JP2007263311A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device Download PDF

Info

Publication number
JP2007263311A
JP2007263311A JP2006091668A JP2006091668A JP2007263311A JP 2007263311 A JP2007263311 A JP 2007263311A JP 2006091668 A JP2006091668 A JP 2006091668A JP 2006091668 A JP2006091668 A JP 2006091668A JP 2007263311 A JP2007263311 A JP 2007263311A
Authority
JP
Japan
Prior art keywords
bearing
shaft member
bearing member
peripheral surface
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006091668A
Other languages
Japanese (ja)
Inventor
Tetsuya Yamamoto
哲也 山本
Kenji Hibi
建治 日比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006091668A priority Critical patent/JP2007263311A/en
Publication of JP2007263311A publication Critical patent/JP2007263311A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing device which can maintain excellent bearing performance for a long period of time, efficiently and at low cost. <P>SOLUTION: The inner peripheral face 80a of a bearing member 8 is formed of a non-complete round face R which is circumferentially displaced and formed in a given shape in an axial direction. Therefore, after the bearing member 8 is formed by die molding and when an inner mold is demolded from the inner periphery of the bearing member 8, no interference between the inner peripheral face 80a of the bearing member 8 with the inner die occurs to avoid damage to the inner peripheral face 80a of the bearing member 8. Out of the non-complete round face R, areas R1 close to the outer peripheral face 2a of a shaft member 2 are formed of resin parts 82, so that dynamic pressure is prevented from being released in the parts where the pressure of lubricating oil is maximized in rotating the shaft member 2, and thereby efficient dynamic pressure action is acquired. Out of the non-complete round face R, a part other than the resin parts 82 is formed of porous part 81, so that the oil can be sequentially supplied into a radial bearing clearance, and thereby lubricity is improved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軸受隙間に生じる流体(潤滑流体)の動圧作用によって軸部材を非接触支持する動圧軸受装置に関する。この軸受装置は、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置などのスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、あるいは電気機器の冷却ファン等に使用されるファンモータなどの小型モータ用として好適である。   The present invention relates to a hydrodynamic bearing device that supports a shaft member in a non-contact manner by a hydrodynamic action of a fluid (lubricating fluid) generated in a bearing gap. This bearing device is a spindle of information equipment such as magnetic disk devices such as HDD and FDD, optical disk devices such as CD-ROM, CD-R / RW and DVD-ROM / RAM, and magneto-optical disk devices such as MD and MO. It is suitable for a small motor such as a motor, a polygon scanner motor of a laser beam printer (LBP), or a fan motor used for a cooling fan of an electric device.

例えば特許文献1に示される動圧軸受装置は、焼結金属で形成された軸受部材と、軸受部材の内周に挿入された軸部材とを備える。軸部材が回転すると、軸受部材の内周面に形成されたヘリングボーン形状の動圧溝により、軸受隙間の潤滑流体に動圧作用が発生し、軸部材をラジアル方向に回転自在に非接触支持するラジアル軸受部が設けられる。このように、焼結金属で形成された軸受部材の内周に動圧溝を形成する方法としては、例えば特許文献2のように、焼結金属の成形時にコアロッドの外周面に形成された動圧溝形状の成形型をスリーブの内周面に転写した後、スリーブのスプリングバックを利用してコアロッドとスリーブとを離型するものがある。
特開2002―61637号公報 特開平10−306827号公報 特開2004−316712号公報
For example, the hydrodynamic bearing device disclosed in Patent Document 1 includes a bearing member formed of sintered metal and a shaft member inserted on the inner periphery of the bearing member. When the shaft member rotates, a dynamic pressure action is generated in the lubricating fluid in the bearing gap by the herringbone-shaped dynamic pressure grooves formed on the inner peripheral surface of the bearing member, and the shaft member is supported in a non-contact manner so as to be rotatable in the radial direction. A radial bearing is provided. As described above, as a method of forming the dynamic pressure groove on the inner periphery of the bearing member formed of sintered metal, for example, as in Patent Document 2, the motion formed on the outer peripheral surface of the core rod at the time of forming the sintered metal. There is a type in which a core rod and a sleeve are released from each other by using a spring back of a sleeve after a pressure groove-shaped mold is transferred to an inner peripheral surface of the sleeve.
Japanese Patent Laid-Open No. 2002-61637 JP 10-306827 A JP 2004-316712 A

しかし、特許文献2に記載された方法での動圧溝成形は、軸受サイズ等によっては問題を生じる可能性がある。例えば、超小型ファンモータに使用される軸受装置のような、軸径が1mm以下の軸受装置に使用する軸受部材では、軸受部材のスプリングバック量(拡径量)が小さいため、成形型と動圧溝形成部とが互いに干渉して離型困難となるおそれがある。また、動圧溝形状は一般に複雑であるため、極細のコアロッドに、動圧溝形状に対応する成形型を形成することも難しくなる。   However, the dynamic pressure groove forming by the method described in Patent Document 2 may cause a problem depending on the bearing size and the like. For example, in a bearing member used in a bearing device having a shaft diameter of 1 mm or less, such as a bearing device used in a micro fan motor, the spring back amount (expansion amount) of the bearing member is small. There is a possibility that the pressing groove forming part interferes with each other and it becomes difficult to release. Moreover, since the dynamic pressure groove shape is generally complicated, it is difficult to form a molding die corresponding to the dynamic pressure groove shape on an extremely fine core rod.

また、焼結金属のような多孔質体で形成された軸受部材では、動圧作用により圧力が高められた潤滑油が軸受部材の表面開口部から内部へ抜けてしまう、いわゆる「動圧抜け」が生じる。特に上記のような超小型軸受部材では、動圧抜けによる軸受性能への影響が大きくなる。また、焼結金属は一般に、接触摺動に対する摩耗が大きいため、例えば動圧軸受装置の起動時や停止時など、軸受隙間内の潤滑油の動圧作用が十分発現されない状態で軸受部材の軸受面と軸部材との直接接触が起こると、軸受面やこれに対向する軸部材の表面が摩耗し、長期に亘って安定した軸受機能が得られない恐れがある。   Also, in a bearing member formed of a porous material such as sintered metal, the lubricating oil whose pressure is increased by the dynamic pressure action escapes from the surface opening of the bearing member to the inside, so-called “dynamic pressure relief”. Occurs. In particular, in the microminiature bearing member as described above, the influence on the bearing performance due to the dynamic pressure loss becomes large. In addition, since sintered metal generally has a large wear against contact sliding, for example, when the dynamic pressure bearing device is started and stopped, the bearing member bearings are not sufficiently developed in the dynamic pressure action of the lubricating oil in the bearing gap. If direct contact between the surface and the shaft member occurs, the bearing surface and the surface of the shaft member opposed to the surface may be worn, and a stable bearing function may not be obtained over a long period of time.

軸受部材を焼結金属で製造することによるこれらの不具合を回避するためには、例えば特許文献3に示されるように、軸受部材を樹脂で形成することが考えられる。しかし、樹脂製の軸受部材は、焼結金属製の軸受部材のような給油機能を持たず、特に小型の軸受装置では軸受隙間に充填される油量そのものが極少量であるため、軸受装置の使用条件等によっては、潤滑不良を招く恐れがある。また、樹脂は金属に比べて線膨張係数が大きいため、温度変化に伴う寸法変化も大きく、軸受隙間の精度の悪化や、部材間の固定力の低下に伴う剥離によって、軸受性能の低下を招く恐れがある。   In order to avoid these problems caused by manufacturing the bearing member with sintered metal, it is conceivable to form the bearing member with resin as disclosed in Patent Document 3, for example. However, a resin bearing member does not have an oil supply function like a sintered metal bearing member, and particularly in a small bearing device, the amount of oil itself filled in the bearing gap is extremely small. Depending on the use conditions and the like, there is a risk of causing poor lubrication. In addition, since resin has a larger coefficient of linear expansion than metal, the dimensional change with temperature change is large, and the bearing performance deteriorates due to deterioration of bearing clearance accuracy and peeling due to a decrease in fixing force between members. There is a fear.

本発明の課題は、優れた軸受性能を長期間に亘って維持することができる軸受装置を、効率よく且つ低コストに提供することにあり、特に軸径1mm以下の超小型モータに適合する動圧軸受装置を提供することにある。   An object of the present invention is to provide a bearing device capable of maintaining excellent bearing performance over a long period of time efficiently and at low cost, and is particularly suitable for a micro motor having a shaft diameter of 1 mm or less. The object is to provide a pressure bearing device.

前記課題を解決するため、本発明は、軸部材と、内周に軸部材を挿入した軸受部材と、軸受部材の内周面および軸部材の外周面の何れか一方に形成され、円周方向でステップ状に変位し、かつ軸方向で一定形状をなす非真円面とを有する動圧軸受装置において、非真円面のうち、少なくとも他方の面に接近した領域が樹脂材料で形成され、かつ他の領域が給油可能の多孔質材料で形成されていることを特徴とする。 In order to solve the above problems, the present invention is formed on any one of a shaft member, a bearing member having a shaft member inserted into an inner periphery thereof, an inner peripheral surface of the bearing member, and an outer peripheral surface of the shaft member. In the hydrodynamic bearing device having a non-round surface that is displaced stepwise and has a constant shape in the axial direction, at least a region of the non-round surface that is close to the other surface is formed of a resin material, The other region is formed of a porous material that can be refueled.

このように、本発明では、軸受部材の内周面に、円周方向でステップ状に変位し、かつ軸方向で一定形状をなす非真円面を形成した。これにより、軸受部材を型成形した後、軸受部材の内周から成形型を離型する際に、軸受部材の内周面と成形型とが干渉せず、軸受部材の内周面の損傷を回避することができる。また、非真円面がラジアル軸受隙間に面するにより、ラジアル軸受隙間の隙間幅が円周方向で変化するため、軸部材の回転に伴い、隙間幅の大きい部分の潤滑油が隙間幅の小さい部分に押し込まれ、動圧作用が発生する。よって、ヘリングボーンなどの複雑な形状の動圧溝を形成する必要はなく、内型の加工が容易になる。以上から、軸受部材が低コストに製作可能となり、特に軸径1mm以下の超小型軸受部材の製作に適合するものとなる。なお、これとは逆に、軸受部材の内周面を真円形状とし、軸部材の外周面に上記のような非真円面を設けた場合にも、同様の効果が得られる。   Thus, in the present invention, a non-circular surface that is displaced stepwise in the circumferential direction and has a constant shape in the axial direction is formed on the inner peripheral surface of the bearing member. Thus, after molding the bearing member, when the mold is released from the inner periphery of the bearing member, the inner peripheral surface of the bearing member and the mold do not interfere with each other, and the inner peripheral surface of the bearing member is damaged. It can be avoided. In addition, since the non-circular surface faces the radial bearing gap, the gap width of the radial bearing gap changes in the circumferential direction. Therefore, as the shaft member rotates, the lubricating oil in the portion with the larger gap width has a smaller gap width. It is pushed into the part and dynamic pressure action occurs. Therefore, it is not necessary to form a complex-shaped dynamic pressure groove such as a herringbone, and the inner mold can be easily processed. From the above, the bearing member can be manufactured at low cost, and is particularly suitable for manufacturing a micro bearing member having a shaft diameter of 1 mm or less. On the contrary, the same effect can be obtained when the inner peripheral surface of the bearing member is formed into a perfect circle and the non-circular surface as described above is provided on the outer peripheral surface of the shaft member.

また、ステップ状の非真円面のうち、他方の面に接近した領域(以下、接近領域と称す)が樹脂材料で形成される。このように、最も大きな圧力が発生する領域が樹脂材料で形成されるため、この部分での動圧抜けを生じることがなく、効率よく動圧作用が得られる。この接近領域は、軸受装置の起動、停止時に軸部材と接触する部分でもあり、これを焼結金属ではなく、樹脂材料で形成することにより、接触摺動に対する耐摩耗性が向上し、長期間に亘り安定した軸受性能を維持することができる。   Moreover, the area | region (henceforth an approach area | region) which approached the other surface among step-like non-round surfaces is formed with a resin material. Thus, since the region where the greatest pressure is generated is formed of the resin material, the dynamic pressure is not lost in this portion, and the dynamic pressure action can be obtained efficiently. This approach area is also a part that contacts the shaft member when starting and stopping the bearing device, and by forming it with a resin material instead of a sintered metal, the wear resistance against contact sliding is improved, and it is long-term. Thus, stable bearing performance can be maintained.

また、非真円面のうち、樹脂材料で形成された部分(以下、樹脂部と称す)以外の部分を多孔質材料で形成するため、この多孔質材料で形成された部分(以下、多孔質部と称す)から軸部材と軸受部材との間に形成されるラジアル軸受隙間に逐次潤滑油が供給され、ラジアル軸受隙間での潤滑油不足を防止することができる。多孔質部がラジアル軸受隙間に面することで動圧抜けが生じるが、最も圧力の高まる非真円面の接近領域を避けて多孔質部を配することにより、潤滑油の圧力が比較的低い部分のみで動圧抜けが生じるため、軸受性能に与える影響は少ない。また、樹脂材料は軸受部材又は軸部材の一部を形成するにすぎないので、部材全体を樹脂材料で形成する場合に比べ、温度変化によるラジアル軸受隙間の変動を少なくすることができ、軸受性能の温度依存性を小さくすることができる。特に、非真円面を、多孔質部を部分的に樹脂で被覆することにより形成すれば、樹脂部の肉厚を極小さくできるため、温度変化によるラジアル軸受隙間の変動をさらに抑えることができる。 Further, since a portion other than a portion formed of a resin material (hereinafter referred to as a resin portion) in a non-round surface is formed of a porous material, a portion formed of the porous material (hereinafter referred to as porous) The lubricating oil is successively supplied to the radial bearing gap formed between the shaft member and the bearing member from the shaft member), so that a shortage of lubricating oil in the radial bearing gap can be prevented. Dynamic pressure loss occurs due to the porous part facing the radial bearing gap, but the pressure of the lubricating oil is relatively low by arranging the porous part avoiding the approach area of the non-circular surface where the pressure is highest. Since the dynamic pressure loss occurs only at the part, there is little influence on the bearing performance. Also, since the resin material only forms part of the bearing member or shaft member, the variation in the radial bearing gap due to temperature changes can be reduced compared to the case where the entire member is formed of the resin material, and the bearing performance. The temperature dependence can be reduced. In particular, if the non-circular surface is formed by partially covering the porous portion with resin, the thickness of the resin portion can be made extremely small, so that fluctuations in the radial bearing gap due to temperature changes can be further suppressed. .

また、上記のような効果は、軸部材と、内周に軸部材を挿入した軸受部材と、軸受部材の内周面および軸部材の外周面の何れか一方に形成され、円周方向で連続的に変位した部分を有し、かつ軸方向で一定形状をなす非真円面とを有し、非真円面のうち、少なくとも他方の面に最接近した領域が樹脂材料で形成され、かつ他の領域が給油可能の多孔質材料で形成された動圧軸受装置でも、同様に得られる。   In addition, the effect as described above is formed on any one of the shaft member, the bearing member with the shaft member inserted into the inner periphery, the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft member, and is continuous in the circumferential direction. A non-circular surface having a portion displaced in the axial direction and having a fixed shape in the axial direction, and at least a region of the non-circular surface closest to the other surface is formed of a resin material, and The same can be obtained with a hydrodynamic bearing device in which the other region is formed of a porous material that can be refueled.

これらのような軸受装置において、軸受部材を、ステータコイルを取り付けるためのベース部を一体に有するものとすれば、ベース部と軸受部材を別体とする場合に比べ、部品点数削減および両者の組付け工程の削減により、生産性の向上およびコスト低減を図ることができる。   In such a bearing device, if the bearing member integrally has a base portion for attaching the stator coil, the number of parts can be reduced and the combination of both can be reduced compared to the case where the base portion and the bearing member are separated. By reducing the attaching process, productivity can be improved and costs can be reduced.

軸部材にファンを取り付けることにより、ファンモータ用、特に軸径1mm以下の超小型ファンモータ用の動圧軸受装置として使用することができる。   By attaching a fan to the shaft member, it can be used as a hydrodynamic bearing device for a fan motor, particularly for a micro fan motor having a shaft diameter of 1 mm or less.

以上のように、本発明によると、優れた軸受性能を長期間に亘って維持することができる軸受装置を、効率よく且つ低コストに得ることができる。   As described above, according to the present invention, a bearing device capable of maintaining excellent bearing performance over a long period of time can be obtained efficiently and at low cost.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図1は、本発明に係る動圧軸受装置1を組み込んだファンモータを概念的に示す断面図である。このファンモータは、軸径が1mm以下、例えば0.8mmに設定された超小型ファンモータであり、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に装着されたロータ3と、ロータ3の外径側にロータ3と一体に形成されたファン4と、ケーシング5と、例えば半径方向(ラジアル方向)のギャップを介して対向させたステータコイル6aおよびロータマグネット6bとを備えた、いわゆるラジアルギャップ型ファンモータと称されるものである。ステータコイル6aは、動圧軸受装置1の外周にベース部7を介して取り付けられ、ロータマグネット6bはロータ3に取り付けられている。ステータコイル6aに通電すると、ステータコイル6aとロータマグネット6bとの間の電磁力でロータマグネット6bが回転し、それによって、ロータ3及びファン4が軸部材2と一体に回転する。なお、ファンモータの形態として、ステータコイル6aとロータマグネット6bとを軸方向(アキシャル方向)のギャップを介して対向させる、いわゆるアキシャルギャップ型ファンモータとすることもできる(図示省略)。   FIG. 1 is a sectional view conceptually showing a fan motor incorporating a fluid dynamic bearing device 1 according to the present invention. This fan motor is an ultra-small fan motor whose shaft diameter is set to 1 mm or less, for example, 0.8 mm, and is mounted on the dynamic pressure bearing device 1 that rotatably supports the shaft member 2 in a non-contact manner, and the shaft member 2. The rotor 3, the fan 4 formed integrally with the rotor 3 on the outer diameter side of the rotor 3, and the casing 5, for example, a stator coil 6 a and a rotor magnet 6 b that are opposed to each other via a gap in the radial direction (radial direction). Is a so-called radial gap type fan motor. The stator coil 6 a is attached to the outer periphery of the hydrodynamic bearing device 1 via the base portion 7, and the rotor magnet 6 b is attached to the rotor 3. When the stator coil 6a is energized, the rotor magnet 6b is rotated by the electromagnetic force between the stator coil 6a and the rotor magnet 6b, whereby the rotor 3 and the fan 4 rotate integrally with the shaft member 2. As a form of the fan motor, a so-called axial gap type fan motor in which the stator coil 6a and the rotor magnet 6b are opposed to each other with a gap in the axial direction (axial direction) can be used (not shown).

図2は、動圧軸受装置1を示している。この動圧軸受装置1は、軸部材2と、内周に軸部材2を挿入した軸受部材8と、軸受部材8の外周に設け、その外周面にステータコイル6aを取り付けたベース部7とを主要な部品として構成される。なお、以下では、軸受部材8が閉口されている側を下側、開口している側を上側として説明を進める。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a shaft member 2, a bearing member 8 having the shaft member 2 inserted on the inner periphery thereof, and a base portion 7 provided on the outer periphery of the bearing member 8 and having a stator coil 6a attached to the outer peripheral surface thereof. Configured as the main part. In the following description, the side where the bearing member 8 is closed is the lower side, and the side where the bearing member 8 is opened is the upper side.

軸部材2は、例えば、ステンレス鋼等の金属材料で形成される。本実施形態では、軸部材2は下端部に球面状凸部2bを有し、この球面状凸部2bの下端と軸受部材8の内底面85aとが接触摺動することにより軸部材2をスラスト方向に支持する、いわゆるピボット軸受を構成する。   The shaft member 2 is formed of a metal material such as stainless steel, for example. In the present embodiment, the shaft member 2 has a spherical convex portion 2b at the lower end, and the lower end of the spherical convex portion 2b and the inner bottom surface 85a of the bearing member 8 are brought into sliding contact with each other to thrust the shaft member 2. It constitutes a so-called pivot bearing that supports in the direction.

軸受部材8は、側部80および底部85からなるコップ状に形成される。側部80は、多孔質材料、例えば銅を主成分とする焼結金属で円筒状に形成された多孔質部81と、多孔質部81の円筒状内周面81aから内径側へ突出して設けられた樹脂部82とで構成される(図3を参照)。   The bearing member 8 is formed in a cup shape including a side portion 80 and a bottom portion 85. The side portion 80 is provided so as to protrude from the cylindrical inner peripheral surface 81a of the porous portion 81 toward the inner diameter side with a porous portion 81 formed into a cylindrical shape with a porous material, for example, a sintered metal containing copper as a main component. The resin portion 82 is formed (see FIG. 3).

側部80の内周面80aは、円周方向でステップ状に変位し、かつ軸方向で一定形状をなす非真円形状に形成される。これにより、ラジアル軸受隙間の隙間幅は、径方向で変化するとともに、軸方向で一定となる。この非真円面Rとしての内周面80aのうち、ラジアル軸受隙間を介して対向する軸部材2の外周面2aに接近した領域(以下、接近領域R1)が、樹脂部82の内周面82aで形成され、軸部材2の外周面2aと離隔した領域(以下、離隔領域R2)が、多孔質部81の内周面81aで形成される。   The inner peripheral surface 80a of the side portion 80 is formed in a non-circular shape that is displaced stepwise in the circumferential direction and has a constant shape in the axial direction. Thereby, the gap width of the radial bearing gap changes in the radial direction and is constant in the axial direction. Of the inner peripheral surface 80a as the non-round surface R, a region approaching the outer peripheral surface 2a of the shaft member 2 facing through the radial bearing gap (hereinafter referred to as an approach region R1) is an inner peripheral surface of the resin portion 82. A region formed by 82 a and separated from the outer peripheral surface 2 a of the shaft member 2 (hereinafter, a separation region R <b> 2) is formed by the inner peripheral surface 81 a of the porous portion 81.

軸受部材8の底部85、側部80の樹脂部82、ベース部7、およびケーシング5(以下、これらをまとめて樹脂成形部と称する)は、多孔質部81をインサートした樹脂の射出成形によって形成される。この射出成形工程では、まず、多孔質部81の内周に、樹脂部82の形状に対応した成形型が外周面に設けられた内型が挿入される。そして、多孔質部81と内型との一体品が成形金型内にインサートされ、金型内に溶融樹脂を射出することにより、多孔質部81、内型、および樹脂成形部が一体に成形される。このとき、溶融樹脂が多孔質部81の表面の表面開孔から表層部の内部細孔に入り込んで固化するため、樹脂成形部は一種のアンカー効果によって多孔質部81の表面に強固に密着する。   The bottom portion 85 of the bearing member 8, the resin portion 82 of the side portion 80, the base portion 7, and the casing 5 (hereinafter collectively referred to as a resin molding portion) are formed by injection molding of a resin with a porous portion 81 inserted therein. Is done. In this injection molding step, first, an inner mold in which a molding die corresponding to the shape of the resin portion 82 is provided on the outer peripheral surface is inserted into the inner periphery of the porous portion 81. And the integral part of the porous part 81 and the inner mold is inserted into the molding die, and the porous part 81, the inner mold and the resin molded part are integrally molded by injecting molten resin into the mold. Is done. At this time, since the molten resin enters the internal pores of the surface layer portion from the surface opening of the surface of the porous portion 81 and solidifies, the resin molded portion firmly adheres to the surface of the porous portion 81 by a kind of anchor effect. .

樹脂成形部の樹脂材料、特に樹脂部82の樹脂材料としては、軸部材2との接触摺動に対する耐摩耗性や、潤滑油に対する耐油性に優れた樹脂材料、例えばLCPやPPS材等が好適に使用できる。また、上記の樹脂に、炭素繊維やガラス繊維等の充填剤を加えると、耐摩耗性が向上するため好ましい。これらに加え、導電性充填剤、離型剤等の各種充填剤を単独で、あるいは、二種以上を混合して配合しても良い。   As a resin material for the resin molded portion, particularly a resin material for the resin portion 82, a resin material excellent in wear resistance against contact sliding with the shaft member 2 and oil resistance to lubricating oil, such as LCP or PPS material, is suitable. Can be used for In addition, it is preferable to add a filler such as carbon fiber or glass fiber to the above resin because wear resistance is improved. In addition to these, various fillers such as a conductive filler and a release agent may be used alone or in admixture of two or more.

射出成形後、上記の多孔質部81、内型、樹脂成形部の一体品から、内型を離型することにより、軸受部材8、ベース部7、およびケーシング5の一体成形品が完成する。こうして形成された軸受部材8の内周面80aは、軸方向で一定形状をなすため、離型時に内周面80aと内型の外周面に形成された成形型とが干渉せず、内周面80aを損傷することなくスムーズに内型を離型できる。また、ヘリングボーン形状などの複雑な動圧溝を形成する場合に比べ、内型の加工も容易である。以上より、超小型の動圧軸受装置1の軸受部材8が低コストに製造可能となる。   After the injection molding, the inner mold is released from the integral part of the porous part 81, the inner mold, and the resin molded part, thereby completing the integrally molded article of the bearing member 8, the base part 7, and the casing 5. Since the inner peripheral surface 80a of the bearing member 8 formed in this way has a constant shape in the axial direction, the inner peripheral surface 80a and the molding die formed on the outer peripheral surface of the inner mold do not interfere with each other at the time of mold release. The inner mold can be released smoothly without damaging the surface 80a. In addition, the inner mold can be easily processed as compared with the case where a complex dynamic pressure groove such as a herringbone shape is formed. As described above, the bearing member 8 of the micro hydrodynamic bearing device 1 can be manufactured at low cost.

軸部材2が回転すると、ラジアル軸受隙間のうち、隙間幅が比較的広い隙間、すなわち非真円面Rの離隔領域R2と軸部材2の外周面2aとの間の隙間の潤滑油が、隙間幅が比較的狭い隙間、すなわち非真円面Rの接近領域R1と軸部材2の外周面2aとの間の隙間に押し込まれることにより、その圧力が上昇する。このような潤滑油の動圧作用によって、軸部材2がラジアル方向に非接触支持される。   When the shaft member 2 rotates, the lubricating oil in the gap between the radial bearing gaps having a relatively wide gap width, that is, the gap between the separation region R2 of the non-round surface R and the outer peripheral surface 2a of the shaft member 2 is removed. The pressure increases by being pushed into a gap having a relatively narrow width, that is, a gap between the approach region R1 of the non-round surface R and the outer peripheral surface 2a of the shaft member 2. The shaft member 2 is supported in a non-contact manner in the radial direction by the dynamic pressure action of the lubricating oil.

本発明に係る軸受装置1では、軸受部材8の内周面80a(非真円面R)のうち、最も大きな圧力が発生する接近領域R1が樹脂材料で形成されるため、この部分で動圧抜けが生じることがなく、効率よく動圧作用が得られる。また、樹脂材料は焼結金属に比べ接触摺動に対する耐摩耗性に優れているため、軸受装置の起動、停止時など、動圧作用が十分に発揮されないときの樹脂部82の内周面82aと軸部材2の外周面2aとの接触摺動による摩耗を抑えることができ、長期間に亘り安定した軸受性能を維持することができる。   In the bearing device 1 according to the present invention, the approach region R1 in which the largest pressure is generated is formed of a resin material among the inner peripheral surface 80a (non-circular surface R) of the bearing member 8. There is no slipping out, and a dynamic pressure effect can be obtained efficiently. Further, since the resin material is superior in wear resistance against contact sliding compared to the sintered metal, the inner peripheral surface 82a of the resin portion 82 when the dynamic pressure action is not sufficiently exhibited, such as when the bearing device is started and stopped. Wear due to contact sliding between the shaft member 2 and the outer peripheral surface 2a of the shaft member 2 can be suppressed, and stable bearing performance can be maintained over a long period of time.

また、軸受部材8の内周面80a(非真円面R)のうち、樹脂部82以外の部分が多孔質部81で形成されるため、多孔質部81からラジアル軸受隙間に逐次潤滑油が供給され、ラジアル軸受隙間での潤滑油不足を防止することができる。なお、軸受部材8の内周面80aのうち、多孔質部81で形成された離隔領域R2から動圧抜けが生じるが、接近領域R1と比べると発生する圧力が低いため、軸受性能に与える影響は少ない。また、非真円面Rが、円筒状の多孔質部81に形成された内周面81aに部分的に樹脂材料を被覆することにより設けられるため、樹脂部82の肉厚は、軸受部材8の内周面80aに形成された接近領域R1と離隔領域R2の段差分に相当する極小幅となり、温度変化によるラジアル軸受隙間の変動を抑えることができる。   Further, since the portion other than the resin portion 82 is formed by the porous portion 81 in the inner peripheral surface 80a (non-round surface R) of the bearing member 8, the lubricating oil is sequentially supplied from the porous portion 81 to the radial bearing gap. The shortage of lubricating oil in the radial bearing gap can be prevented. In the inner peripheral surface 80a of the bearing member 8, the dynamic pressure loss occurs from the separation region R2 formed by the porous portion 81. However, since the generated pressure is lower than that of the approach region R1, it has an influence on the bearing performance. There are few. Further, since the non-circular surface R is provided by partially covering the inner peripheral surface 81a formed in the cylindrical porous portion 81 with a resin material, the thickness of the resin portion 82 is set so that the bearing member 8 is thick. The minimum width corresponding to the level difference between the approach region R1 and the separation region R2 formed on the inner peripheral surface 80a of the inner peripheral surface 80a, and variation in the radial bearing gap due to temperature change can be suppressed.

本発明は上記実施形態に限られない。例えば、上記実施形態では、多孔質部81が円筒状に形成される場合を例示したが、図4に示すように、ステップ状の内周面を有する多孔質部81を形成し、その小径内周面81a1に樹脂を被覆することにより、軸受部材8の内周面80aを形成することもできる。これによると、樹脂部82の肉厚をさらに小さくすることができるため、温度変化によるラジアル軸受隙間の変動をさらに抑えることができる。図4では、多孔質部81の内周面の小径内周面81a1にのみ樹脂コーティングが施されているが、これに加えて多孔質部81の小径内周面81a1と大径内周面81a2との間に形成された段部81bにコーティングを施しても良い。   The present invention is not limited to the above embodiment. For example, in the above-described embodiment, the case where the porous portion 81 is formed in a cylindrical shape is illustrated. However, as shown in FIG. 4, the porous portion 81 having a step-like inner peripheral surface is formed, and the inside of the small diameter is formed. The inner peripheral surface 80a of the bearing member 8 can also be formed by coating the peripheral surface 81a1 with resin. According to this, since the thickness of the resin portion 82 can be further reduced, the variation in the radial bearing gap due to the temperature change can be further suppressed. In FIG. 4, the resin coating is applied only to the small-diameter inner peripheral surface 81a1 of the inner peripheral surface of the porous portion 81. In addition to this, the small-diameter inner peripheral surface 81a1 and the large-diameter inner peripheral surface 81a2 of the porous portion 81 are provided. The step 81b formed between the two may be coated.

また、軸受部材8に形成される非真円面Rの形状はステップ状に限らない。図5に示す例では、非真円面Rとしての軸受部材8の内周面80aが、円周方向で連続的に変位した3つの円弧面を備える(いわゆる多円弧軸受)。この非真円面Rのうち、少なくとも軸部材2の外周面2aに最も接近した領域(以下、最接近領域R1)が樹脂部82の内周面82aで形成される。また、内周面80aのうち、樹脂部82以外の部分が多孔質部81で形成される。非真円面Rを構成する3つの円弧面の曲率中心O’は、それぞれ、軸受部材8(軸部材2)の軸中心Oから等距離オフセットされている。3つの円弧面で区画される各領域において、ラジアル軸受隙間は、円周方向の両方向に対して、それぞれ楔状に漸次縮小した形状を有している。そのため、軸部材2が回転すると、その回転の方向に応じて、ラジアル軸受隙間内の潤滑油が楔状に縮小した最小幅部側(最接近領域R1側)に押し込まれて、その圧力が上昇する。このような潤滑油の動圧作用によって、軸部材2が非接触支持される。尚、3つの円弧面の相互間の境界部に、分離溝と称される、一段深い軸方向溝を形成しても良い。   Further, the shape of the non-round surface R formed on the bearing member 8 is not limited to the step shape. In the example shown in FIG. 5, the inner peripheral surface 80a of the bearing member 8 as the non-circular surface R includes three circular arc surfaces that are continuously displaced in the circumferential direction (so-called multi-arc bearings). Of this non-round surface R, at least a region closest to the outer peripheral surface 2 a of the shaft member 2 (hereinafter referred to as the closest region R 1) is formed by the inner peripheral surface 82 a of the resin portion 82. Further, a portion other than the resin portion 82 in the inner peripheral surface 80 a is formed by the porous portion 81. The centers of curvature O ′ of the three circular arc surfaces constituting the non-circular surface R are offset by the same distance from the axis center O of the bearing member 8 (shaft member 2). In each region defined by three arcuate surfaces, the radial bearing gap has a shape gradually reduced in a wedge shape in both circumferential directions. Therefore, when the shaft member 2 rotates, the lubricating oil in the radial bearing gap is pushed into the minimum width portion side (the closest approach region R1 side) reduced in a wedge shape according to the direction of the rotation, and the pressure increases. . The shaft member 2 is supported in a non-contact manner by the dynamic pressure action of the lubricating oil. Note that a deeper axial groove called a separation groove may be formed at the boundary between the three arc surfaces.

図6は、多円弧軸受の他の例を示している。この例においても、非真円面Rとなる軸受部材8の内周面80aは3つの円弧面を備えているが、3つの円弧面は、円周方向の一方向に対してそれぞれ楔状に漸次縮小した、いわゆるテーパ軸受を構成する。非真円面Rのうち、少なくとも最接近領域R1が樹脂部82の内周面82aで形成される。また、3つの円弧面の相互間の境界部に、分離溝と称される、一段深い軸方向Gが形成される。軸部材2が所定方向に回転すると、ラジアル軸受隙間内の潤滑油が楔状に縮小した最小幅部側(最接近領域R1側)に押し込まれて、その圧力が上昇する。このような潤滑油の動圧作用によって、軸部材2が非接触支持される。   FIG. 6 shows another example of the multi-arc bearing. Also in this example, the inner peripheral surface 80a of the bearing member 8 that becomes the non-circular surface R includes three arc surfaces, but the three arc surfaces are gradually wedged with respect to one direction in the circumferential direction. A reduced so-called taper bearing is formed. Of the non-round surface R, at least the closest region R1 is formed by the inner peripheral surface 82a of the resin portion 82. Further, a deeper axial direction G called a separation groove is formed at the boundary between the three arc surfaces. When the shaft member 2 rotates in a predetermined direction, the lubricating oil in the radial bearing gap is pushed into the minimum width portion side (the closest approach region R1 side) reduced to a wedge shape, and the pressure rises. The shaft member 2 is supported in a non-contact manner by the dynamic pressure action of the lubricating oil.

図7は、図6で示したテーパ軸受の他の例を示している。この例では、図6に示す構成において、非真円面Rの最接近領域R1側の所定領域θが、それぞれ、多孔質部81(軸部材2)の軸中心Oを曲率中心とする同心の円弧で構成されている。従って、各所定領域θにおいて、ラジアル軸受隙間の隙間幅は一定になる。このような構成の多円弧軸受は、テーパ・フラット軸受と称されることもある。   FIG. 7 shows another example of the tapered bearing shown in FIG. In this example, in the configuration shown in FIG. 6, the predetermined regions θ on the closest approach region R1 side of the non-round surface R are respectively concentric with the axis center O of the porous portion 81 (shaft member 2) as the center of curvature. Consists of arcs. Accordingly, in each predetermined region θ, the gap width of the radial bearing gap is constant. The multi-arc bearing having such a configuration may be referred to as a tapered flat bearing.

図6および図7に示した例では、3つの円弧面が樹脂部82で形成され、それ以外の部分(分離溝G)が多孔質部81で形成されているが、これに限らず、例えば、円弧面を、樹脂材料と多孔質材料の複合構造とすることもできる。このとき、各円弧面のうち、少なくとも最接近領域R1が樹脂部82で形成される。このように、分離溝Gだけでなく円弧面からも多孔質部81を露出させることにより、多孔質部81がラジアル軸受隙間Aに露出する面積を拡大することができ、ラジアル軸受隙間Aへの潤滑油の供給がしやすくなるため、潤滑性を向上させることができる。   In the example shown in FIG. 6 and FIG. 7, the three arc surfaces are formed by the resin portion 82, and the other portion (separation groove G) is formed by the porous portion 81. The arc surface may be a composite structure of a resin material and a porous material. At this time, at least the closest region R <b> 1 is formed of the resin portion 82 among the circular arc surfaces. In this way, by exposing the porous portion 81 not only from the separation groove G but also from the arc surface, the area where the porous portion 81 is exposed to the radial bearing gap A can be increased, and Since it becomes easy to supply lubricating oil, lubricity can be improved.

以上の各例における多円弧軸受は、いわゆる3円弧軸受であるが、これに限らず、いわゆる4円弧軸受、5円弧軸受、さらに6円弧以上の数の円弧面で構成された多円弧軸受を採用しても良い。   The multi-arc bearings in the above examples are so-called three-arc bearings, but are not limited to this, and so-called four-arc bearings, five-arc bearings, and multi-arc bearings composed of more than six arc surfaces are adopted. You may do it.

また、上記の実施形態では、軸受部材8の内周面80aに非真円面Rが形成される場合を示したが、これとは逆に、軸受部材8の内周面80aを真円形状とし、これと対向する軸部材2の外周面2aに非真円面Rを設けることもできる。図8に示す例では、軸部材2の外周面2aが、円周方向でステップ状に変位し、かつ軸方向で一定形状をなす非真円面Rを構成する。軸部材2の外周面2a(非真円面R)は、円筒面状の外周面21aを有する多孔質体21と、多孔質体21の外周面21aから外径側へ突出して設けられた樹脂部22とで形成される。非真円面Rのうち、ラジアル軸受隙間を介して対向する軸受部材8の内周面80aに接近した領域R1が樹脂部22の外周面22aで形成され、軸受部材8の内周面80aから離隔した領域R2が多孔質部21の外周面21aで形成される。   Further, in the above embodiment, the case where the non-round surface R is formed on the inner peripheral surface 80a of the bearing member 8 is shown. On the contrary, the inner peripheral surface 80a of the bearing member 8 is formed into a perfect circle shape. In addition, the non-circular surface R can be provided on the outer peripheral surface 2a of the shaft member 2 facing this. In the example shown in FIG. 8, the outer peripheral surface 2a of the shaft member 2 constitutes a non-circular surface R that is displaced stepwise in the circumferential direction and has a constant shape in the axial direction. The outer peripheral surface 2a (non-circular surface R) of the shaft member 2 includes a porous body 21 having a cylindrical outer peripheral surface 21a and a resin provided to protrude from the outer peripheral surface 21a of the porous body 21 to the outer diameter side. And the portion 22. Of the non-circular surface R, a region R1 that is close to the inner peripheral surface 80a of the bearing member 8 that faces the radial bearing gap is formed by the outer peripheral surface 22a of the resin portion 22, and from the inner peripheral surface 80a of the bearing member 8 A separated region R <b> 2 is formed on the outer peripheral surface 21 a of the porous portion 21.

また、上記の実施形態では、樹脂部82、ベース部7、およびケーシング5を一体に成形したが、これらを別体に形成することもできる。この場合、樹脂部82の樹脂材料として含油樹脂を用いると、より良好な潤滑性を得ることができる。また、ベース部7およびケーシング5の材料は樹脂に限らず、黄銅やステンレス鋼等の金属材料などを使用することができる。   Moreover, in said embodiment, although the resin part 82, the base part 7, and the casing 5 were shape | molded integrally, these can also be formed separately. In this case, when an oil-containing resin is used as the resin material of the resin portion 82, better lubricity can be obtained. Moreover, the material of the base part 7 and the casing 5 is not limited to resin, and metal materials such as brass and stainless steel can be used.

また、上記では多孔質部81を形成する多孔質材料として焼結金属が用いられる場合を示したが、これに限らず、例えば多孔質樹脂を使用することもできる。この場合、樹脂材料は一般に温度変化等による寸法変化量が大きいため、例えば含油樹脂に金属粉末あるいはシリカなどの線膨張係数が比較的小さい物質を適量混合し、全体の線膨張係数を抑えることが好ましい。   Moreover, although the case where a sintered metal was used as a porous material which forms the porous part 81 was shown above, not only this but a porous resin can also be used, for example. In this case, since the resin material generally has a large dimensional change due to a temperature change or the like, for example, an appropriate amount of a material having a relatively small linear expansion coefficient such as metal powder or silica may be mixed with the oleoresin to suppress the overall linear expansion coefficient. preferable.

また、上記実施形態では、多孔質部81の上端面81bが外部に露出した例を示しているが、例えば、樹脂成形部で多孔質部81の上端面81bを覆うように成形することもできる。この場合、多孔質部81から外部への油の漏れ出しを防ぐことができる。   In the above embodiment, an example is shown in which the upper end surface 81b of the porous portion 81 is exposed to the outside. For example, the resin molded portion can be molded so as to cover the upper end surface 81b of the porous portion 81. . In this case, oil leakage from the porous portion 81 to the outside can be prevented.

あるいは、別体に形成したシール部材を軸受スリーブの上端に配置することもできる。この場合、多孔質部81の上端面81bからの油の漏れ出しを防ぐと共に、シール部材の内周に形成されるシール空間により、ラジアル軸受隙間の潤滑油の漏れ出しを防ぐシール効果、および温度変化による潤滑油の熱膨張を吸収するバッファ機能を得ることができる。   Alternatively, a separate seal member can be disposed at the upper end of the bearing sleeve. In this case, a sealing effect that prevents leakage of oil from the upper end surface 81b of the porous portion 81 and prevents leakage of lubricating oil in the radial bearing gap by the seal space formed on the inner periphery of the seal member, and temperature A buffer function that absorbs thermal expansion of the lubricating oil due to the change can be obtained.

また、上記の実施形態では、スラスト軸受部がピボット軸受により構成される場合を例示したが、スラスト軸受部はこれに限らない。例えば、軸部材2が下端面を有し、その下端面あるいは軸受部材8の内底面85aに動圧発生部を形成することもできる。軸部材2の回転に伴い、軸部材2の下端面と軸受部材8の内底面85aとの間のスラスト軸受隙間の潤滑油に動圧作用が発生し、軸部材2をスラスト方向に非接触支持するスラスト軸受部が形成される。動圧発生部の形状としては、例えばヘリングボーン形状、スパイラル形状、ステップ形状、あるいは波型形状等が考えられる。   Further, in the above-described embodiment, the case where the thrust bearing portion is configured by the pivot bearing is illustrated, but the thrust bearing portion is not limited thereto. For example, the shaft member 2 may have a lower end surface, and the dynamic pressure generating portion may be formed on the lower end surface or the inner bottom surface 85 a of the bearing member 8. As the shaft member 2 rotates, a dynamic pressure action is generated in the lubricating oil in the thrust bearing gap between the lower end surface of the shaft member 2 and the inner bottom surface 85a of the bearing member 8, and the shaft member 2 is supported in a non-contact manner in the thrust direction. A thrust bearing portion is formed. As the shape of the dynamic pressure generating portion, for example, a herringbone shape, a spiral shape, a step shape, or a corrugated shape can be considered.

本発明の軸受装置は、ファンモータに限らず、光ディスクの光磁気ディスク駆動用のスピンドルモータ等、高速回転下で使用される情報機器用の小型モータ、あるいはレーザビームプリンタのポリゴンスキャナモータ等における回転軸支持用としても好適に使用することができる。   The bearing device of the present invention is not limited to a fan motor, but is rotated in a small motor for information equipment used under high-speed rotation, such as a spindle motor for driving a magneto-optical disk of an optical disk, or a polygon scanner motor of a laser beam printer. It can also be suitably used for shaft support.

動圧軸受装置1を組み込んだファンモータを概念的に示す断面図である。It is sectional drawing which shows notionally the fan motor incorporating the dynamic pressure bearing apparatus 1. FIG. 本発明の実施形態に係る動圧軸受装置1断面図である。1 is a sectional view of a hydrodynamic bearing device 1 according to an embodiment of the present invention. 軸受部材8および軸部材2の軸方向に垂直な断面図である。3 is a cross-sectional view perpendicular to the axial direction of a bearing member 8 and a shaft member 2. FIG. 他の実施形態に係る軸受部材8および軸部材2の軸方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the axial direction of the bearing member 8 and the shaft member 2 which concern on other embodiment. 他の実施形態(3円弧軸受)に係る軸受部材8および軸部材2の径方向断面図である。It is radial direction sectional drawing of the bearing member 8 and the shaft member 2 which concern on other embodiment (3 arc bearings). 他の実施形態(テーパ軸受)に係る軸受部材8および軸部材2の径方向断面図である。It is radial direction sectional drawing of the bearing member 8 and the shaft member 2 which concern on other embodiment (taper bearing). 他の実施形態(テーパ・フラット軸受)に係る軸受部材8および軸部材2の径方向断面図である。It is radial direction sectional drawing of the bearing member 8 and the shaft member 2 which concern on other embodiment (taper flat bearing). 他の実施形態(軸部材2側に非真円面Rを設けた例)に係る軸受部材8および軸部材2の径方向断面図である。It is radial direction sectional drawing of the bearing member 8 and the shaft member 2 which concern on other embodiment (example which provided the non-round surface R in the shaft member 2 side).

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
4 ファン
5 ケーシング
7 ベース部
8 軸受部材
80 側部
81 多孔質部
82 樹脂部
85 底部
R 非真円面
R1 接近領域、最接近領域
R2 離隔領域
G 分離溝
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 4 Fan 5 Casing 7 Base part 8 Bearing member 80 Side part 81 Porous part 82 Resin part 85 Bottom part R Non-circular surface R1 Approaching area, closest approach area R2 Separation area G Separation groove

Claims (5)

軸部材と、内周に軸部材を挿入した軸受部材と、軸受部材の内周面および軸部材の外周面の何れか一方に形成され、円周方向でステップ状に変位し、かつ軸方向で一定形状をなす非真円面とを有する動圧軸受装置において、
非真円面のうち、少なくとも他方の面に接近した領域が樹脂材料で形成され、かつ他の領域が給油可能の多孔質材料で形成されていることを特徴とする動圧軸受装置。
A shaft member, a bearing member in which a shaft member is inserted into the inner periphery, and an inner peripheral surface of the bearing member and an outer peripheral surface of the shaft member are formed, and are displaced stepwise in the circumferential direction. In the hydrodynamic bearing device having a non-circular surface having a certain shape,
A hydrodynamic bearing device, characterized in that at least a region close to the other surface of the non-circular surface is formed of a resin material, and the other region is formed of a porous material that can be supplied with oil.
軸部材と、内周に軸部材を挿入した軸受部材と、軸受部材の内周面および軸部材の外周面の何れか一方に形成され、円周方向で連続的に変位した部分を有し、かつ軸方向で一定形状をなす非真円面とを有する動圧軸受装置において、
非真円面のうち、少なくとも他方の面に最接近した領域が樹脂材料で形成され、かつ他の領域が給油可能の多孔質材料で形成されていることを特徴とする動圧軸受装置。
A shaft member, a bearing member in which the shaft member is inserted into the inner periphery, a bearing member formed on one of the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft member, and having a portion continuously displaced in the circumferential direction; And in the hydrodynamic bearing device having a non-circular surface having a constant shape in the axial direction,
A hydrodynamic bearing device, characterized in that, of a non-round surface, a region closest to at least the other surface is formed of a resin material, and the other region is formed of a porous material that can be refueled.
非真円面が、多孔質材料を部分的に樹脂材料で被覆して形成されている請求項1又は2に記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the non-round surface is formed by partially covering a porous material with a resin material. 軸受部材が、ステータコイルを取り付けるためのベース部を一体に有する請求項1又は2に記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the bearing member integrally has a base portion for attaching the stator coil. 軸部材にファンを取り付けた請求項1又は2に記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a fan is attached to the shaft member.
JP2006091668A 2006-03-29 2006-03-29 Dynamic pressure bearing device Withdrawn JP2007263311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006091668A JP2007263311A (en) 2006-03-29 2006-03-29 Dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006091668A JP2007263311A (en) 2006-03-29 2006-03-29 Dynamic pressure bearing device

Publications (1)

Publication Number Publication Date
JP2007263311A true JP2007263311A (en) 2007-10-11

Family

ID=38636495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006091668A Withdrawn JP2007263311A (en) 2006-03-29 2006-03-29 Dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JP2007263311A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204807A (en) * 2012-03-29 2013-10-07 Taiho Kogyo Co Ltd Sliding bearing
JP2013204808A (en) * 2012-03-29 2013-10-07 Taiho Kogyo Co Ltd Sliding bearing
WO2015111552A1 (en) * 2014-01-21 2015-07-30 オイレス工業株式会社 Sliding bearing
WO2019070041A1 (en) * 2017-10-04 2019-04-11 Ntn株式会社 Sliding member
US10393010B2 (en) 2015-07-16 2019-08-27 Ihi Corporation Multi-arc bearing and turbocharger
CN114294323A (en) * 2021-12-30 2022-04-08 上海涟屹轴承科技有限公司 Chip removal type linear sliding bearing and precision casting method and machine casting method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204807A (en) * 2012-03-29 2013-10-07 Taiho Kogyo Co Ltd Sliding bearing
JP2013204808A (en) * 2012-03-29 2013-10-07 Taiho Kogyo Co Ltd Sliding bearing
WO2015111552A1 (en) * 2014-01-21 2015-07-30 オイレス工業株式会社 Sliding bearing
JP2015137693A (en) * 2014-01-21 2015-07-30 オイレス工業株式会社 Sliding bearing
US10393010B2 (en) 2015-07-16 2019-08-27 Ihi Corporation Multi-arc bearing and turbocharger
WO2019070041A1 (en) * 2017-10-04 2019-04-11 Ntn株式会社 Sliding member
CN114294323A (en) * 2021-12-30 2022-04-08 上海涟屹轴承科技有限公司 Chip removal type linear sliding bearing and precision casting method and machine casting method thereof

Similar Documents

Publication Publication Date Title
US7147376B2 (en) Dynamic bearing device
WO2007099790A1 (en) Fluid bearing device
JP2007024146A (en) Dynamic pressure bearing device
JP2007263311A (en) Dynamic pressure bearing device
JP2007232140A (en) Fluid bearing device
JP2008069805A (en) Dynamic pressure bearing device
JP4865015B2 (en) Hydrodynamic bearing device
JP2016098891A (en) Manufacturing method of fluid dynamic pressure bearing device
JP2009228873A (en) Fluid bearing device
JP2018017393A (en) Fluid dynamic pressure bearing device and motor provided with the same
WO2019139007A1 (en) Fluid dynamic bearing device and motor equipped with same
JP2009024844A (en) Dynamic-pressure bearing device
JP2008032081A (en) Fluid bearing device
JP4804894B2 (en) Bearing device and manufacturing method thereof
JP2007092816A (en) Bearing device
JP2010091004A (en) Hydrodynamic pressure bearing device and manufacturing method therefor
JP2008169940A (en) Magnetic fluid bearing and its manufacturing method
JP2008075687A (en) Fluid bearing device
JP4937618B2 (en) Hydrodynamic bearing device
JP2006161928A (en) Dynamic pressure bearing device
JP2007092847A (en) Bearing device
JP3997115B2 (en) Hydrodynamic bearing device
JP2004301338A (en) Dynamic pressure type sintering oil impregnation bearing unit
JP4937675B2 (en) Hydrodynamic bearing device
JP2004316925A (en) Dynamic pressure-type oil-impregnated sintered bearing unit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602