JP2020125838A - Slide member - Google Patents
Slide member Download PDFInfo
- Publication number
- JP2020125838A JP2020125838A JP2019019802A JP2019019802A JP2020125838A JP 2020125838 A JP2020125838 A JP 2020125838A JP 2019019802 A JP2019019802 A JP 2019019802A JP 2019019802 A JP2019019802 A JP 2019019802A JP 2020125838 A JP2020125838 A JP 2020125838A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- layer
- less
- sliding member
- resin layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011347 resin Substances 0.000 claims abstract description 67
- 229920005989 resin Polymers 0.000 claims abstract description 67
- 239000010410 layer Substances 0.000 claims abstract description 46
- 239000000463 material Substances 0.000 claims abstract description 28
- 229910052751 metal Inorganic materials 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims abstract description 17
- 239000011247 coating layer Substances 0.000 claims abstract description 14
- 230000002093 peripheral effect Effects 0.000 claims abstract description 7
- 230000013011 mating Effects 0.000 claims description 12
- 230000003746 surface roughness Effects 0.000 claims description 11
- 238000005245 sintering Methods 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 25
- 239000000314 lubricant Substances 0.000 description 19
- 239000007787 solid Substances 0.000 description 16
- 239000002245 particle Substances 0.000 description 14
- 239000000654 additive Substances 0.000 description 13
- 230000000996 additive effect Effects 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 239000004642 Polyimide Substances 0.000 description 7
- 239000006087 Silane Coupling Agent Substances 0.000 description 7
- 239000010439 graphite Substances 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 7
- 229920001721 polyimide Polymers 0.000 description 7
- 238000005299 abrasion Methods 0.000 description 6
- 229910052961 molybdenite Inorganic materials 0.000 description 5
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 5
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229920002312 polyamide-imide Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- 239000004962 Polyamide-imide Substances 0.000 description 3
- 238000009661 fatigue test Methods 0.000 description 3
- 238000005087 graphitization Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000005662 Paraffin oil Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 102200082816 rs34868397 Human genes 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Landscapes
- Sliding-Contact Bearings (AREA)
Abstract
Description
本発明は摺動部材に関する。 The present invention relates to a sliding member.
摺動面の特性を改善するため、裏金の表面に樹脂コーティング層を形成した摺動部材が知られている。例えば特許文献1には、バインダー樹脂としてPAI樹脂を、固体潤滑剤として黒鉛を用いた摺動部材が記載されている。 A sliding member is known in which a resin coating layer is formed on the surface of the back metal in order to improve the characteristics of the sliding surface. For example, Patent Document 1 describes a sliding member using PAI resin as a binder resin and graphite as a solid lubricant.
引用文献1の摺動部材においては、樹脂コーティング層と下地層(裏金)との密着性を向上させるため、下地層の表面に金属焼結層が形成されている。しかし、このような摺動部材においては、金属焼結層の上端部分に応力が集中してしまい、その結果、樹脂コーティング層の耐疲労強度が低下してしまうという問題があった。耐疲労強度を改善するには樹脂コーティング層を薄くする手法もあるが、樹脂コーティング層が薄すぎると使用に伴い樹脂コーティング層が摩耗して下地層が露出してしまうという問題があった。 In the sliding member of the cited document 1, a metal sintered layer is formed on the surface of the underlayer in order to improve the adhesion between the resin coating layer and the underlayer (back metal). However, in such a sliding member, there is a problem that stress concentrates on the upper end portion of the metal sintered layer, and as a result, the fatigue resistance strength of the resin coating layer decreases. There is also a method of making the resin coating layer thinner to improve the fatigue strength, but if the resin coating layer is too thin, there is a problem that the resin coating layer is worn and the underlying layer is exposed during use.
これに対し本発明は、摺動部材において、耐疲労強度及び耐摩耗性を改善する技術を提供する。 On the other hand, the present invention provides a technique for improving the fatigue resistance and wear resistance of the sliding member.
本発明は、相手材を支持するための面を有する形状を有し、当該面に金属焼結層が露出していない基材と、前記内周面に形成され、厚さが20μmを超える樹脂コーティング層とを有する摺動部材を提供する。 The present invention has a base material whose surface has a surface for supporting a mating member, the metal sintered layer is not exposed on the surface, and a resin formed on the inner peripheral surface and having a thickness of more than 20 μm. A sliding member having a coating layer is provided.
前記樹脂コーティング層の厚さが50μmを超えてもよい。 The thickness of the resin coating layer may exceed 50 μm.
前記樹脂コーティング層の厚さが300μm以下であってもよい。 The thickness of the resin coating layer may be 300 μm or less.
前記面の表面粗さが60μmRzJIS以下であってもよい。 The surface roughness of the surface may be 60 μm Rz JIS or less.
前記相手材が軸であり、前記基材が、前記軸を支持するための内周面を有する円筒形状を有してもよい。 The mating member may be a shaft, and the base material may have a cylindrical shape having an inner peripheral surface for supporting the shaft.
前記内周面において、前記相手軸の軸方向の表面粗さが、当該相手軸の周方向の表面粗さよりも大きくてもよい。 On the inner peripheral surface, the axial surface roughness of the mating shaft may be greater than the circumferential surface roughness of the mating shaft.
本発明によれば、摺動部材において、耐疲労強度及び耐摩耗性を改善することができる。 According to the present invention, fatigue resistance and wear resistance of a sliding member can be improved.
1.構成
図1は、一実施形態に係るブシュ1の外観を例示する図である。ブシュ1は、本実施形態に係る摺動部材の一例である。ブシュ1は、例えば燃料噴射ポンプにおいて用いられる。ブシュ1は、本体11を有する。本体11は、相手軸9(相手材の一例)を支持するための内周面を有する円筒形状を有する。本体11は、部品として要求される強度及び信頼性を確保するため、例えば金属(具体的には、鋼、鋳鉄、アルミニウム合金、又は銅合金等)で形成される。本体11は、単層の金属で形成されてもよいし、複層の金属(例えば、裏金及びライニング層)で形成されてもよい。
1. Configuration FIG. 1 is a diagram illustrating an appearance of a bush 1 according to an embodiment. The bush 1 is an example of a sliding member according to the present embodiment. The bush 1 is used, for example, in a fuel injection pump. The bush 1 has a main body 11. The main body 11 has a cylindrical shape having an inner peripheral surface for supporting the mating shaft 9 (an example of a mating member). The main body 11 is formed of, for example, a metal (specifically, steel, cast iron, aluminum alloy, copper alloy, or the like) in order to secure strength and reliability required as parts. The body 11 may be formed of a single layer of metal or multiple layers of metal (eg, backing metal and lining layer).
図2は、ブシュ1の断面構造を例示する図である。図2は、摺動面に垂直な断面を示している。ブシュ1は、本体11(基材又は裏金の一例)及び樹脂層13(樹脂コーティング層の一例)を有する。ある種のブシュにおいては、樹脂層の下地となる基材の表面に金属(例えば銅又は銅合金)の粉末で形成された焼結層が形成されるが、本実施形態に係るブシュ1は焼結層を有さない(金属焼結層が露出していない)。焼結層を有さないことにより、樹脂層のうち焼結層の上端部分における応力集中を低減することができ、ひいては耐疲労強度を向上させることができる。 FIG. 2 is a diagram illustrating a cross-sectional structure of the bush 1. FIG. 2 shows a cross section perpendicular to the sliding surface. The bush 1 has a main body 11 (an example of a base material or a back metal) and a resin layer 13 (an example of a resin coating layer). In some types of bushes, a sintered layer formed of powder of metal (for example, copper or copper alloy) is formed on the surface of a base material that is a base of a resin layer, but the bush 1 according to the present embodiment is burned. No tie layer (sintered metal layer is not exposed). By not having the sintered layer, it is possible to reduce the stress concentration at the upper end portion of the sintered layer in the resin layer, and consequently to improve the fatigue strength.
焼結層を有さない代わりに、本体11のうち樹脂層13が形成される表面には粗面化処理が施されている。表面形状における応力集中を緩和する観点から、樹脂層13が形成される表面の表面粗さは、例えば60μmRzJIS以下であり、30μmRzJIS以下であることが好ましく、5μmRzJIS以上10μmRzJIS以下の範囲にあることがさらに好ましい。 Instead of having the sintered layer, the surface of the main body 11 on which the resin layer 13 is formed is roughened. From the viewpoint of relaxing the stress concentration in the surface shape, the surface roughness of the surface on which the resin layer 13 is formed is, for example, 60 μmRzJIS or less, preferably 30 μmRzJIS or less, and more preferably 5 μmRzJIS or more and 10 μmRzJIS or less. preferable.
相手軸9が片当たり(摺動面に対して傾いた状態で相手軸9が摺動面に接触すること)した際に、せん断応力により樹脂層13が本体11から剥離してしまうことを抑制するため、相手軸9の軸方向における表面粗さが、周方向における表面粗さよりも大きいことが好ましい。 Suppressing peeling of the resin layer 13 from the main body 11 due to shear stress when the mating shaft 9 is unilaterally contacted (when the mating shaft 9 contacts the sliding surface in a state of being inclined with respect to the sliding surface). Therefore, the surface roughness of the mating shaft 9 in the axial direction is preferably larger than the surface roughness in the circumferential direction.
樹脂層13は、摺動部材用樹脂材料で形成される。この樹脂材料は、バインダー樹脂131、及びバインダー樹脂131中に分散された添加剤132を含む。バインダー樹脂131としては、例えば熱硬化性樹脂、より具体的には、例えばポリイミド(PI)樹脂及びポリアミドイミド(PAI)樹脂の少なくとも一方が用いられる。なお、耐疲労性を向上させる観点から、PAI樹脂よりもPI樹脂を用いることが好ましく、PI樹脂の中でも高強度のもの(ここで「高強度」とは引張強度が150MPa以上のものをいう)が用いられることが好ましい。耐疲労性を向上させる観点からは、樹脂層13におけるバインダー樹脂の含有量は多い方が好ましく、例えば80体積%以上であることが好ましく、83体積%以上であることがより好ましく、85体積%以上であることがさらに好ましく、90体積%以上であることがさらに好ましい。 The resin layer 13 is formed of a resin material for sliding members. This resin material includes a binder resin 131 and an additive 132 dispersed in the binder resin 131. As the binder resin 131, for example, a thermosetting resin, more specifically, for example, at least one of a polyimide (PI) resin and a polyamideimide (PAI) resin is used. From the viewpoint of improving fatigue resistance, it is preferable to use a PI resin rather than a PAI resin, and a PI resin having a high strength (here, “high strength” means a tensile strength of 150 MPa or more). Is preferably used. From the viewpoint of improving fatigue resistance, the content of the binder resin in the resin layer 13 is preferably large, for example, preferably 80% by volume or more, more preferably 83% by volume or more, and 85% by volume. More preferably, it is more preferably 90% by volume or more.
添加剤132とは樹脂層13の特性を改善するための物質であり、例えば、固体潤滑剤1321、硬質物(硬質粒子)1322、及びシランカップリング剤のうち少なくとも1つを含む(シランカップリング剤は図示略)。固体潤滑剤1321は樹脂層13の摩擦係数を低減するための添加物であり、例えば、黒鉛(グラファイト)及びMoS2のうち少なくとも一方を含む。MoS2は樹脂層において凝集しやすい場合があるので、固体潤滑剤1321としては黒鉛を用い、MoS2を用いないことが好ましい。固体潤滑剤1321として黒鉛を用いる場合、摩擦係数を低減する観点からその黒鉛化度は高い方が好ましく、例えば95%以上であることが好ましく、99%以上であることがより好ましい。硬質物1322は樹脂層13の耐焼付性及び耐摩耗性を向上させるための物質であり、例えば、クレー、ムライト、及びタルクのうち少なくとも1種を含む。シランカップリング剤はバインダー樹脂131と固体潤滑剤1321との結合を強化するための物質である。 The additive 132 is a substance for improving the characteristics of the resin layer 13, and includes, for example, at least one of a solid lubricant 1321, a hard material (hard particles) 1322, and a silane coupling agent (silane coupling). The agent is not shown). The solid lubricant 1321 is an additive for reducing the friction coefficient of the resin layer 13, and includes, for example, at least one of graphite and MoS2. Since MoS2 may easily aggregate in the resin layer, it is preferable to use graphite as the solid lubricant 1321 and not use MoS2. When graphite is used as the solid lubricant 1321, the degree of graphitization is preferably high from the viewpoint of reducing the friction coefficient, for example, 95% or more is preferable, and 99% or more is more preferable. The hard material 1322 is a substance for improving the seizure resistance and wear resistance of the resin layer 13, and includes, for example, at least one of clay, mullite, and talc. The silane coupling agent is a substance for strengthening the bond between the binder resin 131 and the solid lubricant 1321.
耐疲労性を向上させる観点から、添加剤の含有量は少ない方が好ましく、例えば合計で20体積%以下であることが好ましく、17体積%以下であることがより好ましく、15体積%以下であることがさらに好ましく、10体積%以下であることがさらに好ましい。摩擦係数を低減する観点からは固体潤滑剤の含有量は多い方が好ましく、例えば9体積%以上であることが好ましい。添加剤の総量を減らす観点から固体潤滑剤の含有量は少ない方が好ましく、例えば18体積%以下であることが好ましい。耐焼付性及び耐摩耗性を向上させる観点からは硬質物の含有量は多い方が好ましく、例えば0.5体積%以上であることが好ましい。添加剤の総量を減らす観点から固体潤滑剤の含有量は少ない方が好ましく、例えば3体積%以下であることが好ましい。固体潤滑剤及び硬質物の双方を添加するためには、固体潤滑剤の含有量は9体積%以上17体積%以下であることが好ましく、14体積%以下であることがより好ましい。硬質物の含有量は0.5体積%以上3体積%以下であることが好ましい。シランカップリング剤の含有量は、バインダー樹脂に対して例えば0.1重量%以上であることが好ましく、0.2重量%以上であることがより好ましい。コスト削減の観点から、シランカップリング剤の含有量は、バインダー樹脂に対して例えば5重量%以下であることが好ましく、3重量%以下であることがより好ましい。 From the viewpoint of improving fatigue resistance, it is preferable that the content of the additive is small, for example, 20% by volume or less in total, preferably 17% by volume or less, more preferably 15% by volume or less. More preferably, it is more preferably 10% by volume or less. From the viewpoint of reducing the friction coefficient, it is preferable that the content of the solid lubricant is large, for example, 9% by volume or more. From the viewpoint of reducing the total amount of additives, it is preferable that the content of the solid lubricant is small, for example, 18% by volume or less. From the viewpoint of improving seizure resistance and wear resistance, it is preferable that the content of the hard material is large, for example, 0.5% by volume or more. From the viewpoint of reducing the total amount of additives, it is preferable that the content of the solid lubricant is small, for example, 3% by volume or less. In order to add both the solid lubricant and the hard material, the content of the solid lubricant is preferably 9% by volume or more and 17% by volume or less, and more preferably 14% by volume or less. The content of the hard material is preferably 0.5% by volume or more and 3% by volume or less. The content of the silane coupling agent is preferably 0.1% by weight or more, and more preferably 0.2% by weight or more, based on the binder resin. From the viewpoint of cost reduction, the content of the silane coupling agent is preferably, for example, 5% by weight or less, and more preferably 3% by weight or less, based on the binder resin.
切削加工後における表面粗さを低減する観点から、材料として用いる添加剤132の粒径は小さいことが好ましく、例えば、添加剤132の平均粒径は、焼結層12に用いられる金属粉の平均粒径よりも小さいことが好ましい。さらに、固体潤滑剤1321及び硬質物1322のいずれも、平均粒径が5μm以下又は5μm未満であることが好ましく、3μm以下又は3μm未満であることがより好ましい。 From the viewpoint of reducing the surface roughness after cutting, the particle diameter of the additive 132 used as a material is preferably small. For example, the average particle diameter of the additive 132 is the average of the metal powders used in the sintered layer 12. It is preferably smaller than the particle size. Further, both the solid lubricant 1321 and the hard material 1322 preferably have an average particle size of 5 μm or less or less than 5 μm, and more preferably 3 μm or less or less than 3 μm.
樹脂層13を摺動部材に用いるため、耐疲労強度すなわち疲労面圧は50MPa以上であることが好ましく、80MPa以上であることがより好ましく、90MPa以上であることがさらに好ましい。なお疲労面圧の測定方法は後述する。樹脂層13の耐疲労性を向上させる観点から、材料として用いる固体潤滑剤1321の平均粒径は小さいことが好ましく、例えば、硬質物1322の平均粒径の2倍以下であることが好ましく、硬質物1322の平均粒径よりも小さいことがより好ましい。 Since the resin layer 13 is used for the sliding member, the fatigue strength, that is, the fatigue surface pressure is preferably 50 MPa or more, more preferably 80 MPa or more, and further preferably 90 MPa or more. The method of measuring the fatigue surface pressure will be described later. From the viewpoint of improving the fatigue resistance of the resin layer 13, the average particle size of the solid lubricant 1321 used as a material is preferably small, for example, it is preferably twice or less the average particle size of the hard material 1322. It is more preferable that the average particle size of the product 1322 is smaller.
樹脂層13においては、添加剤132の含有量が増えると樹脂層13の耐疲労性が低下すると考えられる。本実施形態においては、添加剤の含有量を抑えることにより耐疲労性を向上させる。 It is considered that in the resin layer 13, the fatigue resistance of the resin layer 13 decreases as the content of the additive 132 increases. In this embodiment, the fatigue resistance is improved by suppressing the content of the additive.
図3は、本体11及び樹脂層13の表面構造を例示する図である。図3は、図2と同様に摺動面に垂直な断面を示している。ブシュ1の使用に伴い樹脂層13が摩耗して下地層(本体11)が露出してしまうことを抑制するため、樹脂層13の膜厚は20μmを超えることが好ましく、50μmを超えることがより好ましく、100μmを超えることがさらに好ましい。耐疲労強度を向上させ、また耐焼付性を向上させる観点から、樹脂層13の膜厚は300μm以下であることが好ましい。なお、樹脂層13の膜厚Tは、図3に示したとおり、本体11表面の凹凸のうち最高位置から、樹脂層13の表面の最高位置までの長さをいう。 FIG. 3 is a diagram illustrating the surface structure of the main body 11 and the resin layer 13. Similar to FIG. 2, FIG. 3 shows a cross section perpendicular to the sliding surface. The thickness of the resin layer 13 is preferably more than 20 μm, and more preferably more than 50 μm in order to prevent the underlying layer (main body 11) from being exposed by abrasion of the resin layer 13 due to the use of the bush 1. Preferably, it is more than 100 μm. From the viewpoint of improving fatigue strength and seizure resistance, the resin layer 13 preferably has a thickness of 300 μm or less. The film thickness T of the resin layer 13 refers to the length from the highest position of the unevenness on the surface of the main body 11 to the highest position of the surface of the resin layer 13, as shown in FIG.
2.実施例
本願の発明者らは、種々の条件で摺動部材の試験片を作製し、これらの試験片について樹脂層13の特性を評価した。
2. Example The inventors of the present application produced test pieces of sliding members under various conditions, and evaluated the characteristics of the resin layer 13 for these test pieces.
2−1.試験片作製
基材としては、厚さ1.5mmの鋼板(SPCC(JIS))を用いた。実験例1においては、基材表面をサンディングにより粗面化した。粗面化後の表面粗さは20〜60μmRzJISであった。実験例2及び3においては、基材の上に銅合金粉(平均粒径100μm)を厚さ100μmで散布した後、圧下せず、還元雰囲気で930℃に加熱して焼結した。これらの試料に対し、表1の組成の樹脂層を形成するための前駆体溶液を調整し、この前駆体溶液を、焼結層の上にナイフコート法により塗布した。塗布後、室温〜約200℃の範囲で60〜90分程度、乾燥した。その後、約300℃まで昇温し、30〜90分程度焼成した。
2-1. Preparation of test piece As a base material, a steel plate (SPCC (JIS)) having a thickness of 1.5 mm was used. In Experimental Example 1, the surface of the base material was roughened by sanding. The surface roughness after roughening was 20 to 60 μm RzJIS. In Experimental Examples 2 and 3, copper alloy powder (average particle size 100 μm) was sprayed on the base material at a thickness of 100 μm, and then sintered at 930° C. in a reducing atmosphere without being pressed. For these samples, a precursor solution for forming a resin layer having the composition shown in Table 1 was prepared, and this precursor solution was applied onto the sintered layer by a knife coating method. After coating, it was dried at room temperature to about 200° C. for about 60 to 90 minutes. Then, it heated up to about 300 degreeC and baked for about 30 to 90 minutes.
実験例1及び2においては黒鉛として平均粒径(体積基準によるd50)が1.5μmであり、黒鉛化度が99%のものを用いた。また、高強度PI樹脂として、引張強度が195MPa、伸びが90%、弾性率が3.8GPa、ガラス転移温度Tgが285℃のものを用いた。実験例3においては黒鉛として、平均粒径が12.5μmであり、黒鉛化度が90%のものを用いた。MoS2としては平均粒径が1.5μmのものを用いた。さらに、PI樹脂としては、引張強度が119MPa、伸びが47%、ガラス転移温度Tgが360℃のものを、PAI樹脂として、引張強度が112MPa、伸びが17%、弾性率が2.7GPa、ガラス転移温度Tgが288℃のものを用いた。実験例1及び2において、シランカップリング剤としては、化学式が3(H3CO)SiC3H6−NH−C3H6Si(OCH3)3のものを用いた。なお表1において、シランカップリング剤の含有量は、高強度PI樹脂に対する重量比で示されている。実験例1〜5において、クレーとしては、構造式がAl2O3・2SiO2であり、平均粒径が3μmのものを用いた。 In Experimental Examples 1 and 2, graphite having an average particle size (d50 based on volume) of 1.5 μm and a degree of graphitization of 99% was used. As the high-strength PI resin, one having a tensile strength of 195 MPa, an elongation of 90%, an elastic modulus of 3.8 GPa, and a glass transition temperature Tg of 285° C. was used. In Experimental Example 3, graphite having an average particle size of 12.5 μm and a degree of graphitization of 90% was used. MoS2 having an average particle size of 1.5 μm was used. Further, as the PI resin, one having a tensile strength of 119 MPa, an elongation of 47% and a glass transition temperature Tg of 360° C. is used as a PAI resin having a tensile strength of 112 MPa, an elongation of 17%, an elastic modulus of 2.7 GPa and a glass. A transition temperature Tg of 288° C. was used. In Experimental Examples 1 and 2, a silane coupling agent having a chemical formula of 3(H3CO)SiC3H6-NH-C3H6Si(OCH3)3 was used. In addition, in Table 1, the content of the silane coupling agent is shown as a weight ratio with respect to the high-strength PI resin. In Experimental Examples 1 to 5, clay having a structural formula of Al2O3·2SiO2 and an average particle diameter of 3 μm was used.
実験例1及び2において、固体潤滑剤としては黒鉛のみを用いた(すなわちMoS2等、その他の固体潤滑剤は含まない)。また、表1に示した固体潤滑剤、硬質物、及びシランカップリング剤以外の添加物は含まれていない。添加剤は全て、平均粒径が3μm以下であった。 In Experimental Examples 1 and 2, only graphite was used as the solid lubricant (that is, other solid lubricants such as MoS2 were not included). Moreover, additives other than the solid lubricant, hard material, and silane coupling agent shown in Table 1 are not included. All the additives had an average particle size of 3 μm or less.
2−2.摩耗試験
実験例1乃至3の試験片に対し摩耗試験を行った。摩耗試験は以下の条件で行い、試験後の摩耗深さを記録した。
・試験機: 箱形ブシュ試験機
・面圧: 1.8MPa
・試験パターン:ラン&ストップ(10万サイクル)
・潤滑油: 灯油(室温)
2-2. Abrasion test An abrasion test was performed on the test pieces of Experimental Examples 1 to 3. The wear test was performed under the following conditions, and the wear depth after the test was recorded.
・Testing machine: Box type bushing tester ・Surface pressure: 1.8 MPa
・Test pattern: Run & Stop (100,000 cycles)
・Lubricant: Kerosene (room temperature)
図4は、摩耗試験の結果を示す図である。実験例3と比較すると、実験例1及び2においては摩耗深さが半分以下に低減された。すなわち、実験例3と比較すると、実験例1及び2においては耐摩耗性が向上した。 FIG. 4 is a diagram showing the results of the abrasion test. In comparison with Experimental Example 3, in Experimental Examples 1 and 2, the wear depth was reduced to less than half. That is, in comparison with Experimental Example 3, the abrasion resistance was improved in Experimental Examples 1 and 2.
2−3.疲労試験
実験例1乃至3の試験片に対し疲労試験を行った。疲労試験は以下の条件で行い、樹脂層に疲労が発生しなかった最大の面圧(試験機の最大面圧は100MPa)を疲労面圧とした。
・試験機: 往復動荷重試験機
・回転速度:3000rpm
・繰返し数:105回
・試験温度:100℃(潤滑油供給温度)
・相手材: S45C
・潤滑油: エンジンオイル
2-3. Fatigue test A fatigue test was performed on the test pieces of Experimental Examples 1 to 3. The fatigue test was performed under the following conditions, and the maximum surface pressure at which no fatigue occurred in the resin layer (the maximum surface pressure of the tester was 100 MPa) was defined as the fatigue surface pressure.
・Test machine: Reciprocating load test machine ・Rotation speed: 3000 rpm
・Number of repetitions: 105 times ・Test temperature: 100°C (lubricating oil supply temperature)
・Mating material: S45C
・Lubricant: Engine oil
実験例3の耐疲労面圧は20MPaであるのに対し、実験例1の耐疲労面圧は110MPa以上であり、実験例2の耐疲労面圧は80MPaであった。実験例3と比較すると、実験例1及び2においては耐疲労面圧が向上した。また、実験例2と比較すると、実験例1においては耐疲労面圧が向上した。 The fatigue resistance surface pressure of Experimental Example 3 was 20 MPa, whereas the fatigue resistance surface pressure of Experimental Example 1 was 110 MPa or more, and the fatigue resistance surface pressure of Experimental Example 2 was 80 MPa. In comparison with Experimental Example 3, in Experimental Examples 1 and 2, the fatigue surface pressure resistance was improved. Further, in comparison with Experimental Example 2, in Experimental Example 1, the fatigue resistance surface pressure was improved.
2−4.焼付き試験
実験例1及び実験例2の試験片に対し焼付き試験を行った。焼付き試験は以下の条件で行い、焼付きが発生したときの面圧を焼付き面圧とした。
・試験機: 静荷重焼付試験機
・荷重: ステップアップ 1kN/5分
・回転数: 6000rpm
・潤滑油: パラフィン油
2-4. Seizure Test A seizure test was performed on the test pieces of Experimental Example 1 and Experimental Example 2. The seizure test was performed under the following conditions, and the surface pressure when seizure occurred was defined as the seizure surface pressure.
・Test machine: Static load seizure test machine ・Load: Step up 1kN/5 minutes ・Rotation speed: 6000rpm
・Lubricant: Paraffin oil
この試験の結果、実験例1における焼付き面圧は40MPaであり、実験例2における焼付き面圧は32MPaであった。このように、実験例2と比較すると、実験例1においては耐焼付き性が向上した。試験後の摺動表面の状態は、いずれも樹脂層は破損していたが、裏金は露出していなかった。すなわち、実験例1においても、樹脂層が剥がれ落ちて裏金が露出することは起きていなかった。 As a result of this test, the seizure surface pressure in Experimental Example 1 was 40 MPa, and the seizure surface pressure in Experimental Example 2 was 32 MPa. Thus, as compared with Experimental Example 2, in Experimental Example 1, the seizure resistance was improved. Regarding the state of the sliding surface after the test, the resin layer was broken in all cases, but the back metal was not exposed. That is, also in Experimental Example 1, the resin layer did not peel off and the backing metal was not exposed.
また、実験例1及び実験例2に対し、本体と樹脂層との密着力の試験を行ったが、いずれも試験に用いた接着剤の強度以上の密着力を有しており、試験条件の範囲では密着力に差異が見られなかった。 Further, the adhesion strength between the main body and the resin layer was tested with respect to Experimental Example 1 and Experimental Example 2, and both have an adhesion strength equal to or higher than the strength of the adhesive used in the test, and There was no difference in the adhesive strength within the range.
3.変形例
なお、上述の実施例において使用した各種の材料及びその組成はあくまで例示であり、本発明はこれに限定されるものではない。本発明に係る樹脂材料は不可避不純物を含んでもよい。ブシュ1の用途は燃料噴射ポンプにおけるブシュとして用いられるものに限定されず、各種の軸受、又はコンプレッサー等において用いられてもよい。また、本発明に係る摺動部材はブシュ1に限定されず、半割軸受又は斜板等、他の摺動部材に本発明が適用されてもよい。
3. Modifications Note that the various materials and their compositions used in the above embodiments are merely examples, and the present invention is not limited to these. The resin material according to the present invention may contain inevitable impurities. The use of the bush 1 is not limited to that used as a bush in a fuel injection pump, and may be used in various bearings, a compressor, or the like. The sliding member according to the present invention is not limited to the bush 1, and the present invention may be applied to other sliding members such as a half bearing or a swash plate.
1…ブシュ
11…本体
13…樹脂層
131…バインダー樹脂
132…添加剤
DESCRIPTION OF SYMBOLS 1... Bush 11... Main body 13... Resin layer 131... Binder resin 132... Additive
Claims (6)
前記面に形成され、厚さが20μmを超える樹脂コーティング層と
を有する摺動部材。 A base material having a shape having a surface for supporting a mating material, and the metal sintered layer is not exposed on the surface,
A sliding member having a resin coating layer formed on the surface and having a thickness of more than 20 μm.
請求項1に記載の摺動部材。 The sliding member according to claim 1, wherein the resin coating layer has a thickness of more than 50 μm.
請求項1又は2に記載の摺動部材。 The sliding member according to claim 1, wherein the resin coating layer has a thickness of 300 μm or less.
請求項1乃至3のいずれか一項に記載の摺動部材。 The surface roughness of the said surface is 60 micrometers RzJIS or less, The sliding member as described in any one of Claims 1 thru|or 3.
前記基材が、前記軸を支持するための内周面を有する円筒形状を有する
請求項1乃至4のいずれか一項に記載の摺動部材。 The mating material is a shaft,
The sliding member according to any one of claims 1 to 4, wherein the base material has a cylindrical shape having an inner peripheral surface for supporting the shaft.
請求項5に記載の摺動部材。 The sliding member according to claim 5, wherein a surface roughness in the axial direction of the shaft on the inner peripheral surface is larger than a surface roughness in the circumferential direction of the shaft.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019019802A JP2020125838A (en) | 2019-02-06 | 2019-02-06 | Slide member |
CN202080012218.2A CN113366231B (en) | 2019-02-06 | 2020-02-05 | Sliding member |
DE112020000708.1T DE112020000708T5 (en) | 2019-02-06 | 2020-02-05 | Sliding element |
PCT/JP2020/004319 WO2020162491A1 (en) | 2019-02-06 | 2020-02-05 | Sliding member |
US17/428,030 US20220106982A1 (en) | 2019-02-06 | 2020-02-05 | Sliding member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019019802A JP2020125838A (en) | 2019-02-06 | 2019-02-06 | Slide member |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020125838A true JP2020125838A (en) | 2020-08-20 |
Family
ID=72084812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019019802A Pending JP2020125838A (en) | 2019-02-06 | 2019-02-06 | Slide member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020125838A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6416842A (en) * | 1987-07-13 | 1989-01-20 | Taiho Kogyo Co Ltd | Sliding member |
WO2011070621A1 (en) * | 2009-12-10 | 2011-06-16 | 株式会社日立製作所 | Slide bearing device and compressor |
JP2012055088A (en) * | 2010-09-01 | 2012-03-15 | Alphana Technology Co Ltd | Rotary apparatus |
JP2016142287A (en) * | 2015-01-30 | 2016-08-08 | 大豊工業株式会社 | Bearing and fuel injection pump |
JP2018193519A (en) * | 2017-05-22 | 2018-12-06 | 大豊工業株式会社 | Resin material for sliding member and sliding member |
JP2018194152A (en) * | 2017-05-22 | 2018-12-06 | 大豊工業株式会社 | Resin material for slide members and slide member |
-
2019
- 2019-02-06 JP JP2019019802A patent/JP2020125838A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6416842A (en) * | 1987-07-13 | 1989-01-20 | Taiho Kogyo Co Ltd | Sliding member |
WO2011070621A1 (en) * | 2009-12-10 | 2011-06-16 | 株式会社日立製作所 | Slide bearing device and compressor |
JP2012055088A (en) * | 2010-09-01 | 2012-03-15 | Alphana Technology Co Ltd | Rotary apparatus |
JP2016142287A (en) * | 2015-01-30 | 2016-08-08 | 大豊工業株式会社 | Bearing and fuel injection pump |
JP2018193519A (en) * | 2017-05-22 | 2018-12-06 | 大豊工業株式会社 | Resin material for sliding member and sliding member |
JP2018194152A (en) * | 2017-05-22 | 2018-12-06 | 大豊工業株式会社 | Resin material for slide members and slide member |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5001646B2 (en) | Plain bearing | |
JP6122488B2 (en) | Sliding member | |
US7662472B2 (en) | Plain bearing | |
JP2016186366A (en) | Slide member | |
JPWO2013047800A1 (en) | Sliding member and sliding material composition | |
JPH01261514A (en) | Sliding material | |
JP2018194152A (en) | Resin material for slide members and slide member | |
JP2013204807A (en) | Sliding bearing | |
CN104878272A (en) | Nickel aluminum/copper oxide high-temperature self-lubricating composite material and preparation method thereof | |
WO2021106274A1 (en) | Resin material for sliding members, and sliding member | |
JP2015200339A (en) | Slide member | |
WO2020162491A1 (en) | Sliding member | |
JP6941476B2 (en) | Resin material for sliding members and sliding members | |
JP2020125838A (en) | Slide member | |
JP2020125839A (en) | Slide member | |
JP6944811B2 (en) | Resin material for sliding members and sliding members | |
WO2018092857A1 (en) | Resin composition and sliding member | |
JP5073925B2 (en) | Lead-free copper-based sliding material | |
JP2019203553A (en) | Half-split bearing and bearing | |
JP6871059B2 (en) | Resin material for sliding members and sliding members | |
JP6813341B2 (en) | Resin composition and sliding member | |
JP5816121B2 (en) | Slide bearing and manufacturing method thereof | |
JP2018194154A (en) | Resin material for slide members and slide member | |
JP3613500B2 (en) | Piston ring coating | |
JP2014234860A (en) | Slide bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220816 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221017 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230530 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231010 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231211 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20240305 |