JP4584093B2 - Plain bearing - Google Patents

Plain bearing Download PDF

Info

Publication number
JP4584093B2
JP4584093B2 JP2005272154A JP2005272154A JP4584093B2 JP 4584093 B2 JP4584093 B2 JP 4584093B2 JP 2005272154 A JP2005272154 A JP 2005272154A JP 2005272154 A JP2005272154 A JP 2005272154A JP 4584093 B2 JP4584093 B2 JP 4584093B2
Authority
JP
Japan
Prior art keywords
bearing
peripheral surface
metal part
resin
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005272154A
Other languages
Japanese (ja)
Other versions
JP2007085391A (en
Inventor
文規 里路
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2005272154A priority Critical patent/JP4584093B2/en
Publication of JP2007085391A publication Critical patent/JP2007085391A/en
Application granted granted Critical
Publication of JP4584093B2 publication Critical patent/JP4584093B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属部をインサートした樹脂の射出成形品である滑り軸受に関するものである。   The present invention relates to a sliding bearing which is an injection molded product of a resin with a metal part inserted.

滑り軸受(以下、単に「軸受」と称する)は、軸部材との間の相対的な回転、摺動、もしくは摺動回転を支持する用途に広く用いられている。特に樹脂製の軸受は、軽量で慣性力が小さいことや大量生産が可能であること等の理由から、産業機器をはじめ、種々の機器で幅広く利用されている。   Sliding bearings (hereinafter simply referred to as “bearings”) are widely used in applications that support relative rotation, sliding, or sliding rotation with a shaft member. In particular, resin-made bearings are widely used in various devices including industrial devices because they are lightweight and have a small inertial force and can be mass-produced.

このような軸受として、例えば特許文献1では、樹脂成形部の軸心に電鋳部をインサートして型成形した軸受部品が提案されている。このように、樹脂成形部の内周に電鋳部を設け、軸受面となる内周面を金属で形成することにより、軸受面の耐摩耗性が向上し、耐久性の高い軸受が得られる。
特開2003−56552号公報
As such a bearing, for example, Patent Document 1 proposes a bearing component in which an electroformed part is inserted into the axis of a resin molded part and is molded. Thus, by providing the electroformed part on the inner periphery of the resin molded part and forming the inner peripheral surface that becomes the bearing surface with metal, the wear resistance of the bearing surface is improved, and a highly durable bearing is obtained. .
JP 2003-56552 A

上記のような軸受では、インサートされた金属部と、金属部を保持する樹脂部との結合力が問題となる。この結合力が不足すると、衝撃荷重等によって金属部と樹脂部とが剥離し、軸受性能に悪影響を及ぼすおそれがある。   In such a bearing, the coupling force between the inserted metal part and the resin part holding the metal part becomes a problem. If this bonding force is insufficient, the metal part and the resin part may be peeled off by an impact load or the like, which may adversely affect the bearing performance.

本発明の課題は、金属部と樹脂部とが強固に結合され、耐久性に優れた軸受を提供することである。   An object of the present invention is to provide a bearing in which a metal part and a resin part are firmly bonded and have excellent durability.

前記課題を解決するため、本発明は、電鋳加工により形成された金属部と、金属部を内周にインサートして型成形された樹脂部とを備え、金属部の内周面に軸受面を有し、金属部の内周に挿入される軸部材との間の相対的な回転を支持する滑り軸受であって、前記金属部の外周面の一部が除去され、その除去部に前記樹脂部が入り込むことにより、前記金属部と前記樹脂部とを軸方向で係合させ、前記軸受面に、マスター軸の外周面に形成された型により動圧発生部が成形されたことを特徴とする。 In order to solve the above problems, the present invention comprises a metal part formed by electroforming, and a resin part molded by inserting the metal part into the inner periphery, and a bearing surface on the inner peripheral surface of the metal part A sliding bearing that supports relative rotation with a shaft member that is inserted into the inner periphery of the metal part, wherein a part of the outer peripheral surface of the metal part is removed, and the removal part includes When the resin part enters, the metal part and the resin part are engaged in the axial direction, and a dynamic pressure generating part is formed on the bearing surface by a mold formed on the outer peripheral surface of the master shaft. And

このように本発明では、金属部の外周面の一部を除去し、そこに樹脂部が入り込んだことを特徴とする。これにより、アンカー効果が発揮され、金属部と樹脂部とが強固に結合されるため、金属部と樹脂部との剥離、さらにはこれを原因とする種々の不具合を回避できる。   As described above, the present invention is characterized in that a part of the outer peripheral surface of the metal portion is removed and the resin portion enters therein. Thereby, since an anchor effect is exhibited and a metal part and a resin part are combined firmly, peeling with a metal part and a resin part and various troubles resulting from this can be avoided.

上記の金属部を電鋳加工で形成すると、軸受面となる金属部の内周面を高い表面精度で仕上げることができるため、軸受隙間を精度良く設定することができ、軸受性能の向上が図られる。   When the above metal part is formed by electroforming, the inner peripheral surface of the metal part that becomes the bearing surface can be finished with high surface accuracy, so the bearing gap can be set with high accuracy and the bearing performance can be improved. It is done.

また、金属部の除去を、金属部の内周面に達するまで、すなわち、金属部を径方向に貫通するまで行うこともできる。この場合、射出成形時に除去部に入り込んだ樹脂材料は、金属部の内周に挿入された内型(コア)の表面に密着した状態で成形される。内型に成形された面は、固化に伴って成形収縮を生じるが、この成形収縮が外径側への変位として現れ、かつこの変位量が適切となるよう樹脂材料の組成を選択し、あるいは成形条件を設定しておけば、金属部の間に樹脂部を底とする溝を形成することが可能となる。この溝は、例えば、軸受隙間に流体の動圧作用を発生させる動圧溝として利用することができる。この他にも、溝を保油部として使用することも可能である。外径側への成形収縮を生じる樹脂材料の代表例として、液晶ポリマー(LCP)をベース樹脂とする樹脂材料を挙げることができる。   Further, the removal of the metal part can be performed until reaching the inner peripheral surface of the metal part, that is, until the metal part penetrates in the radial direction. In this case, the resin material that has entered the removal portion at the time of injection molding is molded in a state of being in close contact with the surface of the inner mold (core) inserted in the inner periphery of the metal portion. The surface molded into the inner mold undergoes molding shrinkage as it solidifies, but the molding shrinkage appears as a displacement toward the outer diameter side, and the resin material composition is selected so that this displacement amount is appropriate, or If the molding conditions are set, it is possible to form a groove with the resin portion as the bottom between the metal portions. This groove can be used, for example, as a dynamic pressure groove for generating a fluid dynamic pressure action in the bearing gap. In addition, the groove can be used as an oil retaining portion. As a representative example of a resin material that causes molding shrinkage toward the outer diameter side, a resin material having a liquid crystal polymer (LCP) as a base resin can be given.

レーザ加工により金属部の除去を行うと、金属部の除去が精度よく行えるので、除去部により動圧溝を形成する場合も精度の良い動圧溝が得られる。   When the metal portion is removed by laser processing, the metal portion can be removed with high accuracy. Therefore, even when the dynamic pressure groove is formed by the removal portion, an accurate dynamic pressure groove can be obtained.

上記のような軸受を有する軸受装置を備えたモータは、優れた耐久性を有する。   A motor including a bearing device having the above-described bearing has excellent durability.

以上のように、本発明によれば、金属部と樹脂部が強固に結合され、耐久性に優れた軸受を提供することができる。   As described above, according to the present invention, it is possible to provide a bearing in which the metal portion and the resin portion are firmly coupled and have excellent durability.

以下、本発明の実施形態を図1〜4に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は、軸受3と、軸受3の内周に挿入された軸部材2とを備えた軸受装置1の断面図である。このうち軸受3は、金属部4と、金属部4を内周に保持する樹脂部5とを備える。   FIG. 1 is a cross-sectional view of a bearing device 1 including a bearing 3 and a shaft member 2 inserted into the inner periphery of the bearing 3. Of these, the bearing 3 includes a metal part 4 and a resin part 5 that holds the metal part 4 on the inner periphery.

軸受3の内周面に設けられる軸受面3aは金属部4の内周面4aで構成される。金属部4の外周面には、複数の除去部6が形成される。樹脂部5は、略円筒状をなし、樹脂を型成形することで形成される。   The bearing surface 3 a provided on the inner peripheral surface of the bearing 3 is constituted by the inner peripheral surface 4 a of the metal portion 4. A plurality of removal portions 6 are formed on the outer peripheral surface of the metal portion 4. The resin portion 5 has a substantially cylindrical shape and is formed by molding a resin.

以下、軸受3の製造工程を説明する。軸受3は、マスター軸7の外表面に電鋳殻である金属部4を析出形成する工程(電鋳加工工程)、金属部4の外周面の一部を除去する工程(除去工程)、金属部4およびマスター軸7をインサート部品として樹脂部5の型成形を行う工程(インサート成形工程)、および金属部4とマスター軸7とを分離する工程を順に経て製作される。   Hereinafter, the manufacturing process of the bearing 3 will be described. The bearing 3 includes a step of depositing and forming a metal part 4 which is an electroformed shell on the outer surface of the master shaft 7 (electroforming process), a step of removing a part of the outer peripheral surface of the metal part 4 (removing step), a metal The resin part 5 is molded through the process of molding the resin part 5 using the part 4 and the master shaft 7 as insert parts (insert molding process) and the process of separating the metal part 4 and the master shaft 7 in order.

本実施形態で使用するマスター軸7は、例えば焼入処理をしたステンレス鋼で断面輪郭真円状に、かつ軸方向で均一径に形成される。マスター軸7の材料としては、ステンレス鋼以外にも、例えばクロム系合金やニッケル系合金など、マスキング性、導電性、耐薬品性を有するものであれば金属、非金属を問わず任意に選択可能である。マスター軸7を軸部材2として使用する場合には、上記特性の他、軸受3の構成部品として求められる、機械的強度、剛性、摺動性、耐熱性等を満たす材料であることが望ましい。この場合、マスター軸7の外表面の少なくとも金属部4の形成予定領域に、金属部4との間の摩擦力を減じるための表面処理、例えばフッ素系の樹脂コーティングを施すのが望ましい。   The master shaft 7 used in the present embodiment is formed of, for example, a stainless steel that has been subjected to a quenching process so as to have a perfect cross-sectional outline and a uniform diameter in the axial direction. The material of the master shaft 7 can be arbitrarily selected from metals and non-metals as long as it has a masking property, conductivity, and chemical resistance, such as a chromium alloy or a nickel alloy, in addition to stainless steel. It is. When the master shaft 7 is used as the shaft member 2, it is desirable that the material satisfy the mechanical strength, rigidity, slidability, heat resistance, etc. required for the components of the bearing 3 in addition to the above characteristics. In this case, it is desirable to perform a surface treatment for reducing the frictional force with the metal part 4, for example, a fluorine-based resin coating, on at least a region where the metal part 4 is to be formed on the outer surface of the master shaft 7.

マスター軸7は、むく軸(中実軸)の他、中空軸あるいは中空部に他材料(樹脂など)を充填した中実軸であってもよい。また、マスター軸7の外周面精度は、軸受3の軸受面3aとなる金属部4の内周面4aの面精度を直接左右するので、なるべく高精度に仕上げておくことが望ましい。   The master shaft 7 may be a solid shaft in which a hollow shaft or a hollow portion is filled with another material (resin or the like), in addition to the peeled shaft (solid shaft). Further, the accuracy of the outer peripheral surface of the master shaft 7 directly affects the surface accuracy of the inner peripheral surface 4a of the metal part 4 that becomes the bearing surface 3a of the bearing 3, so that it is desirable to finish it as high as possible.

マスター軸7の外表面のうち、金属部4の形成予定領域を除く箇所には、予め非導電性のマスキングが施される(図2散点で示す)。マスキング部8形成用の被覆材としては、非導電性をはじめ、電解質溶液に対する耐食性を有する材料が選択使用される。   Non-conductive masking is performed in advance on the outer surface of the master shaft 7 except for the region where the metal part 4 is to be formed (indicated by dotted points in FIG. 2). As the covering material for forming the masking portion 8, a material having non-conductive properties and corrosion resistance to the electrolyte solution is selectively used.

電鋳加工工程は、上記処理を施したマスター軸7を電解質溶液に浸漬し、電解質溶液に通電して目的の金属をマスター軸2の表面に析出させることにより行われる。電解質溶液には、金属部4の析出材料となる金属(例えばNiやCu等)を含んだものが用いられる。上記析出金属の種類は、軸受面3aに求められる硬度、あるいは潤滑油に対する耐性(耐油性)など、要求される特性に応じて適宜選択される。また、電解質溶液には、カーボンなどの摺動材、あるいはサッカリン等の応力緩和材を必要に応じて含有させることもできる。こうして、図2のように、マスター軸7の外周面の所定箇所に金属部4が析出形成される。   The electroforming process is performed by immersing the master shaft 7 subjected to the above treatment in an electrolyte solution and energizing the electrolyte solution to deposit a target metal on the surface of the master shaft 2. As the electrolyte solution, a solution containing a metal (for example, Ni, Cu, or the like) that is a deposition material of the metal portion 4 is used. The kind of the deposited metal is appropriately selected according to required properties such as hardness required for the bearing surface 3a or resistance to lubricating oil (oil resistance). Further, the electrolyte solution can contain a sliding material such as carbon or a stress relaxation material such as saccharin, if necessary. Thus, as shown in FIG. 2, the metal portion 4 is deposited and formed at a predetermined location on the outer peripheral surface of the master shaft 7.

次いで、図3に示すように、電鋳加工工程で形成された金属部4の外周面4bの一部を、レーザ加工、機械加工など適宜の方法により除去し、クロスハッチングで示す除去部6を形成する(除去工程)。図面では、環状の除去部6を軸方向に離間して3箇所に形成した場合を例示しているが、除去部6の形状や数は図示例のものには限定されない。   Next, as shown in FIG. 3, a part of the outer peripheral surface 4b of the metal part 4 formed in the electroforming process is removed by an appropriate method such as laser machining or machining, and the removal part 6 shown by cross hatching is removed. Form (removal step). In the drawing, the case where the annular removal portions 6 are formed at three positions apart in the axial direction is illustrated, but the shape and number of the removal portions 6 are not limited to those in the illustrated example.

上記工程を経て製作された金属部4およびマスター軸7からなる部品(以下、電鋳軸9という。)は、樹脂部5をインサート成形する成形型内にインサート部品として供給される。   A part (hereinafter, referred to as an electroformed shaft 9) made of the metal part 4 and the master shaft 7 manufactured through the above steps is supplied as an insert part into a molding die for insert molding the resin part 5.

図4は、樹脂部5のインサート成形工程を概念的に示すもので、固定型11、および可動型10からなる金型には、ランナ12およびゲート13と、キャビティ14とが設けられる。ゲート13は、この実施形態では、点状ゲートであり、成形金型(可動型10)の、樹脂部5の軸方向一端面に対応する位置に、かつ円周方向等間隔に複数箇所(例えば三箇所)形成される。各ゲート13のゲート面積は、充填する溶融樹脂の粘度や、成形品の形状に合わせて適切な値に設定される。   FIG. 4 conceptually shows an insert molding process of the resin portion 5, and a runner 12, a gate 13, and a cavity 14 are provided in a mold including the fixed mold 11 and the movable mold 10. In this embodiment, the gate 13 is a dotted gate, and is formed at a plurality of locations (for example, at equal intervals in the circumferential direction) at positions corresponding to one axial end surface of the resin portion 5 of the molding die (movable mold 10). Three places) formed. The gate area of each gate 13 is set to an appropriate value according to the viscosity of the molten resin to be filled and the shape of the molded product.

上記構成の金型において、電鋳軸9を所定位置に位置決めした状態で可動型10を固定型11に接近させて型締めする。次に、型締めした状態で、スプール(図示は省略)、ランナ12、およびゲート13を介してキャビティ14内に溶融樹脂Pを射出、充填し、樹脂部5を電鋳軸9と一体に成形する。   In the mold configured as described above, the movable mold 10 is brought close to the fixed mold 11 and clamped while the electroformed shaft 9 is positioned at a predetermined position. Next, in a state where the mold is clamped, molten resin P is injected and filled into the cavity 14 through the spool (not shown), the runner 12, and the gate 13, and the resin portion 5 is molded integrally with the electroformed shaft 9. To do.

なお、溶融樹脂Pは熱可塑性樹脂であり、非晶性樹脂として、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等、結晶性樹脂として、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等を用いることができる。また、上記の樹脂に充填する充填材の種類も特に限定されないが、例えば、充填材として、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、カーボンファイバー、カーボンブラック、黒鉛、カーボンナノマテリアル、金属粉末等の繊維状又は粉末状の導電性充填材を用いることができる。これらの充填材は、単独で用い、あるいは、二種以上を混合して使用しても良い。   Note that the molten resin P is a thermoplastic resin, and amorphous resins such as polysulfone (PSF), polyethersulfone (PES), polyphenylsulfone (PPSU), and polyetherimide (PEI) are used as crystalline resins. As the liquid crystal polymer (LCP), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), or the like can be used. The type of filler to be filled in the resin is not particularly limited. For example, as the filler, fibrous filler such as glass fiber, whisker-like filler such as potassium titanate, and scaly filler such as mica. A fibrous or powdery conductive filler such as carbon fiber, carbon black, graphite, carbon nanomaterial, or metal powder can be used. These fillers may be used alone or in combination of two or more.

型開き後、マスター軸7、金属部4、および樹脂部5が一体となった成形品を金型10、11から脱型する。この成形品は、その後の分離工程において金属部4および樹脂部5からなる軸受3(図1を参照)と、マスター軸7とに分離される。   After the mold opening, the molded product in which the master shaft 7, the metal part 4, and the resin part 5 are integrated is removed from the molds 10 and 11. This molded product is separated into a bearing 3 (see FIG. 1) composed of the metal part 4 and the resin part 5 and the master shaft 7 in a subsequent separation step.

この分離工程では、金属部4に蓄積された内部応力を解放することにより、金属部4の内周面を拡径させ、マスター軸2の外周面から剥離させる。内部応力の解放は、マスター軸7又は軸受3に衝撃を与えることにより、あるいは金属部4の内周面とマスター軸7の外周面との間に軸方向の加圧力を付与することにより行われる。内部応力の解放により、金属部4の内周面を半径方向に拡径させて、金属部4の内周面とマスター軸7の外周面との間に適当な大きさの隙間を形成することにより、金属部4の内周面からマスター軸7を軸方向にスムーズに引き抜くことができる。これにより成形品が金属部4及び樹脂部5からなる軸受3と、マスター軸7とに分離される。なお、金属部4の拡径量は、例えば金属部4の肉厚を変えることによって制御できる。   In this separation step, the internal stress accumulated in the metal part 4 is released, so that the inner peripheral surface of the metal part 4 is expanded and peeled off from the outer peripheral surface of the master shaft 2. The internal stress is released by applying an impact to the master shaft 7 or the bearing 3 or by applying an axial pressure between the inner peripheral surface of the metal part 4 and the outer peripheral surface of the master shaft 7. . By releasing the internal stress, the inner peripheral surface of the metal portion 4 is radially expanded to form a gap having an appropriate size between the inner peripheral surface of the metal portion 4 and the outer peripheral surface of the master shaft 7. Thus, the master shaft 7 can be smoothly pulled out from the inner peripheral surface of the metal portion 4 in the axial direction. As a result, the molded product is separated into the bearing 3 including the metal portion 4 and the resin portion 5 and the master shaft 7. The diameter expansion amount of the metal part 4 can be controlled, for example, by changing the thickness of the metal part 4.

衝撃の付与だけでは金属部4の内周を十分に拡径さえることができない場合、金属部4とマスター軸7とを加熱又は冷却し、両者間に熱膨張量差を生じさせることによって、マスター軸7と軸受5とを分離することもできる。   When the inner circumference of the metal part 4 cannot be sufficiently expanded only by applying an impact, the metal part 4 and the master shaft 7 are heated or cooled to cause a difference in thermal expansion between them, thereby producing a master. The shaft 7 and the bearing 5 can also be separated.

これにより、金属部4の内周面4aを軸受面3aとする軸受3が得られる。このように、電鋳加工で形成された軸受面3aは、マスター軸7の外周表面精度に倣った精度を有するため、マスター軸7の外周表面精度を高めておけば、精度の高い軸受面3aを得ることができる。よって、軸受面3aと、軸受3の内周に挿入される軸部材2の外周面との間の軸受隙間(ラジアル軸受隙間)を精度良く設定することができ、軸受性能の向上を図ることができる。   Thereby, the bearing 3 which uses the inner peripheral surface 4a of the metal part 4 as the bearing surface 3a is obtained. Thus, since the bearing surface 3a formed by electroforming has an accuracy that follows the outer peripheral surface accuracy of the master shaft 7, if the outer peripheral surface accuracy of the master shaft 7 is increased, a highly accurate bearing surface 3a. Can be obtained. Therefore, the bearing clearance (radial bearing clearance) between the bearing surface 3a and the outer peripheral surface of the shaft member 2 inserted into the inner periphery of the bearing 3 can be set with high accuracy, and the bearing performance can be improved. it can.

この軸受3では、除去部6に樹脂部5が入り込んだ状態で金属部5と樹脂部6とが固定される。これにより、金属部4と樹脂部5との間にアンカー効果が発揮されることで結合力が向上し、樹脂部5に対する金属部4の相対変位、この実施形態では軸方向への抜けに対する抵抗力を大幅に高めることができる。   In the bearing 3, the metal part 5 and the resin part 6 are fixed in a state where the resin part 5 enters the removal part 6. As a result, the anchoring effect is exerted between the metal part 4 and the resin part 5 to improve the coupling force, and the relative displacement of the metal part 4 with respect to the resin part 5, in this embodiment, the resistance to slipping in the axial direction. The power can be greatly increased.

なお、上記の金属部4と樹脂部5との結合力をより高めるには、除去部6の配置数を増やしたり、除去部6の径方向の深さを深くするとよい。除去部6の径方向の深さは、最大で金属部4の内周面4aに達するまで、すなわち除去部6が金属部4を径方向に貫通するまで設定することができる。また、金属部4の樹脂部5に対する径方向の回り止めの効果を得るために、軸方向と平行な直線溝状の除去部を径方向に離隔して複数箇所設けたり、除去部6を金属部4の外周面4bにらせん状に設けたりすることもできる。   In order to further increase the bonding force between the metal part 4 and the resin part 5, it is preferable to increase the number of the removal parts 6 or to increase the depth of the removal parts 6 in the radial direction. The depth in the radial direction of the removal portion 6 can be set until the depth reaches the inner peripheral surface 4a of the metal portion 4 at the maximum, that is, until the removal portion 6 penetrates the metal portion 4 in the radial direction. Further, in order to obtain the effect of preventing the metal part 4 from rotating in the radial direction with respect to the resin part 5, a plurality of linear groove-like removal parts parallel to the axial direction are provided in the radial direction, or the removal part 6 is made of metal. It can also be provided spirally on the outer peripheral surface 4 b of the portion 4.

こうして得られた軸受3に、軸部材2を挿入することにより、軸部材2を回転自在に支持する軸受装置1が完成する。軸受装置1の内部に、潤滑流体、例えば潤滑油を充満し、軸受隙間に流体膜を形成することにより、軸受3と軸部材2との間の潤滑をより滑らかにすることができる。潤滑油以外の潤滑流体として、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。   By inserting the shaft member 2 into the bearing 3 thus obtained, the bearing device 1 that supports the shaft member 2 rotatably is completed. Lubricating between the bearing 3 and the shaft member 2 can be made smoother by filling the inside of the bearing device 1 with a lubricating fluid, for example, lubricating oil, and forming a fluid film in the bearing gap. As a lubricating fluid other than the lubricating oil, for example, a gas such as air, a fluid lubricant such as a magnetic fluid, or lubricating grease may be used.

以上に示した軸受3は、軸部材2の外周面との間の軸受隙間に、流体の動圧作用で圧力を発生させる動圧軸受装置として使用することも可能である。この動圧軸受装置は、例えば軸部材2の外周面に、へリングボーン形状等に形成した動圧溝、多円弧面、あるいはステップ面等の動圧発生部を形成し、この動圧発生部を金属部4の真円状内周面4aと対向させることで構成することができる。これとは逆に、軸受3の内周面(金属部4の内周面4a)に動圧発生部を形成することもでき、この場合、金属部内周面4aの動圧発生部は、マスター軸7の外周面に動圧発生部の形状に対応した型を形成し、このマスター軸7を用いて電鋳加工を行うことで形成可能である。その後、上記と同様の手法で軸受3とマスター軸7の分離を行い、さらに軸受3の内周面に真円状外周面を有する軸部材を挿入することで、動圧軸受装置が構成される。   The bearing 3 described above can also be used as a hydrodynamic bearing device that generates pressure by a hydrodynamic action of fluid in a bearing gap between the shaft member 2 and the outer peripheral surface thereof. In this dynamic pressure bearing device, for example, a dynamic pressure generating portion such as a dynamic pressure groove, a multi-arc surface, or a step surface formed in a herringbone shape or the like is formed on the outer peripheral surface of the shaft member 2, and the dynamic pressure generating portion Can be configured to face the perfect circular inner peripheral surface 4a of the metal part 4. On the contrary, the dynamic pressure generating portion can be formed on the inner peripheral surface of the bearing 3 (the inner peripheral surface 4a of the metal portion 4). In this case, the dynamic pressure generating portion of the metal portion inner peripheral surface 4a is It can be formed by forming a mold corresponding to the shape of the dynamic pressure generating portion on the outer peripheral surface of the shaft 7 and performing electroforming using the master shaft 7. Thereafter, the bearing 3 and the master shaft 7 are separated by the same method as described above, and a shaft member having a perfectly circular outer peripheral surface is inserted into the inner peripheral surface of the bearing 3 to constitute a hydrodynamic bearing device. .

軸受3の内周面の動圧発生部は、以下の手順で形成することもできる。   The dynamic pressure generating portion on the inner peripheral surface of the bearing 3 can also be formed by the following procedure.

まず、図5に示すように、マスター軸27の外周面の所定箇所にマスキング部28を形成し、電鋳加工を施すことにより、軸方向に離隔した2箇所に金属部24を析出形成する。その後、図6に示すように、金属部24の外周の所定部分(除去部46)を内周面に達するまで除去し、例えばへリングボーン形状の金属部44を形成する。この場合の除去加工では、高い精密性が要求されること、金属部24の除去量が多く、除去加工中に金属部4とマスター軸27の界面に作用する力が大きくなるため、金属部4がマスター軸27の表面から剥離しやすくなること等から、レーザ加工による除去加工を行うのが望ましい。   First, as shown in FIG. 5, the masking part 28 is formed in the predetermined location of the outer peripheral surface of the master shaft 27, and the metal part 24 is deposited and formed in two places separated in the axial direction by electroforming. Thereafter, as shown in FIG. 6, a predetermined portion (removal portion 46) on the outer periphery of the metal portion 24 is removed until the inner peripheral surface is reached, and a herringbone-shaped metal portion 44 is formed, for example. In the removal processing in this case, high precision is required, the removal amount of the metal portion 24 is large, and the force acting on the interface between the metal portion 4 and the master shaft 27 is increased during the removal processing. Since it becomes easy to peel from the surface of the master shaft 27, it is desirable to perform removal processing by laser processing.

次いで、上記のマスター軸27及びヘリングボーン形状の金属部44をインサート部材として樹脂材料で樹脂部25を射出成形する。一般に、樹脂材料で樹脂部25のような略円筒状の部材を射出成形すると、固化時の成形収縮により、部材の内周面は内径側へ縮径する傾向がある。しかし、上記に例示した樹脂の中で、例えば液晶ポリマーをベース樹脂とする樹脂材料は、成形収縮により、部材の内周面が外径側へ拡径する性質を有する。従って、液晶ポリマーをベース樹脂とする樹脂材料で樹脂部25を射出成形すると、射出時には樹脂材料が金属部44の内周面44aと面一になるまで入り込む(図7に点線で示す)が、固化時には上記性質により、隣接する金属部44間の樹脂部25の内周面25a1が成形収縮により拡径し、金属部44の内周面44aよりも大径となる。これにより、軸受23の内周面に、樹脂部内周面25a1を溝底とする動圧溝47が形成される。動圧溝47の深さは、例えば樹脂材料中の充填材の種類や配合量を変更する、樹脂材料の固化速度を調整する、等の手段で樹脂部25での成形収縮量を調整することにより、任意の値に設定することが可能である。   Next, the resin portion 25 is injection-molded with a resin material using the master shaft 27 and the herringbone-shaped metal portion 44 as insert members. In general, when a substantially cylindrical member such as the resin portion 25 is injection-molded with a resin material, the inner peripheral surface of the member tends to shrink toward the inner diameter side due to molding shrinkage during solidification. However, among the resins exemplified above, for example, a resin material having a liquid crystal polymer as a base resin has a property that the inner peripheral surface of the member expands to the outer diameter side due to molding shrinkage. Therefore, when the resin portion 25 is injection-molded with a resin material having a liquid crystal polymer as a base resin, the resin material enters until it is flush with the inner peripheral surface 44a of the metal portion 44 at the time of injection (indicated by a dotted line in FIG. 7) Due to the above properties during solidification, the inner peripheral surface 25a1 of the resin portion 25 between the adjacent metal portions 44 expands due to molding shrinkage and becomes larger in diameter than the inner peripheral surface 44a of the metal portion 44. Thus, a dynamic pressure groove 47 having the resin portion inner peripheral surface 25a1 as the groove bottom is formed on the inner peripheral surface of the bearing 23. The depth of the dynamic pressure groove 47 is adjusted by, for example, changing the type and amount of filler in the resin material, adjusting the solidification speed of the resin material, and adjusting the amount of molding shrinkage at the resin portion 25. Thus, it is possible to set an arbitrary value.

上記のように形成された軸受23の内周に軸部材を挿入し、軸受23の内周面23aと軸部材の外周面との間の軸受隙間に潤滑流体、例えば潤滑油を充填することにより、軸受装置(動圧軸受装置)が完成する(図示省略)。この動圧軸受装置において、軸部材が回転すると、動圧溝47によって軸受隙間の潤滑油に動圧作用が発生し、軸部材がラジアル方向に非接触支持される。   By inserting the shaft member into the inner periphery of the bearing 23 formed as described above, and filling the bearing gap between the inner peripheral surface 23a of the bearing 23 and the outer peripheral surface of the shaft member with a lubricating fluid, for example, lubricating oil. The bearing device (dynamic pressure bearing device) is completed (not shown). In this dynamic pressure bearing device, when the shaft member rotates, a dynamic pressure action is generated in the lubricating oil in the bearing gap by the dynamic pressure groove 47, and the shaft member is supported in a non-contact manner in the radial direction.

図5〜7に示す工程において、動圧溝パターンとしては任意の形状を選択することができ、図示したヘリングボーン形状の他、例えばスパイラル形状の動圧溝パターンを形成することもできる。また、同様の工程で軸方向の動圧溝47を円周方向の複数箇所に形成することにより、いわゆるステップ軸受を形成することも可能となる。   5-7, an arbitrary shape can be selected as the dynamic pressure groove pattern. For example, a spiral dynamic pressure groove pattern can be formed in addition to the illustrated herringbone shape. Further, by forming the axial dynamic pressure grooves 47 at a plurality of locations in the circumferential direction in the same process, it is possible to form so-called step bearings.

以上の実施形態において、軸部材2にはマスター軸7をそのまま使用しても良いし、マスター軸7とは別に製作した軸状の部材を軸部材2として用いることもできる。後者によれば、一度高精度に製作したマスター軸7を繰返し転用することができるので、マスター軸7の製作コストを抑え、軸受装置1のさらなる低コスト化を図ることが可能となる。上述のように、軸部材2の外周面2aに動圧溝等の動圧発生部を設ける場合には、断面真円状のマスター軸7とは別に製作した軸状部材の外周面に動圧発生部を設けたものを軸部材2として用いるとよい。   In the above embodiment, the master shaft 7 may be used as it is for the shaft member 2, or a shaft-like member manufactured separately from the master shaft 7 may be used as the shaft member 2. According to the latter, since the master shaft 7 once manufactured with high accuracy can be repeatedly used, the manufacturing cost of the master shaft 7 can be suppressed and the cost of the bearing device 1 can be further reduced. As described above, when a dynamic pressure generating portion such as a dynamic pressure groove is provided on the outer peripheral surface 2 a of the shaft member 2, the dynamic pressure is applied to the outer peripheral surface of the shaft-shaped member manufactured separately from the master shaft 7 having a perfect circular cross section. What provided the generating part is good to use as the shaft member 2.

以上説明した軸受装置は、例えば情報機器用のモータに組み込んで使用可能である。以下、軸受装置1を上記モータ用の回転軸支持装置として使用した例を、図8に基づいて説明する。   The bearing device described above can be used by being incorporated in a motor for information equipment, for example. Hereinafter, an example in which the bearing device 1 is used as a rotating shaft support device for the motor will be described with reference to FIG.

図8に示すように、このモータ100は、例えばHDD等のディスク駆動装置用のスピンドルモータとして使用されるものであって、軸部材102を回転自在に非接触支持する軸受装置1と、軸部材102に装着されたロータ(ディスクハブ)103と、例えば半径方向のギャップを介して対向させたステータコイル104およびロータマグネット105とを備えている。ステータコイル104は、ブラケット106の外周に取付けられ、ロータマグネット105はディスクハブ103の内周に取付けられている。ディスクハブ103には、磁気ディスク等のディスクDが一又は複数枚保持されている。ステータコイル104に通電すると、ステータコイル104とロータマグネット105との間の電磁力でロータマグネット105が回転し、それによって、ディスクハブ103及びディスクハブ103に保持されたディスクDが軸部材102と一体に回転する。   As shown in FIG. 8, the motor 100 is used as a spindle motor for a disk drive device such as an HDD, and includes a bearing device 1 that rotatably supports a shaft member 102 in a non-contact manner, and a shaft member. A rotor (disk hub) 103 attached to 102, and a stator coil 104 and a rotor magnet 105 that face each other through a gap in the radial direction, for example. The stator coil 104 is attached to the outer periphery of the bracket 106, and the rotor magnet 105 is attached to the inner periphery of the disk hub 103. The disk hub 103 holds one or more disks D such as magnetic disks. When the stator coil 104 is energized, the rotor magnet 105 is rotated by the electromagnetic force between the stator coil 104 and the rotor magnet 105, whereby the disk hub 103 and the disk D held by the disk hub 103 are integrated with the shaft member 102. Rotate to.

この実施形態において、軸受装置1は、軸受3と、軸受3の内周に挿入される軸部材102と、軸受3の一端に装着されるスラストプレート107とを備える。図8では、軸受3として図1に示す軸受3を例示しているが、図7に示す軸受23も使用可能である。スラストプレート107の上端面には、スラスト動圧発生部として、複数の動圧溝をスパイラル状に配列した領域(スラスト軸受面)107aが形成される。軸部材102の回転時には、軸部材102の外周面102aと軸受3の軸受面3aとのラジアル軸受隙間に油膜が形成され、これにより軸部材102をラジアル方向に回転自在に非接触支持するラジアル軸受部Rが形成される。同時に、軸部材102の下端面102bとスラストプレート107の上端面107aとの間のスラスト軸受隙間に、動圧溝による潤滑油の動圧作用で軸部材102をスラスト方向に回転自在に非接触支持するスラスト軸受部Tが形成される。   In this embodiment, the bearing device 1 includes a bearing 3, a shaft member 102 that is inserted into the inner periphery of the bearing 3, and a thrust plate 107 that is attached to one end of the bearing 3. Although FIG. 8 illustrates the bearing 3 shown in FIG. 1 as the bearing 3, the bearing 23 shown in FIG. 7 can also be used. On the upper end surface of the thrust plate 107, a region (thrust bearing surface) 107a in which a plurality of dynamic pressure grooves are arranged in a spiral shape is formed as a thrust dynamic pressure generating portion. When the shaft member 102 is rotated, an oil film is formed in a radial bearing gap between the outer peripheral surface 102a of the shaft member 102 and the bearing surface 3a of the bearing 3, whereby the shaft member 102 is supported in a non-contact manner so as to be rotatable in the radial direction. Part R is formed. At the same time, in the thrust bearing gap between the lower end surface 102b of the shaft member 102 and the upper end surface 107a of the thrust plate 107, the shaft member 102 is rotatably supported in the thrust direction by the dynamic pressure action of the lubricating oil by the dynamic pressure groove. A thrust bearing portion T is formed.

本発明の軸受装置は、以上の例示に限らず、光ディスクの光磁気ディスク駆動用のスピンドルモータ等、高速回転下で使用される情報機器用の小型モータ、あるいはレーザビームプリンタのポリゴンスキャナモータ等における回転軸支持用としても好適に使用することができる。   The bearing device of the present invention is not limited to the above examples, and is used in a small motor for information equipment used under high-speed rotation, a polygon scanner motor of a laser beam printer, etc. It can also be suitably used for rotating shaft support.

以上の説明では、軸受3を回転軸の支持に使用する場合を例示しているが、この軸受3は軸との間の直線的な相対摺動を支持する摺動用軸受として、さらには相対摺動と相対回転の双方を支持する摺動回転用の軸受としても使用することができる。これらの用途では、摺動性改善のため、図7に示す軸受23の動圧溝47の成形方法と同様の手法で、軸受3の内周面に油を保持するための油溝を形成することができる。   Although the case where the bearing 3 is used for supporting the rotating shaft is illustrated in the above description, the bearing 3 is used as a sliding bearing that supports linear relative sliding between the shaft and the relative sliding. It can also be used as a bearing for sliding rotation that supports both movement and relative rotation. In these applications, an oil groove for retaining oil is formed on the inner peripheral surface of the bearing 3 in the same manner as the method for forming the dynamic pressure groove 47 of the bearing 23 shown in FIG. be able to.

本発明の第1実施形態に係る軸受装置1の断面図である。It is sectional drawing of the bearing apparatus 1 which concerns on 1st Embodiment of this invention. マスター軸2に金属部4が形成された状態を示す斜視図である。FIG. 3 is a perspective view showing a state where a metal part 4 is formed on a master shaft 2. 金属部4の外周面の一部が除去された状態を示す一部断面の斜視図である。It is a perspective view of the partial cross section which shows the state from which a part of outer peripheral surface of the metal part 4 was removed. 射出成形金型に電鋳軸9を取付けた状態を示す断面図である。It is sectional drawing which shows the state which attached the electroformed shaft 9 to the injection mold. マスター軸27に金属部24が形成された状態を示す斜視図である。3 is a perspective view showing a state where a metal part 24 is formed on a master shaft 27. FIG. 金属部24の一部が除去された状態を示す斜視図である。It is a perspective view which shows the state from which a part of metal part 24 was removed. 滑り軸受の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of a slide bearing. 本発明を適用したモータ100の概略構造を示す断面図である。It is sectional drawing which shows schematic structure of the motor 100 to which this invention is applied.

符号の説明Explanation of symbols

1 軸受装置
2 軸部材
3 軸受
4 金属部
5 樹脂部
6 除去部
7 マスター軸
8 マスキング部
9 電鋳軸
47 動圧溝
100 モータ
102 軸部材
R ラジアル軸受部
T スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Bearing apparatus 2 Shaft member 3 Bearing 4 Metal part 5 Resin part 6 Removal part 7 Master shaft 8 Masking part 9 Electroformed shaft 47 Dynamic pressure groove 100 Motor 102 Shaft member R Radial bearing part T Thrust bearing part

Claims (4)

電鋳加工により形成された金属部と、金属部を内周にインサートして型成形された樹脂部とを備え、金属部の内周面に軸受面を有し、金属部の内周に挿入される軸部材との間の相対的な回転を支持する滑り軸受であって、
前記金属部の外周面の一部が除去され、その除去部に前記樹脂部が入り込むことにより、前記金属部と前記樹脂部とを軸方向で係合させ、前記軸受面に、マスター軸の外周面に形成された型により動圧発生部が成形されたことを特徴とする滑り軸受。
It has a metal part formed by electroforming, and a resin part that is molded by inserting the metal part into the inner periphery, has a bearing surface on the inner peripheral surface of the metal part, and is inserted into the inner periphery of the metal part A sliding bearing supporting relative rotation between the shaft member and
A part of the outer peripheral surface of the metal part is removed, and the resin part enters the removed part, whereby the metal part and the resin part are engaged in the axial direction, and the outer periphery of the master shaft is engaged with the bearing surface. A sliding bearing characterized in that a dynamic pressure generating portion is formed by a mold formed on a surface .
前記金属部の除去が金属部の内周面に達するまで行われ、その除去部で樹脂部を溝底とする動圧溝を形成した請求項1記載の滑り軸受。   The sliding bearing according to claim 1, wherein the removal of the metal part is performed until the inner peripheral surface of the metal part is reached, and a hydrodynamic groove having the resin part as a groove bottom is formed at the removal part. 前記金属部の外周面の除去が、レーザ加工により行われる請求項1記載の滑り軸受。   The plain bearing according to claim 1, wherein the outer peripheral surface of the metal part is removed by laser processing. 請求項1〜記載の何れかの滑り軸受を有する軸受装置を備えたモータ。 The motor provided with the bearing apparatus which has a sliding bearing in any one of Claims 1-3 .
JP2005272154A 2005-09-20 2005-09-20 Plain bearing Expired - Fee Related JP4584093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005272154A JP4584093B2 (en) 2005-09-20 2005-09-20 Plain bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005272154A JP4584093B2 (en) 2005-09-20 2005-09-20 Plain bearing

Publications (2)

Publication Number Publication Date
JP2007085391A JP2007085391A (en) 2007-04-05
JP4584093B2 true JP4584093B2 (en) 2010-11-17

Family

ID=37972574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005272154A Expired - Fee Related JP4584093B2 (en) 2005-09-20 2005-09-20 Plain bearing

Country Status (1)

Country Link
JP (1) JP4584093B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021065607A (en) * 2019-10-28 2021-04-30 日精産業株式会社 Surgical instrument

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938031A (en) * 1972-08-23 1974-04-09
JPS5568169A (en) * 1978-11-14 1980-05-22 Ricoh Co Ltd Production of split type plain bearing
WO1995024570A1 (en) * 1994-03-10 1995-09-14 Enomoto Co., Ltd. Slide member
JPH09210058A (en) * 1996-01-31 1997-08-12 Matsushita Seiko Co Ltd Bearing device
JP2002238228A (en) * 2001-02-07 2002-08-23 Nsk Ltd Fluid bearing unit
JP2003056552A (en) * 2001-08-09 2003-02-26 Akutowan:Kk Resin-made bearing part and method for manufacturing the same
JP2003301834A (en) * 2002-04-08 2003-10-24 Ntn Corp Fluid bearing device, and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938031A (en) * 1972-08-23 1974-04-09
JPS5568169A (en) * 1978-11-14 1980-05-22 Ricoh Co Ltd Production of split type plain bearing
WO1995024570A1 (en) * 1994-03-10 1995-09-14 Enomoto Co., Ltd. Slide member
JPH09210058A (en) * 1996-01-31 1997-08-12 Matsushita Seiko Co Ltd Bearing device
JP2002238228A (en) * 2001-02-07 2002-08-23 Nsk Ltd Fluid bearing unit
JP2003056552A (en) * 2001-08-09 2003-02-26 Akutowan:Kk Resin-made bearing part and method for manufacturing the same
JP2003301834A (en) * 2002-04-08 2003-10-24 Ntn Corp Fluid bearing device, and method for manufacturing the same

Also Published As

Publication number Publication date
JP2007085391A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
US8419281B2 (en) Bearing member and method for manufacturing the same, and bearing unit having bearing member and method for manufacturing the same
WO2007099790A1 (en) Fluid bearing device
KR101414110B1 (en) Bearing device
JP2007232140A (en) Fluid bearing device
JP4987248B2 (en) Bearing device and motor having the bearing device
JP4794922B2 (en) Hydrodynamic bearing device and motor having the same
JP2006322500A (en) Bearing device
JP4584093B2 (en) Plain bearing
JP5058516B2 (en) Hydrodynamic bearing device
JP4794964B2 (en) Bearing device and motor equipped with the same
JP4794966B2 (en) Bearing device, motor provided with the same, and method for manufacturing bearing device
JP4813211B2 (en) Sliding bearing, motor equipped with the same, and manufacturing method of sliding bearing
JP4633591B2 (en) Plain bearing
JP4890066B2 (en) Hydrodynamic bearing device and fan motor having the same
JP2006322522A (en) Bearing device and manufacturing method for bearing member
JP2006342912A (en) Bearing device
JP4804894B2 (en) Bearing device and manufacturing method thereof
JP2007092845A (en) Bearing device
JP2006322523A (en) Bearing device
JP2007263312A (en) Manufacturing method of slide bearing
JP4896429B2 (en) Bearing, bearing device, motor, and bearing manufacturing method
JP4937618B2 (en) Hydrodynamic bearing device
JP4896430B2 (en) Bearing device and motor using the bearing device
JP2007162883A (en) Bearing device
JP2007071375A (en) Method of manufacturing bearing member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

R150 Certificate of patent or registration of utility model

Ref document number: 4584093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees