JP2013204808A - Sliding bearing - Google Patents

Sliding bearing Download PDF

Info

Publication number
JP2013204808A
JP2013204808A JP2012078192A JP2012078192A JP2013204808A JP 2013204808 A JP2013204808 A JP 2013204808A JP 2012078192 A JP2012078192 A JP 2012078192A JP 2012078192 A JP2012078192 A JP 2012078192A JP 2013204808 A JP2013204808 A JP 2013204808A
Authority
JP
Japan
Prior art keywords
coating layer
axial
resin coating
bearing
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012078192A
Other languages
Japanese (ja)
Other versions
JP5878062B2 (en
Inventor
Taisuke Kabetani
泰典 壁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP2012078192A priority Critical patent/JP5878062B2/en
Publication of JP2013204808A publication Critical patent/JP2013204808A/en
Application granted granted Critical
Publication of JP5878062B2 publication Critical patent/JP5878062B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • F16C23/04Sliding-contact bearings self-adjusting
    • F16C23/041Sliding-contact bearings self-adjusting with edge relief
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/203Multilayer structures, e.g. sleeves comprising a plastic lining
    • F16C33/206Multilayer structures, e.g. sleeves comprising a plastic lining with three layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only

Abstract

PROBLEM TO BE SOLVED: To provide a sliding bearing configured to improve conformability following an opposite shaft without reducing wear resistance of a resin coating layer containing solid lubricant.SOLUTION: In a sliding bearing, a resin coating layer 103 containing binder resin and solid lubricant is provided on a sliding bearing substrate including back metal steel 101 and a bearing alloy layer 102 provided on the back metal steel. When an axial width of the resin coating layer 103 is 1, a ratio between the widths of both axial end portions A, A is 0.3 to 0.7. The thickness of the resin coating layer 103 is decreased gradually from an axial center portion toward axial terminal ends, and thickness C of both axial ends is smaller than the thickness D of the axial center portion. In the resin coating layer, hardness of both axial end portions A, A is higher than that of the axial center portion B.

Description

本発明は、自動車やその他の産業機械用のエンジン等に用いられるすべり軸受に関し、特に、裏金鋼と、前記裏金鋼の上に配置された軸受合金層とを有する軸受基材上に、固体潤滑剤を含む樹脂被覆層を設けた、すべり軸受に関する。   The present invention relates to a sliding bearing used for an engine for automobiles and other industrial machines, and more particularly to solid lubrication on a bearing base material having a back metal and a bearing alloy layer disposed on the back metal. The present invention relates to a plain bearing provided with a resin coating layer containing an agent.

自動車用エンジンのすべり軸受(単に「軸受」と呼ぶこともある。)材料としては、一般に裏金鋼に軸受合金層(ライニング)を設けた軸受が用いられている。近年は高出力及び高回転による自動車エンジンの高性能化が著しく、これら軸受材料に対して、初期なじみ性、耐焼付性、耐久性、耐熱性などの優れたしゅう動性能が望まれている。   As a material for a sliding bearing (sometimes simply referred to as a “bearing”) for an automobile engine, a bearing in which a bearing alloy layer (lining) is provided on a back metal is generally used. In recent years, the performance of automobile engines with high output and high revolution has been remarkably improved, and excellent sliding performance such as initial conformability, seizure resistance, durability, and heat resistance is desired for these bearing materials.

裏金鋼にアルミニウムや銅の軸受合金層(ライニング)を設けた軸受では、耐疲労性や耐焼付性を確保できる一方で、初期なじみ性が不十分である。また、なじみ性確保のために、しゅう動面にSn、Pbなどの軟質金属被膜をさらに施した銅鉛合金軸受では、耐摩耗性が充分でなく、複雑な製造工程を要するためにコストが高いという不具合もあった。   A bearing provided with a bearing alloy layer (lining) of aluminum or copper on the back metal can ensure fatigue resistance and seizure resistance, but has insufficient initial conformability. In addition, in order to ensure conformability, a copper lead alloy bearing in which a soft metal film such as Sn or Pb is further provided on the sliding surface is not sufficient in wear resistance and requires a complicated manufacturing process, resulting in high cost. There was also a problem.

そこで、優れた耐摩耗性を確保するために、軟質金属被膜に代えて、固体潤滑剤とバインダー樹脂とを含む樹脂被覆層が提案されている(特許文献1及び2)。この固体潤滑剤を含んだ樹脂被覆層は軟質金属被膜に比べて耐摩耗特性が良好であり、起動・停止を繰り返す昨今のエンジン運転状況下においても良好な結果を得ている。   Therefore, in order to ensure excellent wear resistance, a resin coating layer including a solid lubricant and a binder resin has been proposed in place of the soft metal coating (Patent Documents 1 and 2). The resin coating layer containing the solid lubricant has better wear resistance than the soft metal coating, and has obtained good results even under recent engine operating conditions in which the engine is repeatedly started and stopped.

特開平4−83914号公報JP-A-4-83914 特許第3133209号公報Japanese Patent No. 3133209

しかしながら、軸受しゅう動面の軸方向における両端部は、軸と軸受が強く接触しやすく、中央部に比べしゅう動時の負荷が大きい。また、固体潤滑剤を含んだ樹脂被覆層は軟質金属被膜よりも硬いため、しゅう動時の変形・摩耗によって被覆層が相手軸に沿うように形状を変える性質、いわゆるなじみ性が低い傾向にある。このように両端部への局部接触と樹脂被覆層のなじみ性の不足とにより、初期焼付けが発生するなど、改善の余地があった。
したがって本発明は、固体潤滑剤を含んだ樹脂被覆層の耐摩耗性を損ねることなく、相手軸へのなじみ性を向上させ、耐摩耗性となじみ性の両立を図ったすべり軸受を提供することを目的とするものである。
However, both ends of the bearing sliding surface in the axial direction tend to make strong contact between the shaft and the bearing, and the load during sliding is larger than that at the center. In addition, since the resin coating layer containing a solid lubricant is harder than the soft metal coating, it tends to have a low property of changing the shape of the coating layer along the other axis due to deformation and wear during sliding, so-called conformability. . Thus, there was room for improvement, such as the occurrence of initial baking due to local contact with both ends and insufficient conformability of the resin coating layer.
Therefore, the present invention provides a plain bearing that improves the conformability to the counterpart shaft without impairing the wear resistance of the resin coating layer containing the solid lubricant, and achieves both wear resistance and conformability. It is intended.

本発明者は、上記目的を達成するために鋭意研鑽を積んだ結果、樹脂被覆層について、軸方向両末端の厚さを軸方向中央部に比べて小さくし、かつ、軸方向末端部の硬度を軸方向中央部よりも高めることで、しゅう動時の強い面圧にも耐えるなじみ性と、耐摩耗性を付与できることを見出し、本発明を完成するに至った。   As a result of earnest study to achieve the above object, the present inventor has made the resin coating layer thinner at the axial end portions than at the axial central portion, and has the hardness at the axial end portions. It has been found that, by increasing the height from the center in the axial direction, it is possible to impart conformability and abrasion resistance that can withstand strong surface pressure during sliding, and the present invention has been completed.

すなわち、本発明は、以下の<1>から<7>に関するものである。
<1> 裏金鋼と前記裏金鋼上に設けられた軸受合金層とを有するすべり軸受基材上に、バインダー樹脂及び固体潤滑剤を含む樹脂被覆層が設けられたすべり軸受であって、
前記樹脂被覆層の軸方向の幅寸法を1としたときに、前記軸方向両端部の幅寸法の比が0.3以上0.7以下であり、
前記樹脂被覆層の厚さは、軸方向両末端の厚さが軸方向中央部の厚さよりも小さく、かつ、軸方向中央部から軸方向末端に近づくほど漸減し、
前記樹脂被覆層の硬度は、かつ軸方向両端部の方が軸方向中央部よりも高い、すべり軸受。
<2> 前記樹脂被覆層の軸方向両末端と軸方向中央部との厚さの差が2μm以上15μm以下である、前記<1>に記載のすべり軸受。
<3> 前記樹脂被覆層の軸方向両端部のナノインデンター硬さが軸方向中央部のナノインデンター硬さよりも0.08GPa以上高い、前記<1>又は<2>に記載のすべり軸受。
<4> 前記樹脂被覆層の軸方向の一方の端部の幅寸法に対する他方の端部の幅寸法の比が0.8以上1.25以下である、前記<1>〜<3>のいずれか1に記載のすべり軸受。
<5> 前記樹脂被覆層の軸方向の一方の端部のナノインデンター硬さに対する他方の端部のナノインデンター硬さの比が0.8以上1.25以下である、前記<1>〜<4>のいずれか1に記載のすべり軸受。
<6> 前記固体潤滑剤が二硫化モリブデン及びグラファイトのうち少なくとも一方を含み、樹脂被覆層における固体潤滑剤の含有量が総量で20〜60体積%である、前記<1>〜<5>のいずれか1に記載のすべり軸受。
<7> 前記樹脂被覆層に占める前記固体潤滑剤の含有量が、軸方向中央部に対し軸方向端部の方が大きい、前記<1>〜<6>のいずれか1に記載のすべり軸受。
That is, the present invention relates to the following <1> to <7>.
<1> A sliding bearing in which a resin coating layer containing a binder resin and a solid lubricant is provided on a sliding bearing base material having a backing metal and a bearing alloy layer provided on the backing steel,
When the axial width dimension of the resin coating layer is 1, the ratio of the width dimension at both ends in the axial direction is 0.3 or more and 0.7 or less,
The thickness of the resin coating layer is gradually decreased as the thickness of both axial ends is smaller than the thickness of the axial central portion, and approaches the axial end from the axial central portion,
A sliding bearing in which the hardness of the resin coating layer is higher at both axial end portions than at the axial central portion.
<2> The plain bearing according to <1>, wherein a difference in thickness between the both axial ends of the resin coating layer and the central portion in the axial direction is 2 μm or more and 15 μm or less.
<3> The plain bearing according to <1> or <2>, wherein the nanoindenter hardness at both axial end portions of the resin coating layer is 0.08 GPa or more higher than the nanoindenter hardness at the axially central portion.
<4> Any of <1> to <3>, wherein a ratio of a width dimension of the other end portion to a width dimension of the one end portion in the axial direction of the resin coating layer is 0.8 or more and 1.25 or less. Or a plain bearing according to claim 1.
<5> The ratio <1> in which the ratio of the nanoindenter hardness at the other end to the nanoindenter hardness at one end in the axial direction of the resin coating layer is 0.8 or more and 1.25 or less. The sliding bearing according to any one of ~ <4>.
<6> The above <1> to <5>, wherein the solid lubricant contains at least one of molybdenum disulfide and graphite, and the content of the solid lubricant in the resin coating layer is 20 to 60% by volume in total. The plain bearing of any one.
<7> The plain bearing according to any one of <1> to <6>, wherein the content of the solid lubricant in the resin coating layer is larger in the axial end than in the axial center. .

本発明にかかるすべり軸受は、樹脂被覆層の軸方向両端部の厚さを軸方向中央部に比べて小さくし、かつ軸方向両端部の硬度を軸方向中央部よりも高くすることにより、相手軸とのなじみ性が良好となり、初期焼付きを防ぐことができ、さらには耐摩耗性を向上することができる。   The plain bearing according to the present invention is formed by reducing the thickness of both end portions in the axial direction of the resin coating layer as compared with the central portion in the axial direction and increasing the hardness of both end portions in the axial direction from the central portion in the axial direction. The compatibility with the shaft is good, initial seizure can be prevented, and the wear resistance can be improved.

図1は本発明のすべり軸受の一実施形態を示した模式図である。FIG. 1 is a schematic view showing an embodiment of the slide bearing of the present invention. 図2は本発明のすべり軸受の一実施形態を示した断面図である。FIG. 2 is a sectional view showing an embodiment of the slide bearing of the present invention. 図3は本発明のすべり軸受の一実施形態を示した断面図である。FIG. 3 is a sectional view showing an embodiment of the slide bearing of the present invention. 図4は本発明のすべり軸受の一実施形態を示した断面図である。FIG. 4 is a sectional view showing an embodiment of the slide bearing of the present invention. 図5は本発明のすべり軸受の一実施形態を示した断面図である。FIG. 5 is a sectional view showing an embodiment of the plain bearing of the present invention. 図6は本発明のすべり軸受の一実施形態を示した断面図である。FIG. 6 is a sectional view showing an embodiment of the slide bearing of the present invention.

以下、本発明を詳細に説明する。
本発明において、すべり軸受における軸方向端部、軸方向中央部、及び軸方向末端とは、いずれも内周面の軸方向端部、軸方向中央部、及び軸方向末端を意味する。なお、本明細書においてこれらを、端部、中央部、及び末端とのみ称する場合もある。
Hereinafter, the present invention will be described in detail.
In the present invention, the axial end, the axial center, and the axial end of the slide bearing all mean the axial end, the axial central, and the axial end of the inner peripheral surface. In the present specification, these may be referred to only as an end, a center, and a terminal.

図1及び図2に本発明に係るすべり軸受の一実施形態を示す。
本発明に係るすべり軸受1は、裏金鋼101と前記裏金鋼101の上に配置された軸受合金層102とを有するすべり軸受基材上に、固体潤滑剤を含む樹脂被覆層103が設けられている。この樹脂被覆層において、軸方向両末端の厚さが軸方向中央部の厚さよりも小さく、かつ軸方向両端部の硬度が軸方向中央部の硬度よりも高いことを特徴とする。図1及び図2における符号Aが、それぞれ軸方向端部に相当し、軸方向の末端から中央部に向かって一定の範囲を占める部分である。軸方向両端部はこの軸方向端部A,Aを指す。また軸方向中央部Bとは、軸方向両端部A,Aを除いた部分である。
1 and 2 show an embodiment of a slide bearing according to the present invention.
The sliding bearing 1 according to the present invention is provided with a resin coating layer 103 containing a solid lubricant on a sliding bearing base material having a backing metal 101 and a bearing alloy layer 102 disposed on the backing metal 101. Yes. This resin coating layer is characterized in that the thickness at both ends in the axial direction is smaller than the thickness at the central portion in the axial direction, and the hardness at both axial end portions is higher than the hardness at the central portion in the axial direction. A symbol A in FIGS. 1 and 2 corresponds to an axial end portion, and is a portion occupying a certain range from the axial end to the central portion. Both axial ends indicate the axial ends A and A. The axial central portion B is a portion excluding the axial end portions A and A.

軸方向両端部は、前記樹脂被覆層における軸方向の全幅(A+B+A)の幅寸法を1としたときに、軸方向両端部の幅寸法(A+A)の割合が、下限は0.3以上であり、0.4以上が好ましい。また、上限は0.7以下であり、0.6以下であることが好ましい。   The lower end of the ratio of the width dimension (A + A) at both ends in the axial direction is 0.3 or more, assuming that the width dimension of the entire axial width (A + B + A) in the resin coating layer is 1. 0.4 or more is preferable. Moreover, an upper limit is 0.7 or less, and it is preferable that it is 0.6 or less.

両端部の幅寸法がかかる範囲の下限以上であれば、なじみ性に対して得られる効果及び耐焼付性の向上の点から好ましく、またかかる範囲の上限以下であれば、しゅう動面にかかる面圧・耐摩耗性に対する効果の点から好ましい。   If the width dimension of both ends is equal to or higher than the lower limit of the range, it is preferable from the viewpoint of the effect obtained on the conformability and improvement of seizure resistance, and if it is equal to or lower than the upper limit of the range, the surface applied to the sliding surface. It is preferable from the viewpoint of the effect on pressure and wear resistance.

なお、軸方向端部A同士の幅寸法は同一でも異なっていてもよい。異なる場合、上記範囲内で適宜各端部の幅寸法を決めることができるが、一方の端部の幅寸法が極端に小さい場合には、なじみ性能が確保できなくなり、また両端部で均一に摩耗しないことがあるため、軸方向端部の幅寸法は、一方の端部の幅寸法に対する他方の端部の幅寸法の比が0.8〜1.25の範囲内であることが好ましい。   In addition, the width dimension of axial direction edge part A may be the same, or may differ. If they are different, the width dimension of each end can be determined appropriately within the above range, but if the width dimension of one end is extremely small, the familiarity performance cannot be ensured and the wear at both ends is uniform. Therefore, the ratio of the width dimension of one end to the width dimension of the other end is preferably in the range of 0.8 to 1.25.

樹脂被覆層103は、図2に示すように、軸方向中央部の厚さDよりも、軸方向両末端の厚さCの方が小さい。また、樹脂被覆層の厚さは、軸方向中央部から軸方向末端に近づくほど漸減する。軸と強く接触するのは軸受の軸方向両端部となるので、軸受のしゅう動面が平坦であると、両端部にかかる面圧は大きくなる。しかしながら、本発明のようにしゅう動面の中央部が高い形状、いわゆるクラウニング形状であって、中央部から末端にかけて厚さが漸減する、すなわち、緩やかに傾斜することにより、相手軸形状へのなじみ性が良好となり、局部接触が緩和され、耐焼付き性が向上する。   As shown in FIG. 2, the resin coating layer 103 has a smaller thickness C at both axial ends than the thickness D at the axial center. Further, the thickness of the resin coating layer gradually decreases from the axial center to the axial end. Since both ends in the axial direction of the bearing are in strong contact with the shaft, the surface pressure applied to both ends becomes large if the sliding surface of the bearing is flat. However, as in the present invention, the central portion of the sliding surface has a high shape, that is, a so-called crowning shape, and the thickness gradually decreases from the central portion to the end. And the local contact is relaxed, and the seizure resistance is improved.

樹脂被覆層の軸方向中央部の厚さDと軸方向両末端の厚さCとの差は、2〜15μmであることが好ましく、3〜8μmであることがより好ましい。厚さの差がかかる範囲にあれば、軸方向端部における軸との高接触による焼付きが生じにくく、また、中央部へのみの負荷が多大となってしゅう動面の面圧が高くなることによる摩耗増加もない点から好ましい。   The difference between the thickness D at the central portion in the axial direction of the resin coating layer and the thickness C at both axial ends is preferably 2 to 15 μm, and more preferably 3 to 8 μm. If the difference in thickness is within the range, seizure due to high contact with the shaft at the axial end portion is unlikely to occur, and the load only on the central portion becomes large, resulting in high surface pressure on the sliding surface. This is preferable because there is no increase in wear.

また、樹脂被覆層における軸方向中央部の厚さDは3〜15μmであることが好ましく、3〜9μmであることがより好ましい。かかる範囲であれば、薄すぎて耐摩耗性の効果がなくなり、早期に摩耗しやすいということはなく、また厚すぎて層内での剥離が生じやすいこともない。また、層の厚さは母材との接着強度、層内強度、熱伝導性などにも影響を及ぼすと考えられる。   Moreover, it is preferable that the thickness D of the axial direction center part in a resin coating layer is 3-15 micrometers, and it is more preferable that it is 3-9 micrometers. If it is within such a range, it is too thin to lose the effect of wear resistance, and is not easily worn at an early stage, and is too thick to easily cause peeling in the layer. In addition, the thickness of the layer is considered to affect the adhesive strength with the base material, the strength within the layer, the thermal conductivity, and the like.

また、樹脂被覆層における軸方向両末端の厚さCは耐摩耗性の観点から2μm以上であることが好ましい。   Further, the thickness C at both ends in the axial direction in the resin coating layer is preferably 2 μm or more from the viewpoint of wear resistance.

樹脂被覆層の形状は特に制限されず、軸方向両端部の断面形状が、図2に示すようなテーパー形状、図3に示すような内周側に凸型の曲面形状、図4に示すような内周側に凹型の曲面形状、図5に示すような内周側に凸型の変曲点を有する2段階のテーパー形状、図6に示すような内周側に凹型の変曲点を有する2段階のテーパー形状、などが例示される。   The shape of the resin coating layer is not particularly limited, and the cross-sectional shape at both ends in the axial direction is a tapered shape as shown in FIG. 2, a convex curved shape on the inner peripheral side as shown in FIG. 3, and as shown in FIG. A concave curved surface shape on the inner circumference side, a two-stage taper shape having a convex inflection point on the inner circumference side as shown in FIG. 5, and a concave inflection point on the inner circumference side as shown in FIG. The two-stage taper shape is exemplified.

本発明における樹脂被覆層は、軸方向両端部の硬度が軸方向中央部より高いことを特徴とする。両端部の硬度を中央部より高くすることで、相手軸との局部的な接触に対する耐摩耗性が向上する。   The resin coating layer in the present invention is characterized in that the hardness at both axial end portions is higher than that in the axial central portion. By making the hardness of both ends higher than that of the central portion, the wear resistance against local contact with the counterpart shaft is improved.

軸方向両端部の硬度は、ナノインデンター硬さで、軸方向中央部よりも0.08GPa以上高いことが好ましく、0.1GPa以上高いことがより好ましく、0.2〜0.3GPa高いことがさらに好ましい。硬度の差がかかる範囲であれば、耐摩耗性、なじみ性の観点から好ましい。   The hardness of both axial end portions is nanoindenter hardness, and is preferably 0.08 GPa or more higher than the axial central portion, more preferably 0.1 GPa or more, and 0.2 to 0.3 GPa higher. Further preferred. If the difference in hardness is within such a range, it is preferable from the viewpoint of wear resistance and conformability.

また、軸方向両端部の硬度は、ナノインデンター硬さで0.4GPa以上であることが耐摩耗性の観点から好ましく、軸方向中央部の硬度は、ナノインデンター硬さで0.1GPa以上0.7GPa未満であることが、なじみ性と密着性の観点から好ましい。   Moreover, it is preferable from a viewpoint of abrasion resistance that the hardness of axial both ends is 0.4 GPa or more in terms of nanoindenter hardness, and the hardness of the axial center is 0.1 GPa or more in terms of nanoindenter hardness. Less than 0.7 GPa is preferable from the viewpoint of conformability and adhesion.

また、軸方向端部A同士の硬度は同一でも異なっていてもよいが、軸とのなじみ性能を確保するため、また両端部が均一に摩耗するために、一方の端部のナノインデンター硬さに対する他方の端部のナノインデンター硬さの比が0.8〜1.25の範囲内であることが好ましい。上記のナノインデンター硬度は、両端部の平均値であるが、それぞれ両端部において、その数値範囲内にあることが好ましい。   In addition, the hardness of the axial end portions A may be the same or different, but in order to ensure the conformability with the shaft and to wear both ends uniformly, the nanoindenter hardness of one end portion The ratio of the nanoindenter hardness at the other end to the thickness is preferably in the range of 0.8 to 1.25. The above-mentioned nanoindenter hardness is an average value at both end portions, and it is preferable that both end portions are within the numerical range.

本発明のすべり軸受における樹脂被覆層は、バインダー樹脂と固体潤滑剤とを含む。   The resin coating layer in the slide bearing of the present invention contains a binder resin and a solid lubricant.

固体潤滑剤としては特に制限されず、配向性の有無に関わらず、一般に用いられる固体潤滑剤を用いることができる。具体的には二硫化モリブデン(MoS)、グラファイト、六方晶系窒化ホウ素(h−BN)、WS、ポリテトラフルオロエチレン(PTFE)などが挙げられ、中でも強度や、樹脂との固体潤滑剤の密着性の点から二硫化モリブデン(MoS)、グラファイトが好ましく用いられる。また、固体潤滑剤は1種で用いても、2種以上を組み合わせて用いてもよい。 The solid lubricant is not particularly limited, and a commonly used solid lubricant can be used regardless of the presence or absence of orientation. Specific examples include molybdenum disulfide (MoS 2 ), graphite, hexagonal boron nitride (h-BN), WS 2 , polytetrafluoroethylene (PTFE), etc. Among them, strength and solid lubricant with resin From the viewpoint of adhesion, molybdenum disulfide (MoS 2 ) and graphite are preferably used. Moreover, a solid lubricant may be used by 1 type, or may be used in combination of 2 or more type.

固体潤滑剤の含有量は樹脂被覆層全体に対して総量で20〜60体積%であることが好ましい。
固体潤滑剤は、少なくともMoS及びグラファイトのどちらか一方を含み、MoS又はグラファイトの他に固体潤滑剤をさらに含む場合には、MoS又はグラファイトの総量が少なくとも固体潤滑剤全体の50体積%を超えることが好ましい。
固体潤滑剤の含有量、配合種類、配合比率については軸方向中央部と軸方向端部で同一でもよいし異なっていてもよいが、なじみ性の観点から、固体潤滑剤の含有量は軸方向端部が軸方向中央部に比べ大きいほうが好ましい。
The total content of the solid lubricant is preferably 20 to 60% by volume with respect to the entire resin coating layer.
Solid lubricant comprises either at least MoS 2 and graphite, in the case where the other MoS 2 or graphite further comprises a solid lubricant, MoS 2 or the total amount of graphite of at least solid lubricant overall 50% Is preferably exceeded.
The solid lubricant content, blend type, and blend ratio may be the same or different at the axial center and axial end, but from the standpoint of compatibility, the solid lubricant content is axial. It is preferable that the end portion is larger than the central portion in the axial direction.

バインダー樹脂は機械的強度があり耐熱性が高い樹脂が好ましく用いられる。具体的にはポリイミド樹脂(PI)、ポリアミドイミド(PAI)樹脂、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂や、ポリベンゾイミダゾール(PBI)、PES等の熱可塑性樹脂が挙げられる。   As the binder resin, a resin having mechanical strength and high heat resistance is preferably used. Specific examples include thermosetting resins such as polyimide resin (PI), polyamideimide (PAI) resin, epoxy resin, and phenol resin, and thermoplastic resins such as polybenzimidazole (PBI) and PES.

バインダー樹脂は1種で用いても、2種以上を組み合わせて用いてもよく、組み合わせる場合には、PAI樹脂やPI樹脂にPA樹脂やエポキシ樹脂等を組み合わせ高せん断力を加えポリマーアロイ化しても良いし、バインダー樹脂にカップリン剤等を加えてもよい。   The binder resin may be used alone or in combination of two or more. In the case of combining, a PAI resin or PI resin may be combined with a PA resin or an epoxy resin to add a high shear force to form a polymer alloy. A coupling agent or the like may be added to the binder resin.

上記樹脂被覆層は裏金鋼と前記裏金鋼の上に配置された軸受合金層とを有する軸受基材上に設けられる。ここで裏金鋼と軸受合金層には、当該分野において従来用いられる種々のものを、種々の条件で用いることができる。   The resin coating layer is provided on a bearing base material having a backing metal and a bearing alloy layer disposed on the backing metal. Here, as the back metal and the bearing alloy layer, various materials conventionally used in the field can be used under various conditions.

軸受合金層は、主成分としてAlやCu等が挙げられ、中でもアルミニウム系軸受合金、銅系軸受合金等が好ましい。
軸受合金層はアルミニウム系軸受合金、銅系軸受合金を使用することができる。
The bearing alloy layer includes Al, Cu and the like as main components, and among them, an aluminum bearing alloy, a copper bearing alloy and the like are preferable.
As the bearing alloy layer, an aluminum bearing alloy or a copper bearing alloy can be used.

アルミニウム系軸受合金の組成は特に限定されないが、10質量%以下のCr、Si、Mn、Sb、Sr、Fe、Ni、Mo、Ti、W、Zr、V、Cu、Mg、Znなどからなる群より選ばれる1種以上の元素と、20質量%以下のSn、Pb、In、Tl、Biなどからなる群より選ばれる1種以上の元素とを含有する合金を好ましく使用することができる。
前者の群の元素は主として強度及び耐摩耗性を付与し、後者の群の元素は主としてなじみ性を付与し、添加する元素の種類と量により軸受特性を発揮する。
また、アルミ合金鋳物であるAC8A、AC9Bなどの高Si−Al合金からなるピストンのスカート部を下地として、本発明の樹脂被覆層を使用し、その耐摩耗性を向上することもできる。
The composition of the aluminum-based bearing alloy is not particularly limited, but is a group consisting of 10% by mass or less of Cr, Si, Mn, Sb, Sr, Fe, Ni, Mo, Ti, W, Zr, V, Cu, Mg, Zn, and the like. An alloy containing one or more elements selected from the group consisting of 20% by mass or less and one or more elements selected from the group consisting of Sn, Pb, In, Tl, Bi, and the like can be preferably used.
The former group of elements mainly imparts strength and wear resistance, and the latter group of elements mainly imparts conformability, and exhibits bearing characteristics depending on the type and amount of elements added.
Further, the resin coating layer of the present invention can be used with the skirt portion of a piston made of a high Si—Al alloy such as AC8A or AC9B, which is an aluminum alloy casting, as a base, and the wear resistance can be improved.

銅合金の組成は、特に限定されないが、25質量%以下のBiと、10質量%以下のSnと、2質量%以下のP、Ag、In、Ni、Al等を含有する合金を、好ましく使用することができる。
これらの元素において、軟質金属であるBiはなじみ性を発揮し、青銅の基本成分であるSnは高強度性と耐摩耗性を発揮し、その他の成分は補助的に特性を向上する。特に、Pは脱酸素、焼結促進、強化などに有効であり、Agは潤滑油又は銅中の不純物成分Sとの反応でしゅう動特性向上に有効な化合物を形成し、Inは耐食性と潤滑油の濡れ性を向上し、NiやAlは銅を強化する等の作用がある。
The composition of the copper alloy is not particularly limited, but an alloy containing 25% by mass or less of Bi, 10% by mass or less of Sn, and 2% by mass or less of P, Ag, In, Ni, Al, or the like is preferably used. can do.
Among these elements, Bi, which is a soft metal, exhibits conformability, Sn, which is a basic component of bronze, exhibits high strength and wear resistance, and other components supplementarily improve characteristics. In particular, P is effective for deoxygenation, promotion of sintering, strengthening, etc. Ag forms a compound effective for improving sliding characteristics by reaction with lubricating oil or impurity component S in copper, and In is corrosion resistance and lubrication. Oil and wettability are improved, and Ni and Al have effects such as strengthening copper.

軸受合金層は一般に厚さが0.2〜0.5mmである。これをささえる裏金鋼は一般に軸径に応じてその厚さを選択することができる。   The bearing alloy layer generally has a thickness of 0.2 to 0.5 mm. The thickness of the backing metal that supports this can generally be selected according to the shaft diameter.

本発明のすべり軸受の形状は円筒状でも半割状でもよい。軸受が半割状である場合には、半割すべり軸受を2個組み合わせて円筒状にして使用される。   The shape of the plain bearing of the present invention may be cylindrical or halved. When the bearing is halved, two halved plain bearings are combined into a cylindrical shape.

本発明のすべり軸受を使用する際、潤滑条件は特に限定されず、潤滑油を用いたオイル潤滑下でも無潤滑下でも適用できる。   When the sliding bearing of the present invention is used, the lubrication conditions are not particularly limited, and it can be applied under oil lubrication using a lubricating oil or under non-lubrication.

次に、本発明に係るすべり軸受を製造する方法について説明する。
すべり軸受の製造方法は、例えば以下の工程を含む。
(a)裏金鋼に合金を圧接することにより、または裏金鋼に合金粉末を散布した後に焼結、圧接することにより、裏金鋼上に軸受合金層を設けた、すべり軸受基材を得る工程、
(b)すべり軸受基材の軸受合金層表面に、当該基材と樹脂被覆層との密着性を確保するための処理を施す工程、
(c)バインダー樹脂と固体潤滑剤を含む樹脂組成物を軸受合金層表面に塗布する工程、
(d)加熱によりバインダー樹脂を硬化する工程、
(e)樹脂被覆層の軸方向両端部を圧潰する工程。
Next, a method for manufacturing the plain bearing according to the present invention will be described.
The manufacturing method of a slide bearing includes the following processes, for example.
(A) A step of obtaining a plain bearing base material in which a bearing alloy layer is provided on the back metal steel by press-contacting the alloy to the back metal steel, or sintering and press-contacting the alloy metal powder after being dispersed on the back metal steel;
(B) A step of applying a treatment for ensuring adhesion between the base material and the resin coating layer on the surface of the bearing alloy layer of the plain bearing base material;
(C) applying a resin composition containing a binder resin and a solid lubricant to the bearing alloy layer surface;
(D) a step of curing the binder resin by heating,
(E) A step of crushing both axial ends of the resin coating layer.

上記工程(b)においては、サンドブラストなどの粗面化処理に代表される物理的処理や、エッチング、化成処理などの化学処理が挙げられる。   Examples of the step (b) include physical treatment represented by roughening treatment such as sand blasting, and chemical treatment such as etching and chemical conversion treatment.

工程(c)の樹脂組成物の塗布にあたっては、固体潤滑剤とバインダー樹脂その他の任意成分を混合した塗布液を調製する。また、固体潤滑剤とバインダー樹脂の分散性を高めるためや、塗布液の粘度調整のために、必要に応じてメチルピロリドン等の溶剤を用いることができる。
樹脂組成物の塗布方法は特に制限されないが、エアスプレー法、エアレススプレー法、ロール法、パッド法、スクリーン印刷法、静電塗装、タンブリングなどが例示さる。
In applying the resin composition in the step (c), a coating liquid in which a solid lubricant, a binder resin and other optional components are mixed is prepared. Further, a solvent such as methyl pyrrolidone can be used as necessary for enhancing the dispersibility of the solid lubricant and the binder resin or for adjusting the viscosity of the coating solution.
The method for applying the resin composition is not particularly limited, and examples include an air spray method, an airless spray method, a roll method, a pad method, a screen printing method, electrostatic coating, and tumbling.

その後、乾燥により溶剤を蒸発する。乾燥に際しては、溶剤が蒸発すれば特に方法に制限はないが、40〜120℃で5〜30分の条件で行うことがライニングと樹脂との密着性の点から好ましい。なお、乾燥中の温度は上記温度範囲内で一定であっても昇温等変化させてもよい。   Thereafter, the solvent is evaporated by drying. In drying, the method is not particularly limited as long as the solvent evaporates, but it is preferable to perform the drying at 40 to 120 ° C. for 5 to 30 minutes from the viewpoint of adhesion between the lining and the resin. Note that the temperature during drying may be constant within the above temperature range, or may be changed by raising the temperature.

加熱工程(d)についてはバインダー樹脂が硬化すれば特に方法に制限はないが、150〜400℃で30分〜60分の条件で行えばよい。なお焼成中の温度は上記範囲内で一定であっても昇温等変化させてもよい。   The heating step (d) is not particularly limited as long as the binder resin is cured, but may be performed at 150 to 400 ° C. for 30 to 60 minutes. Note that the temperature during firing may be constant within the above range, or may be changed by raising the temperature.

本発明における樹脂被覆層は、軸方向両端部を圧潰する上記工程(e)により、軸方向中央部に比して厚さが小さく、かつ硬度が高い層とすることができる。   The resin coating layer in the present invention can be a layer having a smaller thickness and a higher hardness than the central portion in the axial direction by the step (e) in which both axial end portions are crushed.

圧潰とは圧力をかけて潰すという意であり、圧潰する方法としては、制限されないが、例えば端部をロールにより圧下する方法が用いられる。   The crushing means crushing by applying pressure, and the crushing method is not limited. For example, a method of rolling down the end portion with a roll is used.

ロールにより圧下する場合の好ましい態様を以下に述べる。
例えば、円筒のロールであって、軸受のしゅう動面(内周面)側をロールする内面ロールと、しゅう動面の背面(外周面)側をロールする背面ロールとを組み合わせて用いる。しゅう動面側の内面ロールには、すべり軸受の軸方向両端部のみに荷重がかかり、中央部には荷重がかからないように、かつ、本発明で規定する所望の形状すなわち軸方向中央部の厚さよりも軸方向両末端の厚さの方が小さい形状となるように、内面ロール中央部に窪みをつける。両ロールを回転させ、すべり軸受を両ロールの隙間に通すことにより、内面(しゅう動面側)両端部のみ圧潰された軸受を製造することができる。例えば、この内面ロールの窪み形状を、樹脂被覆層の厚さや硬度を上記本発明の範囲となるように適宜変更することができる。
A preferred embodiment in the case of rolling down with a roll will be described below.
For example, it is a cylindrical roll, and an inner surface roll that rolls the sliding surface (inner peripheral surface) side of the bearing and a rear roll that rolls the rear surface (outer peripheral surface) side of the sliding surface are used in combination. The inner surface roll on the sliding surface side is loaded only at both ends in the axial direction of the slide bearing and the central portion is not loaded, and the desired shape defined in the present invention, that is, the thickness of the central portion in the axial direction. A recess is made in the center portion of the inner surface roll so that the thickness at both ends in the axial direction is smaller than the thickness. By rotating both rolls and passing the slide bearing through the gap between both rolls, a bearing that is crushed only at both ends of the inner surface (sliding surface side) can be manufactured. For example, the recess shape of the inner surface roll can be appropriately changed so that the thickness and hardness of the resin coating layer are within the scope of the present invention.

圧潰によってすべり軸受における樹脂被覆層の軸方向両端部に緩やかな傾斜ができ、軸のミスアライメントや軸の傾きに対して形状が倣い、局部へのあたりが緩和されることから、初期なじみ性が良好となり、耐焼付性が向上する。また、端部の樹脂を圧縮しているので、当該部分の樹脂の密度は高くなり、硬度が増すことから、耐摩耗性にも優れる結果となる。   By crushing, both ends of the resin coating layer in the axial direction of the sliding bearing can be gently inclined, and the shape follows the misalignment of the shaft and the inclination of the shaft. It becomes good and seizure resistance is improved. Further, since the resin at the end portion is compressed, the density of the resin at the portion increases and the hardness increases, resulting in excellent wear resistance.

以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
・すべり軸受(半割り軸受)の作製
裏金鋼、アルミニウム系半割軸受合金を圧接して軸受基材を製造した。軸受基材と樹脂被覆層との密着性を確保するため、サンドブラストで粗面化処理を行い、その後ブラスト粉を除去するために洗浄した。
表1に示す組成でバインダー樹脂、固体潤滑剤及び溶剤を混合した樹脂組成物の塗布液を調製した。溶剤にはN−メチル−2ピロリドン(NMP)を用いた。
上記で得られた軸受基材を70℃雰囲気で予熱を行い、軸方向両端部をマスキングした状態で、軸受合金層上の軸方向中央部に6μmの膜厚でスプレー法にて上記塗布液を塗布した。その後100℃にて30分乾燥を行った。さらに、250℃で1時間焼成することで、樹脂被覆層を得た。
続いて、樹脂被覆層の両端部をロールにより圧潰した。具体的には軸受のしゅう動面(内周面)側をロールする円筒状の内面ロールと、しゅう動面の背面(外周面)側をロールする円筒状の背面ロールとを組み合わせ、回転する両ロールの隙間にすべり軸受を通すことにより、内面(しゅう動面側)両端部のみ圧潰した。なお、内面ロールの中央部に、両端部の幅寸法割合が0.5(端部の幅寸法割合はそれぞれ0.25)、中央部と両末端の厚さの差が4μmで、断面が図2に示すようなテーパー形状となるように設計した窪みをつけた。
このように、実施例1のすべり軸受を作製した。
Example 1
-Manufacture of plain bearings (half bearings) Bearing base materials were manufactured by press-contacting back metal and aluminum half bearing alloys. In order to ensure the adhesion between the bearing substrate and the resin coating layer, the surface was roughened with sand blasting, and then washed to remove the blasting powder.
A coating solution of a resin composition in which a binder resin, a solid lubricant, and a solvent were mixed with the composition shown in Table 1 was prepared. N-methyl-2pyrrolidone (NMP) was used as the solvent.
The bearing substrate obtained above is preheated in a 70 ° C. atmosphere, and both ends in the axial direction are masked, and the above coating solution is applied by a spray method at a film thickness of 6 μm at the center in the axial direction on the bearing alloy layer. Applied. Thereafter, drying was performed at 100 ° C. for 30 minutes. Furthermore, the resin coating layer was obtained by baking at 250 degreeC for 1 hour.
Subsequently, both ends of the resin coating layer were crushed with a roll. Specifically, a cylindrical inner surface roll that rolls on the sliding surface (inner peripheral surface) side of the bearing and a cylindrical rear roller that rolls on the rear surface (outer peripheral surface) side of the sliding surface are combined and rotated. By passing a slide bearing through the gap between the rolls, only the both ends on the inner surface (sliding surface side) were crushed. In the center part of the inner surface roll, the width dimension ratio of both ends is 0.5 (the width dimension ratio of the end is 0.25 respectively), the difference in thickness between the center and both ends is 4 μm, and the cross section is illustrated. A recess designed to have a tapered shape as shown in FIG.
Thus, the slide bearing of Example 1 was produced.

(実施例2〜3、比較例1〜2)
樹脂被覆層の組成と内面ロールの窪み形状を表1に示す結果となるように変えた以外は実施例1と同様にしてすべり軸受を作製した。
(Examples 2-3, Comparative Examples 1-2)
A plain bearing was produced in the same manner as in Example 1 except that the composition of the resin coating layer and the recess shape of the inner surface roll were changed to the results shown in Table 1.

(比較例3)
樹脂被覆層の組成を表1に示す結果となるように変え、両端部を圧潰していない他は実施例1と同様にしてすべり軸受を作製した。
(Comparative Example 3)
A slide bearing was produced in the same manner as in Example 1 except that the composition of the resin coating layer was changed to the result shown in Table 1 and both ends were not crushed.

実施例1〜4及び比較例1、2として、各条件によって作製したすべり軸受における樹脂被覆層のナノインデータ硬さを測定し、焼付面圧、摩耗量について試験を行った。
なお、ナノインデンター硬さは、軸方向中央部は軸受の軸方向中心の位置での測定値であり、軸方向両端部は軸受の軸方向端部から軸受の軸方向長さの10%分、軸受の軸方向中心側にあるそれぞれの位置での測定値の平均値である。比較例3については、軸方向中心にて測定した。
焼付面圧及び摩耗量についてはそれぞれ焼付試験及び摩耗試験で計測した。
As Examples 1 to 4 and Comparative Examples 1 and 2, the nano-indata hardness of the resin coating layer in the slide bearing produced according to each condition was measured, and the seizure surface pressure and the wear amount were tested.
The nano indenter hardness is a value measured at the axial center of the bearing in the axial center, and both axial ends are 10% of the axial length of the bearing from the axial end of the bearing. The average value of the measured values at the respective positions on the axial center side of the bearing. About the comparative example 3, it measured in the axial direction center.
The seizure surface pressure and the amount of wear were measured by a seizure test and a wear test, respectively.

(ナノインデンター硬さ試験)
樹脂被覆層のナノインデンター試験は超微小硬度計((株式会社エリオニクス製)を用いて以下の条件で行い、軸方向中央部と軸方向両端部におけるナノインデンター硬さを測定した。
測定温度:23℃
負荷荷重:1000mg
ステップインターバル:20msec
分割数:500
(Nanoindenter hardness test)
The nanoindenter test of the resin coating layer was performed under the following conditions using an ultra-micro hardness meter (manufactured by Elionix Co., Ltd.), and the nanoindenter hardness at the axial center and both axial ends was measured.
Measurement temperature: 23 ° C
Applied load: 1000mg
Step interval: 20 msec
Number of divisions: 500

(焼付試験)
焼付試験は軸受焼付試験機を用いて以下の条件で行った。
回転数:8000rpm
潤滑油:0W−20
給油温度:120℃
荷重:3分毎に3kNずつ荷重漸増
(Baking test)
The seizure test was performed under the following conditions using a bearing seizure tester.
Rotation speed: 8000rpm
Lubricating oil: 0W-20
Lubrication temperature: 120 ° C
Load: Gradually increase by 3 kN every 3 minutes

(摩耗試験)
摩耗試験は片当たり摩耗試験機を用いて以下の条件で行った。なお、測定箇所は軸方向中央部である。
回転数:0rpm(1分保持)→1200rpm(1分保持)→0rpm(1分保持)のサイクル試験
潤滑油:0W−20
給油温度:100℃
荷重:4.41kN
試験時間:100時間
(Abrasion test)
The wear test was performed using the wear tester per piece under the following conditions. In addition, a measurement location is an axial direction center part.
Rotational speed: 0 rpm (1 minute hold) → 1200 rpm (1 minute hold) → 0 rpm (1 minute hold) cycle test Lubricating oil: 0W-20
Lubrication temperature: 100 ° C
Load: 4.41kN
Test time: 100 hours

上記各試験の結果を表1にまとめた。   The results of the above tests are summarized in Table 1.

Figure 2013204808
Figure 2013204808

表1より、軸方向両端部を圧潰していない従来のすべり軸受(比較例3)に比べて、軸方向の中央部よりも両末端の厚さを小さくした両端部を設けることにより、耐焼付性が著しく向上することが分かった。また、耐摩耗性も向上した。
本発明において、軸方向の中央部よりも両末端の厚さを小さくした両端部を設ける、両端部に緩やかな傾斜を設けることにより、集中的な局部への面圧が軽減され、耐焼付性が向上し、なじみ性が向上したと考えられる。また、圧潰による両端部の硬度の向上により、耐摩耗性が向上したものと考えられる。
一方、軸方向両端部の幅寸法の割合が0.8を超えると、耐焼付性及び耐摩耗性が低下した。
From Table 1, seizure resistance is achieved by providing both end portions with thicknesses at both ends smaller than the central portion in the axial direction compared to a conventional plain bearing (Comparative Example 3) in which both end portions in the axial direction are not crushed. It was found that the property was remarkably improved. Also, wear resistance was improved.
In the present invention, by providing both ends with thicknesses at both ends smaller than the central portion in the axial direction, and by providing gentle slopes at both ends, the surface pressure on the concentrated local area is reduced, and seizure resistance It is thought that the compatibility improved. Further, it is considered that the wear resistance is improved by improving the hardness of both ends by crushing.
On the other hand, when the ratio of the width dimension at both ends in the axial direction exceeded 0.8, seizure resistance and wear resistance were lowered.

本発明は、すべり軸受における樹脂被覆層の軸方向両端部の厚さを軸方向中央部より小さくすることで、初期焼付きを抑制してなじみ性を向上し、さらに両端部に高い硬度を持たせて耐摩耗性に優れたすべり軸受を提供するものである。
軸方向両端部にこのような特性を付与することにより高いなじみ性と耐摩耗性が得られるため、本発明のすべり軸受は起動停止エンジンなどの高性能な自動車やその他の産業機械用のエンジンにおいて特に有用である。
The present invention reduces the initial seizure and improves the conformability by reducing the thickness of both ends in the axial direction of the resin coating layer in the slide bearing from the axial central portion, and has high hardness at both ends. Therefore, the present invention provides a plain bearing having excellent wear resistance.
By giving such characteristics to both ends in the axial direction, high conformability and wear resistance can be obtained. Therefore, the slide bearing of the present invention is used in high-performance automobiles such as start / stop engines and engines for other industrial machines. It is particularly useful.

1 すべり軸受
101 裏金鋼
102 軸受合金層
103 樹脂被覆層
A 軸方向端部
B 軸方向中央部
C 樹脂被覆層軸方向両末端の厚さ
D 樹脂被覆層軸方向中央部の厚さ
E 軸方向
F しゅう動方向(円周方向)
DESCRIPTION OF SYMBOLS 1 Slide bearing 101 Back metal steel 102 Bearing alloy layer 103 Resin coating layer A Axial end part B Axial center part C Resin coating layer Axial thickness of both ends D Resin coating layer axial center part thickness E Axial direction F Sliding direction (circumferential direction)

Claims (7)

裏金鋼と前記裏金鋼上に設けられた軸受合金層とを有するすべり軸受基材上に、バインダー樹脂及び固体潤滑剤を含む樹脂被覆層が設けられたすべり軸受であって、
前記樹脂被覆層の軸方向の幅寸法を1としたときに、前記軸方向両端部の幅寸法の比が0.3以上0.7以下であり、
前記樹脂被覆層の厚さは、軸方向両末端の厚さが軸方向中央部の厚さよりも小さく、かつ、軸方向中央部から軸方向末端に近づくほど漸減し、
前記樹脂被覆層の硬度は、かつ軸方向両端部の方が軸方向中央部よりも高い、すべり軸受。
A sliding bearing provided with a resin coating layer containing a binder resin and a solid lubricant on a sliding bearing base material having a backing metal and a bearing alloy layer provided on the backing steel,
When the axial width dimension of the resin coating layer is 1, the ratio of the width dimension at both ends in the axial direction is 0.3 or more and 0.7 or less,
The thickness of the resin coating layer is gradually decreased as the thickness of both axial ends is smaller than the thickness of the axial central portion, and approaches the axial end from the axial central portion,
A sliding bearing in which the hardness of the resin coating layer is higher at both axial end portions than at the axial central portion.
前記樹脂被覆層の軸方向両末端と軸方向中央部との厚さの差が2μm以上15μm以下である、請求項に記載のすべり軸受。   The slide bearing according to claim 1, wherein a difference in thickness between the axially opposite ends and the axially central portion of the resin coating layer is 2 µm or more and 15 µm or less. 前記樹脂被覆層の軸方向両端部のナノインデンター硬さが軸方向中央部のナノインデンター硬さよりも0.08GPa以上高い、請求項1又は2に記載のすべり軸受。   3. The plain bearing according to claim 1, wherein the nanoindenter hardness at both axial end portions of the resin coating layer is 0.08 GPa or more higher than the nanoindenter hardness at the axial central portion. 前記樹脂被覆層の軸方向の一方の端部の幅寸法に対する他方の端部の幅寸法の比が0.8以上1.25以下である、請求項1〜3のいずれか1項に記載のすべり軸受。   The ratio of the width dimension of the other edge part with respect to the width dimension of the one edge part of the axial direction of the said resin coating layer is 0.8 or more and 1.25 or less, The any one of Claims 1-3. Slide bearing. 前記樹脂被覆層の軸方向の一方の端部のナノインデンター硬さに対する他方の端部のナノインデンター硬さの比が0.8以上1.25以下である、請求項1〜4のいずれか1項に記載のすべり軸受。   The ratio of the nano indenter hardness of the other edge part with respect to the nano indenter hardness of the one edge part of the axial direction of the said resin coating layer is 0.8 or more and 1.25 or less, Any of Claims 1-4 2. A plain bearing according to item 1. 前記固体潤滑剤が二硫化モリブデン及びグラファイトのうち少なくとも一方を含み、樹脂被覆層における固体潤滑剤の含有量が総量で20〜60体積%である、請求項1〜5のいずれか1項に記載のすべり軸受。   6. The solid lubricant according to claim 1, wherein the solid lubricant contains at least one of molybdenum disulfide and graphite, and the total content of the solid lubricant in the resin coating layer is 20 to 60% by volume. Plain bearings. 前記樹脂被覆層に占める前記固体潤滑剤の含有量が、軸方向中央部に対し軸方向端部の方が大きい、請求項1〜6のいずれか1項に記載のすべり軸受。   The plain bearing according to any one of claims 1 to 6, wherein a content of the solid lubricant in the resin coating layer is larger in an axial end portion than in an axial central portion.
JP2012078192A 2012-03-29 2012-03-29 Plain bearing Expired - Fee Related JP5878062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012078192A JP5878062B2 (en) 2012-03-29 2012-03-29 Plain bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012078192A JP5878062B2 (en) 2012-03-29 2012-03-29 Plain bearing

Publications (2)

Publication Number Publication Date
JP2013204808A true JP2013204808A (en) 2013-10-07
JP5878062B2 JP5878062B2 (en) 2016-03-08

Family

ID=49524103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012078192A Expired - Fee Related JP5878062B2 (en) 2012-03-29 2012-03-29 Plain bearing

Country Status (1)

Country Link
JP (1) JP5878062B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11193537B2 (en) 2018-03-12 2021-12-07 Nissan Motor Co., Ltd. Bearing member
CN115199649A (en) * 2021-04-02 2022-10-18 大同金属工业株式会社 Sliding member and method for manufacturing same
US20230063906A1 (en) * 2021-08-31 2023-03-02 Rolls-Royce Deutschland Ltd & Co Kg Planetary gear box

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229070A (en) * 1996-02-22 1997-09-02 Nissan Motor Co Ltd Crank bearing structure of internal combustion engine
JP2002266848A (en) * 2001-03-07 2002-09-18 Daido Metal Co Ltd Sliding bearing
JP2007263311A (en) * 2006-03-29 2007-10-11 Ntn Corp Dynamic pressure bearing device
JP2009097598A (en) * 2007-10-16 2009-05-07 Ntn Corp Sliding bearing and its manufacturing method
WO2010038588A1 (en) * 2008-10-03 2010-04-08 大豊工業株式会社 Sliding bearing and method of manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229070A (en) * 1996-02-22 1997-09-02 Nissan Motor Co Ltd Crank bearing structure of internal combustion engine
JP2002266848A (en) * 2001-03-07 2002-09-18 Daido Metal Co Ltd Sliding bearing
JP2007263311A (en) * 2006-03-29 2007-10-11 Ntn Corp Dynamic pressure bearing device
JP2009097598A (en) * 2007-10-16 2009-05-07 Ntn Corp Sliding bearing and its manufacturing method
WO2010038588A1 (en) * 2008-10-03 2010-04-08 大豊工業株式会社 Sliding bearing and method of manufacturing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11193537B2 (en) 2018-03-12 2021-12-07 Nissan Motor Co., Ltd. Bearing member
CN115199649A (en) * 2021-04-02 2022-10-18 大同金属工业株式会社 Sliding member and method for manufacturing same
CN115199649B (en) * 2021-04-02 2023-11-03 大同金属工业株式会社 Sliding member and method for manufacturing same
US20230063906A1 (en) * 2021-08-31 2023-03-02 Rolls-Royce Deutschland Ltd & Co Kg Planetary gear box
US11885410B2 (en) * 2021-08-31 2024-01-30 Rolls-Royce Deutschland Ltd & Co Kg Planetary gear box

Also Published As

Publication number Publication date
JP5878062B2 (en) 2016-03-08

Similar Documents

Publication Publication Date Title
JP6177392B2 (en) Half bearing
US7662472B2 (en) Plain bearing
JP6122488B2 (en) Sliding member
US6305847B1 (en) Sliding bearing
JP5841607B2 (en) Sliding member and sliding material composition
JP5878061B2 (en) Plain bearing
US10955003B2 (en) Sliding member
JP2016503863A (en) Sliding bearing composite material
CN109578438B (en) Sliding component
WO2008062987A1 (en) Bearing having improved consume resistivity and manufacturing method thereof
EP2224146A1 (en) Sliding member for thrust bearing
JP5878062B2 (en) Plain bearing
JP2001343022A (en) Double sliding material
EP3315806A1 (en) Bearing material, bearing and method
JP2015200339A (en) Slide member
JP5816121B2 (en) Slide bearing and manufacturing method thereof
JP5850777B2 (en) Sliding member
JP6200343B2 (en) Sliding member
JP2014234860A (en) Slide bearing
WO2017094810A1 (en) Sliding member and swash plate type compressor
WO2020162491A1 (en) Sliding member
JP2016098889A (en) Slide member
JP2020125838A (en) Slide member
JP2020125839A (en) Slide member
JP2006131947A (en) Sliding material

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140923

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160127

R150 Certificate of patent or registration of utility model

Ref document number: 5878062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees