JP4896429B2 - Bearing, bearing device, motor, and bearing manufacturing method - Google Patents

Bearing, bearing device, motor, and bearing manufacturing method Download PDF

Info

Publication number
JP4896429B2
JP4896429B2 JP2005145506A JP2005145506A JP4896429B2 JP 4896429 B2 JP4896429 B2 JP 4896429B2 JP 2005145506 A JP2005145506 A JP 2005145506A JP 2005145506 A JP2005145506 A JP 2005145506A JP 4896429 B2 JP4896429 B2 JP 4896429B2
Authority
JP
Japan
Prior art keywords
bearing
electroformed
electroformed part
shaft
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005145506A
Other languages
Japanese (ja)
Other versions
JP2006322508A (en
Inventor
夏比古 森
信好 山下
真史 大熊
健一 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2005145506A priority Critical patent/JP4896429B2/en
Priority to CN2006800172872A priority patent/CN101203685B/en
Priority to PCT/JP2006/309640 priority patent/WO2006123602A1/en
Priority to US11/795,410 priority patent/US20080212908A1/en
Priority to KR1020077016103A priority patent/KR101414110B1/en
Publication of JP2006322508A publication Critical patent/JP2006322508A/en
Application granted granted Critical
Publication of JP4896429B2 publication Critical patent/JP4896429B2/en
Priority to US13/435,915 priority patent/US8931175B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Motor Or Generator Frames (AREA)

Description

本発明は、軸受面を電鋳で形成した軸受およびその製造方法に関する。   The present invention relates to a bearing having a bearing surface formed by electroforming and a manufacturing method thereof.

滑り軸受(以下、単に「軸受」と称する)は、軸部材との間の相対的な回転、摺動、もしくは摺動回転を支持する用途に広く用いられている。この種の軸受では、その軸受面精度が軸受性能を大きく左右するので、良好な軸受面精度を得るため、従来から多種多様の提案がなされている。   Sliding bearings (hereinafter simply referred to as “bearings”) are widely used in applications that support relative rotation, sliding, or sliding rotation with a shaft member. In this type of bearing, since the bearing surface accuracy greatly affects the bearing performance, various proposals have been conventionally made in order to obtain good bearing surface accuracy.

例えば、特開2003−56552号公報や特開2003−56569号公報では、軸受面精度を向上するために電鋳部をインサートモールドした軸受(電鋳軸受)が提案されている。両公報に記載の発明は、何れもマスター軸の不必要な部分をマスキングして、マスク部以外に電鋳殻である円筒状の電鋳部を形成し、この電鋳部の外周に射出成形により樹脂を充填して軸受を成形した後、軸受をマスター軸から分離するものである。
特開2003−56552号公報 特開2003−56569号公報
For example, JP 2003-56552 A and JP 2003-56569 A propose a bearing (electroformed bearing) in which an electroformed part is insert-molded in order to improve bearing surface accuracy. In both the inventions described in both publications, unnecessary portions of the master shaft are masked to form a cylindrical electroformed portion which is an electroformed shell other than the mask portion, and injection molding is performed on the outer periphery of the electroformed portion. After the resin is filled by molding the bearing, the bearing is separated from the master shaft.
JP 2003-56552 A JP 2003-56569 A

ところで、電鋳部を円筒状に成形した場合、成形後の電鋳部の内部組織には拡径方向の残留応力が作用すると考えられる。その一方で、円筒状の樹脂モールド部は、固化に伴って収縮しようとするので、電鋳部の樹脂モールド後は、電鋳部の外周面と樹脂モールド部の内周面とが互いに相手側に押し付けられる。加えて、電鋳部の内周面はマスター軸の外周面に倣った平滑面となるが、電鋳部の外周面は一般に粗面となるので、樹脂モールド後は電鋳部の表面凹凸に樹脂が入り込み、アンカー効果を生じる。これらの複合作用により、電鋳部と樹脂モールド部との間に強固な固着力が得られる。   By the way, when an electroformed part is shape | molded cylindrically, it is thought that the residual stress of a diameter expansion direction acts on the internal structure of the electroformed part after shaping | molding. On the other hand, since the cylindrical resin mold portion tends to shrink as it solidifies, the outer peripheral surface of the electroformed portion and the inner peripheral surface of the resin mold portion are opposite to each other after the resin molding of the electroformed portion. Pressed against. In addition, the inner peripheral surface of the electroformed part is a smooth surface that follows the outer peripheral surface of the master shaft, but the outer peripheral surface of the electroformed part is generally rough, so that the surface irregularities of the electroformed part are uneven after resin molding. Resin enters and produces an anchor effect. By these combined actions, a strong fixing force can be obtained between the electroformed part and the resin mold part.

しかしながら、現状の構造ではこれ以上固着力を確保することは難しく、軸受の用途拡大に制約が生じる。   However, with the current structure, it is difficult to secure a further fixing force, which restricts the expansion of application of bearings.

本発明は、電鋳部とモールド部とをより強固に固着した軸受およびその製造方法を提供することを目的とする。   An object of this invention is to provide the bearing which fixed the electroformed part and the mold part more firmly, and its manufacturing method.

上記課題を解決するために本発明の軸受は、電鋳部の内周面に、金属の析出開始側の面で形成された軸受面を備え、電鋳部を射出成形にてモールドしたものであって、前記電鋳部の軸方向両端の少なくとも一方に塑性変形によってフランジを形成し、フランジの塑性変形前における電鋳部の軸方向の長さL2と、塑性変形後における電鋳部の軸方向の長さL1とが、0<A/L1≦0.5 (但し、A=L2―L1)の関係を満たすものである。 In order to solve the above-mentioned problems, the bearing of the present invention comprises a bearing surface formed by a surface on the metal deposition start side on the inner peripheral surface of the electroformed part, and the electroformed part is molded by injection molding. A flange is formed by plastic deformation at least one of the axial ends of the electroformed part, the axial length L2 of the electroformed part before plastic deformation of the flange, and the axis of the electroformed part after plastic deformation The length L1 in the direction satisfies the relationship 0 <A / L1 ≦ 0.5 (where A = L2−L1) .

電鋳部からなる軸受面は、電鋳加工の特性上、マスター軸の表面が精度よく転写され、マスター軸の表面精度に倣った面精度となる。従って、マスター軸の表面精度を高めておけば、高い軸受面精度が得られ、軸受の回転精度や摺動精度を既存品よりも飛躍的に高めることができる。   Due to the characteristics of electroforming, the surface of the master shaft is accurately transferred to the bearing surface made of the electroformed part, and the surface accuracy follows the surface accuracy of the master shaft. Therefore, if the surface accuracy of the master shaft is increased, high bearing surface accuracy can be obtained, and the rotation accuracy and sliding accuracy of the bearing can be dramatically increased as compared with existing products.

特にフランジを有する電鋳部を樹脂や金属でモールド(インサート成形)すると、電鋳部と一体のフランジと、これに密着するモールド部との間で抜け止め、あるいは回り止めがなされるので、電鋳部とモールド部との間で高い固着力を得ることができる。特にフランジの外周面を非真円形状とすることで、より一層高い回り止め効果を得ることが可能となる。フランジには、軸心の直交方向に延びたもの(図5参照)の他、軸心の斜め方向に延びたもの(図8参照)も含まれる。   In particular, when an electroformed part having a flange is molded with resin or metal (insert molding), the flange is integral with the electroformed part and the mold part that is in close contact with the flange is prevented from coming off or rotating. A high fixing force can be obtained between the cast part and the mold part. In particular, by making the outer peripheral surface of the flange non-circular, it is possible to obtain an even higher anti-rotation effect. The flange includes those extending in the direction perpendicular to the axis (see FIG. 5) and those extending in the oblique direction of the axis (see FIG. 8).

電鋳部のフランジは、電鋳部を塑性変形させることで形成される。例えばマスター軸の外周に密着した電鋳部の端面を軸方向に加圧すれば、被加圧部はマスター軸と密着した内径側へは変形することができないため、電鋳部の端部が外径側に塑性変形し、これにより外向きのフランジが容易に成形可能となる。このように塑性変形でフランジを形成する際、電鋳部に作用する加圧力が大きすぎると、その時の衝撃により、マスター軸に密着した電鋳部内周面がマスター軸の外周面から剥離するおそれがある。かかる事態を防止するには、塑性変形の前後における電鋳部の軸方向の長さの変化を、塑性変形後の電鋳部の軸方向の長さの50%以内に設定するのが望ましい。すなわち、フランジの塑性変形前における電鋳部の軸方向の長さをL2、塑性変形後における電鋳部の軸方向の長さをL1として、L1およびL2を0<A/L1≦0.5 (但し、A=L2―L1)なる式を満たすようにする。 The flange of the electroformed part is formed by plastically deforming the electroformed part. For example, if the end surface of the electroformed part that is in close contact with the outer periphery of the master shaft is pressed in the axial direction, the pressed part cannot be deformed to the inner diameter side that is in close contact with the master shaft. Plastic deformation to the outer diameter side makes it possible to easily form an outward flange. In this way, when the flange is formed by plastic deformation, if the applied pressure acting on the electroformed part is too large, the inner peripheral surface of the electroformed part in close contact with the master shaft may be peeled off from the outer peripheral surface of the master shaft due to the impact at that time. There is. In order to prevent such a situation, it is desirable to set the change in the axial length of the electroformed part before and after plastic deformation within 50% of the axial length of the electroformed part after plastic deformation. That is, the axial length of the electroformed part before plastic deformation of the flange is L2, the axial length of the electroformed part after plastic deformation is L1, and L1 and L2 are 0 <A / L1 ≦ 0.5. (However, A = L2-L1) is satisfied.

塑性変形で形成したフランジが電鋳部の一端部もしくは両端部に形成されていれば、塑性変形の影響が軸受面の軸方向中央部に及びにくくなる。従って、軸受機能上重要な軸受面の軸方向中央部での軸受面精度の低下を回避することができる。   If the flange formed by plastic deformation is formed at one end portion or both end portions of the electroformed portion, the influence of the plastic deformation is less likely to reach the central portion in the axial direction of the bearing surface. Therefore, it is possible to avoid a decrease in bearing surface accuracy at the axial center portion of the bearing surface which is important for bearing function.

特に電鋳部を射出成形にてモールドする際、金型の型締めで電鋳部を部分的に塑性変形させれば、フランジの形成後、そのままキャビティに樹脂や金属を射出することにより軸受をインサート成形することができ、フランジを形成するための特段の加工を要することなく、低コストに軸受を製作することが可能となる。なお、塑性変形したフランジの外周面は、通常は非真円形状になるので、特に別工程を追加することなく前記非真円形状の外周面を備えたフランジが形成可能となる。In particular, when molding the electroformed part by injection molding, if the electroformed part is partially plastically deformed by clamping the mold, the bearing is formed by injecting resin or metal into the cavity as it is after the flange is formed. Insert molding can be performed, and a bearing can be manufactured at low cost without requiring special processing for forming the flange. In addition, since the outer peripheral surface of the plastically deformed flange is normally non-circular, a flange having the non-circular outer peripheral surface can be formed without any additional process.

以上に説明した軸受の内周に軸部材を挿入することにより高い軸受性能および耐久性を有する軸受装置を提供することが可能となる。軸部材としては、電鋳部の成形時に使用したマスター軸を使用する他、マスター軸と別部材を使用することもできる。この軸受装置を有するモータは、回転精度が良好で、かつ耐久性も高い、という特徴を備える。   It is possible to provide a bearing device having high bearing performance and durability by inserting a shaft member into the inner periphery of the bearing described above. As the shaft member, in addition to using the master shaft used at the time of forming the electroformed part, a member different from the master shaft can also be used. A motor having this bearing device is characterized by good rotational accuracy and high durability.

本発明によれば、電鋳部とモールド部との間で抜け止めもしくは回り止めがなされるので、電鋳部とモールド部相互間の固着力をより高めることができる。   According to the present invention, since the retaining or rotation prevention is performed between the electroformed part and the mold part, the fixing force between the electroformed part and the mold part can be further increased.

本発明の実施の形態1を図1〜図8を参考に説明する。   A first embodiment of the present invention will be described with reference to FIGS.

図1に示す本発明の軸受5は、マスター軸2の所要個所をマスキングする工程(図3参照)、非マスク部に電鋳加工を行って電鋳軸1を形成する工程(図4参照)、電鋳軸1の電鋳部4を樹脂等でモールドする工程(図6および図7参照)、および電鋳部4とマスター軸2とを分離する工程を経て製作される。   The bearing 5 of the present invention shown in FIG. 1 includes a step of masking a required portion of the master shaft 2 (see FIG. 3) and a step of forming an electroformed shaft 1 by performing electroforming on a non-mask portion (see FIG. 4). The electroformed shaft 4 is manufactured through a process of molding the electroformed portion 4 of the electroformed shaft 1 with a resin or the like (see FIGS. 6 and 7) and a step of separating the electroformed portion 4 and the master shaft 2.

なお、以下の説明において、「回転用の軸受」とは、軸との間の相対回転を支持するための軸受5を意味し、軸受5が回転側となるか固定側となるかを問わない。「摺動用の軸受」とは、軸との間の相対的な直線運動を支持するための軸受5を意味し、同様に軸受5が移動側となるか固定側となるかを問わない。「回転摺動用の軸受」とは、前記二つの軸受の機能を併せ持つもので、軸との間の回転運動および直線運動の双方を支持するための軸受5を意味する。   In the following description, the “rotating bearing” means the bearing 5 for supporting the relative rotation with the shaft, regardless of whether the bearing 5 is on the rotating side or the fixed side. . The “sliding bearing” means the bearing 5 for supporting the relative linear motion between the shafts, and it does not matter whether the bearing 5 is the moving side or the fixed side. The “rotating and sliding bearing” has the functions of the two bearings, and means the bearing 5 for supporting both the rotational motion and the linear motion between the shafts.

前記マスター軸2は、導電性材料、例えば焼入処理をしたステンレス鋼で、ストレートな横断面円形の軸として製作される。もちろんステンレス鋼に限定されるものでなく、剛性などの機械的強度、摺動性、耐熱性、耐薬品性、電鋳部4の加工性および分離性など、軸受の機能上あるいは軸受製作の都合上求められる特性に適合した材料、さらには熱処理方法が選択される。セラミック等の非金属材料でも、導電処理を施すことにより(例えば表面に導電性の金属被膜を形成することにより)使用可能となる。なお、マスター軸2の表面には、電鋳部4との間の摩擦力を減じるための表面処理、例えばフッ素系の樹脂コーティングを施すのが望ましい。   The master shaft 2 is made of a conductive material, for example, hardened stainless steel, and is manufactured as a straight shaft having a circular cross section. Of course, the material is not limited to stainless steel, but it has a mechanical function such as rigidity, slidability, heat resistance, chemical resistance, workability and separability of the electroformed part 4, and so on. A material and a heat treatment method suitable for the characteristics required above are selected. Even non-metallic materials such as ceramics can be used by conducting a conductive treatment (for example, by forming a conductive metal film on the surface). The surface of the master shaft 2 is preferably subjected to a surface treatment for reducing the frictional force with the electroformed part 4, for example, a fluorine-based resin coating.

マスター軸2は、中空軸の他、中空軸や中空部に樹脂を充填した中実軸であっても良い。また、回転用の軸受では、マスター軸の横断面は基本的に円形に形成されるが、摺動用の軸受の場合は横断面は任意形状にすることができ、円形の他に多角形状や非真円形状とすることもできる。また、摺動用の軸受では、基本的にマスター軸2の横断面形状は軸方向で一定であるが、回転用の軸受や回転摺動用の軸受では、軸の全長にわたって一定の横断面形状ではない形態をとることもある。   In addition to the hollow shaft, the master shaft 2 may be a solid shaft in which a hollow shaft or a hollow portion is filled with resin. In the rotation bearing, the cross section of the master shaft is basically circular, but in the case of the sliding bearing, the cross section can be arbitrarily shaped. It can also be a perfect circle shape. In a sliding bearing, the cross-sectional shape of the master shaft 2 is basically constant in the axial direction. However, a rotating bearing or a rotating / sliding bearing does not have a constant cross-sectional shape over the entire length of the shaft. May take the form.

マスター軸2の外周面精度は、後述する軸受隙間の精度を直接左右するので、真円度、円筒度、表面粗さ等の軸受機能上重要となる表面精度を予め高精度に仕上げておく必要がある。例えば回転用の軸受では、軸受面との接触回避の観点から真円度が重視されるので、マスター軸2の外周面はできるだけ真円度を高めておくのが望ましい。本発明者らが検証したところ、マスター軸2の外周面の真円度が、後述する軸受隙間の平均幅(半径寸法)の8割以下にまで仕上げられていると、軸受面との接触を抑え、良好な回転精度を得られることが判明した。従って、例えば軸受隙間の平均幅を2μmに設定する場合、マスター軸外周面は1.6μm以下の真円度に仕上げるのが望ましい。   Since the accuracy of the outer peripheral surface of the master shaft 2 directly affects the accuracy of the bearing gap described later, the surface accuracy that is important for bearing functions such as roundness, cylindricity, and surface roughness must be finished in advance. There is. For example, in a bearing for rotation, since roundness is important from the viewpoint of avoiding contact with the bearing surface, it is desirable to increase the roundness of the outer peripheral surface of the master shaft 2 as much as possible. As a result of verification by the present inventors, when the roundness of the outer peripheral surface of the master shaft 2 is finished to 80% or less of the average width (radial dimension) of a bearing gap described later, contact with the bearing surface is prevented. It was found that good rotation accuracy can be obtained. Therefore, for example, when the average width of the bearing gap is set to 2 μm, it is desirable that the outer peripheral surface of the master shaft is finished to a roundness of 1.6 μm or less.

マスター軸2の外周面には、図3に示すように、電鋳部4の形成予定部を除き、マスキングが施される。マスキング用の被覆材3としては、非導電性、および電解質溶液に対する耐食性を有する既存品が選択使用される。   As shown in FIG. 3, masking is performed on the outer peripheral surface of the master shaft 2 except for a portion where the electroformed portion 4 is to be formed. As the covering material 3 for masking, an existing product having non-conductivity and corrosion resistance against the electrolyte solution is selectively used.

電鋳加工は、NiやCu等の金属イオンを含んだ電解質溶液にマスター軸2を浸漬し、電解質溶液に通電して目的の金属をマスター軸2の表面に析出させることにより行われる。電解質溶液には、カーボンなどの摺動材、あるいはサッカリン等の応力緩和材を必要に応じて含有させてもよい。電着金属の種類は、軸受の軸受面に求められる硬度、疲れ強さ等の物理的性質、化学的性質に応じて適宜選択される。電鋳部4の厚みは、これが厚すぎるとマスター軸2からの剥離性が低下し、薄すぎると軸受面の耐久性低下等につながるので、求められる軸受性能や軸受サイズ、さらには用途等に応じて最適な厚みに設定される。例えば軸径1mm〜6mmの回転用の軸受では、10μm〜200μmの厚さとするのが好ましい。   The electroforming process is performed by immersing the master shaft 2 in an electrolyte solution containing metal ions such as Ni and Cu, and energizing the electrolyte solution to deposit a target metal on the surface of the master shaft 2. If necessary, the electrolyte solution may contain a sliding material such as carbon or a stress relaxation material such as saccharin. The type of electrodeposited metal is appropriately selected according to physical properties and chemical properties such as hardness and fatigue strength required for the bearing surface of the bearing. If the thickness of the electroformed part 4 is too thick, the peelability from the master shaft 2 is reduced, and if it is too thin, the durability of the bearing surface is reduced. The optimum thickness is set accordingly. For example, in a rotating bearing having a shaft diameter of 1 mm to 6 mm, the thickness is preferably 10 μm to 200 μm.

以上の工程を経ることにより、図4に示すように、マスター軸2外周の一部領域に円筒状の電鋳部4を被着した電鋳軸1が製作される。なお、マスキング用の被覆材3が薄い場合、電鋳部4の両端は被覆材3側に迫り出し、内周面にテーパ状の面取り部4aが形成される場合もある。   Through the above steps, as shown in FIG. 4, the electroformed shaft 1 in which the cylindrical electroformed portion 4 is attached to a partial region of the outer periphery of the master shaft 2 is manufactured. When the covering material 3 for masking is thin, both ends of the electroformed part 4 protrude toward the covering material 3 side, and a tapered chamfered part 4a may be formed on the inner peripheral surface.

電鋳軸1は、図6および図7に示すモールド工程に移送され、電鋳部4およびマスター軸2をインサート部品とするインサート成形が行われる。   The electroformed shaft 1 is transferred to the molding process shown in FIGS. 6 and 7, and insert molding is performed using the electroformed portion 4 and the master shaft 2 as insert parts.

このモールド工程では、電鋳軸1は、図6に示すようにその軸方向を型締め方向(図面上下方向)と平行にして、上型6、および下型7からなる金型内部に供給される。下型7には、マスター軸2の外径寸法に適合した位置決め穴9が形成され、この位置決め穴9に前工程から移送した電鋳軸1の下端を挿入して電鋳軸1の位置決めがなされる。この位置決め状態では、電鋳軸1のうち電鋳部4の下端面が下型7の成形面と係合し、電鋳部4の上端が金型のパーティングラインP.L.よりも相手型(本実施形態では上型6)の側に突出している。位置決め穴9の深さL3は、マスター軸2の下端と電鋳部4の下端との間の距離L4よりも大きく(L3>L4)、従って、型締め前の状態では、マスター軸2の下端面は位置決め穴9の底から浮上した状態にある。この浮上量を調整することで、電鋳部4の下端に形成するフランジの塑性変形量を変更することができる。   In this molding step, the electroformed shaft 1 is supplied into the mold composed of the upper mold 6 and the lower mold 7 with its axial direction parallel to the mold clamping direction (the vertical direction in the drawing) as shown in FIG. The The lower die 7 is formed with a positioning hole 9 adapted to the outer diameter of the master shaft 2, and the lower end of the electroformed shaft 1 transferred from the previous process is inserted into the positioning hole 9 to position the electroformed shaft 1. Made. In this positioning state, the lower end surface of the electroformed part 4 of the electroformed shaft 1 is engaged with the molding surface of the lower mold 7, and the upper end of the electroformed part 4 is the parting line P.D. L. Rather than the other mold (upper mold 6 in this embodiment). The depth L3 of the positioning hole 9 is larger than the distance L4 between the lower end of the master shaft 2 and the lower end of the electroformed part 4 (L3> L4). Therefore, in the state before mold clamping, The end face floats from the bottom of the positioning hole 9. By adjusting the flying height, the plastic deformation amount of the flange formed at the lower end of the electroformed portion 4 can be changed.

前記上型6には、位置決め穴9と同軸にガイド穴10が形成されている。このガイド穴10の深さL5は、図7に示す型締め時において、マスター軸2の上端がガイド穴10の底に突き当たらない程度であれば足りる(なお、マスター軸2の下端は位置決め穴9の底に突き当たる)。   A guide hole 10 is formed in the upper mold 6 coaxially with the positioning hole 9. The depth L5 of the guide hole 10 is sufficient as long as the upper end of the master shaft 2 does not abut against the bottom of the guide hole 10 during mold clamping shown in FIG. 7 (note that the lower end of the master shaft 2 is a positioning hole). It hits the bottom of 9).

以上の金型において、可動型(本実施形態でいえば上型6)を固定型(本実施形態では下型7)に接近させて型締めすると、先ずマスター軸2の上端がガイド穴10に挿入されてマスター軸2の心出しが行われ、さらに上型6の成形面に電鋳部4の上側端面が当接する。さらなる上型6の接近で電鋳軸1の全体が下方に押し込まれ、下型7の成形面と当接した電鋳部4の下端部、および上型6の成形面と当接した電鋳部4の上端部がそれぞれ外径側に塑性変形し、図7に示すように電鋳部4の軸方向両端にフランジ11(図5参照)が形成される。金型構造を変更することにより、電鋳部4の軸方向一端にのみフランジ11を形成することも可能である。   In the above mold, when the movable mold (upper mold 6 in this embodiment) is brought close to the fixed mold (lower mold 7 in the present embodiment) and clamped, the upper end of the master shaft 2 is first brought into the guide hole 10. The master shaft 2 is centered by being inserted, and the upper end surface of the electroformed part 4 comes into contact with the molding surface of the upper mold 6. When the upper die 6 is further approached, the entire electroformed shaft 1 is pushed downward, and the lower end portion of the electroformed portion 4 that is in contact with the molding surface of the lower die 7 and the electroforming that is in contact with the molding surface of the upper die 6. The upper ends of the parts 4 are plastically deformed to the outer diameter side, and flanges 11 (see FIG. 5) are formed at both ends in the axial direction of the electroformed part 4 as shown in FIG. It is also possible to form the flange 11 only at one axial end of the electroformed part 4 by changing the mold structure.

型締め完了後、スプール12、ランナー13、およびゲート14を介してキャビティ8に樹脂材料を射出し、インサート成形を行う。樹脂材料は、例えば液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)樹脂、ポリアセタール樹脂、ポリアミド樹脂等の高機能結晶性ポリマーが使用可能である。もちろんこれらは例示にすぎず、既存の各種樹脂材料の中から軸受の用途や使用環境に適合した樹脂材料が選択され得る。必要に応じて強化材(繊維状、粉末状等の形態は問わない)や潤滑剤等の各種充填材を加えても良い。   After completion of the mold clamping, a resin material is injected into the cavity 8 through the spool 12, the runner 13, and the gate 14, and insert molding is performed. As the resin material, for example, a highly functional crystalline polymer such as a liquid crystal polymer (LCP), a polyphenylene sulfide (PPS) resin, a polyacetal resin, and a polyamide resin can be used. Of course, these are merely examples, and a resin material suitable for the application and use environment of the bearing can be selected from various existing resin materials. You may add various fillers, such as a reinforcement (regardless of forms, such as a fiber form and a powder form) and a lubricant, as needed.

型開き後、脱型した成形品は、図5で示すように、マスター軸2、電鋳部4、およびモールド部15が一体となった構造を有する。この成形品は、その後分離工程に移送され、電鋳部4およびモールド部15からなる軸受5と、マスター軸2とに分離される。この分離工程は、例えばマスター軸2やモールド部15に衝撃を加えたり、あるいは電鋳部4とマスター軸2とを加熱し(冷却してもよい)、両者間に熱膨張量差を生じさせることによって行われる。これらの操作により電鋳金属組織中の拡径方向の残留応力が解放されるため、電鋳部4の内径が拡径し、マスター軸2の外周面との間に、半径寸法で1μm〜数十μm程度の微小隙間が形成される。この微小隙間は軸受隙間として機能するので、一体化した電鋳部4とモールド部15とで、マスター軸2を相対的に回転自在または摺動自在に支持する軸受5(図1参照)が構成される。この軸受5において、電鋳部4の内周面は、マスター軸2の相対的な回転もしくは摺動を支持する軸受面4bとして機能する。   After the mold opening, the molded product removed from the mold has a structure in which the master shaft 2, the electroformed part 4, and the mold part 15 are integrated as shown in FIG. The molded product is then transferred to a separation step and separated into a bearing 5 composed of an electroformed part 4 and a mold part 15 and a master shaft 2. In this separation step, for example, an impact is applied to the master shaft 2 and the mold portion 15, or the electroformed portion 4 and the master shaft 2 are heated (may be cooled), and a difference in thermal expansion is generated between them. Is done by. Since the residual stress in the diameter expansion direction in the electroformed metal structure is released by these operations, the inner diameter of the electroformed portion 4 is increased, and the radial dimension between the outer diameter of the master shaft 2 is 1 μm to several A minute gap of about 10 μm is formed. Since this minute gap functions as a bearing gap, a bearing 5 (see FIG. 1) that supports the master shaft 2 so as to be relatively rotatable or slidable by the integrated electroformed portion 4 and mold portion 15 is configured. Is done. In the bearing 5, the inner peripheral surface of the electroformed part 4 functions as a bearing surface 4 b that supports relative rotation or sliding of the master shaft 2.

この軸受隙間は、電鋳加工の特性から、クリアランスが極めて小さく、かつ高精度であるという特徴を有する。従って、マスター軸2をそのまま軸部材として使用し、これを軸受5の内周に挿入することにより、高い回転精度または摺動性を有する軸受装置の提供が可能となる。なお、軸部材としてマスター軸2を使用する必要は必ずしもなく、マスター軸と同程度の精度で別途製作した軸部材と置き換えて軸受装置を構成することもできる。この場合、一度マスター軸を製作すれば、これを繰返し転用することができるので、マスター軸2の製作コストを抑え、軸受装置のさらなる低コスト化を図ることが可能となる。   This bearing gap is characterized by a very small clearance and high precision due to the characteristics of electroforming. Therefore, by using the master shaft 2 as a shaft member as it is and inserting it into the inner periphery of the bearing 5, it is possible to provide a bearing device having high rotational accuracy or slidability. In addition, it is not always necessary to use the master shaft 2 as a shaft member, and a bearing device can be configured by replacing it with a shaft member separately manufactured with the same degree of accuracy as the master shaft. In this case, once the master shaft is manufactured, it can be repeatedly used, so that the manufacturing cost of the master shaft 2 can be suppressed and the cost of the bearing device can be further reduced.

なお、この軸受装置は無給油で使用する他、軸受隙間に油等の潤滑剤を供給して使用することもできる。   In addition to using this bearing device without lubrication, it can also be used by supplying a lubricant such as oil into the bearing gap.

上述のように本発明では、電鋳部4にフランジ11を形成し、電鋳部4をフランジ11も含めた形でインサート成形しているので、電鋳部4、さらにはモールド部15との間で抜け止め、さらには回り止めがなされる。従って、電鋳部4とモールド部15との間の固着力を高め、耐久性に優れた信頼性の高い軸受を提供することが可能となる。特に図6および図7に示す実施形態のように、電鋳部4を塑性変形させてフランジ11を形成する場合、図1に示すように、その外周面16の形状は、ランダムな凹凸を有する非真円形状となるので、高い回り止め効果が得られる。なお、図1では、外周面16の凹凸が理解の容易化のために誇張して描かれている。   As described above, in the present invention, since the flange 11 is formed in the electroformed part 4 and the electroformed part 4 is insert-molded in a form including the flange 11, the electroformed part 4 and further the mold part 15 are formed. It is prevented from coming off in between, and is further prevented from rotating. Therefore, it is possible to increase the fixing force between the electroformed part 4 and the mold part 15 and provide a highly reliable bearing having excellent durability. In particular, when the flange 11 is formed by plastic deformation of the electroformed part 4 as in the embodiment shown in FIGS. 6 and 7, the shape of the outer peripheral surface 16 has random irregularities as shown in FIG. Since it has a non-circular shape, a high detent effect is obtained. In FIG. 1, the irregularities on the outer peripheral surface 16 are exaggerated for easy understanding.

十分な抜け止め効果、さらには回り止め効果を得るためには、樹脂とフランジ11との間で高い密着性が確保される必要がある。樹脂の成形収縮率が低すぎると、フランジ11に対する樹脂の密着性が低下し、上記効果が不十分となる。本発明者らが検証したところ、成形収縮率が0.02%以上の樹脂材料であれば、抜け止めおよび回り止めとして十分な効果が得られた。一方、成形収縮率が高すぎると、残留応力が過大となり、固化した成形品の寸法変化が懸念されるので、使用する樹脂材料の成形収縮率は2.0%以下とするのが望ましい。   In order to obtain a sufficient retaining effect and further a detent effect, it is necessary to ensure high adhesion between the resin and the flange 11. When the molding shrinkage rate of the resin is too low, the adhesion of the resin to the flange 11 is lowered, and the above effect becomes insufficient. As a result of verification by the present inventors, if the resin material has a molding shrinkage of 0.02% or more, a sufficient effect can be obtained as a stopper and a rotation stopper. On the other hand, if the molding shrinkage is too high, the residual stress becomes excessive, and there is a concern about the dimensional change of the solidified molded product. Therefore, it is desirable that the molding shrinkage of the resin material to be used is 2.0% or less.

ところで、上述のように、塑性変形でフランジ11を形成する場合、電鋳部4に作用する金型からの加圧力が大きすぎると、その時の衝撃により、マスター軸2に密着した電鋳部4の内周面がマスター軸2の外周面から剥離するおそれがある。電鋳部4が剥離すると、その瞬間に電鋳部4が拡径してマスター軸2との間に隙間が形成されるため、その後の射出成形時には、射出圧力によって電鋳部4の内周面がランダムに縮径し、軸受面4bの精度低下を招くおそれがある。かかる事態を防止するには、射出成形前における電鋳部4のマスター軸2からの剥離防止に努める必要があり、これは電鋳部4の塑性変形量の上限を管理することで達成できると考えられる。   By the way, as described above, when the flange 11 is formed by plastic deformation, if the pressure applied from the mold acting on the electroformed part 4 is too large, the electroformed part 4 in close contact with the master shaft 2 due to the impact at that time. There is a possibility that the inner peripheral surface of the master shaft 2 is peeled off from the outer peripheral surface of the master shaft 2. When the electroformed part 4 is peeled off, the diameter of the electroformed part 4 is enlarged at that moment and a gap is formed between the electroformed part 4 and the master shaft 2. There is a possibility that the diameter of the surface is randomly reduced and the accuracy of the bearing surface 4b is lowered. In order to prevent such a situation, it is necessary to try to prevent peeling of the electroformed part 4 from the master shaft 2 before injection molding. This can be achieved by managing the upper limit of the plastic deformation amount of the electroformed part 4. Conceivable.

かかる観点から検討したところ、塑性変形後における電鋳部4(図5に実線で示す)の軸方向の長さをL1とし、塑性変形前における電鋳部4(図5に破線で示す)の軸方向の長さをL2とした時、電鋳部4の軸方向長さの変化A=L2−L1が、塑性変形後の電鋳部4の軸方向の長さL1の50%以内(望ましくは20%以内)であれば、塑性変形による射出成形前の電鋳部4の剥離を防止できることが判明した。その一方、A=0ではフランジ11が形成できない。従って、   From this viewpoint, the length in the axial direction of the electroformed part 4 (shown by a solid line in FIG. 5) after plastic deformation is L1, and the electroformed part 4 (shown by a broken line in FIG. 5) before plastic deformation. When the axial length is L2, the change in the axial length A = L2-L1 of the electroformed part 4 is within 50% of the axial length L1 of the electroformed part 4 after plastic deformation (desirably Is within 20%), it has been found that peeling of the electroformed part 4 before injection molding due to plastic deformation can be prevented. On the other hand, when A = 0, the flange 11 cannot be formed. Therefore,

0<A/L1≦0.5
を満たすように、L1、L2を定めるのが望ましい。
0 <A / L1 ≦ 0.5
It is desirable to determine L1 and L2 so as to satisfy the above.

以上の説明では、塑性変形によってフランジ11を形成する場合を例示したが、塑性変形以外の方法でフランジ11を形成することもできる。例えば図8に示すように、マスター軸2を段付き軸状に形成しておけば、これを電鋳工程にて電解溶液中に浸漬すると、一般にマスター軸2の角部2aでは他の平面部分に比べて金属粒子の析出量が多くなるため、電鋳条件によっては、電鋳の終了後にこの角部2aに図示のような傾斜状のフランジ11を形成することができる。従って、その後、このフランジ11を含めて電鋳部を射出成形でモールドすれば(二点鎖線で示す)、同様に抜け止め、あるいは回り止めとしての効果を得ることができる。   In the above description, the case where the flange 11 is formed by plastic deformation is illustrated, but the flange 11 can also be formed by a method other than plastic deformation. For example, as shown in FIG. 8, if the master shaft 2 is formed in a stepped shaft shape, when the master shaft 2 is immersed in an electrolytic solution in the electroforming process, generally, the corner portion 2 a of the master shaft 2 has another plane portion. Since the amount of metal particles deposited is larger than that of the above, depending on the electroforming conditions, an inclined flange 11 as shown in the figure can be formed at the corner 2a after the end of electroforming. Accordingly, if the electroformed part including the flange 11 is thereafter molded by injection molding (indicated by a two-dot chain line), it is possible to obtain the same effect as retaining or rotating.

なお、以上の説明では、電鋳部4を樹脂材料でモールドする場合を説明したが、樹脂に限らず、金属の射出成形、例えばマグネシウム合金やアルミニウム合金などの低融点金属を射出して電鋳部4をモールドすることもできる。その場合、樹脂を使用する場合に比べ、強度、耐熱性、または導電性等の面でより優れた軸受が得られる。   In the above description, the case where the electroformed part 4 is molded with a resin material has been described. However, the present invention is not limited to resin, and metal injection molding, for example, low melting point metal such as magnesium alloy or aluminum alloy is injected and electroformed. The part 4 can also be molded. In this case, a bearing that is superior in terms of strength, heat resistance, conductivity, and the like can be obtained as compared with the case of using a resin.

次に、以上に説明した軸受装置をモータ21の回転軸の支持に適用し、その一実施形態を図9に基いて説明する。   Next, the bearing device described above is applied to support the rotating shaft of the motor 21, and one embodiment thereof will be described with reference to FIG.

図示例のモータ21は、HDD等のディスク駆動装置に用いられるスピンドルモータである。このモータ21の軸受装置は、軸部材22をラジアル方向に回転自在に支持するラジアル軸受部Rと、スラスト方向に回転自在に支持するスラスト軸受部Tとを有する。ラジアル軸受部Rは、軸部材22を軸受5の内周に挿入して構成され、スラスト軸受Tは、軸部材22の凸球面状の軸端を、軸受5の端面に対向させたスラストプレート23で接触支持することによって構成される。軸受5は、以上の説明で述べたとおり、電鋳部4を射出成形によりモールドして形成され、電鋳部4の軸方向両端にはそれぞれフランジ11が形成されている。そして、モータ21は、この軸受装置以外にも、軸部材を装着したロータ(ディスクハブ)24と、例えば半径方向のギャップを介して対向させたステータコイル25およびロータマグネット26とを備えている。ステータコイル25は、ブラケット27の外周に取付けられ、ロータマグネット26はディスクハブ24の内周に取付けられている。ディスクハブ24には、磁気ディスクDが一又は複数枚保持されている。   The motor 21 in the illustrated example is a spindle motor used in a disk drive device such as an HDD. The bearing device of the motor 21 includes a radial bearing portion R that supports the shaft member 22 rotatably in the radial direction, and a thrust bearing portion T that supports the shaft member 22 rotatably in the thrust direction. The radial bearing portion R is configured by inserting the shaft member 22 into the inner periphery of the bearing 5, and the thrust bearing T is a thrust plate 23 in which the convex spherical shaft end of the shaft member 22 faces the end surface of the bearing 5. It is configured by supporting in contact. As described in the above description, the bearing 5 is formed by molding the electroformed part 4 by injection molding, and flanges 11 are formed at both ends of the electroformed part 4 in the axial direction. In addition to the bearing device, the motor 21 includes a rotor (disk hub) 24 on which a shaft member is mounted, and a stator coil 25 and a rotor magnet 26 that are opposed to each other with a gap in the radial direction, for example. The stator coil 25 is attached to the outer periphery of the bracket 27, and the rotor magnet 26 is attached to the inner periphery of the disk hub 24. The disk hub 24 holds one or more magnetic disks D.

ステータコイル25に通電すると、ステータコイル25とロータマグネット26との間の電磁力でロータマグネット26が回転し、それによって、ディスクハブ24及び軸部材22が一体となって回転する。   When the stator coil 25 is energized, the rotor magnet 26 is rotated by the electromagnetic force between the stator coil 25 and the rotor magnet 26, whereby the disk hub 24 and the shaft member 22 are rotated together.

このモータ21の軸部材22としては、マスター軸2のみならず、マスター軸2と置換した別部材の何れもが使用可能である。また、図9では、スラスト軸受部Tをピボット軸受で構成した場合を例示しているが、この他にも、動圧溝等の動圧発生手段で軸部材22をスラスト方向に非接触支持する動圧軸受も使用可能である。   As the shaft member 22 of the motor 21, not only the master shaft 2 but also another member replaced with the master shaft 2 can be used. FIG. 9 illustrates the case where the thrust bearing portion T is constituted by a pivot bearing. In addition to this, the shaft member 22 is supported in a non-contact manner in the thrust direction by dynamic pressure generating means such as a dynamic pressure groove. A hydrodynamic bearing can also be used.

本発明の軸受装置は、以上の例示に限らず、モータの回転軸支持用として広く適用可能である。この軸受装置は、上記のとおりラジアル軸受部Rにおいて高精度の軸受隙間(ラジアル軸受隙間)を備えるので、上記HDD等の磁気ディスク駆動用のスピンドルモータを初めとして、高回転精度が要求される情報機器用の小型モータ、例えば光ディスクの光磁気ディスク駆動用のスピンドルモータ、あるいはレーザビームプリンタのポリゴンスキャナモータ等における回転軸支持用として特に適合するものである。   The bearing device of the present invention is not limited to the above examples, and can be widely applied to support a rotating shaft of a motor. Since this bearing device has a high-precision bearing gap (radial bearing gap) in the radial bearing portion R as described above, information that requires high rotational accuracy, such as a spindle motor for driving a magnetic disk such as the HDD described above. It is particularly suitable for supporting a rotating shaft in a small motor for equipment, for example, a spindle motor for driving a magneto-optical disk of an optical disk or a polygon scanner motor of a laser beam printer.

本発明の軸受の斜視図である。It is a perspective view of the bearing of this invention. 本発明の電鋳軸の製造工程を示すマスター軸の斜視図である。It is a perspective view of the master axis | shaft which shows the manufacturing process of the electroformed axis | shaft of this invention. 図2のマスター軸にマスキングをした状態を示す斜視図である。It is a perspective view which shows the state which masked the master axis | shaft of FIG. 本発明の電鋳軸の斜視図である。It is a perspective view of the electroformed shaft of the present invention. 本発明のマスター軸を備えた状態の樹脂軸受の断面図である。It is sectional drawing of the resin bearing of the state provided with the master axis | shaft of this invention. 射出成形金型に電鋳軸を取付けた状態を説明する模式図である。It is a schematic diagram explaining the state which attached the electroformed shaft to the injection mold. 射出成形金型によりフランジの形成を説明する模式図である。It is a schematic diagram explaining formation of a flange with an injection mold. 本発明の軸受の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the bearing of this invention. 本発明の実施の形態2のモータ構造を示す模式図である。It is a schematic diagram which shows the motor structure of Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 電鋳軸
2 マスター軸
2a 角部
3 被覆材
4 電鋳部
4a 面取り部
4b 軸受面
5 軸受
6 上型
7 下型
8 キャビティ
9 位置決め穴
10 ガイド穴
11 フランジ
12 スプール
13 ランナー
14 ゲート
15 モールド部
16 外周面
21 モータ
22 軸部材
23 スラストプレート
24 ロータ(ディスクハブ)
25 ステータコイル
26 ロータマグネット
27 ブラケット
R ラジアル軸受部
T スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Electroformed shaft 2 Master shaft 2a Corner | angular part 3 Coating | covering material 4 Electroformed part 4a Chamfered part 4b Bearing surface 5 Bearing 6 Upper mold 7 Lower mold 8 Cavity 9 Positioning hole 10 Guide hole 11 Flange 12 Spool 13 Runner 14 Gate 15 Mold part 16 outer peripheral surface 21 motor 22 shaft member 23 thrust plate 24 rotor (disc hub)
25 Stator coil 26 Rotor magnet 27 Bracket R Radial bearing part T Thrust bearing part

Claims (7)

電鋳部の内周面に、金属の析出開始側の面で形成された軸受面を備え、電鋳部を射出成形にてモールドしたものであって、前記電鋳部の軸方向両端の少なくとも一方に塑性変形によってフランジを形成し、フランジの塑性変形前における電鋳部の軸方向の長さL2と、塑性変形後における電鋳部の軸方向の長さL1とが、0<A/L1≦0.5 (但し、A=L2―L1)の関係を満たすことを特徴とする軸受。
The inner peripheral surface of the electroformed part is provided with a bearing surface formed by a surface on the metal deposition start side , and the electroformed part is molded by injection molding, and at least at both axial ends of the electroformed part On the other hand, a flange is formed by plastic deformation, and the axial length L2 of the electroformed part before plastic deformation of the flange and the axial length L1 of the electroformed part after plastic deformation are 0 <A / L1. ≦ 0.5 (where A = L2−L1) .
前記フランジの外周面が非真円形状であることを特徴とする請求項1に記載の軸受。   The bearing according to claim 1, wherein an outer peripheral surface of the flange has a non-circular shape. 請求項1又は2に記載した軸受と、軸受の内周に挿入した軸部材とを有する軸受装置。 A bearing device comprising the bearing according to claim 1 and a shaft member inserted in an inner periphery of the bearing. 前記軸部材が、電鋳部の成形時に使用したマスター軸であることを特徴とする請求項に記載の軸受装置。 The bearing device according to claim 3 , wherein the shaft member is a master shaft used during molding of the electroformed part. 前記軸部材が、電鋳部の成形時に使用したマスター軸と別部材であることを特徴とする請求項記載の軸受装置。 The bearing device according to claim 3 , wherein the shaft member is a separate member from the master shaft used when forming the electroformed part. 請求項3〜5の何れか1項に記載した軸受装置を備えるモータ。 Motor comprising a bearing device according to any one of claims 3-5. 軸受面を形成する電鋳部を射出成形にてモールドする際に、金型の型締めで電鋳部を塑性変形させることにより、電鋳部にフランジを形成することを特徴とする軸受の製造方法。   Manufacturing a bearing characterized by forming a flange in the electroformed part by plastically deforming the electroformed part by clamping the mold when the electroformed part forming the bearing surface is molded by injection molding Method.
JP2005145506A 2005-05-18 2005-05-18 Bearing, bearing device, motor, and bearing manufacturing method Expired - Fee Related JP4896429B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005145506A JP4896429B2 (en) 2005-05-18 2005-05-18 Bearing, bearing device, motor, and bearing manufacturing method
CN2006800172872A CN101203685B (en) 2005-05-18 2006-05-15 Fluid dynamic bearing apparatus
PCT/JP2006/309640 WO2006123602A1 (en) 2005-05-18 2006-05-15 Bearing and bearing device
US11/795,410 US20080212908A1 (en) 2005-05-18 2006-05-15 Fluid Dynamic Bearing Device
KR1020077016103A KR101414110B1 (en) 2005-05-18 2006-05-15 Bearing device
US13/435,915 US8931175B2 (en) 2005-05-18 2012-03-30 Fluid dynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005145506A JP4896429B2 (en) 2005-05-18 2005-05-18 Bearing, bearing device, motor, and bearing manufacturing method

Publications (2)

Publication Number Publication Date
JP2006322508A JP2006322508A (en) 2006-11-30
JP4896429B2 true JP4896429B2 (en) 2012-03-14

Family

ID=37542348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005145506A Expired - Fee Related JP4896429B2 (en) 2005-05-18 2005-05-18 Bearing, bearing device, motor, and bearing manufacturing method

Country Status (1)

Country Link
JP (1) JP4896429B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080212908A1 (en) 2005-05-18 2008-09-04 Ntn Corporation Fluid Dynamic Bearing Device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3818749B2 (en) * 1996-08-27 2006-09-06 Ntn株式会社 Screw drive device
KR20020006672A (en) * 1999-03-03 2002-01-24 세인트 고베인 퍼포먼스 플라스틱스 코퍼레이션 Roller with self-lubricated bearing
JP3820480B2 (en) * 2001-08-09 2006-09-13 株式会社ティ・アンド・ティホールディングス A pair of shafts and resin bearing parts and method of manufacturing the same
JP3864065B2 (en) * 2001-08-09 2006-12-27 株式会社ティ・アンド・ティホールディングス Manufacturing method of resin bearing parts

Also Published As

Publication number Publication date
JP2006322508A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
US8876386B2 (en) Fluid dynamic bearing device
KR101414110B1 (en) Bearing device
JP4987248B2 (en) Bearing device and motor having the bearing device
US8419281B2 (en) Bearing member and method for manufacturing the same, and bearing unit having bearing member and method for manufacturing the same
JP2006322500A (en) Bearing device
JP4896429B2 (en) Bearing, bearing device, motor, and bearing manufacturing method
JP4794964B2 (en) Bearing device and motor equipped with the same
JP4896430B2 (en) Bearing device and motor using the bearing device
JP4633591B2 (en) Plain bearing
JP2006342912A (en) Bearing device
JP4794966B2 (en) Bearing device, motor provided with the same, and method for manufacturing bearing device
JP2006322522A (en) Bearing device and manufacturing method for bearing member
JP2006322523A (en) Bearing device
JP4813211B2 (en) Sliding bearing, motor equipped with the same, and manufacturing method of sliding bearing
JP4584093B2 (en) Plain bearing
JP4804894B2 (en) Bearing device and manufacturing method thereof
JP4896428B2 (en) Hydrodynamic bearing device and motor having the same
JP4890066B2 (en) Hydrodynamic bearing device and fan motor having the same
JP2007092845A (en) Bearing device
JP4948825B2 (en) Bearing member and manufacturing method thereof
JP4937675B2 (en) Hydrodynamic bearing device
JP2007263312A (en) Manufacturing method of slide bearing
JP2007051718A (en) Fluid bearing device
JP2006322502A (en) Bearing member and its manufacturing method
JP4937618B2 (en) Hydrodynamic bearing device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080428

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R150 Certificate of patent or registration of utility model

Ref document number: 4896429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees