、本発明に係る流体軸受装置1は、ラジアル軸受面を有する電鋳部11と樹脂部12とからなる軸2を備えるものであればよく、動圧発生部の有無は問題にはならない。従って、本発明に係る流体軸受装置1は、動圧発生部を、軸受部材9と軸2、何れの側に設けたものでもよく、あるいは動圧発生部を持たないいわゆる流体真円軸受を構成するものであってもよい。また、動圧発生部としては、上述の配列形状に限らず、任意の形態をなす動圧発生部(例えばスパイラル形状の動圧溝領域、ステップ軸受、多円弧軸受など)が構成可能である。   Moreover, in the above description, as the dynamic pressure generating portion constituting the radial bearing portion R, an example in which a plurality of dynamic pressure grooves are arranged in a predetermined shape (such as a herringbone shape) is illustrated. It is not limited to this. That is, the hydrodynamic bearing device 1 according to the present invention only needs to include the shaft 2 including the electroformed portion 11 having the radial bearing surface and the resin portion 12, and the presence or absence of the dynamic pressure generating portion does not matter. Therefore, the hydrodynamic bearing device 1 according to the present invention may have a dynamic pressure generating portion provided on either side of the bearing member 9 and the shaft 2, or constitute a so-called fluid perfect bearing having no dynamic pressure generating portion. You may do. Further, the dynamic pressure generating portion is not limited to the above-described arrangement shape, and a dynamic pressure generating portion having an arbitrary form (for example, a spiral-shaped dynamic pressure groove region, a step bearing, a multi-arc bearing, or the like) can be configured.

また、以上の説明では、スラスト軸受部Tを、ピボット軸受で構成した場合を例示したが、ラジアル軸受部Rと同様、軸方向に対向する両面12a、8a間にスラスト軸受隙間を介在させ、この隙間に動圧作用を生じる動圧発生部を何れか一方の面に設けることでスラスト軸受部Tを構成することもできる。もちろんその場合には、へリングボーン形状やスパイラル形状をなす動圧溝配列領域など、ラジアル軸受部と同様、種々の動圧発生部を採用することができる。   Further, in the above description, the case where the thrust bearing portion T is constituted by a pivot bearing has been exemplified. However, like the radial bearing portion R, a thrust bearing gap is interposed between both axially opposed surfaces 12a and 8a. The thrust bearing portion T can also be configured by providing a dynamic pressure generating portion that generates a dynamic pressure action in the gap on any one surface. Of course, in this case, various dynamic pressure generating portions such as a herringbone shape and a spiral dynamic pressure groove arrangement region can be employed as in the case of the radial bearing portion.

また、以上の説明では、流体軸受装置1の内部に充満し、ラジアル軸受隙間に流体の流体膜を形成可能な流体として潤滑油を例示したが、それ以外にも当該軸受隙間に流体の流体膜を発生可能な流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。   In the above description, the lubricating oil is exemplified as the fluid that fills the inside of the hydrodynamic bearing device 1 and can form a fluid film of the fluid in the radial bearing gap. It is also possible to use a fluid capable of generating water, for example, a gas such as air, a fluid lubricant such as a magnetic fluid, or lubricating grease.

本発明の一実施形態に係る流体軸受装置を具備したモータの断面図である。It is sectional drawing of the motor which comprised the hydrodynamic bearing apparatus which concerns on one Embodiment of this invention. 流体軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus. マスキング部を設けた状態のマスターの縦断面図である。It is a longitudinal cross-sectional view of the master of the state which provided the masking part. 電鋳部を形成したマスターの縦断面図である。It is a longitudinal cross-sectional view of the master in which the electroformed part was formed. 電鋳部をインサートした状態の軸の成形金型の断面図である。It is sectional drawing of the shaping | molding die of the axis | shaft of the state which inserted the electroformed part. 他構成の軸を備えた流体軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus provided with the axis | shaft of another structure. 他構成のマスキング部を設けた状態のマスターの縦断面図である。It is a longitudinal cross-sectional view of the master of the state which provided the masking part of another structure. 他構成の電鋳部を形成したマスターの縦断面図である。It is a longitudinal cross-sectional view of the master in which the electroformed part of another structure was formed. 他の実施形態に係る流体軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus which concerns on other embodiment.

符号の説明Explanation of symbols

1 流体軸受装置
2 軸
8 ハウジング
9 軸受部材
9a 内周面
11 電鋳部(金属めっき部)
11a 外周面
12 樹脂部
21 マスター
21a 内周面
22 マスキング部
R ラジアル軸受部
T スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Fluid dynamic bearing apparatus 2 Shaft 8 Housing 9 Bearing member 9a Inner peripheral surface 11 Electroformed part (metal plating part)
11a Outer peripheral surface 12 Resin portion 21 Master 21a Inner peripheral surface 22 Masking portion R Radial bearing portion T Thrust bearing portion

Claims (4)

軸受隙間と、軸受隙間を形成する固定部材と回転部材のうち何れか一方を構成し、外周面が軸受隙間に面する軸とを備え、軸受隙間に形成される流体の膜で回転部材を支持する流体軸受装置において、
軸の外周面の軸受隙間に面する領域を、マスター内周に析出した金属からなる金属めっき部で構成すると共に、軸の金属めっき部を除く領域を樹脂部で構成し
樹脂部が金属めっき部をインサート部品とする射出成形品であって、金属めっき部の外周面が、樹脂部の射出成形後に金属めっき部をマスター内周から分離可能とすることで得られた析出開始側の面であることを特徴とする流体軸受装置。
A bearing gap, a fixed member that forms the bearing gap, and a rotating member are configured, and an outer peripheral surface is provided with a shaft that faces the bearing gap, and the rotating member is supported by a fluid film formed in the bearing gap. In the hydrodynamic bearing device
The region facing the bearing gap on the outer peripheral surface of the shaft is composed of a metal plating portion made of metal deposited on the inner periphery of the master, and the region excluding the metal plating portion of the shaft is composed of a resin portion ,
Precipitation obtained when the resin part is an injection-molded product with a metal-plated part as an insert part, and the outer peripheral surface of the metal-plated part is separable from the inner circumference of the master after the injection molding of the resin part A hydrodynamic bearing device which is a start side surface .
樹脂部の一部で金属めっき部と軸方向で係合する係合部を形成し、この係合部の外周面で金属めっき部の外周面と共に軸の外周面を構成した請求項1に記載の流体軸受装置。 In some of the resin portion to form an engaging portion which engages with a metal plating section in the axial direction, according to claim 1 which constitutes a peripheral surface of the shaft with the outer peripheral surface of the metal plating section in the outer peripheral surface of the engagement portion Fluid bearing device. マスターの内周面で、金属めっき部の外周面との間に軸受隙間を形成した請求項1に記載の流体軸受装置。 The hydrodynamic bearing device according to claim 1, wherein a bearing gap is formed between the inner peripheral surface of the master and the outer peripheral surface of the metal plating portion. 請求項1〜の何れかに記載の流体軸受装置を備えたモータ。 The motor provided with the hydrodynamic bearing apparatus in any one of Claims 1-3 .
JP2006223455A 2006-03-02 2006-08-18 Hydrodynamic bearing device Expired - Fee Related JP4937675B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006223455A JP4937675B2 (en) 2006-08-18 2006-08-18 Hydrodynamic bearing device
PCT/JP2007/052834 WO2007099790A1 (en) 2006-03-02 2007-02-16 Fluid bearing device
US12/281,431 US8876386B2 (en) 2006-03-02 2007-02-16 Fluid dynamic bearing device
US13/481,282 US8876388B2 (en) 2006-03-02 2012-05-25 Fluid dynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006223455A JP4937675B2 (en) 2006-08-18 2006-08-18 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2008045695A JP2008045695A (en) 2008-02-28
JP4937675B2 true JP4937675B2 (en) 2012-05-23

Family

ID=39179624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006223455A Expired - Fee Related JP4937675B2 (en) 2006-03-02 2006-08-18 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4937675B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039185A (en) * 2000-07-27 2002-02-06 Canon Inc Dynamic pressure bearing and method of manufacturing it
JP3820480B2 (en) * 2001-08-09 2006-09-13 株式会社ティ・アンド・ティホールディングス A pair of shafts and resin bearing parts and method of manufacturing the same

Also Published As

Publication number Publication date
JP2008045695A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
WO2007099790A1 (en) Fluid bearing device
WO2006123602A1 (en) Bearing and bearing device
JP4987248B2 (en) Bearing device and motor having the bearing device
US8052328B2 (en) Bearing device with sliding bearing
JP4937588B2 (en) Bearing device and motor equipped with the same
JP2007263311A (en) Dynamic pressure bearing device
JP5058516B2 (en) Hydrodynamic bearing device
JP4937675B2 (en) Hydrodynamic bearing device
JP4794964B2 (en) Bearing device and motor equipped with the same
JP4813211B2 (en) Sliding bearing, motor equipped with the same, and manufacturing method of sliding bearing
JP2007205491A (en) Bearing device for fan motor
JP4794966B2 (en) Bearing device, motor provided with the same, and method for manufacturing bearing device
JP4890066B2 (en) Hydrodynamic bearing device and fan motor having the same
JP4633591B2 (en) Plain bearing
JP4896430B2 (en) Bearing device and motor using the bearing device
JP2007092845A (en) Bearing device
JP4896429B2 (en) Bearing, bearing device, motor, and bearing manufacturing method
JP4804894B2 (en) Bearing device and manufacturing method thereof
JP2007162883A (en) Bearing device
JP4584093B2 (en) Plain bearing
JP4948825B2 (en) Bearing member and manufacturing method thereof
JP4937618B2 (en) Hydrodynamic bearing device
JP2007051718A (en) Fluid bearing device
JP4846470B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND MOTOR HAVING THE SAME
JP2006322522A (en) Bearing device and manufacturing method for bearing member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4937675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees