JP2009024844A - Dynamic-pressure bearing device - Google Patents

Dynamic-pressure bearing device Download PDF

Info

Publication number
JP2009024844A
JP2009024844A JP2007191150A JP2007191150A JP2009024844A JP 2009024844 A JP2009024844 A JP 2009024844A JP 2007191150 A JP2007191150 A JP 2007191150A JP 2007191150 A JP2007191150 A JP 2007191150A JP 2009024844 A JP2009024844 A JP 2009024844A
Authority
JP
Japan
Prior art keywords
shaft member
shaft
bearing device
flange portion
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007191150A
Other languages
Japanese (ja)
Other versions
JP5220359B2 (en
Inventor
Masaaki Toda
正明 戸田
Isao Komori
功 古森
Tetsuya Kurimura
栗村  哲弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007191150A priority Critical patent/JP5220359B2/en
Priority to PCT/JP2008/061391 priority patent/WO2009013963A1/en
Publication of JP2009024844A publication Critical patent/JP2009024844A/en
Application granted granted Critical
Publication of JP5220359B2 publication Critical patent/JP5220359B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/08Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/74Sealings of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Abstract

<P>PROBLEM TO BE SOLVED: To avoid a deterioration in assembly precision between a shaft and a flange, in a dynamic-pressure bearing device in which a shaft member has the shaft and the flange, and one end of the shaft member is pivotally supported. <P>SOLUTION: The dynamic-pressure bearing device 1 comprises the shaft member 2 and a bearing sleeve 8 which is arranged at the external periphery of the shaft member 2, and relatively rotates with respect to the shaft member 2. The shaft member 2 has the shaft 21, the flange 22 and a sliding part 23. The flange 22 is engaged with the lower-side end face 8b of the bearing sleeve 8 as a regulation part in the axial direction, and regulates the fall-off of the shaft member 2. The sliding part 23 contacts the bottom of a housing 7 as a thrust receiving part, and supports a thrust load. The flange 22 and the sliding part 23 are formed to be integrated with each other. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は動圧軸受装置に関する。   The present invention relates to a hydrodynamic bearing device.

動圧軸受装置は、軸受隙間に生じる流体の動圧作用で回転側の部材(例えば、軸部材)を回転自在に支持する軸受装置である。この動圧軸受装置は、高速回転、高回転精度、低騒音等の特徴を有するものであり、近年ではその特徴を活かして、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として、より具体的には、HDD等の磁気ディスク装置やCD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置に搭載されるスピンドルモータ、レーザビームプリンタ(LBP)に搭載されるポリゴンスキャナモータ、PCに搭載されるファンモータなどのモータ用の軸受装置として好適に使用されている。   The hydrodynamic bearing device is a bearing device that rotatably supports a rotating member (for example, a shaft member) by a hydrodynamic action of fluid generated in a bearing gap. This hydrodynamic bearing device has characteristics such as high-speed rotation, high rotation accuracy, and low noise, and in recent years, taking advantage of the characteristics, the bearing device for motors mounted on various electric devices including information equipment. More specifically, it is mounted on a spindle motor or laser beam printer (LBP) mounted on a magnetic disk device such as an HDD or an optical disk device such as a CD-ROM, CD-R / RW, or DVD-ROM / RAM. It is preferably used as a bearing device for motors such as polygon scanner motors and fan motors mounted on PCs.

この種の動圧軸受装置は、軸部材をラジアル方向に支持するラジアル軸受部と、スラスト方向に支持するスラスト軸受部とを有する。ラジアル軸受部は、ラジアル軸受隙間を介して対向する二面の何れか一方に動圧溝等の動圧発生部を設けた動圧軸受で構成される一方、スラスト軸受部は、スラスト軸受隙間を介して対向する二面の何れか一方に動圧溝等の動圧発生部を設けた動圧軸受で構成される場合と、軸部材の一端をスラスト受けで接触支持する、いわゆるピボット軸受で構成される場合とがある。   This type of hydrodynamic bearing device has a radial bearing portion that supports the shaft member in the radial direction, and a thrust bearing portion that supports the axial member in the thrust direction. The radial bearing portion is composed of a dynamic pressure bearing in which a dynamic pressure generating portion such as a dynamic pressure groove is provided on one of two surfaces facing each other through a radial bearing gap, while the thrust bearing portion has a thrust bearing gap. And a so-called pivot bearing in which one end of the shaft member is contacted and supported by a thrust receiver. May be.

例えば、ラジアル軸受部およびスラスト軸受部の双方を動圧軸受で構成した動圧軸受装置は回転精度等に特に優れた特性を示すが、各部材の加工精度や部材同士の組立精度の要求レベルが高い分、総じて高価である。これに対し、ラジアル軸受部を動圧軸受で構成する一方、スラスト軸受部をピボット軸受で構成したものであれば、スラスト軸受部を構成する部材の加工精度等が緩和される分、安価になる。   For example, a hydrodynamic bearing device in which both a radial bearing portion and a thrust bearing portion are composed of hydrodynamic bearings exhibits particularly excellent characteristics in terms of rotational accuracy, but the required level of processing accuracy of each member and assembly accuracy between members is low. The expensive part is generally expensive. On the other hand, if the radial bearing portion is constituted by a dynamic pressure bearing and the thrust bearing portion is constituted by a pivot bearing, the processing accuracy of the members constituting the thrust bearing portion is reduced, so that the cost is reduced. .

ここで、ラジアル軸受部を動圧軸受で、スラスト軸受部をピボット軸受で構成した動圧軸受装置として、例えば、特開2004−263707号公報(特許文献1)に開示されたものが公知である。同文献に開示された動圧軸受装置では、軸部材が、一端を凸球状に形成した軸部と、軸部の外周に嵌着され、軸受スリーブ(文献中「ラジアル軸受け」)と軸方向に係合するフランジ部(文献中「軸抜け止め部材」)とで構成されている。そのため、スラスト軸受部をピボット軸受で構成した場合に特に問題となる、軸受スリーブからの軸部材の抜けが効果的に防止される。
特開2004−263707号公報
Here, as a hydrodynamic bearing device in which a radial bearing portion is constituted by a dynamic pressure bearing and a thrust bearing portion is constituted by a pivot bearing, for example, one disclosed in Japanese Patent Application Laid-Open No. 2004-263707 (Patent Document 1) is known. . In the hydrodynamic bearing device disclosed in this document, a shaft member is fitted to a shaft portion having one end formed in a convex spherical shape and an outer periphery of the shaft portion, and is axially connected to a bearing sleeve (“radial bearing” in the document). It is comprised with the flange part ("shaft retaining member" in literature) to engage. For this reason, it is possible to effectively prevent the shaft member from coming off from the bearing sleeve, which is particularly problematic when the thrust bearing portion is constituted by a pivot bearing.
JP 2004-263707 A

しかしながら、上記のように、一端が凸球状に形成された軸部にリング状のフランジ部を嵌着する構造では、軸部とフランジ部との間の組み付け精度(例えば、同軸度)を確保もしくは維持することが難しくなる。例えば各部の寸法公差によって所望の組み付け精度が確保されていない場合や、他部材との摺動接触によってフランジ部と凸球部との間の組み付け精度が低下する事態が想定される。このように、軸部とフランジ部の組み付け精度が不十分な場合には、軸部材の回転時にアンバランスが生じる等の不具合が生じ、所望の軸受性能が得られなくなるおそれがある。   However, as described above, in the structure in which the ring-shaped flange portion is fitted to the shaft portion whose one end is formed in a convex spherical shape, assembling accuracy (for example, coaxiality) between the shaft portion and the flange portion is ensured or It becomes difficult to maintain. For example, it is assumed that desired assembly accuracy is not ensured due to the dimensional tolerance of each part, or that the assembly accuracy between the flange portion and the convex ball portion is lowered due to sliding contact with other members. As described above, when the assembly accuracy of the shaft portion and the flange portion is insufficient, there is a possibility that problems such as unbalance occur when the shaft member rotates, and the desired bearing performance cannot be obtained.

本発明の課題は、この種の動圧軸受装置において、軸部とフランジ部の間の組み付け精度の低下を回避することにある。   The subject of this invention is avoiding the fall of the assembly | attachment precision between a shaft part and a flange part in this kind of hydrodynamic bearing apparatus.

上記課題を解決するため、本発明では、軸部およびフランジ部を有する軸部材と、軸部材の外周に配置され、軸部材と相対回転する軸受スリーブと、軸部の外周面と軸受スリーブの内周面との間に形成されたラジアル軸受隙間、およびラジアル軸受隙間に流体の動圧作用を発生させる動圧発生部を有するラジアル軸受部と、軸部材をスラスト方向で接触支持するスラスト受けと、軸部材のフランジ部と軸方向で係合して、軸部材の抜けを規制する規制部とを有する動圧軸受装置において、軸部材のうち、フランジ部と、スラスト受けに接触する摺動部とを一体に形成したことを特徴とする動圧軸受装置を提供する。   In order to solve the above problems, in the present invention, a shaft member having a shaft portion and a flange portion, a bearing sleeve that is disposed on the outer periphery of the shaft member and rotates relative to the shaft member, an outer peripheral surface of the shaft portion, and an inner surface of the bearing sleeve are provided. A radial bearing gap formed between the circumferential surface and a radial bearing section having a dynamic pressure generating section for generating a dynamic pressure action of fluid in the radial bearing gap; and a thrust receiver for contacting and supporting the shaft member in the thrust direction; In a hydrodynamic bearing device having a restriction portion that engages with a flange portion of a shaft member in an axial direction and restricts removal of the shaft member, of the shaft member, a flange portion and a sliding portion that contacts the thrust receiver, A hydrodynamic bearing device characterized in that is integrally formed.

上記のように、摺動部とフランジ部とを一体に形成することにより、摺動部とフランジ部を同一の加工基準を用いて同時加工することができるので、両者を別素材から個別に製作して組み付ける場合に問題となる組み付け精度(例えば、同軸度)の低下を回避することができる。これにより、例えば軸部材を回転させて用いる際に、フランジ部がアンバランス荷重の発生源となる事態を防止でき、軸部材の回転精度が高まる。   As described above, by integrally forming the sliding part and the flange part, the sliding part and the flange part can be processed simultaneously using the same processing standard, so both are manufactured separately from different materials. Thus, it is possible to avoid a decrease in assembly accuracy (for example, coaxiality) that becomes a problem when assembled. Thus, for example, when the shaft member is rotated and used, it is possible to prevent the flange portion from being an unbalanced load generation source, and the rotation accuracy of the shaft member is increased.

上記構成の軸部材は、例えば、フランジ部および摺動部の一体品を鍛造で成形した後、これを別途製作した軸部と適宜の手段、例えば溶接、摩擦圧接、接着等の手段で結合一体化することで製造可能である。このように、フランジ部および摺動部の一体品を鍛造で成形すれば、これを切削等の機械加工で製作する場合に問題となる、材料ロスの増大等に起因したコスト増の問題を効果的に回避することができ、望ましい。   The shaft member having the above configuration is formed by forging an integrated product of a flange portion and a sliding portion, for example, and then integrally joined with a shaft portion separately manufactured by means such as welding, friction welding, adhesion, etc. Can be manufactured. In this way, if the integral part of the flange part and the sliding part is formed by forging, the problem of increasing costs due to an increase in material loss, which becomes a problem when manufacturing this by machining such as cutting, is effective. Can be avoided and desirable.

軸部材は、フランジ部および摺動部に加え、さらに、軸部が一体に形成されたものであっても良い。かかる構成とすれば、軸部とフランジ部との間に高い締結強度が確保され、組み付け精度の悪化が生じないのはもちろんのこと、軸部材の抜脱を確実に防止することもできる。かかる構成とした場合であっても、軸部材の各部を鍛造で一体に成形すれば、コスト増の問題を効果的に回避することができる。   In addition to the flange portion and the sliding portion, the shaft member may be one in which the shaft portion is integrally formed. With such a configuration, high fastening strength is ensured between the shaft portion and the flange portion, and it is possible to reliably prevent the shaft member from being pulled out, as well as not causing deterioration in assembly accuracy. Even if it is a case where it is such a structure, if each part of a shaft member is shape | molded integrally by forging, the problem of a cost increase can be avoided effectively.

摺動部は、スラスト受け側を徐々に縮径させた形状とする。この摺動部は、フランジ部の端面の一部領域に設けても良いし、フランジ部の端面の全領域に設けても良い。前者の構成を採用した場合、フランジ部の端面には平坦面が残存するので、この平坦面を治具の受け面として利用でき、軸部の外周面の仕上げ加工(例えば、研削)が後者に比べて容易に行い得るというメリットがある。一方、後者の構成を採用した場合、摺動部の軸方向寸法を大きくすることなく摺動部の曲率半径を前者に比べて大きくすることができる。そのため、軸部にディスクハブ等の回転部材を装着する場合や軸受装置に衝撃荷重が負荷された場合等に、摺動部を介してスラスト受けに負荷される押圧力を低減することができ、スラスト受けの損傷等を効果的に防止できるというメリットがある。   The sliding portion has a shape in which the diameter of the thrust receiving side is gradually reduced. This sliding portion may be provided in a partial region of the end surface of the flange portion, or may be provided in the entire region of the end surface of the flange portion. When the former configuration is adopted, a flat surface remains on the end surface of the flange portion. Therefore, this flat surface can be used as a receiving surface for the jig, and finishing processing (for example, grinding) of the outer peripheral surface of the shaft portion is used for the latter. There is an advantage that it can be easily performed. On the other hand, when the latter configuration is adopted, the radius of curvature of the sliding portion can be made larger than that of the former without increasing the axial dimension of the sliding portion. Therefore, when a rotating member such as a disk hub is mounted on the shaft portion or when an impact load is applied to the bearing device, the pressing force applied to the thrust receiver via the sliding portion can be reduced. There is a merit that damage to the thrust receiver can be effectively prevented.

以上の構成において、軸受スリーブは別途設けたハウジングの内周に固定することができ、このハウジングは、スラスト受けをインサート部品として射出成形することができる。かかる構成とすれば、ハウジングの各部で異なる要求特性を満足することが容易になり、かつこのようなハウジングが低コストに得られる。   In the above configuration, the bearing sleeve can be fixed to the inner periphery of a separately provided housing, and this housing can be injection-molded with a thrust receiver as an insert part. With this configuration, it becomes easy to satisfy different required characteristics in each part of the housing, and such a housing can be obtained at low cost.

以上に示すように、本発明によれば、スラスト荷重が接触支持されると共に、フランジ部によって軸部材の抜け止めが図られる動圧軸受装置において、軸部とフランジ部の間の組み付け精度の低下を回避することができ、高い回転精度を長期に亘って安定的に維持することができる。   As described above, according to the present invention, in the hydrodynamic bearing device in which the thrust load is contact-supported and the shaft member is prevented from coming off by the flange portion, the assembly accuracy between the shaft portion and the flange portion is reduced. Can be avoided, and high rotational accuracy can be stably maintained over a long period of time.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、動圧軸受装置を組み込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に支持する動圧軸受装置1と、軸部材2の一端に設けられたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4aおよびロータマグネット4bと、ブラケット5とを備えている。ステータコイル4aはブラケット5の外周に取付けられ、ロータマグネット4bはディスクハブ3の内周に取付けられる。動圧軸受装置1のハウジング7は、ブラケット5の内周に装着される。ディスクハブ3には、磁気ディスク等のディスク6が一又は複数枚(図示例は2枚)保持される。ステータコイル4aに通電すると、ステータコイル4aとロータマグネット4bとの間の電磁力でロータマグネット4bが回転し、それによって、ディスクハブ3およびこれに保持されたディスク6が、軸部材2と一体に回転する。   FIG. 1 conceptually shows one configuration example of a spindle motor for information equipment incorporating a hydrodynamic bearing device. This spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2, a disk hub 3 provided at one end of the shaft member 2, and a radial direction, for example. The stator coil 4a and the rotor magnet 4b, which are opposed to each other through the gap, and the bracket 5 are provided. The stator coil 4 a is attached to the outer periphery of the bracket 5, and the rotor magnet 4 b is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is mounted on the inner periphery of the bracket 5. One or a plurality of disks 6 such as magnetic disks (two in the illustrated example) are held on the disk hub 3. When the stator coil 4a is energized, the rotor magnet 4b is rotated by the electromagnetic force between the stator coil 4a and the rotor magnet 4b, whereby the disk hub 3 and the disk 6 held thereby are integrated with the shaft member 2. Rotate.

図2は、本発明の第1実施形態に係る動圧軸受装置1を示している。同図に示す動圧軸受装置1は、軸部材2と、軸部材2の外周に配置された軸受スリーブ8と、軸受スリーブ8を内周に固定したハウジング7と、ハウジング7の一端開口をシールするシール部材9とを主要な構成として備える。なお、説明の便宜上、シール部材9の側を上側、これとは軸方向反対側を下側として、以下説明を進める。   FIG. 2 shows the hydrodynamic bearing device 1 according to the first embodiment of the present invention. The hydrodynamic bearing device 1 shown in FIG. 1 seals a shaft member 2, a bearing sleeve 8 disposed on the outer periphery of the shaft member 2, a housing 7 that fixes the bearing sleeve 8 to the inner periphery, and one end opening of the housing 7. And a sealing member 9 to be provided as a main component. For convenience of explanation, the following explanation will be made with the seal member 9 side as the upper side and the opposite side in the axial direction as the lower side.

ハウジング7は、金属材料あるいは樹脂材料で、軸受スリーブ8を内周に固定した円筒状の側部と、円盤状の底部とが一体の有底筒状(コップ状)に形成される。ハウジング7の内周面は、軸方向で、大径内周面7aと小径内周面7bとに区画され、両内周面7a,7bは軸線と直交する方向の平坦な段差面7dを介して接続される。本実施形態では、円盤状の底部が本発明で言う「スラスト受け」として機能し、底部の内底面7cは平滑な平坦面とされる。   The housing 7 is made of a metal material or a resin material, and is formed in a bottomed cylindrical shape (cup shape) in which a cylindrical side portion in which the bearing sleeve 8 is fixed to the inner periphery and a disc-shaped bottom portion are integrated. The inner peripheral surface of the housing 7 is divided into a large-diameter inner peripheral surface 7a and a small-diameter inner peripheral surface 7b in the axial direction, and both the inner peripheral surfaces 7a and 7b pass through a flat step surface 7d in a direction perpendicular to the axis. Connected. In this embodiment, the disk-shaped bottom part functions as the “thrust receiver” in the present invention, and the inner bottom surface 7c of the bottom part is a smooth flat surface.

軸受スリーブ8は、例えば銅を主成分とする焼結金属の多孔質体で円筒状に形成され、下側端面8bをハウジング7の段差面7dに当接させるようにして、ハウジング7の大径内周面7aに、例えば、接着、圧入、溶着等適宜の手段で固定される。本実施形態では、軸受スリーブ8の下側端面8bが本発明で言う「規制部」として機能し、当該規制部(下側端面8b)に後述する軸部材2のフランジ部22が軸方向で係合することにより、軸部材2の抜けが規制される。なお、軸受スリーブ8は、焼結金属以外にも、例えば黄銅等の軟質金属材料や焼結金属ではない他の多孔質体(例えば、多孔質樹脂)で形成することも可能である。   The bearing sleeve 8 is formed of a sintered metal porous body mainly composed of copper, for example, in a cylindrical shape, and the lower end surface 8b is brought into contact with the stepped surface 7d of the housing 7 so that the large diameter of the housing 7 is reached. For example, it is fixed to the inner peripheral surface 7a by an appropriate means such as adhesion, press-fitting, or welding. In the present embodiment, the lower end surface 8b of the bearing sleeve 8 functions as a “restricting portion” in the present invention, and a flange portion 22 of the shaft member 2 described later is engaged in the restricting portion (lower end surface 8b) in the axial direction. By combining, the removal of the shaft member 2 is restricted. In addition to the sintered metal, the bearing sleeve 8 can be formed of a soft metal material such as brass or another porous body (for example, a porous resin) that is not a sintered metal.

軸受スリーブ8の内周面8aには、図3に示すように、動圧発生部として、複数の動圧溝8a1、8a2をヘリングボーン形状に配列した領域が上下二箇所に離隔して形成される。本実施形態において、上側の動圧溝8a1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。一方、下側の動圧溝8a2は軸方向対称に形成され、その上下領域の軸方向寸法はそれぞれ上記軸方向寸法X2と等しくなっている。なお、動圧溝は、軸部材2を構成する軸部21の外周面21aに形成することもでき、またその形状は、スパイラル形状等公知のその他の形状とすることもできる。   As shown in FIG. 3, a region where a plurality of dynamic pressure grooves 8a1 and 8a2 are arranged in a herringbone shape is formed on the inner peripheral surface 8a of the bearing sleeve 8 at two upper and lower positions, as shown in FIG. The In the present embodiment, the upper dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions), and the axis in the upper region from the axial center m. The direction dimension X1 is larger than the axial direction dimension X2 of the lower region. On the other hand, the lower dynamic pressure groove 8a2 is formed symmetrically in the axial direction, and the axial dimensions of the upper and lower regions thereof are respectively equal to the axial dimension X2. The dynamic pressure groove may be formed on the outer peripheral surface 21a of the shaft portion 21 constituting the shaft member 2, and the shape thereof may be other known shapes such as a spiral shape.

軸受スリーブ8の外周面8cには、両端面に開口した軸方向溝8c1が1又は複数本形成されている。また、軸受スリーブ8の下側端面8bの外径側には、1又は複数本の径方向溝8b1が形成されている。各溝8b1,8c1は、対向するハウジング7の段差面7dおよび大径内周面7aとの間に後述する流体通路を形成するものであり、必ずしも軸受スリーブ8に設ける必要はなく、対向するハウジング7の各面7d,7aに設けても良い。   The outer peripheral surface 8c of the bearing sleeve 8 is formed with one or a plurality of axial grooves 8c1 opened at both end surfaces. In addition, one or a plurality of radial grooves 8b1 are formed on the outer diameter side of the lower end surface 8b of the bearing sleeve 8. The grooves 8b1 and 8c1 form a fluid passage which will be described later between the stepped surface 7d and the large-diameter inner peripheral surface 7a of the opposing housing 7, and are not necessarily provided in the bearing sleeve 8; 7 may be provided on each surface 7d, 7a.

シール部材9は、例えば、黄銅等の軟質金属材料やその他の金属材料、あるいは樹脂材料でリング状に形成され、ハウジング7の大径内周面7aの上端部に接着、圧入等の適宜の手段で固定される。このシール部材9の内周面9aと、軸部21の外周面21aとの間には所定のシール空間Sが形成される。シール部材9の下側端面9bには、1又は複数本の径方向溝9b1が形成されている。この径方向溝は、対向する軸受スリーブ8の上側端面に設けても良い。   The seal member 9 is formed in a ring shape from, for example, a soft metal material such as brass, other metal materials, or a resin material, and is appropriately bonded or press-fitted to the upper end portion of the large-diameter inner peripheral surface 7a of the housing 7. It is fixed with. A predetermined seal space S is formed between the inner peripheral surface 9 a of the seal member 9 and the outer peripheral surface 21 a of the shaft portion 21. One or more radial grooves 9b1 are formed on the lower end surface 9b of the seal member 9. The radial groove may be provided on the upper end surface of the bearing sleeve 8 facing the radial groove.

軸部材2は、軸部21と、軸部21の外径側に張り出した円盤状のフランジ部22と、フランジ部22の軸心部分で下方に突出した摺動部23とからなる。本実施形態において、摺動部23は、フランジ部22の下側端面22bの内径側一部領域で、下側に向かって徐々に縮径した半球状をなし、その球状面23aの頂部がハウジング7の内底面7cと一点で接触する。軸部21の外周面21aは、軸方向略中央部が他所に比べて小径に形成される点を除き、略同一径の平滑な円筒面とされる。   The shaft member 2 includes a shaft portion 21, a disc-shaped flange portion 22 that projects to the outer diameter side of the shaft portion 21, and a sliding portion 23 that protrudes downward at the shaft center portion of the flange portion 22. In the present embodiment, the sliding portion 23 is a partial area on the inner diameter side of the lower end surface 22b of the flange portion 22 and has a hemispherical shape that is gradually reduced in diameter toward the lower side. 7 contacts the inner bottom surface 7c at one point. The outer peripheral surface 21a of the shaft portion 21 is a smooth cylindrical surface having substantially the same diameter except that the substantially central portion in the axial direction is formed with a smaller diameter than other portions.

上記の軸部材2のうち、フランジ部22および摺動部23はステンレス鋼を用いて鍛造で一体成形される。そして、別途製作されたステンレス鋼製の軸部21の下端に、フランジ部22を例えば溶接、摩擦圧接、接着等の手段で固定することにより、完成品としての軸部材2が得られる。   Of the shaft member 2, the flange portion 22 and the sliding portion 23 are integrally formed by forging using stainless steel. And the shaft member 2 as a finished product is obtained by fixing the flange portion 22 to the lower end of the stainless steel shaft portion 21 manufactured separately by means such as welding, friction welding, adhesion or the like.

軸部21は軸受スリーブ8の内周に挿入される一方、フランジ部22および摺動部23は、ハウジング7の小径内周面7b、ハウジング7の内底面7c、および軸受スリーブ8の下側端面8bで形成される空間に収容される。フランジ部22は規制部としての軸受スリーブ8の下側端面8bと軸方向で係合し、これにより軸受スリーブ8からの軸部材2の抜けが効果的に防止される。   The shaft portion 21 is inserted into the inner periphery of the bearing sleeve 8, while the flange portion 22 and the sliding portion 23 are formed with a small-diameter inner peripheral surface 7 b of the housing 7, an inner bottom surface 7 c of the housing 7, and a lower end surface of the bearing sleeve 8. It is accommodated in the space formed by 8b. The flange portion 22 is engaged with the lower end surface 8b of the bearing sleeve 8 as a restricting portion in the axial direction, and thereby the shaft member 2 is effectively prevented from coming off from the bearing sleeve 8.

動圧軸受装置1は主に以上の構成部材からなり、シール部材9でシールされたハウジング7の内部空間には、軸受スリーブ8の内部気孔も含め潤滑流体としての潤滑油が充満される。   The hydrodynamic bearing device 1 is mainly composed of the above-described components, and the internal space of the housing 7 sealed by the seal member 9 is filled with lubricating oil as a lubricating fluid including the internal pores of the bearing sleeve 8.

以上の構成からなる動圧軸受装置1において、軸部材2が回転すると、軸受スリーブ8の動圧溝8a1,8a2形成領域は、軸部21の外周面21aとラジアル軸受隙間を介してそれぞれ対向する。そして、軸部材2の回転に伴って、ラジアル軸受隙間に形成される油膜は、動圧溝8a1,8a2の動圧作用によってその油膜剛性を高められ、この圧力によって軸部材2がラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持するラジアル軸受部R1,R2が軸方向の二箇所に離隔形成される。   In the hydrodynamic bearing device 1 having the above configuration, when the shaft member 2 rotates, the hydrodynamic groove 8a1 and 8a2 formation region of the bearing sleeve 8 is opposed to the outer peripheral surface 21a of the shaft portion 21 via the radial bearing gap. . As the shaft member 2 rotates, the oil film formed in the radial bearing gap is enhanced in its rigidity by the dynamic pressure action of the dynamic pressure grooves 8a1 and 8a2, and the shaft member 2 rotates in the radial direction by this pressure. It is supported non-contact freely. As a result, radial bearing portions R1 and R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are spaced apart at two locations in the axial direction.

また、軸部材2が回転すると、軸部材2の下端面(凸状摺動部23の球状面23a)がハウジング7(底部)の内底面7cで接触支持される。これにより、軸部材2をスラスト方向に回転自在に支持するピボット軸受からなるスラスト軸受部Tが形成される。   When the shaft member 2 rotates, the lower end surface of the shaft member 2 (spherical surface 23a of the convex sliding portion 23) is contact-supported by the inner bottom surface 7c of the housing 7 (bottom portion). As a result, a thrust bearing portion T composed of a pivot bearing that rotatably supports the shaft member 2 in the thrust direction is formed.

また、軸部材2の回転時には、上述のように、シール空間Sが、ハウジング7の内部側に向かって漸次縮小したテーパ形状を呈しているため、シール空間S内の潤滑油は毛細管力による引き込み作用により、シール空間が狭くなる方向、すなわちハウジング7の内部側に向けて引き込まれる。これにより、ハウジング7の内部からの潤滑油の漏れ出しが効果的に防止される。また、シール空間Sは、ハウジング7の内部空間に充填された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内では、潤滑油の油面は常にシール空間S内にある。   In addition, when the shaft member 2 rotates, as described above, the seal space S has a tapered shape that gradually decreases toward the inside of the housing 7, so that the lubricating oil in the seal space S is drawn by capillary force. By the action, the seal space is drawn in the direction of narrowing, that is, toward the inside of the housing 7. Thereby, the leakage of the lubricating oil from the inside of the housing 7 is effectively prevented. Further, the seal space S has a buffer function for absorbing a volume change amount accompanying a temperature change of the lubricating oil filled in the internal space of the housing 7, and the oil level of the lubricating oil is within a range of the assumed temperature change. Is always in the seal space S.

また、上述したように、上側の動圧溝8a1は、軸方向中心mに対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている(図3を参照)。そのため、軸部材2の回転時、動圧溝8a1による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。そして、この引き込み力の差圧によって、軸受スリーブ8の内周面8aと軸部21の外周面21aとの間の隙間に満たされた潤滑油は下方に流動し、軸受スリーブ8の下側端面8bとフランジ部22の上側端面22aとの間の隙間→軸受スリーブ8の径方向溝8b1によって形成される流体通路→軸受スリーブ8の軸方向溝8d1によって形成される流体通路→シール部材9の径方向溝9b1によって形成される流体通路という経路を循環して、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。   Further, as described above, the upper dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m, and the axial dimension X1 of the upper region from the axial center m is the axial direction of the lower region. It is larger than the dimension X2 (see FIG. 3). Therefore, when the shaft member 2 rotates, the lubricating oil pulling force (pumping force) by the dynamic pressure groove 8a1 is relatively larger in the upper region than in the lower region. Then, due to the differential pressure of the pulling force, the lubricating oil filled in the gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 21a of the shaft portion 21 flows downward, and the lower end surface of the bearing sleeve 8 8b and the gap between the upper end surface 22a of the flange portion 22 → the fluid passage formed by the radial groove 8b1 of the bearing sleeve 8 → the fluid passage formed by the axial groove 8d1 of the bearing sleeve 8 → the diameter of the seal member 9 It circulates through a path called a fluid passage formed by the direction groove 9b1, and is drawn again into the radial bearing gap of the first radial bearing portion R1.

このように、潤滑油がハウジング7の内部空間を流動循環するように構成することで、潤滑油の圧力バランスが保たれると同時に、局部的な負圧の発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。上記の循環経路には、シール空間Sが連通しているので、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際にシール空間S内の潤滑油の油面(気液界面)から外気に排出される。従って、気泡による悪影響はより一層効果的に防止される。   In this way, by configuring the lubricating oil to flow and circulate in the internal space of the housing 7, the pressure balance of the lubricating oil is maintained, and at the same time, the generation of bubbles accompanying the generation of local negative pressure, Problems such as leakage of lubricating oil and generation of vibration due to generation can be solved. Since the sealing space S communicates with the above circulation path, even if bubbles are mixed in the lubricating oil for some reason, when the bubbles circulate with the lubricating oil, the lubricating oil in the sealing space S It is discharged from the oil surface (gas-liquid interface) to the outside air. Therefore, adverse effects due to air bubbles can be more effectively prevented.

以上に示すように、軸部材2を構成するフランジ部22と摺動部23とを一体に形成すれば、摺動部23とフランジ部22とを同一の加工基準を用いて同時加工することができるので、両者を別素材から個別に製作して組み付ける場合に問題となる組み付け精度(例えば、同軸度)の低下を回避することができる。これにより、上記のように軸部材2を回転させて用いる際に、フランジ部22がアンバランス荷重の発生源となる事態を防止することができ、軸部材2の回転精度が高まる。また、これにより、フランジ部22の上側端面22aと軸受スリーブ8の下側端面8bとの予期せぬ摺動接触の可能性が低減され、フランジ部22あるいは軸受スリーブ8の摩耗に起因したコンタミの問題も効果的に解消される。以上のことから、本発明によれば高い回転精度が長期に亘って維持可能となる。   As described above, if the flange portion 22 and the sliding portion 23 constituting the shaft member 2 are integrally formed, the sliding portion 23 and the flange portion 22 can be simultaneously processed using the same processing standard. Therefore, it is possible to avoid a decrease in assembly accuracy (for example, coaxiality), which becomes a problem when both are manufactured separately and assembled from different materials. As a result, when the shaft member 2 is rotated and used as described above, it is possible to prevent the flange portion 22 from being an unbalanced load generation source, and the rotation accuracy of the shaft member 2 is increased. This also reduces the possibility of unexpected sliding contact between the upper end surface 22a of the flange portion 22 and the lower end surface 8b of the bearing sleeve 8, and contamination caused by wear of the flange portion 22 or the bearing sleeve 8 is reduced. The problem is effectively resolved. From the above, according to the present invention, high rotational accuracy can be maintained over a long period of time.

また、フランジ部22と摺動部23とを鍛造で一体成形したので、これを切削等の機械加工で一体成形する場合に比べ、高精度な一体品が低コストに得られる。   In addition, since the flange portion 22 and the sliding portion 23 are integrally formed by forging, a highly accurate integrated product can be obtained at a lower cost than when the flange portion 22 and the sliding portion 23 are integrally formed by machining such as cutting.

また、フランジ部22の下側端面22bの内径側一部領域に摺動部23を設けたので、フランジ部22の下側端面22bのうち、外径側には平坦な平滑面が残存する。フランジ部22の下側端面22bは、軸部21とフランジ部とを一体化した後、例えば軸部21の外周面21aに研削等の仕上げ加工を施す際の治具の受け面として利用される。この際、上記のように、下側端面22bに平坦な平滑面が残存していれば、治具形状を簡略化することができ、仕上げ加工が簡易にかつ低コストに行い得る。   In addition, since the sliding portion 23 is provided in a partial area on the inner diameter side of the lower end surface 22b of the flange portion 22, a flat smooth surface remains on the outer diameter side of the lower end surface 22b of the flange portion 22. The lower end surface 22b of the flange portion 22 is used as a receiving surface for a jig when, for example, the outer peripheral surface 21a of the shaft portion 21 is subjected to a finishing process such as grinding after the shaft portion 21 and the flange portion are integrated. . At this time, as described above, if a flat smooth surface remains on the lower end surface 22b, the jig shape can be simplified, and finishing can be performed easily and at low cost.

以上では、個別に製作した軸部21と、フランジ部22および摺動部23とを適宜の手段で結合一体化した軸部材2を用いた構成について説明を行ったが、軸部材2の軸部21、フランジ部22、および摺動部23は、一体に形成することもできる。かかる構成とすれば、以上で説明した構成と比べ、軸部21とフランジ部22との間の締結強度を一層高めることができるので、軸部材2の抜脱が一層確実に防止される。このように軸部材2の各部を全て一体形成する場合には製造コストの増大が懸念されるが、かかる構成の軸部材2を鍛造成形することにより、コスト増は極力抑制される。   In the above description, the configuration using the shaft member 2 in which the shaft portion 21 manufactured individually, the flange portion 22 and the sliding portion 23 are coupled and integrated by appropriate means has been described. 21, the flange portion 22, and the sliding portion 23 can be integrally formed. With this configuration, compared to the configuration described above, the fastening strength between the shaft portion 21 and the flange portion 22 can be further increased, so that the shaft member 2 can be more reliably prevented from being detached. Thus, when all the parts of the shaft member 2 are integrally formed, there is a concern about an increase in manufacturing cost, but by forging the shaft member 2 having such a configuration, the increase in cost is suppressed as much as possible.

以上、本発明の一実施形態に係る動圧軸受装置1について説明を行ったが、本発明は上記構成の動圧軸受装置1に限定適用されるものではなく、以下示す動圧軸受装置にも好ましく適用することができる。なお、以下では、説明の簡略化の観点から、図2に示す実施形態に準ずる構成には共通の参照番号を付し、重複説明を省略する。   As mentioned above, although the hydrodynamic bearing apparatus 1 which concerns on one Embodiment of this invention was demonstrated, this invention is not limitedly applied to the hydrodynamic bearing apparatus 1 of the said structure, The hydrodynamic bearing apparatus shown below is also applied. It can be preferably applied. In the following, from the viewpoint of simplifying the description, the same reference numerals are assigned to the configurations according to the embodiment shown in FIG.

図4は、本発明に係る動圧軸受装置の第2実施形態を示すものである。同図に示す動圧軸受装置1が図2に示すものと異なる点は、フランジ部22の下側端面の全領域に摺動部23が設けられている点にある。かかる構成とすれば、摺動部23の軸方向寸法を大きくすることなく、摺動部23の曲率半径を図2に示す構成に比べ大きくすることができる。そのため、軸部21にディスクハブ3を圧入する場合や動圧軸受装置1に衝撃荷重が負荷された場合等に、軸部材2の摺動部23を介してスラスト受け(ここでは、ハウジング7の底部)に負荷される押圧力を低減することができ、スラスト受けの損傷等が効果的に防止される。   FIG. 4 shows a second embodiment of the hydrodynamic bearing device according to the present invention. The hydrodynamic bearing device 1 shown in the figure is different from that shown in FIG. 2 in that a sliding portion 23 is provided in the entire region of the lower end surface of the flange portion 22. With this configuration, the radius of curvature of the sliding portion 23 can be increased compared to the configuration shown in FIG. 2 without increasing the axial dimension of the sliding portion 23. Therefore, when the disk hub 3 is press-fitted into the shaft portion 21 or when an impact load is applied to the hydrodynamic bearing device 1, a thrust receiver (here, the housing 7) The pressing force applied to the bottom portion can be reduced, and damage to the thrust receiver can be effectively prevented.

また、図示例のように、図2と同様のハウジング7を用いる場合には、摺動部23の体積が大きくなる分、ハウジング7等と軸部材2との間に形成される空間が図2に示す構成に比べて小さくなる。そのため、軸受内部に充満すべき潤滑油の油量を低減することが、すなわち、シール空間Sの容積を小さくすることができ、動圧軸受装置1のコンパクト化を図ることもできる。   2, when the same housing 7 as in FIG. 2 is used, the space formed between the housing 7 and the shaft member 2 is increased as the volume of the sliding portion 23 increases. Compared to the configuration shown in FIG. Therefore, the amount of lubricating oil to be filled in the bearing can be reduced, that is, the volume of the seal space S can be reduced, and the dynamic pressure bearing device 1 can be made compact.

図5は、本発明に係る動圧軸受装置の第3実施形態を示すものである。同図に示す動圧軸受装置が図2に示すものと異なる主な点は、ハウジング7が、軸部材2の摺動部23と接触する(スラスト軸受部Tを形成する)スラスト受け72と、これをインサート部品として射出成形され、内周に軸受スリーブ8を固定した本体部71とで構成される点にある。なお、図示例では、図2に示す実施形態と同様の軸部材2を用いているが、軸部材2として図4に示す実施形態と同様のものを使用することももちろん可能である。   FIG. 5 shows a third embodiment of the hydrodynamic bearing device according to the present invention. The main difference of the hydrodynamic bearing device shown in FIG. 2 from that shown in FIG. 2 is that the housing 7 comes into contact with the sliding portion 23 of the shaft member 2 (forms a thrust bearing portion T), This is in that it is formed of an insert part and a main body 71 having a bearing sleeve 8 fixed to the inner periphery. In the illustrated example, the shaft member 2 similar to that in the embodiment shown in FIG. 2 is used. However, it is of course possible to use the same shaft member 2 as that in the embodiment shown in FIG.

ところで、例えば、ハウジング7の本体部71は、動圧軸受装置1の軽量化を図る観点から言えば、樹脂、あるいは軽合金で形成するのが望ましいのに対し、軸部材2の摺動部23を接触支持するスラスト受け72は、耐摩耗性を考慮してステンレス鋼等で形成するのが望ましい場合がある。この点、本実施形態のようにスラスト受け72と、これとは別の本体部71とでハウジング7を構成すれば、ハウジング7を単一の材料で形成した場合に比べ、ハウジング7の各部で異なる要求特性を容易に満足することができる。このようにハウジング7を二物品で構成する場合には、製造コストが増大するおそれもあるが、スラスト受け72をインサートして本体部71を射出成形すれば、コスト増は効果的に抑制可能である。   By the way, for example, the main body 71 of the housing 7 is preferably made of resin or light alloy from the viewpoint of reducing the weight of the hydrodynamic bearing device 1, whereas the sliding portion 23 of the shaft member 2 is preferable. In some cases, it is desirable that the thrust receiver 72 for contacting and supporting is formed of stainless steel or the like in consideration of wear resistance. In this regard, if the housing 7 is configured with the thrust receiver 72 and the main body portion 71 different from the thrust receiver 72 as in the present embodiment, each portion of the housing 7 is compared with the case where the housing 7 is formed of a single material. Different required characteristics can be easily satisfied. Thus, when the housing 7 is composed of two articles, the manufacturing cost may increase. However, if the main body 71 is injection-molded by inserting the thrust receiver 72, the cost increase can be effectively suppressed. is there.

なお、本体部71の射出成形に使用可能な樹脂材料としては、例えば、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等の結晶性樹脂の他、例えば、ポリサルフォン(PSU)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等の非晶性樹脂が挙げられる。これらの樹脂材料は、単独で用いる他、二種以上を混合して使用することもできる。また、必要に応じて、種々の特性を付与するための各種充填材を、一又は複数種添加することもできる。   Examples of resin materials that can be used for injection molding of the main body 71 include crystalline resins such as liquid crystal polymer (LCP), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), and polyphenylene sulfide (PPS). Other examples include amorphous resins such as polysulfone (PSU), polyethersulfone (PES), polyphenylsulfone (PPSU), and polyetherimide (PEI). These resin materials can be used alone or in combination of two or more. Moreover, if necessary, one or more kinds of various fillers for imparting various properties can be added.

また、本体部71の射出成形に使用可能な金属材料としては、例えばマグネシウム合金やアルミニウム合金等の低融点金属が挙げられる。また、本体部71は、金属粉とバインダーの混合物を射出成形した後、脱脂・焼結するいわゆるMIM成形で成形することも可能である。   Moreover, as a metal material which can be used for injection molding of the main-body part 71, low melting-point metals, such as a magnesium alloy and an aluminum alloy, are mentioned, for example. The main body 71 can also be molded by so-called MIM molding in which a mixture of metal powder and binder is injection molded and then degreased and sintered.

図6は、本発明に係る動圧軸受装置1の第4実施形態を示すものである。同図に示す動圧軸受装置1が以上で示した動圧軸受装置と異なる主な点は、軸部材2が、軸部21をインサート部品として、フランジ部22および摺動部23が一体に射出成形されている点にある。なお、フランジ部22および摺動部23は、上述したハウジング7の本体部71の成形に用いる樹脂、あるいは金属を使用して射出成形可能である。   FIG. 6 shows a fluid dynamic bearing device 1 according to a fourth embodiment of the present invention. The main difference between the hydrodynamic bearing device 1 shown in the figure and the hydrodynamic bearing device shown above is that the shaft member 2 uses the shaft portion 21 as an insert part, and the flange portion 22 and the sliding portion 23 are integrally injected. It is in the point where it is molded. In addition, the flange part 22 and the sliding part 23 can be injection-molded using the resin used for shaping | molding of the main-body part 71 of the housing 7 mentioned above, or a metal.

同図に示す軸部材2において、軸部21の下端軸心上には凹部21bが設けられ、当該凹部21bには、フランジ部22の抜け止め,回り止めを図るための締結部が形成されている。図示例において、締結部は、下方に向かって漸次縮径したテーパ面と、テーパ面に一又は複数設けられた軸方向溝(図示せず)とで構成されている。   In the shaft member 2 shown in the figure, a concave portion 21b is provided on the lower end axis of the shaft portion 21, and a fastening portion for preventing the flange portion 22 from coming off and rotating is formed in the concave portion 21b. Yes. In the illustrated example, the fastening portion is composed of a tapered surface that is gradually reduced in diameter downward, and one or more axial grooves (not shown) provided on the tapered surface.

締結部の抜け止めとしての機能は、フランジ部22に作用する軸方向の抜去力に対して抵抗するようにフランジ部22(の上端部)を軸部21にアンカー固定することで得ることができ、回り止めとしての機能は、軸部21とフランジ部22の相対回転を規制できるような形状に凹部21bを形成することで得ることができる。かかる観点から、凹部21b内に設けるべき締結部の形態としては上記のもの以外にも、例えば図7(a)(b)に示す形態を採用することができる。図7(a)は、一又は複数の軸方向溝と複数列の互いに平行な円周方向溝とからなる締結部が形成された凹部21bを、図7(b)はねじ溝からなる締結部が形成された凹部21bをそれぞれ示している。もちろん、抜け止め機能および回り止め機能を得られる限り凹部21bに設けるべき締結部の形態は任意であり、例えば、凹部21bの内壁面に複数の窪み(ディンプル)を設けることによって構成することもできる。   The function of preventing the fastening portion from coming off can be obtained by anchoring the flange portion 22 (the upper end portion thereof) to the shaft portion 21 so as to resist the axial pulling force acting on the flange portion 22. The function as a detent can be obtained by forming the recess 21b in a shape that can regulate the relative rotation of the shaft portion 21 and the flange portion 22. From this point of view, for example, the form shown in FIGS. 7A and 7B can be adopted as the form of the fastening part to be provided in the recess 21b in addition to the above. FIG. 7A shows a recess 21b in which a fastening portion including one or a plurality of axial grooves and a plurality of rows of circumferential grooves parallel to each other is formed, and FIG. 7B shows a fastening portion formed of a screw groove. Each of the recesses 21b is formed. Of course, the form of the fastening portion to be provided in the concave portion 21b is arbitrary as long as the retaining function and the anti-rotation function can be obtained. For example, it can be configured by providing a plurality of depressions (dimples) on the inner wall surface of the concave portion 21b. .

かかる構成(図6に示す構成)は、軸部21とフランジ部22との間に、両者を一体成形する場合のような強固な締結力を必要とされない場合には、軸部材2(動圧軸受装置1)の低コスト化や軽量化を図る上で有効である。   Such a configuration (the configuration shown in FIG. 6) is used when the shaft member 2 (dynamic pressure) is not required between the shaft portion 21 and the flange portion 22 when a strong fastening force is not required as in the case where the two portions are integrally formed. This is effective in reducing the cost and weight of the bearing device 1).

以上では、ラジアル軸受部R1、R2として、ヘリングボーン形状等の動圧溝により潤滑油の動圧作用を発生させる構成を例示しているが、ラジアル軸受部R1、R2として、いわゆるステップ軸受、多円弧軸受、あるいは非真円軸受を採用しても良い。また、以上では、ラジアル軸受部を軸方向2箇所に設けた構成を例示しているが、ラジアル軸受部を軸方向の1箇所あるいは3箇所以上に設けることもできる。   In the above, the configuration in which the dynamic pressure action of the lubricating oil is generated by the dynamic pressure grooves of the herringbone shape or the like is illustrated as the radial bearing portions R1 and R2, but the radial bearing portions R1 and R2 are so-called step bearings, An arc bearing or a non-circular bearing may be employed. Moreover, although the structure which provided the radial bearing part in the axial direction two places was illustrated above, a radial bearing part can also be provided in the axial direction one place or three places or more.

また、以上では、動圧軸受装置1の内部に充満する潤滑流体として潤滑油を例示しているが、潤滑油以外にも、空気等の気体や、グリースを使用することもできる。   In the above description, the lubricating oil is exemplified as the lubricating fluid that fills the inside of the hydrodynamic bearing device 1. However, in addition to the lubricating oil, a gas such as air or grease can also be used.

また、本発明に係る動圧軸受装置1は、上述したようなスピンドルモータ用の軸受としてのみならず、PC等に搭載され、発熱源の冷却を行うファンモータ用の軸受として使用することも可能である。動圧軸受装置1をファンモータ用の軸受として使用する場合には、ディスクハブ3に代えて、羽根(ファン)を有するロータが軸部21の上端に設けられる。   Further, the hydrodynamic bearing device 1 according to the present invention can be used not only as a spindle motor bearing as described above but also as a fan motor bearing mounted on a PC or the like for cooling a heat source. It is. When the hydrodynamic bearing device 1 is used as a fan motor bearing, a rotor having blades (fans) is provided at the upper end of the shaft portion 21 instead of the disk hub 3.

情報機器用スピンドルモータの一例を概念的に示す断面図である。It is sectional drawing which shows notionally an example of the spindle motor for information devices. 本発明に係る動圧軸受装置の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the hydrodynamic bearing apparatus which concerns on this invention. 軸受スリーブの断面図である。It is sectional drawing of a bearing sleeve. 本発明に係る動圧軸受装置の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the hydrodynamic bearing apparatus which concerns on this invention. 本発明に係る動圧軸受装置の第3実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the hydrodynamic bearing apparatus which concerns on this invention. 本発明に係る動圧軸受装置の第4実施形態を示す断面図である。It is sectional drawing which shows 4th Embodiment of the hydrodynamic bearing apparatus which concerns on this invention. (a)図は、図6に示す実施形態において、軸部の下端の他の構成例を示す断面図、(b)図は、図6に示す実施形態において、軸部の下端の他の構成例を示す断面図である。6A is a cross-sectional view showing another configuration example of the lower end of the shaft portion in the embodiment shown in FIG. 6, and FIG. 6B is another configuration of the lower end of the shaft portion in the embodiment shown in FIG. It is sectional drawing which shows an example.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
21 軸部
22 フランジ部
23 摺動部
3 ディスクハブ
7 ハウジング
71 本体部
72 スラスト受け
8 軸受スリーブ
9 シール部材
R1、R2 ラジアル軸受部
T スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 21 Shaft part 22 Flange part 23 Sliding part 3 Disc hub 7 Housing 71 Main body part 72 Thrust receiver 8 Bearing sleeve 9 Seal member R1, R2 Radial bearing part T Thrust bearing part

Claims (6)

軸部およびフランジ部を有する軸部材と、軸部材の外周に配置され、軸部材と相対回転する軸受スリーブと、軸部の外周面と軸受スリーブの内周面との間に形成されたラジアル軸受隙間、およびラジアル軸受隙間に流体の動圧作用を発生させる動圧発生部を有するラジアル軸受部と、軸部材をスラスト方向で接触支持するスラスト受けと、軸部材のフランジ部と軸方向で係合して、軸部材の抜けを規制する規制部とを有する動圧軸受装置において、
軸部材のうち、フランジ部と、スラスト受けに接触する摺動部とを一体に形成したことを特徴とする動圧軸受装置。
A shaft member having a shaft portion and a flange portion, a bearing sleeve disposed on the outer periphery of the shaft member and rotating relative to the shaft member, and a radial bearing formed between the outer peripheral surface of the shaft portion and the inner peripheral surface of the bearing sleeve A radial bearing portion having a dynamic pressure generating portion for generating a fluid dynamic pressure action in the clearance and the radial bearing clearance, a thrust receiver for contacting and supporting the shaft member in the thrust direction, and an axial engagement with the flange portion of the shaft member Then, in the hydrodynamic bearing device having a regulating portion that regulates the removal of the shaft member,
A hydrodynamic bearing device characterized in that, among the shaft members, a flange portion and a sliding portion that contacts the thrust receiver are integrally formed.
軸部材の軸部、フランジ部、および摺動部を一体に形成した請求項1記載の動圧軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein the shaft portion, the flange portion, and the sliding portion of the shaft member are integrally formed. 軸部材を鍛造で成形した請求項1または2記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1 or 2, wherein the shaft member is formed by forging. 摺動部がスラスト受け側を徐々に縮径させた形状をなし、この摺動部をフランジ部の端面の一部領域に設けた請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the sliding portion has a shape in which the diameter of the thrust receiving side is gradually reduced, and the sliding portion is provided in a partial region of the end surface of the flange portion. 摺動部がスラスト受け側を徐々に縮径させた形状をなし、この摺動部をフランジ部の端面の全領域に設けた請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the sliding portion has a shape in which the diameter of the thrust receiving side is gradually reduced, and the sliding portion is provided in the entire area of the end surface of the flange portion. 軸受スリーブをハウジングの内周に固定し、かつハウジングを、スラスト受けをインサート部品として射出成形した請求項1記載の動圧軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein the bearing sleeve is fixed to the inner periphery of the housing, and the housing is injection-molded with a thrust receiver as an insert part.
JP2007191150A 2007-07-23 2007-07-23 Hydrodynamic bearing device Expired - Fee Related JP5220359B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007191150A JP5220359B2 (en) 2007-07-23 2007-07-23 Hydrodynamic bearing device
PCT/JP2008/061391 WO2009013963A1 (en) 2007-07-23 2008-06-23 Dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191150A JP5220359B2 (en) 2007-07-23 2007-07-23 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2009024844A true JP2009024844A (en) 2009-02-05
JP5220359B2 JP5220359B2 (en) 2013-06-26

Family

ID=40281222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191150A Expired - Fee Related JP5220359B2 (en) 2007-07-23 2007-07-23 Hydrodynamic bearing device

Country Status (2)

Country Link
JP (1) JP5220359B2 (en)
WO (1) WO2009013963A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016041958A (en) * 2014-08-18 2016-03-31 シナノケンシ株式会社 Bearing device and motor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2011123777A (en) 2008-11-14 2012-12-20 ДАЙНИППОН СУМИТОМО ФАРМА Ко., ЛТД. BIPHENYLACETAMIDE DERIVATIVES
JP6221030B2 (en) * 2013-06-14 2017-11-01 日本電産株式会社 Bearing mechanism and blower fan

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263707A (en) * 2003-01-10 2004-09-24 Sony Corp Bearing unit and rotation driving device having the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103554A (en) * 1997-09-29 1999-04-13 Hitachi Ltd Bearing unit for spindle motor
JP2002159158A (en) * 2000-11-17 2002-05-31 Nidec Copal Corp Retaining structure of motor rotor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263707A (en) * 2003-01-10 2004-09-24 Sony Corp Bearing unit and rotation driving device having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016041958A (en) * 2014-08-18 2016-03-31 シナノケンシ株式会社 Bearing device and motor

Also Published As

Publication number Publication date
JP5220359B2 (en) 2013-06-26
WO2009013963A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP5274820B2 (en) Hydrodynamic bearing device
US8128289B2 (en) Fluid dynamic bearing device
JP2006194400A (en) Spindle motor and rotating device
JP4874004B2 (en) Hydrodynamic bearing device
JP2007263228A (en) Dynamic pressure bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2007024267A (en) Fluid bearing device and motor equipped with the same
JP4476670B2 (en) Hydrodynamic bearing device
JP4762757B2 (en) Hydrodynamic bearing device
JP5220359B2 (en) Hydrodynamic bearing device
KR101321383B1 (en) Fluid bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP2009103280A (en) Dynamic pressure bearing device and its manufacturing method
JP2009228873A (en) Fluid bearing device
KR100517085B1 (en) Fluid dynamic bearing motor
JP5133008B2 (en) Hydrodynamic bearing device
JP2009103179A (en) Fluid bearing device
JP2004116623A (en) Fluid bearing device
JP2009115132A (en) Dynamic pressure bearing device
JP5188942B2 (en) Fluid dynamic bearing device
JP2007263225A (en) Fluid bearing device
JP2009243605A (en) Fluid bearing device
JP4522869B2 (en) Hydrodynamic bearing device
JP2007255654A (en) Dynamic pressure bearing device
JP5214401B2 (en) Hydrodynamic bearing device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5220359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees