JP4804894B2 - Bearing device and manufacturing method thereof - Google Patents

Bearing device and manufacturing method thereof Download PDF

Info

Publication number
JP4804894B2
JP4804894B2 JP2005341921A JP2005341921A JP4804894B2 JP 4804894 B2 JP4804894 B2 JP 4804894B2 JP 2005341921 A JP2005341921 A JP 2005341921A JP 2005341921 A JP2005341921 A JP 2005341921A JP 4804894 B2 JP4804894 B2 JP 4804894B2
Authority
JP
Japan
Prior art keywords
bearing
shaft member
electroformed
peripheral surface
diameter portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005341921A
Other languages
Japanese (ja)
Other versions
JP2007146958A (en
Inventor
建治 日比
康裕 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2005341921A priority Critical patent/JP4804894B2/en
Priority to CN201210370122.0A priority patent/CN102878214B/en
Priority to KR1020087006757A priority patent/KR20080050585A/en
Priority to CN2006800339724A priority patent/CN101263310B/en
Priority to PCT/JP2006/317508 priority patent/WO2007034671A1/en
Priority to US12/066,463 priority patent/US8419281B2/en
Publication of JP2007146958A publication Critical patent/JP2007146958A/en
Application granted granted Critical
Publication of JP4804894B2 publication Critical patent/JP4804894B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)

Description

本発明は、軸受の軸孔に軸部材を嵌合して、両者が相対的に回転、摺動又は摺動回転できるように支持する軸受装置及びその製造方法に係るものであって、特に高精密な回転、摺動又は摺動回転を必要とする軸受装置及びその製造方法に関するものである。   The present invention relates to a bearing device that fits a shaft member into a shaft hole of a bearing and supports the shaft member so that both of them can rotate, slide, or slide and rotate relative to each other. The present invention relates to a bearing device that requires precise rotation, sliding, or sliding rotation, and a manufacturing method thereof.

このような軸受装置の軸受として、例えば特許文献1では、軸心に電鋳加工による電鋳部をインサートして型成形した軸受部品が提案されている。この軸受部品によると、電鋳殻である電鋳部の内周面が軸受部品の軸孔を形成するので、真円度及び内径寸法精度が高くて摺動性も良好であり、電鋳部の内周面に装着させて使用する軸部材に対するクリアランスを極小にして高精密な回転、摺動又は摺動回転が可能となる。
特開2003−56552号公報
As a bearing of such a bearing device, for example, Patent Document 1 proposes a bearing component in which an electroformed part by electroforming is inserted into a shaft and molded. According to this bearing part, since the inner peripheral surface of the electroformed part, which is an electroformed shell, forms the shaft hole of the bearing part, the roundness and the inner diameter dimensional accuracy are high, and the slidability is also good. The clearance with respect to the shaft member to be used by being mounted on the inner peripheral surface is minimized, and high-precision rotation, sliding, or sliding rotation is possible.
JP 2003-56552 A

上記のような軸受と、軸受の内周に挿入された軸部材とを有する軸受装置では、軸受と軸部材との潤滑性を保つために、軸受の内周面と軸部材の外周面との間に潤滑流体(例えば潤滑油)を介在させることがある。しかし、上述のように、軸受隙間となる電鋳部と軸部材との間のクリアランスは極小に設定されるため、軸受隙間に保持される潤滑油は極少量である。このため、潤滑油が軸部材の作動(例えば回転)に伴う外部への飛散や、蒸発などにより減少すると、潤滑油不足による潤滑不良を招き、異音の発生や、軸受と軸部材との接触摺動による部材の摩耗などの不具合が生じる。また、軸受装置の使用環境が高温になると、潤滑油の体積が膨張し、微小な軸受隙間に保持しきれない潤滑油が漏れ出し、周辺環境の汚染や潤滑油不足の不具合を招く恐れがある。   In a bearing device having the above-described bearing and a shaft member inserted in the inner periphery of the bearing, in order to maintain lubricity between the bearing and the shaft member, the inner peripheral surface of the bearing and the outer peripheral surface of the shaft member are A lubricating fluid (for example, lubricating oil) may be interposed therebetween. However, as described above, since the clearance between the electroformed part that becomes the bearing gap and the shaft member is set to a minimum, the amount of lubricating oil held in the bearing gap is extremely small. For this reason, if the lubricating oil decreases due to scattering to the outside due to the operation (for example, rotation) of the shaft member, evaporation, etc., it results in poor lubrication due to lack of lubricating oil, generation of abnormal noise, contact between the bearing and the shaft member Problems such as wear of members due to sliding occur. In addition, when the bearing device is used in a high temperature environment, the volume of the lubricating oil expands, and the lubricating oil that cannot be held in the minute bearing gaps leaks out, which may lead to contamination of the surrounding environment and a shortage of lubricating oil. .

このような不具合を回避するために、軸受の端部にシール空間を形成することが考えられるが、シール空間を形成するには、別途製作したシール部材を配置したり、軸受の内周面又は軸部材の外周面の一部を機械加工等で除去したりする必要がある。このように部材数や工程数が増えることで、軸受装置の製造コスト高を招くことになる。   In order to avoid such a problem, it is conceivable to form a seal space at the end of the bearing. However, in order to form the seal space, a seal member manufactured separately, or the inner peripheral surface of the bearing or It is necessary to remove a part of the outer peripheral surface of the shaft member by machining or the like. As the number of members and the number of processes increase in this way, the manufacturing cost of the bearing device increases.

本発明の課題は、異音の発生や部材の摩耗、周辺環境の汚染を回避することができ、製品寿命の長い軸受装置を低コストに提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a bearing device having a long product life at low cost, which can avoid generation of abnormal noise, wear of members, and contamination of the surrounding environment.

前記課題を解決するため、本発明は、電鋳部および電鋳部を保持する保持部からなる軸受と、軸受の内周に挿入された軸部材とを有し、電鋳部に軸部材の外周面と対向する軸受面を設けた軸受装置において、軸部材に小径部と大径部とを設けると共に、保持部に軸部材の大径部で成形した成形面を設け、電鋳部の軸受面および前記保持部の成形面をそれぞれ軸部材の小径部外周面と対向させたことを特徴とする。   In order to solve the above-mentioned problems, the present invention has a bearing comprising an electroformed part and a holding part for holding the electroformed part, and a shaft member inserted in the inner periphery of the bearing, and the electroformed part has a shaft member. In a bearing device provided with a bearing surface opposed to the outer peripheral surface, the shaft member is provided with a small diameter portion and a large diameter portion, and the holding portion is provided with a molding surface formed with the large diameter portion of the shaft member, thereby bearing the electroformed portion. The surface and the molding surface of the holding portion are respectively opposed to the outer peripheral surface of the small diameter portion of the shaft member.

また、本発明の軸受装置の製造方法は、電鋳部および電鋳部を保持する保持部からなる軸受と、軸受の内周に挿入された軸部材とを有し、電鋳部に軸部材の外周面と対向する軸受面を設けた軸受装置の製造に際して、小径部と大径部とを有する軸部材のうち、少なくとも小径部をマスターとして電鋳部を形成した後、軸部材の少なくとも大径部を内型とする射出成形により、電鋳部を保持する保持部を成形し、その後、軸部材を電鋳部および保持部から分離し、分離した軸部材の小径部の外周面を軸部材の大径部で成形された保持部の成形面と対向させることを特徴とする。   In addition, the manufacturing method of the bearing device of the present invention includes a bearing including an electroformed portion and a holding portion that holds the electroformed portion, and a shaft member inserted in the inner periphery of the bearing, and the shaft member is disposed in the electroformed portion. In manufacturing a bearing device provided with a bearing surface facing the outer peripheral surface of the shaft member, after forming an electroformed portion using at least the small diameter portion as a master among shaft members having a small diameter portion and a large diameter portion, at least the shaft member is large. A holding part for holding the electroformed part is formed by injection molding with the diameter part as an inner mold, and then the shaft member is separated from the electroformed part and the holding part, and the outer peripheral surface of the small diameter part of the separated shaft member is pivoted. It is made to oppose the molding surface of the holding part shape | molded by the large diameter part of the member.

このように本発明では、軸部材の大径部で成形した保持部の成形面を軸部材の小径部外周面と対向させる。この成形面と軸部材の小径部外周面との間の微小隙間は、軸受面と軸部材との間の軸受隙間よりも隙間幅が大きいため、より多くの潤滑油が保持できる。よって、この微小隙間が軸受隙間に油を供給する油溜りとしての機能を果たし、潤滑油不足による不具合を回避することができる。また、微小隙間が軸受隙間に充填された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を果たすことにより、軸受装置の使用環境の高温化により膨張した潤滑油が、軸受外部へ漏れ出すことを防止できる。   As described above, in the present invention, the molding surface of the holding portion formed by the large diameter portion of the shaft member is opposed to the outer peripheral surface of the small diameter portion of the shaft member. The minute gap between the molding surface and the outer peripheral surface of the small-diameter portion of the shaft member has a larger gap width than the bearing gap between the bearing surface and the shaft member, so that more lubricating oil can be retained. Therefore, the minute gap functions as an oil reservoir for supplying oil to the bearing gap, and a problem due to lack of lubricating oil can be avoided. Also, by fulfilling the buffer function that absorbs the volume change accompanying the temperature change of the lubricating oil filled in the bearing gap with the minute gap, the lubricating oil expanded due to the high temperature of the bearing device's operating environment leaks to the outside of the bearing. Can be prevented.

また、この微小隙間は、保持部の射出成形工程において軸部材の大径面を内型として成形される成形面と、軸部材の小径部外周面とを対向させることで形成される。すなわち、射出成形により一体に成形された電鋳部、保持部および軸部材から軸部材を分離した後、軸部材を軸方向に移動させるだけで、上記の微小隙間を形成することができるため、別部材や別工程を必要とせず、低コストに油溜りを形成することができる。   Further, the minute gap is formed by making a molding surface formed by using the large diameter surface of the shaft member as an inner mold in the injection molding process of the holding portion and the outer peripheral surface of the small diameter portion of the shaft member. That is, since the shaft member is separated from the electroformed part integrally formed by injection molding, the holding part, and the shaft member, the minute gap can be formed only by moving the shaft member in the axial direction. An oil sump can be formed at low cost without requiring a separate member or a separate process.

また、このような微小隙間を軸受の内周面の端部に設けると、この微小隙間がシール空間として機能し、潤滑油の外部への漏れ出しを防止することもできる。   Further, when such a minute gap is provided at the end portion of the inner peripheral surface of the bearing, the minute gap functions as a seal space, and leakage of the lubricating oil to the outside can be prevented.

上記の軸受装置と、ステータコイルと、ロータマグネットとを備えたモータは円滑に作動するため、異音の発生がなく、製品寿命も長い。   Since the motor including the bearing device, the stator coil, and the rotor magnet operates smoothly, no abnormal noise is generated and the product life is long.

以上のように、本発明によると、異音の発生や部材の摩耗、周辺環境の汚染を回避でき、製品寿命の長い軸受装置を低コストに得ることができる。   As described above, according to the present invention, it is possible to avoid generation of abnormal noise, wear of members, and contamination of the surrounding environment, and a bearing device having a long product life can be obtained at low cost.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の第1の実施形態を示す軸受装置を構成する軸受5(図4参照)は、軸部材1をマスターとして使用し、電鋳加工を行って電鋳軸4を形成する工程(図1および図2参照)、電鋳軸4の電鋳部3を保持する保持部6を樹脂で射出成形する工程(図3参照)、および電鋳部3と軸部材1とを分離する工程を経て製作される。   The bearing 5 (see FIG. 4) constituting the bearing device showing the first embodiment of the present invention uses the shaft member 1 as a master and performs electroforming to form the electroformed shaft 4 (FIG. 1). And the process of separating the electroformed part 3 and the shaft member 1 from each other (see FIG. 3), and a process of separating the electroformed part 3 and the shaft member 1 from each other. Produced.

なお、以下の説明において、「回転用の軸受」とは、軸部材との間の相対回転を支持する軸受を意味し、軸受が回転側となるか固定側となるかを問わない。「摺動用の軸受」とは、軸との間の相対的な直線運動を支持する軸受を意味し、同様に軸受が移動側となるか固定側となるかを問わない。「回転摺動用の軸受」とは、前記二つの軸受の機能を併せ持つもので、軸との間の回転運動および直線運動の双方を支持する軸受を意味する。   In the following description, the “rotating bearing” means a bearing that supports relative rotation with the shaft member, and it does not matter whether the bearing is on the rotating side or the fixed side. “Sliding bearing” means a bearing that supports relative linear motion with respect to the shaft, and it does not matter whether the bearing is on the moving side or the stationary side. The “rotating and sliding bearing” refers to a bearing that has both functions of the two bearings and supports both rotational movement and linear movement with respect to the shaft.

軸部材1は、導電性材料、例えば焼入処理をしたステンレス鋼で、図1に示すように、大径部と小径部とを有する横断面円形の軸として製作される。もちろんステンレス鋼に限定されるものでなく、剛性などの機械的強度、摺動性、耐熱性、耐薬品性、電鋳部3の加工性および分離性など、軸受の機能上あるいは軸受製作の都合上求められる特性に適合した材料、さらには熱処理方法が選択される。セラミック等の非金属材料でも、導電処理を施すことにより(例えば表面に導電性の金属皮膜を形成することにより)使用可能となる。なお、軸部材1の表面には、軸受装置として使用する際の軸受部材との摩擦低減のため、例えばフッ素系の樹脂コーティングを施すのが望ましい。   The shaft member 1 is made of a conductive material, for example, hardened stainless steel, and is manufactured as a shaft having a circular cross section having a large diameter portion and a small diameter portion as shown in FIG. Of course, the material is not limited to stainless steel, but it has a mechanical function such as rigidity, slidability, heat resistance, chemical resistance, workability and separability of the electroformed part 3, and the convenience of the bearing or the manufacture of the bearing. A material and a heat treatment method suitable for the characteristics required above are selected. Even non-metallic materials such as ceramics can be used by conducting a conductive treatment (for example, by forming a conductive metal film on the surface). The surface of the shaft member 1 is preferably coated with, for example, a fluorine-based resin coating in order to reduce friction with the bearing member when used as a bearing device.

軸部材1は、中実軸の他、中空軸や中空部に樹脂を充填した中実軸であっても良い。また、回転用の軸受では、軸部材の横断面は基本的に円形に形成されるが、摺動用の軸受の場合は横断面を任意形状にすることができ、円形のほかに多角形状や非真円形状とすることもできる。また、摺動用の軸受では、軸部材1の摺動部の断面形状は軸方向一定に形成されるが、回転用の軸受では、軸部材の断面形状は軸方向一定ではない形態をとることもある。   In addition to the solid shaft, the shaft member 1 may be a solid shaft in which a hollow shaft or a hollow portion is filled with resin. In addition, in the bearing for rotation, the cross section of the shaft member is basically formed in a circular shape, but in the case of the bearing for sliding, the cross section can be an arbitrary shape. It can also be a perfect circle shape. Further, in the sliding bearing, the cross-sectional shape of the sliding portion of the shaft member 1 is formed constant in the axial direction, but in the rotating bearing, the cross-sectional shape of the shaft member may take a form that is not constant in the axial direction. is there.

軸部材1の外周面精度は、後述する軸受隙間の精度を直接左右するので、真円度、円筒度、表面粗さ等の軸受機能上重要となる表面精度を、予め高精度に仕上げておく必要がある。例えば回転用の軸受では、軸受面との接触回避の観点から真円度が重視されるので、軸部材1の外周面はできるだけ真円度を高める必要がある。例えば、後述する軸受隙間の平均幅(半径寸法)の8割以下にまで仕上げておくのが望ましい。従って、例えば軸受隙間の平均幅を2μmに設定する場合、軸部材外周面は1.6μm以下の真円度に仕上げるのが望ましい。   Since the accuracy of the outer peripheral surface of the shaft member 1 directly affects the accuracy of the bearing gap described later, surface accuracy that is important for bearing functions such as roundness, cylindricity, and surface roughness is finished in advance with high accuracy. There is a need. For example, in a rotation bearing, since roundness is important from the viewpoint of avoiding contact with the bearing surface, it is necessary to increase the roundness of the outer peripheral surface of the shaft member 1 as much as possible. For example, it is desirable to finish to 80% or less of an average width (radial dimension) of a bearing gap described later. Therefore, for example, when the average width of the bearing gap is set to 2 μm, it is desirable that the outer peripheral surface of the shaft member is finished to a roundness of 1.6 μm or less.

軸部材1の外周面には、図1の散点で示すように、電鋳部3の形成予定部を除き、マスキングが施される。マスキング用の被覆材2としては、非導電性、および電解質溶液に対する耐食性を有する既存品が選択使用される。   Masking is performed on the outer peripheral surface of the shaft member 1 except for the portion where the electroformed portion 3 is to be formed, as indicated by the dotted points in FIG. As the masking covering material 2, an existing product having non-conductivity and corrosion resistance against the electrolyte solution is selectively used.

電鋳加工は、NiやCu等の金属イオンを含んだ電解質溶液に軸部材1を浸漬し、電解質溶液に通電して目的の金属を軸部材1の表面に析出させることにより行われる。電解質溶液には、カーボンなどの摺動材、あるいはサッカリン等の応力緩和材を必要に応じて含有させてもよい。電着金属の種類は、軸受の軸受面に求められる硬度、疲れ強さ等の物理的性質、化学的性質に応じて適宜選択される。電鋳部3の厚みは、これが厚すぎると軸部材1からの剥離性が低下し、薄すぎると軸受面の耐久性低下等につながるので、求められる軸受性能や軸受サイズ、さらには用途等に応じて最適な厚みに設定される。例えば軸径1mm〜6mmの回転用の軸受では、10μm〜200μmの厚さとするのが好ましい。   Electroforming is performed by immersing the shaft member 1 in an electrolyte solution containing metal ions such as Ni and Cu, and energizing the electrolyte solution to deposit the target metal on the surface of the shaft member 1. If necessary, the electrolyte solution may contain a sliding material such as carbon or a stress relaxation material such as saccharin. The type of electrodeposited metal is appropriately selected according to physical properties and chemical properties such as hardness and fatigue strength required for the bearing surface of the bearing. If the thickness of the electroformed part 3 is too thick, the peelability from the shaft member 1 is reduced, and if it is too thin, the durability of the bearing surface is reduced. The optimum thickness is set accordingly. For example, in a rotating bearing having a shaft diameter of 1 mm to 6 mm, the thickness is preferably 10 μm to 200 μm.

電鋳軸4は、図3に示す射出成形工程に移送され、電鋳部3および軸部材1をインサート部品とするインサート成形が行われる。   The electroformed shaft 4 is transferred to the injection molding step shown in FIG. 3, and insert molding is performed using the electroformed portion 3 and the shaft member 1 as insert parts.

この射出成形工程では、電鋳軸4は、図3に示すようにその軸方向を型締め方向(図面上下方向)と平行にして、上型7、および下型8からなる金型内部に供給される。下型8には、軸部材1の小径部外周面1bの外径寸法に適合した位置決め穴10が形成され、この位置決め穴10に前工程から移送した電鋳軸4の下端を挿入して電鋳軸4の位置決めがなされる。上型7には、軸部材1の大径部外周面1aの外形寸法に適合する内径を有するガイド穴11が位置決め穴10と同軸に形成されており、型締め時に可動型(本実施形態でいえば上型7)を固定型(本実施形態では下型8)に接近させて型締めすると、先ず電鋳軸4の上端がガイド穴11に挿入されて電鋳軸4の芯出しが行われる。さらに接近させ、上型7と下型8とが当接し、型締めが完了する。   In this injection molding process, the electroformed shaft 4 is supplied into the mold composed of the upper mold 7 and the lower mold 8 with its axial direction parallel to the mold clamping direction (the vertical direction in the drawing) as shown in FIG. Is done. The lower die 8 is formed with a positioning hole 10 adapted to the outer diameter of the outer peripheral surface 1b of the small diameter portion of the shaft member 1, and the lower end of the electroformed shaft 4 transferred from the previous process is inserted into the positioning hole 10 to The cast shaft 4 is positioned. The upper mold 7 is formed with a guide hole 11 having an inner diameter that matches the outer dimension of the outer peripheral surface 1a of the large-diameter portion of the shaft member 1 coaxially with the positioning hole 10, and is movable when the mold is clamped (in this embodiment, For example, when the upper die 7) is brought close to the fixed die (lower die 8 in this embodiment) and clamped, first, the upper end of the electroformed shaft 4 is inserted into the guide hole 11 and the electroformed shaft 4 is centered. Is called. Further, the upper mold 7 and the lower mold 8 come into contact with each other, and the mold clamping is completed.

図3に示す型締め完了時において、電鋳軸4の下端は位置決め穴10の下端に突き当たり、軸部材1の大径部外周面1aと小径部外周面1bとの間に形成される段部1cは、成形面の上端面より下に位置する。本実施形態では、電鋳部3は段部1cから成形面の下端面に当接するまで設けられている。この状態で、スプルー12、ランナー13、およびゲート14を介してキャビティ9に樹脂材料を射出し、インサート成形を行う。   When the clamping shown in FIG. 3 is completed, the lower end of the electroformed shaft 4 hits the lower end of the positioning hole 10 and is formed between the large diameter outer peripheral surface 1a and the small diameter outer peripheral surface 1b of the shaft member 1. 1c is located below the upper end surface of the molding surface. In this embodiment, the electroformed part 3 is provided from the step part 1c until it contacts the lower end surface of the molding surface. In this state, a resin material is injected into the cavity 9 through the sprue 12, the runner 13, and the gate 14, and insert molding is performed.

射出される樹脂材料は熱可塑性樹脂であり、非晶性樹脂として、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等、結晶性樹脂として、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等を用いることができる。また、上記の樹脂に充填する充填材の種類も特に限定されないが、例えば、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、カーボンファイバー、カーボンブラック、黒鉛、カーボンナノマテリアル、金属粉末等の繊維状又は粉末状の導電性充填材を用いることができる。これらの充填材は、単独で用い、あるいは、二種以上を混合して使用しても良い。   The resin material to be injected is a thermoplastic resin, and amorphous resins such as polysulfone (PSF), polyethersulfone (PES), polyphenylsulfone (PPSU), and polyetherimide (PEI) are crystalline resins. As the liquid crystal polymer (LCP), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), or the like can be used. Further, the type of filler to be filled in the above resin is not particularly limited, for example, fibrous filler such as glass fiber, whisker-like filler such as potassium titanate, scaly filler such as mica, carbon fiber, Fibrous or powdery conductive fillers such as carbon black, graphite, carbon nanomaterial, and metal powder can be used. These fillers may be used alone or in combination of two or more.

なお、射出される材料としては金属材料も使用可能である。例えば、マグネシウム合金やアルミニウム合金等の低融点金属材料が使用可能である。この場合、樹脂材料を使用する場合に比べて、強度、耐熱性、または導電性等をより向上させることができる。この他、金属紛とバインダーの混合物で射出成形した後、脱脂・焼結するいわゆるMIM成形を採用することもできる。   A metal material can also be used as the injected material. For example, a low melting point metal material such as a magnesium alloy or an aluminum alloy can be used. In this case, strength, heat resistance, conductivity, etc. can be further improved as compared with the case of using a resin material. In addition, so-called MIM molding may be employed in which after injection molding with a mixture of metal powder and binder, degreasing and sintering.

型開き後、脱型した成形品は、図4で示すように、軸部材1、電鋳部3、および保持部6が一体となった構造を有する。この成形品は、その後分離工程に移送され、電鋳部3および保持部6からなる軸受5と、軸部材1とに分離される。   As shown in FIG. 4, the molded product removed from the mold after opening the mold has a structure in which the shaft member 1, the electroformed part 3, and the holding part 6 are integrated. The molded product is then transferred to a separation step and separated into a bearing 5 including the electroformed portion 3 and the holding portion 6 and the shaft member 1.

この分離工程では、電鋳部3に蓄積された内部応力を解放することにより、電鋳部3の内周面を拡径させ、軸部材1の外周面から剥離させる。内部応力の解放は、軸部材1又は軸受5に衝撃を与えることにより、あるいは電鋳部3の内周面と軸部材1の外周面との間に軸方向の加圧力を付与することにより行われる。内部応力の解放により、電鋳部3の内周面を半径方向に拡径させて、電鋳部3の内周面3aと軸部材1の小径外周面1bとの間に適当な大きさの隙間を形成することにより、電鋳部3の内周面に対して軸部材1を軸方向に動かすことができ、これにより成形品が、電鋳部3および保持部6からなる軸受5と、軸部材1とに分離される。なお、電鋳部3の拡径量は、例えば電鋳部3の肉厚や電解質溶液の組成、電鋳条件を変えることによって制御できる。   In this separation step, the internal stress accumulated in the electroformed part 3 is released, so that the inner peripheral surface of the electroformed part 3 is expanded and separated from the outer peripheral surface of the shaft member 1. The internal stress is released by applying an impact to the shaft member 1 or the bearing 5 or by applying an axial pressure between the inner peripheral surface of the electroformed part 3 and the outer peripheral surface of the shaft member 1. Is called. By releasing the internal stress, the inner peripheral surface of the electroformed part 3 is radially expanded, and an appropriate size is provided between the inner peripheral surface 3a of the electroformed part 3 and the small diameter outer peripheral surface 1b of the shaft member 1. By forming the gap, the shaft member 1 can be moved in the axial direction with respect to the inner peripheral surface of the electroformed part 3, whereby the molded product has a bearing 5 including the electroformed part 3 and the holding part 6, It is separated into the shaft member 1. The diameter expansion amount of the electroformed part 3 can be controlled by changing the thickness of the electroformed part 3, the composition of the electrolyte solution, and the electroforming conditions, for example.

衝撃の付与だけでは電鋳部3の内周を十分に拡径さえることができない場合、電鋳部3と軸部材1とを加熱又は冷却し、両者間に熱膨張量差を生じさせることによって、軸部材1と軸受5とを分離することもできる。   When the diameter of the inner periphery of the electroformed part 3 cannot be sufficiently expanded only by applying an impact, the electroformed part 3 and the shaft member 1 are heated or cooled, thereby causing a difference in thermal expansion between them. The shaft member 1 and the bearing 5 can also be separated.

また、射出成形後の固化時に、保持部6の軸部材1と接している面が成形収縮により拡径するよう樹脂材料の組成や成形条件を配慮することにより、保持部6と軸部材1とを容易に分離することが可能となる。   Further, by considering the composition of the resin material and molding conditions so that the surface of the holding portion 6 in contact with the shaft member 1 is expanded by molding shrinkage when solidified after injection molding, the holding portion 6 and the shaft member 1 Can be easily separated.

こうして軸受5と軸部材1とを分離した後、軸部材1を上方に移動させることにより、軸部材1の小径部外周面1bと、軸部材1の大径部で成形された保持部6の成形面6aとを対向させる(図5参照)。このとき、軸部材1の小径部外周面1bと対向する電鋳部3の内周面3aは軸受面として機能する。この軸受面と軸部材1の小径部外周面1bとの間の軸受隙間は、電鋳加工の特性から、クリアランスが極めて小さく、かつ高精度であるという特徴を有するため、高い回転精度または摺動性を有する軸受の提供が可能となる。また、軸部材1を軸受5の内周に挿入したまま移動させるだけで良いため、例えば、軸部材1を軸受5から抜き去った後に別途製作した軸部材を挿入する場合と比べ、異物が混入するおそれが少ないため、異物による異音の発生や部材の摩耗などの危険が少ない。   After separating the bearing 5 and the shaft member 1 in this way, by moving the shaft member 1 upward, the outer peripheral surface 1b of the small diameter portion of the shaft member 1 and the holding portion 6 formed by the large diameter portion of the shaft member 1 The molding surface 6a is opposed (see FIG. 5). At this time, the inner peripheral surface 3a of the electroformed portion 3 facing the small diameter outer peripheral surface 1b of the shaft member 1 functions as a bearing surface. Since the bearing gap between the bearing surface and the outer peripheral surface 1b of the small diameter portion of the shaft member 1 has the characteristics that the clearance is extremely small and highly accurate from the characteristics of electroforming, high rotational accuracy or sliding It is possible to provide a bearing having a property. Further, since it is only necessary to move the shaft member 1 while it is inserted into the inner periphery of the bearing 5, for example, foreign matter is mixed in compared to the case where a shaft member manufactured separately after the shaft member 1 is removed from the bearing 5 is inserted. Therefore, there is little risk of abnormal noise due to foreign matter or wear of members.

また、軸部材1の小径部外周面1bと保持部6の成形面6aとの間には、微小隙間15が形成される。これまでの製造工程から明らかなように、微小隙間15は軸受隙間よりも大きな隙間幅に設定される。軸受隙間および微小隙間15に潤滑油を充填することで、軸受装置が完成する。   Further, a minute gap 15 is formed between the outer peripheral surface 1 b of the small diameter portion of the shaft member 1 and the molding surface 6 a of the holding portion 6. As is apparent from the manufacturing processes so far, the minute gap 15 is set to a gap width larger than the bearing gap. By filling the bearing gap and the minute gap 15 with lubricating oil, the bearing device is completed.

軸受5の作動(回転、摺動、又は回転摺動)時には、微小隙間15に保持された潤滑油が軸受隙間に供給されるため、常に潤沢な潤滑油が軸受隙間に介在し、油不足による潤滑不良による異音の発生や、軸部材と軸受5との接触摺動による摩耗が回避され、製品寿命が延長される。また、微小隙間15がバッファ機能を果たすため、軸受装置の使用環境が高温化に伴い潤滑油の体積が膨張しても、潤滑油の軸受外部への漏れ出しを防止できるため、周辺環境の汚染等の不具合を回避できる。   When the bearing 5 operates (rotates, slides, or rotates and slides), the lubricating oil retained in the minute gap 15 is supplied to the bearing gap. Generation of noise due to poor lubrication and wear due to contact sliding between the shaft member and the bearing 5 are avoided, and the product life is extended. In addition, since the minute gap 15 performs a buffer function, even if the volume of the lubricating oil expands as the operating environment of the bearing device increases, leakage of the lubricating oil to the outside of the bearing can be prevented. Etc. can be avoided.

また、微小隙間15はシール空間としての機能も果たすため、潤滑油が漏れ出したり、軸受5の作動に伴って飛散したりするのを防ぐことができ、潤滑油の減少や周辺環境の汚染等をより確実に防止することができる。微小隙間15の隙間幅は、潤滑油が漏れ出さないように毛細管力が得られる範囲、例えば0.5mm以下、望ましくは0.3mm以下に設定される。   Further, since the minute gap 15 also functions as a seal space, it is possible to prevent the lubricating oil from leaking out or splashing with the operation of the bearing 5, reducing the lubricating oil, contaminating the surrounding environment, etc. Can be prevented more reliably. The gap width of the minute gap 15 is set in a range where a capillary force can be obtained so that the lubricating oil does not leak out, for example, 0.5 mm or less, preferably 0.3 mm or less.

本発明は、上記実施形態に限られない。図6に示す本発明の第2の実施形態に係る軸受装置では、電鋳部3の軸方向寸法が第1の実施形態に比べ短く、微小隙間15と電鋳部3とが軸方向に離間している。このように、必要最小限の部分のみに電鋳部3が形成されるので、コストの低減を図ることができる。   The present invention is not limited to the above embodiment. In the bearing device according to the second embodiment of the present invention shown in FIG. 6, the axial dimension of the electroformed part 3 is shorter than that of the first embodiment, and the minute gap 15 and the electroformed part 3 are separated in the axial direction. is doing. Thus, since the electroformed part 3 is formed only in the minimum necessary part, cost reduction can be aimed at.

図7に示す本発明の第3の実施形態に係る軸受装置では、軸受5の大径内周面5aと小径内周面5bとにそれぞれ電鋳部31、32が形成される。これによると、例えば潤滑油なしで軸受装置を使用する場合も、軸部材1の大径部で成形される保持部6の成形面(大径内周面)と軸部材1の小径部外周面1bとの間に形成される微小隙間15が逃げ部として作用することで、軸方向に離隔した複数の軸受面を設けることができ、モーメント荷重に対する軸受剛性を高めることができる。また、軸受内部に潤滑油を充填して軸受装置を使用する場合は、軸部材1の大径部で成形される保持部6の成形面(大径内周面)と軸部材1の小径部外周面1bとの間に形成される微小隙間15が、油溜りとしての機能を果たすことにより、油不足を防止することができる。   In the bearing device according to the third embodiment of the present invention shown in FIG. 7, electroformed portions 31 and 32 are formed on the large-diameter inner peripheral surface 5a and the small-diameter inner peripheral surface 5b of the bearing 5, respectively. According to this, even when using a bearing device without lubricating oil, for example, the molding surface (large-diameter inner peripheral surface) of the holding portion 6 formed by the large-diameter portion of the shaft member 1 and the small-diameter outer peripheral surface of the shaft member 1 Since the minute gap 15 formed between 1b acts as a relief portion, a plurality of bearing surfaces separated in the axial direction can be provided, and the bearing rigidity against moment load can be increased. When the bearing device is used by filling the bearing with lubricating oil, the molding surface (large-diameter inner peripheral surface) of the holding portion 6 molded with the large-diameter portion of the shaft member 1 and the small-diameter portion of the shaft member 1 are used. The minute gap 15 formed between the outer peripheral surface 1b serves as an oil sump, thereby preventing oil shortage.

図8に示す本発明の第4の実施形態では、軸受5の下端側開口部をスラストプレート23で閉塞した点で他の実施形態と異なる。この場合、他の実施形態と同様に、軸部材を上方にずらして、軸部材1の小径部外周面1bと、軸部材1の大径部で成形された保持部6の成形面6aとの間に微小隙間15を形成し、その後スラストプレート23を軸受5の下端開口部に固定する。本実施形態では、軸部材の下端部1dが凸球面状に形成され、この下端部1dとスラストプレート23の上端面23aとの間に、軸部材1をスラスト方向に支持するスラスト軸受部Tが形成される。   The fourth embodiment of the present invention shown in FIG. 8 is different from the other embodiments in that the lower end side opening of the bearing 5 is closed with a thrust plate 23. In this case, similarly to the other embodiments, the shaft member is shifted upward, and the outer peripheral surface 1b of the small diameter portion of the shaft member 1 and the molding surface 6a of the holding portion 6 molded by the large diameter portion of the shaft member 1 are formed. A minute gap 15 is formed therebetween, and then the thrust plate 23 is fixed to the lower end opening of the bearing 5. In this embodiment, the lower end portion 1d of the shaft member is formed in a convex spherical shape, and a thrust bearing portion T that supports the shaft member 1 in the thrust direction is formed between the lower end portion 1d and the upper end surface 23a of the thrust plate 23. It is formed.

次に、以上に説明した軸受を備えた軸受装置をモータ21の回転軸の支持に適用し、その一実施形態を図9に基いて説明する。   Next, the bearing device provided with the bearing described above is applied to support the rotating shaft of the motor 21, and one embodiment thereof will be described with reference to FIG.

図示例のモータ21は、HDD等のディスク駆動装置に用いられるスピンドルモータである。このモータ21の軸受装置は、軸部材1をラジアル方向に回転自在に支持するラジアル軸受部Rと、スラスト方向に回転自在に支持するスラスト軸受部Tとを有する。ラジアル軸受部Rは、軸部材1の外周面と電鋳部3の内周面とで構成され、スラスト軸受部Tは、軸部材1の凸球面状の軸端を、軸受5の端面に対向させたスラストプレート23で接触支持することによって構成される。軸受5は、以上の説明で述べたとおり、電鋳部3をインサートした射出成形により形成される。そして、モータ21は、この軸受装置以外にも、軸部材を装着したロータ(ディスクハブ)24と、例えば半径方向のギャップを介して対向させたステータコイル25およびロータマグネット26とを備えている。ステータコイル25は、ブラケット27の外周に取付けられ、ロータマグネット26はディスクハブ24の内周に取付けられている。ディスクハブ24には、磁気ディスクDが一又は複数枚保持されている。   The motor 21 in the illustrated example is a spindle motor used in a disk drive device such as an HDD. The bearing device of the motor 21 has a radial bearing portion R that supports the shaft member 1 rotatably in the radial direction, and a thrust bearing portion T that supports the shaft member 1 rotatably in the thrust direction. The radial bearing portion R is constituted by the outer peripheral surface of the shaft member 1 and the inner peripheral surface of the electroformed portion 3, and the thrust bearing portion T is opposed to the end surface of the bearing 5 with the convex spherical shaft end of the shaft member 1. It is configured by contacting and supporting with the thrust plate 23 made to be. As described in the above description, the bearing 5 is formed by injection molding in which the electroformed part 3 is inserted. In addition to the bearing device, the motor 21 includes a rotor (disk hub) 24 on which a shaft member is mounted, and a stator coil 25 and a rotor magnet 26 that are opposed to each other with a gap in the radial direction, for example. The stator coil 25 is attached to the outer periphery of the bracket 27, and the rotor magnet 26 is attached to the inner periphery of the disk hub 24. The disk hub 24 holds one or more magnetic disks D.

ステータコイル25に通電すると、ステータコイル25とロータマグネット26との間の電磁力でロータマグネット26が回転し、それによって、ディスクハブ24および軸部材1が一体となって回転する。このとき、微小隙間15に保持された油が、ラジアル軸受部Rおよびスラスト軸受部Tに供給される。   When the stator coil 25 is energized, the rotor magnet 26 is rotated by the electromagnetic force between the stator coil 25 and the rotor magnet 26, whereby the disk hub 24 and the shaft member 1 are rotated together. At this time, the oil retained in the minute gap 15 is supplied to the radial bearing portion R and the thrust bearing portion T.

図9では、スラスト軸受部Tをピボット軸受で構成した場合を例示しているが、この他にも、動圧溝等の動圧発生手段で軸部材1をスラスト方向に非接触支持する動圧軸受も使用可能である。あるいは、軸部材1の下端部にフランジ部を設け、軸受5からの抜け止めとして作用させることもできる。   FIG. 9 illustrates the case where the thrust bearing portion T is configured by a pivot bearing, but in addition to this, the dynamic pressure in which the shaft member 1 is supported in a non-contact manner in the thrust direction by dynamic pressure generating means such as a dynamic pressure groove. A bearing can also be used. Or a flange part can be provided in the lower end part of the shaft member 1, and it can also be made to act as a retaining from the bearing 5. FIG.

本発明の軸受装置は、以上の例示に限らず、モータの回転軸支持用として広く適用可能である。この軸受装置は、上記のとおりラジアル軸受部Rにおいて高精度の軸受隙間(ラジアル軸受隙間)を備えるので、上記HDD等の磁気ディスク駆動用のスピンドルモータを初めとして、高回転精度が要求される情報機器用の小型モータ、例えば光ディスクの光磁気ディスク駆動用のスピンドルモータ、あるいはレーザビームプリンタのポリゴンスキャナモータ等における回転軸支持用として特に適合するものである。また、長寿命が要求されるファンモータなどにも適用できる。   The bearing device of the present invention is not limited to the above examples, and can be widely applied to support a rotating shaft of a motor. Since this bearing device has a high-precision bearing gap (radial bearing gap) in the radial bearing portion R as described above, information that requires high rotational accuracy, such as a spindle motor for driving a magnetic disk such as the HDD described above. It is particularly suitable for supporting a rotating shaft in a small motor for equipment, for example, a spindle motor for driving a magneto-optical disk of an optical disk or a polygon scanner motor of a laser beam printer. It can also be applied to fan motors that require a long service life.

以上の説明では、軸受5を回転用の軸受に使用する場合を例示しているが、この他にも軸受5は、摺動用の軸受や、回転摺動用の軸受にも適用することができる。摺動用若しくは回転摺動用の軸受に本発明を適用する場合は、軸受が軸部材の大径部と小径部の間の段部と干渉しないように、軸受の摺動範囲を設定する必要がある。   Although the case where the bearing 5 is used as a bearing for rotation is illustrated in the above description, the bearing 5 can also be applied to a sliding bearing and a bearing for rotation and sliding. When the present invention is applied to a sliding or rotary sliding bearing, it is necessary to set the sliding range of the bearing so that the bearing does not interfere with the step portion between the large diameter portion and the small diameter portion of the shaft member. .

軸部材1の斜視図である。1 is a perspective view of a shaft member 1. FIG. 電鋳軸4の斜視図である。3 is a perspective view of an electroformed shaft 4. FIG. 射出成形金型に電鋳軸4を取付けた状態(型締め時)を示す断面図であるIt is sectional drawing which shows the state (at the time of mold clamping) which attached the electroformed shaft 4 to the injection mold. 軸受5と軸部材1とが一体成形された状態を示す断面図である。It is sectional drawing which shows the state by which the bearing 5 and the shaft member 1 were integrally molded. 本発明の第1の実施形態を示す軸受装置の断面図である。It is sectional drawing of the bearing apparatus which shows the 1st Embodiment of this invention. 本発明の第2の実施形態を示す軸受装置の断面図である。It is sectional drawing of the bearing apparatus which shows the 2nd Embodiment of this invention. 本発明の第3の実施形態を示す軸受装置の断面図である。It is sectional drawing of the bearing apparatus which shows the 3rd Embodiment of this invention. 本発明の第4の実施形態を示す軸受装置の断面図である。It is sectional drawing of the bearing apparatus which shows the 4th Embodiment of this invention. 本発明を適用したモータ21を示す断面図である。It is sectional drawing which shows the motor 21 to which this invention is applied.

符号の説明Explanation of symbols

1 軸部材
1a 大径部外周面
1b 小径部外周面
2 被覆材
3 電鋳部
4 電鋳軸
5 軸受
6 保持部
6a 成形面
15 微小隙間
21 モータ
25 ステータコイル
26 ロータマグネット
DESCRIPTION OF SYMBOLS 1 Shaft member 1a Large-diameter part outer peripheral surface 1b Small-diameter part outer peripheral surface 2 Coating | covering material 3 Electroformed part 4 Electroformed shaft 5 Bearing 6 Holding | maintenance part 6a Forming surface 15 Minute clearance 21 Motor 25 Stator coil 26 Rotor magnet

Claims (4)

電鋳部および電鋳部を保持する保持部からなる軸受と、軸受の内周に挿入された軸部材とを有し、電鋳部に軸部材の外周面と対向する軸受面を設けた軸受装置において、
軸部材に小径部と大径部とを設けると共に、保持部に軸部材の大径部で成形した成形面を設け、電鋳部の軸受面および前記保持部の成形面をそれぞれ軸部材の小径部外周面と対向させたことを特徴とする軸受装置。
A bearing having an electroformed part and a holding part that holds the electroformed part, and a shaft member inserted in the inner periphery of the bearing, and the electroformed part provided with a bearing surface facing the outer peripheral surface of the shaft member In the device
The shaft member is provided with a small-diameter portion and a large-diameter portion, and the holding portion is provided with a molding surface formed by the large-diameter portion of the shaft member, and the bearing surface of the electroformed portion and the molding surface of the holding portion are respectively provided with a small diameter of the shaft member. Bearing device characterized by facing the outer peripheral surface of the part.
軸部材の大径部で成形した保持部の成形面と軸部材の小径部外周面との間の微小隙間が、軸受の内周面の端部に形成された請求項1記載の軸受装置。 The bearing device according to claim 1, wherein a minute gap between the molding surface of the holding portion formed by the large diameter portion of the shaft member and the outer peripheral surface of the small diameter portion of the shaft member is formed at an end portion of the inner peripheral surface of the bearing. 請求項1記載の軸受装置と、ロータマグネットと、ステータコイルとを有するモータ。   A motor comprising the bearing device according to claim 1, a rotor magnet, and a stator coil. 電鋳部および電鋳部を保持する保持部からなる軸受と、軸受の内周に挿入された軸部材とを有し、電鋳部に軸部材の外周面と対向する軸受面を設けた軸受装置の製造に際して、
小径部と大径部とを有する軸部材のうち、少なくとも小径部をマスターとして電鋳部を形成した後、軸部材の少なくとも大径部を内型とする射出成形により、電鋳部を保持する保持部を成形し、その後、軸部材を電鋳部および保持部から分離し、分離した軸部材の小径部の外周面を軸部材の大径部で成形された保持部の成形面と対向させることを特徴とする軸受装置の製造方法。
A bearing having an electroformed part and a holding part that holds the electroformed part, and a shaft member inserted in the inner periphery of the bearing, and the electroformed part provided with a bearing surface facing the outer peripheral surface of the shaft member When manufacturing the device,
Among shaft members having a small diameter portion and a large diameter portion, after forming an electroformed portion using at least the small diameter portion as a master, the electroformed portion is held by injection molding using at least the large diameter portion of the shaft member as an inner mold. After forming the holding portion, the shaft member is separated from the electroformed portion and the holding portion, and the outer peripheral surface of the small-diameter portion of the separated shaft member is opposed to the molding surface of the holding portion formed by the large-diameter portion of the shaft member. A method for manufacturing a bearing device.
JP2005341921A 2005-09-20 2005-11-28 Bearing device and manufacturing method thereof Expired - Fee Related JP4804894B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005341921A JP4804894B2 (en) 2005-11-28 2005-11-28 Bearing device and manufacturing method thereof
CN201210370122.0A CN102878214B (en) 2005-09-20 2006-09-05 Bearing member, motor and method for manufacturing bearing member
KR1020087006757A KR20080050585A (en) 2005-09-20 2006-09-05 Bearing member and production method thereof, and bearing device provided with bearing member and production method thereof
CN2006800339724A CN101263310B (en) 2005-09-20 2006-09-05 Bearing member and production method thereof, and bearing device provided with bearing member and production method thereof
PCT/JP2006/317508 WO2007034671A1 (en) 2005-09-20 2006-09-05 Bearing member and production method thereof, and bearing device provided with bearing member and production method thereof
US12/066,463 US8419281B2 (en) 2005-09-20 2006-09-05 Bearing member and method for manufacturing the same, and bearing unit having bearing member and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005341921A JP4804894B2 (en) 2005-11-28 2005-11-28 Bearing device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007146958A JP2007146958A (en) 2007-06-14
JP4804894B2 true JP4804894B2 (en) 2011-11-02

Family

ID=38208597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005341921A Expired - Fee Related JP4804894B2 (en) 2005-09-20 2005-11-28 Bearing device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4804894B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259394A1 (en) * 2021-06-09 2022-12-15 三菱電機株式会社 Motor, fan, ventilator, and air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174225A (en) * 2000-12-08 2002-06-21 Namiki Precision Jewel Co Ltd Radial bearing unit and motor mounted with the same unit
JP3820480B2 (en) * 2001-08-09 2006-09-13 株式会社ティ・アンド・ティホールディングス A pair of shafts and resin bearing parts and method of manufacturing the same
JP2004183865A (en) * 2002-12-06 2004-07-02 Matsushita Electric Ind Co Ltd Fluid bearing and disk drive

Also Published As

Publication number Publication date
JP2007146958A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
US8876386B2 (en) Fluid dynamic bearing device
US8419281B2 (en) Bearing member and method for manufacturing the same, and bearing unit having bearing member and method for manufacturing the same
US7687951B2 (en) Fluid dynamic bearing device and motor equipped with the same
JP2007232140A (en) Fluid bearing device
US8052328B2 (en) Bearing device with sliding bearing
JP2006322511A (en) Bearing
JP2007263311A (en) Dynamic pressure bearing device
JP4804894B2 (en) Bearing device and manufacturing method thereof
JP4794964B2 (en) Bearing device and motor equipped with the same
JP4813211B2 (en) Sliding bearing, motor equipped with the same, and manufacturing method of sliding bearing
JP4794966B2 (en) Bearing device, motor provided with the same, and method for manufacturing bearing device
JP4633591B2 (en) Plain bearing
JP4584093B2 (en) Plain bearing
JP2007092845A (en) Bearing device
JP4896430B2 (en) Bearing device and motor using the bearing device
JP4896429B2 (en) Bearing, bearing device, motor, and bearing manufacturing method
JP4937618B2 (en) Hydrodynamic bearing device
JP4901171B2 (en) Bearing device and motor equipped with the same
JP4846470B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND MOTOR HAVING THE SAME
JP4937675B2 (en) Hydrodynamic bearing device
JP4948825B2 (en) Bearing member and manufacturing method thereof
JP4937621B2 (en) Hydrodynamic bearing device
JP2007051718A (en) Fluid bearing device
JP2007113778A (en) Fluid bearing device and motor equipped with the same
JP2017180673A (en) Housing for fluid dynamic pressure bearing device, and fluid dynamic pressure bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081003

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Ref document number: 4804894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees