JP5133008B2 - Hydrodynamic bearing device - Google Patents

Hydrodynamic bearing device Download PDF

Info

Publication number
JP5133008B2
JP5133008B2 JP2007213711A JP2007213711A JP5133008B2 JP 5133008 B2 JP5133008 B2 JP 5133008B2 JP 2007213711 A JP2007213711 A JP 2007213711A JP 2007213711 A JP2007213711 A JP 2007213711A JP 5133008 B2 JP5133008 B2 JP 5133008B2
Authority
JP
Japan
Prior art keywords
dynamic pressure
sleeve portion
bearing device
peripheral surface
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007213711A
Other languages
Japanese (ja)
Other versions
JP2009047235A (en
Inventor
栗村  哲弥
功 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2007213711A priority Critical patent/JP5133008B2/en
Publication of JP2009047235A publication Critical patent/JP2009047235A/en
Application granted granted Critical
Publication of JP5133008B2 publication Critical patent/JP5133008B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

本発明は動圧軸受装置に関する。   The present invention relates to a hydrodynamic bearing device.

動圧軸受装置は、相対回転する一対の部材のうち、回転側の部材を、軸受隙間に生じる潤滑油の動圧作用で静止側の部材に対して非接触で支持するものである。この動圧軸受装置は、高速回転、高回転精度、低騒音等の特徴を有するものであり、近年ではその特徴を活かして、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として、より具体的には、HDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、ファンモータなどのモータ用軸受装置として好適に使用されている。   The hydrodynamic bearing device supports a rotating member among a pair of relatively rotating members in a non-contact manner with respect to a stationary member by a dynamic pressure action of lubricating oil generated in a bearing gap. This hydrodynamic bearing device has characteristics such as high-speed rotation, high rotation accuracy, and low noise, and in recent years, taking advantage of the characteristics, the bearing device for motors mounted on various electric devices including information equipment. More specifically, spindle motors such as magnetic disk devices such as HDD, optical disk devices such as CD-ROM, CD-R / RW, and DVD-ROM / RAM, polygon scanner motors of laser beam printers (LBP), It is suitably used as a bearing device for a motor such as a fan motor.

例えば、ディスク駆動装置に組み込まれるスピンドルモータ用の動圧軸受装置は軸部材を備える。そして上記の動圧軸受装置は、軸部材を回転側とした、いわゆる軸回転型と、軸部材を静止側とした、いわゆる軸固定型とに大別される。これらのうち、軸固定型の動圧軸受装置として、例えば、特開平10−112955号(特許文献1)に開示されたものが公知である。   For example, a dynamic pressure bearing device for a spindle motor incorporated in a disk drive device includes a shaft member. The hydrodynamic bearing device is roughly classified into a so-called shaft rotation type in which the shaft member is on the rotation side and a so-called shaft fixed type in which the shaft member is on the stationary side. Among these, as a fixed shaft type hydrodynamic bearing device, for example, one disclosed in JP-A-10-112955 (Patent Document 1) is known.

詳細には、静止側に設けられた軸部材の外径側にラジアル軸受隙間を介して回転部材が配設され、回転部材の回転に伴い、軸部材の外周面に形成された動圧溝によってラジアル軸受隙間を満たす潤滑油に動圧作用が発生し、その圧力によって回転部材が軸部材に対して回転自在に支持される軸受装置である。この動圧軸受装置において、回転部材は、軸部材との間にラジアル軸受隙間を形成する内径側のスリーブ部が焼結金属等の多孔質材料で形成される一方、外径側のスリーブ部(ハウジング部)が軸受外部への潤滑油の漏れ防止を目的として無孔質のソリッド材で形成される。   Specifically, a rotating member is disposed on the outer diameter side of the shaft member provided on the stationary side via a radial bearing gap, and a dynamic pressure groove formed on the outer peripheral surface of the shaft member as the rotating member rotates. This is a bearing device in which a dynamic pressure action is generated in the lubricating oil that fills the radial bearing gap, and the rotating member is rotatably supported on the shaft member by the pressure. In this dynamic pressure bearing device, the rotating member has a sleeve portion on the inner diameter side formed of a porous material such as sintered metal that forms a radial bearing gap with the shaft member, while a sleeve portion on the outer diameter side ( The housing part) is formed of a non-porous solid material for the purpose of preventing leakage of lubricating oil to the outside of the bearing.

このように、内径側のスリーブ部を多孔質材料で形成すれば、その内部空孔に保持された潤滑油のラジアル軸受隙間への滲み出しによってラジアル軸受隙間が潤沢な潤滑油で満たされる。そのため、ラジアル軸受隙間を形成する二部材(二面)をソリッド材で形成する場合に比べ、油膜切れによる軸受剛性の低下等、軸受性能の低下を効果的に防止することができる。
特開平10−112955号公報
In this way, when the sleeve portion on the inner diameter side is formed of a porous material, the radial bearing gap is filled with abundant lubricating oil by the seepage of the lubricating oil held in the internal holes into the radial bearing gap. Therefore, compared with the case where the two members (two surfaces) forming the radial bearing gap are formed of a solid material, it is possible to effectively prevent a decrease in bearing performance such as a decrease in bearing rigidity due to the oil film running out.
JP-A-10-112955

しかしながら、上記の従来構成では、回転部材の回転に伴い、内径側のスリーブ部の内部空孔に保持された潤滑油に遠心力が作用するため、当該スリーブ部よりも内径側のラジアル軸受隙間に潤滑油が滲み出し難くなる。この場合、ラジアル軸受隙間への潤滑油の供給量が不足し、軸受性能が低下するおそれがある。   However, in the above-described conventional configuration, the centrifugal force acts on the lubricating oil held in the inner hole of the sleeve portion on the inner diameter side as the rotating member rotates, so that the radial bearing gap on the inner diameter side with respect to the sleeve portion. Lubricating oil is difficult to ooze out. In this case, the supply amount of the lubricating oil to the radial bearing gap is insufficient, and there is a possibility that the bearing performance is deteriorated.

本発明の課題は、軸固定型の動圧軸受装置において、ラジアル軸受隙間での潤滑油不足に起因した軸受性能の低下を効果的に防止することにある。   An object of the present invention is to effectively prevent a decrease in bearing performance due to a lack of lubricating oil in a radial bearing gap in a shaft-fixed type hydrodynamic bearing device.

上記課題を解決するため、本発明では、静止側に設けられた軸部材と、軸部材を内周に収容した回転部材と、軸部材と回転部材の間に形成されるラジアル軸受隙間と、回転部材の回転に伴い、ラジアル軸受隙間に潤滑油の動圧作用を発生させるラジアル動圧発生部とを備える動圧軸受装置において、軸部材が、外径側への張り出しのない円筒面状の外周面を有する軸部と、軸部の外周に固定された多孔質のスリーブ部とを有し、回転部材が、少なくとも軸方向の一端が開口し、スリーブ部の外周を覆い、かつ内径側への張り出しのない円筒面状の内周面を備えるハウジングと、ハウジングの外径方向に延び、かつハウジングと一体に形成されたハブ部とを有し、ハウジングの内周面とスリーブ部の外周面との間にラジアル軸受隙間が形成され、ハウジングの内部空間にスリーブ部の空孔も含めて潤滑油が充満され、ハウジングの開口部内周にスリーブ部の端面と対向するシール部材を固定し、シール部材の内周面と軸部の外周面との間に、油面を有するシール空間を形成し、シール部材の軸方向一端側の端面よりも軸方向外側に軸部の軸方向一端を突出させ、この突出部が静止側のブラケットに固定されることを特徴とする動圧軸受装置を提供する。なお、ここでいうラジアル動圧発生部は、ラジアル軸受隙間に潤滑油の動圧作用を発生させ得るものであれば良く、ヘリングボーン形状等の動圧溝の他、円弧面や軸方向溝を円周方向に複数設けたものも含まれる。 In order to solve the above problems, in the present invention, a shaft member provided on the stationary side, a rotating member that accommodates the shaft member in the inner periphery, a radial bearing gap formed between the shaft member and the rotating member, and rotation In a hydrodynamic bearing device having a radial dynamic pressure generating section that generates a dynamic pressure action of lubricating oil in the radial bearing gap as the member rotates, the shaft member has a cylindrical surface outer periphery that does not protrude to the outer diameter side. a shaft portion having a surface, and a sleeve portion of the fixed porous the outer periphery of the shaft portion, the rotation member, one end of at least the axial direction is open, not covered with the outer periphery of the sleeve portion, and the inner diameter side A housing having a cylindrical inner peripheral surface without overhanging , and a hub portion extending in the outer diameter direction of the housing and integrally formed with the housing, and an inner peripheral surface of the housing and an outer peripheral surface of the sleeve portion A radial bearing gap is formed between Lubricating oil is filled in the internal space of the housing, including the holes in the sleeve, and the seal member facing the end surface of the sleeve is fixed to the inner periphery of the opening of the housing, and the inner peripheral surface of the seal member and the outer peripheral surface of the shaft portion A seal space having an oil level is formed between the end of the seal member and the end of the shaft in the axial direction protrudes outward from the end surface of the seal member in the axial direction. The protrusion is fixed to the stationary bracket. is the possible to provide a dynamic pressure bearing device according to claim. Here, the radial dynamic pressure generating portion may be any member that can generate the dynamic pressure action of the lubricating oil in the radial bearing gap. In addition to the dynamic pressure groove such as a herringbone shape, an arc surface or an axial groove may be used. A plurality provided in the circumferential direction is also included.

以上の構成では、回転部材の回転中は、ラジアル動圧発生部での動圧作用により、ラジアル軸受隙間に満たされた潤滑油がラジアル軸受隙間の一部領域に集められて正圧を生じ、この正圧部分で潤滑油が多孔質のスリーブ部内に還流する。これと並行してスリーブ部の外周面からラジアル軸受隙間に次々と潤滑油が滲み出すが、この滲み出しは、スリーブ部が静止側の軸部材に設けられているため、従来のように遠心力の影響を受けることなくスムーズに行われる。従って、ラジアル軸受隙間に潤沢な潤滑油を供給することができ、潤滑油の供給不足による軸受性能の低下を回避することができる。   In the above configuration, during rotation of the rotating member, due to the dynamic pressure action in the radial dynamic pressure generating portion, the lubricating oil filled in the radial bearing gap is collected in a partial region of the radial bearing gap to generate a positive pressure, At this positive pressure portion, the lubricating oil flows back into the porous sleeve portion. In parallel with this, lubricating oil oozes out from the outer peripheral surface of the sleeve part to the radial bearing gap one after another, but this oozing is caused by centrifugal force as in the conventional case because the sleeve part is provided on the stationary shaft member. It is performed smoothly without being affected by. Therefore, abundant lubricating oil can be supplied to the radial bearing gap, and deterioration of bearing performance due to insufficient supply of lubricating oil can be avoided.

また、本発明ではスリーブ部の外周面でラジアル軸受隙間が形成されるので、スリーブ部の内周面でラジアル軸受隙間を形成していた従来構成に比べ、ラジアル軸受隙間が外径側に位置することとなる。従って、この点から、モーメント剛性等の軸受剛性を従来構成に比べて高めることが可能となる。   Further, in the present invention, since the radial bearing gap is formed on the outer peripheral surface of the sleeve portion, the radial bearing gap is located on the outer diameter side as compared with the conventional configuration in which the radial bearing gap is formed on the inner peripheral surface of the sleeve portion. It will be. Therefore, from this point, it is possible to increase bearing rigidity such as moment rigidity as compared with the conventional configuration.

上記構成において、多孔質体からなるスリーブ部は、例えば、焼結金属あるいは多孔質樹脂で形成することができる。特に、スリーブ部を多孔質樹脂製とする場合、スリーブ部は、軸部をインサートして射出成形(インサート成形)することができる。インサート成形であれば、型精度を高めておくだけで軸部とスリーブ部の組み付け精度を高めることができるだけでなく、スリーブ部の成形と、軸部に対するスリーブ部の組み付けとを一工程で行うことができるので、製造コストの低廉化を図ることができ、望ましい。また、この場合、ラジアル動圧発生部は、スリーブ部の射出成形型にラジアル動圧発生部形状に対応した型部を設けておくことにより、スリーブ部の射出成形と同時にスリーブ部の外周面に型成形することができる。かかる構成とすれば、ラジアル動圧発生部を別工程で設ける手間を省くことができ、動圧軸受装置の製造コストを一層低廉化することができる。   In the above configuration, the sleeve portion made of a porous body can be formed of, for example, a sintered metal or a porous resin. In particular, when the sleeve portion is made of porous resin, the sleeve portion can be injection-molded (insert molding) by inserting the shaft portion. In insert molding, not only can the accuracy of assembly of the shaft and sleeve be improved by simply increasing the mold accuracy, but also the molding of the sleeve and assembly of the sleeve to the shaft can be performed in one step. Therefore, the manufacturing cost can be reduced, which is desirable. In this case, the radial dynamic pressure generating portion is provided on the outer peripheral surface of the sleeve portion simultaneously with the injection molding of the sleeve portion by providing a mold portion corresponding to the shape of the radial dynamic pressure generating portion in the injection molding die of the sleeve portion. Can be molded. With this configuration, it is possible to save the trouble of providing the radial dynamic pressure generating portion in a separate process, and to further reduce the manufacturing cost of the dynamic pressure bearing device.

なお、スリーブ部を焼結金属製とし、その外周面にラジアル動圧発生部を形成する場合、ラジアル動圧発生部は、焼結金属の良好な加工性に鑑みて、転造等の塑性加工で容易に形成可能である。   When the sleeve portion is made of sintered metal and the radial dynamic pressure generating portion is formed on the outer peripheral surface thereof, the radial dynamic pressure generating portion is formed by plastic processing such as rolling in view of the good workability of the sintered metal. Can be easily formed.

上記構成において、回転部材は、スラスト方向に支持することができる。軸受部材をスラスト方向に支持する形態の一例として、軸部材の一端で回転部材を接触支持することが考えられる。   In the above configuration, the rotating member can be supported in the thrust direction. As an example of a mode in which the bearing member is supported in the thrust direction, it is conceivable to contact and support the rotating member at one end of the shaft member.

また、回転部材をスラスト方向に支持する形態の他例として、軸部材の少なくとも一方の端面でスラスト軸受隙間を形成すると共に、このスラスト軸受隙間に潤滑油の動圧作用を発生させるスラスト動圧発生部を設けることにより、回転部材をスラスト方向に非接触支持することが考えられる。   Further, as another example of the configuration in which the rotating member is supported in the thrust direction, a thrust bearing pressure is generated by forming a thrust bearing gap on at least one end surface of the shaft member and generating a dynamic pressure action of the lubricating oil in the thrust bearing gap. It is conceivable that the rotating member is supported in a non-contact manner in the thrust direction by providing the portion.

動圧軸受装置をモータに組み込む際、回転部材にハブ部が設けられる。このハブ部は、回転部材を構成するハウジング(スリーブ部の外径側に配設される部材)と別体に設けても良いが、一体に設ければ、ハブ部を組み付ける手間を省略して製造コストの低廉化が図られる他、高精度な一体品が得られ、回転精度を高める観点からも望ましい。なお、ハブ部としては、ディスク状記録媒体(ディスク)を搭載するためのもの、羽根(ファン)を有するもの等が挙げられる。   When the dynamic pressure bearing device is incorporated into the motor, the rotating member is provided with a hub portion. This hub portion may be provided separately from the housing (member disposed on the outer diameter side of the sleeve portion) that constitutes the rotating member, but if it is provided integrally, it eliminates the trouble of assembling the hub portion. In addition to reducing the manufacturing cost, a highly accurate integrated product can be obtained, which is desirable from the viewpoint of increasing the rotational accuracy. Examples of the hub portion include one for mounting a disc-shaped recording medium (disc) and one having blades (fans).

以上に示すように、本発明に係る動圧軸受装置は高い軸受剛性を具備するものであるから、この動圧軸受装置と、ステータコイルと、ロータマグネットとを備えるモータは高い回転精度を有するものである。   As described above, since the hydrodynamic bearing device according to the present invention has high bearing rigidity, the motor including the hydrodynamic bearing device, the stator coil, and the rotor magnet has high rotational accuracy. It is.

以上に示すように、本発明によれば、軸固定型の動圧軸受装置において、ラジアル軸受隙間での多孔質体からの潤滑油の供給不足を解消することができるので、軸受性能の低下を効果的に防止することができる。   As described above, according to the present invention, in the fixed shaft type hydrodynamic bearing device, it is possible to eliminate the insufficient supply of lubricating oil from the porous body in the radial bearing gap. It can be effectively prevented.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、動圧軸受装置1を組み込んだスピンドルモータの一構成例を概念的に示すものである。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、動圧軸受装置1と、動圧軸受装置1の回転部材10に設けられたハブ部としてのディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6とを備えている。ステータコイル4はブラケット6の外周に取り付けられ、ロータマグネット5はハブ部3の内周に取り付けられる。動圧軸受装置1の軸部材11は静止側のブラケット6に固定される。ディスクハブ3には、磁気ディスク等のディスクDが一又は複数枚(図示例は、二枚)保持される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、ディスクハブ3に保持されたディスクDが、回転部材10と一体に回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor in which a dynamic pressure bearing device 1 is incorporated. The spindle motor is used in a disk drive device such as an HDD, and includes a dynamic pressure bearing device 1, a disk hub 3 as a hub portion provided on a rotating member 10 of the dynamic pressure bearing device 1, and a radial direction, for example. A stator coil 4 and a rotor magnet 5 which are opposed to each other via a gap, and a bracket 6 are provided. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the hub portion 3. The shaft member 11 of the hydrodynamic bearing device 1 is fixed to the stationary bracket 6. One or a plurality of disks D such as magnetic disks (two in the illustrated example) are held on the disk hub 3. When the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the disk D held by the disk hub 3 rotates integrally with the rotating member 10. .

図2は、本発明の実施形態に係る動圧軸受装置1の一例を示すものである。同図に示す動圧軸受装置1は、静止側の軸部材11と、軸部材11の外径側に配置された回転部材10と、回転部材10の一端開口をシールするシール部材9とを主要な構成として備える。なお、説明の便宜上、シール部材9の側を下側、これとは軸方向反対側を上側として、以下説明を進める。   FIG. 2 shows an example of the hydrodynamic bearing device 1 according to the embodiment of the present invention. The hydrodynamic bearing device 1 shown in FIG. 1 mainly includes a stationary shaft member 11, a rotating member 10 disposed on the outer diameter side of the shaft member 11, and a seal member 9 that seals one end opening of the rotating member 10. Prepare as a simple configuration. For convenience of explanation, the following explanation will be made with the seal member 9 side as the lower side and the opposite side in the axial direction as the upper side.

回転部材10は、ハウジング7と、ハウジング7の上端部から外径側に張り出したハブ部としてのディスクハブ3とを有し、本実施形態では、ハウジング7とディスクハブ3とが金属材料で一体形成される。このように、ハウジング7とディスクハブ3とを金属材料で一体形成する手段としては種々のものを採用可能であるが、できるだけ製造コストを低廉化し得る手段が望ましく、例えば、鍛造やプレス加工等の塑性加工、アルミニウム合金やマグネシウム合金等の低融点金属を用いた金属射出成形、あるいは金属粉とバインダの混合材料を射出した後、脱脂、焼結する、いわゆるMIM成形が好適である。   The rotating member 10 includes a housing 7 and a disk hub 3 as a hub portion projecting from the upper end portion of the housing 7 to the outer diameter side. In this embodiment, the housing 7 and the disk hub 3 are integrally formed of a metal material. It is formed. As described above, various means can be adopted as a means for integrally forming the housing 7 and the disk hub 3 with a metal material. However, a means capable of reducing the manufacturing cost as much as possible is desirable. For example, forging, pressing, etc. Preferable is plastic processing, metal injection molding using a low melting point metal such as an aluminum alloy or magnesium alloy, or so-called MIM molding in which a mixed material of metal powder and binder is injected and then degreased and sintered.

ハウジング7は、円筒状の側部7aと、側部7aの上端部を閉塞する円盤状の蓋部7bとが一体のコップ状をなす。側部7aの内周面7a1は、径一定の平滑な円筒面に形成され、蓋部7bの下端面7b1は平滑な平坦面に形成される。   The housing 7 has a cup shape in which a cylindrical side portion 7a and a disc-shaped lid portion 7b that closes the upper end portion of the side portion 7a are integrated. The inner peripheral surface 7a1 of the side portion 7a is formed as a smooth cylindrical surface having a constant diameter, and the lower end surface 7b1 of the lid portion 7b is formed as a smooth flat surface.

ディスクハブ3は、ハウジング7の上端部から外径側に延びる円盤部3aと、円盤部3aの外径端から下方に延びる円筒部3bと、円筒部3bの下端から外径側に突出する鍔部3cとを有し、鍔部3cにはディスクDを載置するためのディスク搭載面3dが設けられる。円筒部3bの下端内周に、ロータマグネット5(図1を参照)が接着、溶着等適宜の手段で固定される。   The disc hub 3 includes a disc portion 3a extending from the upper end portion of the housing 7 to the outer diameter side, a cylindrical portion 3b extending downward from the outer diameter end of the disc portion 3a, and a flange protruding from the lower end of the cylindrical portion 3b to the outer diameter side. A disk mounting surface 3d on which the disk D is placed. A rotor magnet 5 (see FIG. 1) is fixed to the inner periphery of the lower end of the cylindrical portion 3b by an appropriate means such as adhesion or welding.

なお、この回転部材10は、樹脂材料で一体形成することも可能である。この場合に使用可能な樹脂材料としては、例えば、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等の結晶性樹脂の他、例えば、ポリサルフォン(PSU)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等の非晶性樹脂が挙げられる。これらの樹脂材料は、単独で用いる他、二種以上を混合して使用することもできる。また、必要に応じて、種々の特性を付与するための各種充填材を、一又は複数種添加することもできる。   The rotating member 10 can be integrally formed of a resin material. Resin materials that can be used in this case include, for example, crystalline resins such as liquid crystal polymer (LCP), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), and the like. Examples thereof include amorphous resins such as (PSU), polyethersulfone (PES), polyphenylsulfone (PPSU), and polyetherimide (PEI). These resin materials can be used alone or in combination of two or more. Moreover, if necessary, one or more kinds of various fillers for imparting various properties can be added.

軸部材11は、下端が静止側のブラケット6に固定された軸部2と、軸部2の外周面2aに固定された円筒状のスリーブ部8とからなる。なお。本実施形態では、軸部2をブラケット6と別体に設けているが、軸部2をブラケット6と一体に設けても良い。   The shaft member 11 includes a shaft portion 2 having a lower end fixed to the stationary bracket 6 and a cylindrical sleeve portion 8 fixed to the outer peripheral surface 2 a of the shaft portion 2. Note that. In the present embodiment, the shaft portion 2 is provided separately from the bracket 6, but the shaft portion 2 may be provided integrally with the bracket 6.

軸部2は、ステンレス鋼等の金属材料で中実軸に形成され、その外周面2aは軸方向全長に亘って平滑な円筒面状に形成される。軸部2の上端は、上方に向かって漸次縮径した凸球状に形成され、その凸球面2bの頂部がハウジング7の蓋部下端面7b1と点接触する。   The shaft portion 2 is formed in a solid shaft with a metal material such as stainless steel, and the outer peripheral surface 2a is formed in a smooth cylindrical surface over the entire axial length. The upper end of the shaft portion 2 is formed in a convex spherical shape that is gradually reduced in diameter upward, and the top portion of the convex spherical surface 2 b makes point contact with the lid lower end surface 7 b 1 of the housing 7.

スリーブ部8は、多孔質体、ここでは銅を主成分とする焼結金属の多孔質体で円筒状に形成され、軸部2の外周面2aに固定される。固定手段としては、圧入、接着(圧入接着を含む)等が採用可能であり、この他、軸部2とスリーブ部8の線膨張係数の差を利用して焼き嵌め(接着剤の介在下で行うのが望ましい)することも可能である。スリーブ部8の内周面8aには、両端面に開口した軸方向溝8a1が一又は複数本形成されている。   The sleeve portion 8 is formed in a cylindrical shape with a porous body, here, a porous body of sintered metal mainly composed of copper, and is fixed to the outer peripheral surface 2 a of the shaft portion 2. As the fixing means, press-fitting, bonding (including press-fitting bonding), or the like can be employed. In addition, shrinkage fitting (under the presence of an adhesive) using the difference in the linear expansion coefficient between the shaft portion 2 and the sleeve portion 8 is possible. It is also possible to do this). On the inner peripheral surface 8a of the sleeve portion 8, one or a plurality of axial grooves 8a1 opened at both end surfaces are formed.

スリーブ部8の外周面8bには、図3に示すように、ラジアル動圧発生部として、複数の動圧溝8b1,8b2をヘリングボーン形状に配列した領域が上下二箇所に離隔して形成される。本実施形態において、下側の動圧溝8b2は、軸方向中心(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心より下側領域の軸方向寸法が上側領域の軸方向寸法よりも大きくなっている。一方、上側の動圧溝8b1は軸方向対称に形成され、その上下領域の軸方向寸法は、それぞれ、下側の動圧溝8b2の上側領域の軸方向寸法と等しくなっている。なお、動圧溝の形状はヘリングボーン形状に限定されるものではなく、スパイラル形状等公知のその他の形状とすることもできる。これら動圧溝8b1,8b2(ラジアル動圧発生部)は、良好な加工性を有する焼結金属の特性に鑑み、転造等の塑性加工で容易かつ高精度に形成することができる。   As shown in FIG. 3, the outer peripheral surface 8b of the sleeve portion 8 is formed with a plurality of dynamic pressure grooves 8b1 and 8b2 arranged in a herringbone shape as a radial dynamic pressure generating portion, spaced apart at two upper and lower positions. The In the present embodiment, the lower dynamic pressure groove 8b2 is formed to be axially asymmetric with respect to the axial center (the axial center of the upper and lower inclined groove regions), and the axis of the lower region from the axial center. The directional dimension is larger than the axial dimension of the upper region. On the other hand, the upper dynamic pressure groove 8b1 is formed symmetrically in the axial direction, and the axial dimensions of the upper and lower regions thereof are respectively equal to the axial dimension of the upper region of the lower dynamic pressure groove 8b2. The shape of the dynamic pressure groove is not limited to the herringbone shape, and may be other known shapes such as a spiral shape. These dynamic pressure grooves 8b1 and 8b2 (radial dynamic pressure generating portions) can be easily and highly accurately formed by plastic working such as rolling in view of the characteristics of sintered metal having good workability.

シール部材9は、例えば、黄銅等の軟質金属材料やその他の金属材料、あるいは樹脂材料でリング状に形成され、ハウジング7の内周面7aの下端に接着、圧入等の適宜の手段で固定される。シール部材9の内周面9aは、軸部2の外周面2aとの間に所定のシール空間Sを形成する。このシール空間Sは、ハウジング7(回転部材10)の内部空間に充填された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内では、潤滑油の油面は常にシール空間S内にある。本実施形態では、シール部材9の内周面9aが、上方に向けて半径方向寸法が漸次縮小するテーパ面に形成される一方、軸部2の外周面2aがストレート面に形成される。従って、シール空間Sは、半径方向寸法が漸次縮小するテーパ形状を呈し、シール空間S内の潤滑油は、毛細管力による引き込み作用により上方に向けて引き込まれ、その結果、ハウジング7の下端開口部がシールされる。また、このようにシール部材9をハウジング7の下端に固定することによって、軸部材11のスリーブ部8とシール部材9とが軸方向に係合可能となり、軸部材11からの回転部材10の抜脱が効果的に防止される。   The seal member 9 is formed in a ring shape from, for example, a soft metal material such as brass, other metal materials, or a resin material, and is fixed to the lower end of the inner peripheral surface 7a of the housing 7 by an appropriate means such as adhesion or press fitting. The A predetermined seal space S is formed between the inner peripheral surface 9 a of the seal member 9 and the outer peripheral surface 2 a of the shaft portion 2. The seal space S has a buffer function for absorbing a volume change amount accompanying a temperature change of the lubricating oil filled in the internal space of the housing 7 (the rotating member 10). The oil level is always in the seal space S. In the present embodiment, the inner peripheral surface 9a of the seal member 9 is formed as a tapered surface whose radial dimension gradually decreases upward, while the outer peripheral surface 2a of the shaft portion 2 is formed as a straight surface. Accordingly, the seal space S has a taper shape in which the radial dimension gradually decreases, and the lubricating oil in the seal space S is drawn upward by the pulling action by the capillary force, and as a result, the lower end opening of the housing 7 Is sealed. Further, by fixing the seal member 9 to the lower end of the housing 7 in this manner, the sleeve portion 8 of the shaft member 11 and the seal member 9 can be engaged in the axial direction, and the rotary member 10 can be removed from the shaft member 11. Prolapse is effectively prevented.

動圧軸受装置1は主に以上の構成部材からなり、シール部材9でシールされたハウジング7(回転部材10)の内部空間には、スリーブ部8の内部空孔も含め潤滑油が充満される。潤滑油としては種々のものが使用可能であるが、使用時や輸送時における温度変化等を考慮すると、低蒸発率および低粘度のエステル系潤滑油、例えば、ジオクチルセバケート(DOS)やジオクチルアゼレート(DOZ)等が好適である。   The hydrodynamic bearing device 1 is mainly composed of the above-described constituent members, and the internal space of the housing 7 (the rotating member 10) sealed by the seal member 9 is filled with lubricating oil including the internal holes of the sleeve portion 8. . Various lubricating oils can be used. Considering temperature changes during use and transportation, low-evaporation and low-viscosity ester-based lubricating oils such as dioctyl sebacate (DOS) and dioctylase A rate (DOZ) or the like is preferable.

以上の構成からなる動圧軸受装置1において、回転部材10が回転すると、スリーブ部8の動圧溝8a1、8a2(ラジアル動圧発生部)は、ハウジング7の内周面7a1とラジアル軸受隙間を介してそれぞれ対向する。そして、回転部材10の回転に伴って、ラジアル軸受隙間に形成される油膜は、動圧溝8b1,8b2の動圧作用によってその油膜剛性を高められ、この圧力によって回転部材10がラジアル方向に回転自在に非接触支持される。これにより、回転部材10をラジアル方向に回転自在に非接触支持するラジアル軸受部R1,R2(図中の黒塗り部分)が軸方向の二箇所に離隔形成される。   In the dynamic pressure bearing device 1 having the above-described configuration, when the rotating member 10 rotates, the dynamic pressure grooves 8a1 and 8a2 (radial dynamic pressure generating portions) of the sleeve portion 8 form a radial bearing gap with the inner peripheral surface 7a1 of the housing 7. Through each other. As the rotating member 10 rotates, the oil film formed in the radial bearing gap is enhanced in its oil film rigidity by the dynamic pressure action of the dynamic pressure grooves 8b1 and 8b2, and the rotating member 10 is rotated in the radial direction by this pressure. It is supported non-contact freely. As a result, radial bearing portions R1 and R2 (black portions in the figure) for supporting the rotating member 10 in a non-contact manner so as to be rotatable in the radial direction are spaced apart at two locations in the axial direction.

また、回転部材10が回転すると、ハウジング7の蓋部下端面7b1が軸部2の凸球面2bで接触支持される。これにより、回転部材10をスラスト方向に回転自在に接触支持するピボット軸受からなるスラスト軸受部Tが形成される。   When the rotating member 10 rotates, the lid portion lower end surface 7b1 of the housing 7 is contacted and supported by the convex spherical surface 2b of the shaft portion 2. As a result, a thrust bearing portion T composed of a pivot bearing that rotatably supports the rotating member 10 in the thrust direction is formed.

また、上述したように、ラジアル動圧発生部のうち、下側の動圧溝8b2を軸方向で非対称形状に形成したことにより、回転部材10の回転時、動圧溝による潤滑油の引き込み力(ポンピング力)は下側領域が上側領域に比べて相対的に大きくなる。そして、この引き込み力の差圧によって、スリーブ部8の外周面8bとハウジング7の内周面7a1との間の隙間に満たされた潤滑油は上方に流動し、スリーブ部8の上端面8dとハウジング7の下端面7b1との間の隙間→スリーブ部8の軸方向溝8a1によって形成される流体通路→スリーブ部8の下端面8cとシール部材9の上端面9bとの間の隙間という経路を循環して、第2ラジアル軸受部R2のラジアル軸受隙間に再び引き込まれる。   Further, as described above, the lower dynamic pressure groove 8b2 in the radial dynamic pressure generating portion is formed in an asymmetric shape in the axial direction, so that the pulling force of the lubricating oil by the dynamic pressure groove when the rotating member 10 rotates. (Pumping force) is relatively greater in the lower region than in the upper region. Then, due to the differential pressure of the pulling force, the lubricating oil filled in the gap between the outer peripheral surface 8b of the sleeve portion 8 and the inner peripheral surface 7a1 of the housing 7 flows upward, and the upper end surface 8d of the sleeve portion 8 A path between the lower end surface 7b1 of the housing 7 → a fluid passage formed by the axial groove 8a1 of the sleeve portion 8 → a path between the lower end surface 8c of the sleeve portion 8 and the upper end surface 9b of the seal member 9. It circulates and is drawn again into the radial bearing gap of the second radial bearing portion R2.

このように、潤滑油がハウジング7の内部空間を流動循環することで、潤滑油の圧力バランスが保たれると同時に、局部的な負圧の発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。上記の循環経路には、シール空間Sが連通しているので、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際にシール空間S内の潤滑油の油面(気液界面)から外気に排出される。従って、気泡による悪影響はより一層効果的に防止される。   As described above, the lubricating oil flows and circulates in the inner space of the housing 7, so that the pressure balance of the lubricating oil is maintained, and at the same time, the generation of bubbles due to the generation of local negative pressure and the generation of bubbles are caused. Problems such as leakage of lubricating oil and occurrence of vibration can be solved. Since the sealing space S communicates with the above circulation path, even if bubbles are mixed in the lubricating oil for some reason, when the bubbles circulate with the lubricating oil, the lubricating oil in the sealing space S It is discharged from the oil surface (gas-liquid interface) to the outside air. Therefore, adverse effects due to air bubbles can be more effectively prevented.

なお、上記のようなポンピング力を必要としない場合には、動圧溝8b1,8b2の双方を軸方向対称形状とすることができる。動圧溝をかかる形態とした場合であっても、局部的な負圧が発生した場合等には、上記の循環経路を潤滑油が循環することにより、潤滑油の漏れ等の問題は効果的に解消可能である。   In addition, when the above pumping force is not required, both the dynamic pressure grooves 8b1 and 8b2 can be made symmetrical in the axial direction. Even when the dynamic pressure groove is applied, when a local negative pressure is generated, the lubricating oil circulates in the circulation path, so that problems such as lubricating oil leakage are effective. Can be resolved.

以上に示すように、回転部材10の回転中は、ラジアル動圧発生部としての動圧溝8b1,8b2の動圧作用により、ラジアル軸受隙間に充満された潤滑油がラジアル軸受隙間の一部領域に集められて正圧を生じ、この正圧部分で潤滑油が多孔質のスリーブ部8内に還流する。これと並行してスリーブ部8の外周面8bからラジアル軸受隙間に次々と潤滑油が滲み出すが、この滲み出しは、スリーブ部8が静止側の軸部材11に設けられているため、従来のように遠心力の影響を受けることなくスムーズに行われる。従って、ラジアル軸受隙間に潤沢な潤滑油を供給することができ、潤滑油の供給不足による軸受性能の低下、例えば油膜切れによる軸受剛性の低下を効果的に回避することができる。   As described above, during rotation of the rotating member 10, the lubricating oil filled in the radial bearing gap is caused by the dynamic pressure action of the dynamic pressure grooves 8 b 1 and 8 b 2 serving as the radial dynamic pressure generating portions, and a partial region of the radial bearing gap. In this positive pressure portion, the lubricating oil flows back into the porous sleeve portion 8. In parallel with this, lubricating oil oozes out one after another from the outer peripheral surface 8b of the sleeve portion 8 into the radial bearing gap. This oozing occurs because the sleeve portion 8 is provided on the shaft member 11 on the stationary side. So that it is performed smoothly without being affected by centrifugal force. Therefore, abundant lubricating oil can be supplied to the radial bearing gap, and a reduction in bearing performance due to insufficient supply of the lubricating oil, for example, a reduction in bearing rigidity due to oil film breakage can be effectively avoided.

また、スリーブ部8の外周面8bでラジアル軸受隙間が形成される結果、回転部材10をラジアル方向に支持するラジアル軸受部R1,R2が従来構成に比べ外径側に位置することとなる。従って、この点からも、モーメント剛性等の軸受剛性を高めることができる。   Further, as a result of the radial bearing gap being formed on the outer peripheral surface 8b of the sleeve portion 8, the radial bearing portions R1 and R2 that support the rotating member 10 in the radial direction are positioned on the outer diameter side as compared with the conventional configuration. Therefore, also from this point, bearing rigidity such as moment rigidity can be increased.

また、本発明の構成上、ラジアル軸受隙間の精度はスリーブ部8の外周面8b精度に依存し、軸部2の外周面2a精度がラジアル軸受隙間の精度に影響することがない。そのため、軸部2の外周面2aとスリーブ部8の内周面8aとの間にラジアル軸受隙間を形成する従来構成のように、軸部2の外周面2a精度を高める必要がなくなる。上述のように、軸部2はステンレス鋼等の難加工材で形成されているため、その加工コストは一般に高額となるのに対し、スリーブ部8を形成する焼結金属は加工性に優れる。従って、軸部2の仕上げ加工を省略できることによるコスト削減効果がスリーブ部8の外周面8bを仕上げることによるコスト上昇分を上回るため、動圧軸受装置1の低コスト化を図ることができる。   Further, due to the configuration of the present invention, the accuracy of the radial bearing gap depends on the accuracy of the outer peripheral surface 8b of the sleeve portion 8, and the accuracy of the outer peripheral surface 2a of the shaft portion 2 does not affect the accuracy of the radial bearing gap. Therefore, it is not necessary to increase the accuracy of the outer peripheral surface 2a of the shaft portion 2 as in the conventional configuration in which a radial bearing gap is formed between the outer peripheral surface 2a of the shaft portion 2 and the inner peripheral surface 8a of the sleeve portion 8. As described above, since the shaft portion 2 is formed of a difficult-to-process material such as stainless steel, the processing cost is generally high, whereas the sintered metal forming the sleeve portion 8 is excellent in workability. Therefore, the cost reduction effect due to the fact that the finishing process of the shaft part 2 can be omitted exceeds the cost increase due to the finishing of the outer peripheral surface 8b of the sleeve part 8, so that the cost of the hydrodynamic bearing device 1 can be reduced.

また、本実施形態では、回転部材10を、ハウジング7と、これと一体に設けられたディスクハブ3とで構成したので、両者を個別に製作し、これを適宜の手段で一体化する場合に比べて製造コストを低廉化することができる。   In the present embodiment, the rotating member 10 is constituted by the housing 7 and the disk hub 3 provided integrally therewith. Therefore, when both are manufactured individually and integrated by appropriate means, Compared with this, the manufacturing cost can be reduced.

以上、本発明の一実施形態に係る動圧軸受装置1について説明を行ったが、本発明は、上記構成の動圧軸受装置に限定適用されるものではない。以下、本発明に係る動圧軸受装置の他の実施形態を図面に基づいて説明するが、以上で説明したものと異なる部分についてのみ説明を行い、以上で説明したものに準じる構成には共通の参照番号を付して重複説明を省略する。   The hydrodynamic bearing device 1 according to the embodiment of the present invention has been described above, but the present invention is not limited to the hydrodynamic bearing device having the above configuration. Hereinafter, other embodiments of the hydrodynamic bearing device according to the present invention will be described with reference to the drawings, but only the parts different from those described above will be described, and common to the configurations according to the above-described ones. A reference number is attached and a duplicate description is omitted.

図4は、本発明の第2実施形態に係る動圧軸受装置1を示すものである。同図に示す動圧軸受装置1が図2に示す動圧軸受装置と異なる主な点は、スリーブ部8の両端に、動圧軸受からなるスラスト軸受部T1、T2(図中の黒塗り部分)を設けた点にある。この場合、スリーブ部8の上端面8dには、図5に示すように、スラスト動圧発生部として、複数の動圧溝8d1をスパイラル形状に配列した環状領域が設けられる。また、図示は省略するが、スリーブ部8の下端面8cにも、スラスト動圧発生部として、複数の動圧溝をスパイラル形状に配列した環状領域が設けられる。なお、上側のスラスト動圧発生部は、軸部2の上端面2cに形成することもでき、軸部2の上端面2cとスリーブ部8の上端面8dの双方に形成することもできる。   FIG. 4 shows a hydrodynamic bearing device 1 according to the second embodiment of the present invention. The main difference between the hydrodynamic bearing device 1 shown in FIG. 2 and the hydrodynamic bearing device shown in FIG. 2 is that the thrust bearing portions T1 and T2 (both black portions in the figure) made of hydrodynamic bearings are provided at both ends of the sleeve portion 8. ). In this case, as shown in FIG. 5, the upper end surface 8d of the sleeve portion 8 is provided with an annular region in which a plurality of dynamic pressure grooves 8d1 are arranged in a spiral shape as a thrust dynamic pressure generating portion. Although not shown, the lower end surface 8c of the sleeve portion 8 is provided with an annular region in which a plurality of dynamic pressure grooves are arranged in a spiral shape as a thrust dynamic pressure generating portion. The upper thrust dynamic pressure generating portion can be formed on the upper end surface 2 c of the shaft portion 2, or can be formed on both the upper end surface 2 c of the shaft portion 2 and the upper end surface 8 d of the sleeve portion 8.

図6は、本発明の第3実施形態に係る動圧軸受装置1を示すものである。同図に示す動圧軸受装置1が図2に示す動圧軸受装置と異なる主な点は、回転部材10のハウジング17が両端を開口した円筒状に形成された点、ハウジング17の両端開口部にリング状のシール部材19,20が固定され、テーパ形状を呈するシール空間S1,S2が両端開口部に設けられる点にある。また、本実施形態では、図4に示す第2の実施形態と同様にスリーブ部8の両端に、動圧軸受からなるスラスト軸受部T1、T2が設けられる。但し、本実施形態においては、上側のスラスト軸受部T1が、シール部材19の下端面19bとスリーブ部8の上端面8dとの間に形成される。   FIG. 6 shows a hydrodynamic bearing device 1 according to a third embodiment of the present invention. The main differences between the hydrodynamic bearing device 1 shown in FIG. 2 and the hydrodynamic bearing device shown in FIG. 2 are that the housing 17 of the rotating member 10 is formed in a cylindrical shape with both ends open, and both end openings of the housing 17 are open. The ring-shaped seal members 19 and 20 are fixed to each other, and the taper-shaped seal spaces S1 and S2 are provided at the opening portions at both ends. Further, in the present embodiment, thrust bearing portions T1 and T2 made of dynamic pressure bearings are provided at both ends of the sleeve portion 8 as in the second embodiment shown in FIG. However, in the present embodiment, the upper thrust bearing portion T <b> 1 is formed between the lower end surface 19 b of the seal member 19 and the upper end surface 8 d of the sleeve portion 8.

この実施形態のようにハウジング17の両端開口部にシール空間S1,S2を設けた場合、下端開口部にのみシール空間Sを設けた上記の実施形態に比べ、オイルバッファとしての機能が軸方向の二箇所で得られるので、軸受装置全体のバッファ機能を高めることができる。従って、個々のシール空間S1、S2の容積をより小さくすることができ、シール部材19,20の軸方向寸法を縮小して動圧軸受装置1の小型化(コンパクト化)を図ることができる。   When the seal spaces S1 and S2 are provided in the opening portions at both ends of the housing 17 as in this embodiment, the function as an oil buffer is more axial than in the above embodiment in which the seal space S is provided only at the lower end opening portion. Since it is obtained in two places, the buffer function of the entire bearing device can be enhanced. Accordingly, the volumes of the individual seal spaces S1 and S2 can be further reduced, and the axial dimensions of the seal members 19 and 20 can be reduced to reduce the size (compactness) of the dynamic pressure bearing device 1.

以上では、軸部材11のスリーブ部8を焼結金属で形成した場合について説明を行ったが、スリーブ部8は、その他の多孔質体、例えば多孔質樹脂で形成することも可能である。このように、スリーブ部8を多孔質樹脂で形成する場合、軸部材11は、軸部2をインサート部品としてスリーブ部8を射出成形することで得られる。インサート成形であれば、型精度を高めておくだけで軸部2とスリーブ部8の組み付け精度を高めることができるだけでなく、スリーブ部8の成形と、軸部2に対するスリーブ部8の組み付けとを一工程で行うことができるので、動圧軸受装置1の低コスト化を図る上で有効である。   The case where the sleeve portion 8 of the shaft member 11 is formed of a sintered metal has been described above. However, the sleeve portion 8 can also be formed of another porous body, for example, a porous resin. As described above, when the sleeve portion 8 is formed of a porous resin, the shaft member 11 can be obtained by injection molding the sleeve portion 8 using the shaft portion 2 as an insert part. In the case of insert molding, it is possible not only to improve the assembly accuracy of the shaft portion 2 and the sleeve portion 8 by increasing the mold accuracy, but also to form the sleeve portion 8 and to assemble the sleeve portion 8 to the shaft portion 2. Since it can be performed in one step, it is effective in reducing the cost of the hydrodynamic bearing device 1.

また、この場合、ラジアル動圧発生部としての動圧溝8b1,8b2は、スリーブ部8の射出成形型に動圧溝形状に対応した型部を設けておくことにより、スリーブ部8の射出成形と同時に型成形することができる。かかる構成とすれば、動圧溝8b1、8b2を別工程で設ける手間を省くことができ、動圧軸受装置1の製造コストを一層低廉化することができる。さらに、図4および図6に示す実施形態にあっては、スラスト動圧発生部もスリーブ部8の射出成形と同時に型成形することができる。   Further, in this case, the dynamic pressure grooves 8b1 and 8b2 as the radial dynamic pressure generating portions are formed by providing a mold portion corresponding to the dynamic pressure groove shape in the injection mold of the sleeve portion 8, so that the injection molding of the sleeve portion 8 is performed. At the same time, it can be molded. With this configuration, it is possible to save the trouble of providing the dynamic pressure grooves 8b1 and 8b2 in a separate process, and the manufacturing cost of the dynamic pressure bearing device 1 can be further reduced. Further, in the embodiment shown in FIGS. 4 and 6, the thrust dynamic pressure generating portion can be molded simultaneously with the injection molding of the sleeve portion 8.

なお、多孔質樹脂でスリーブ部8を形成する場合に使用可能なベース樹脂としては、射出成形可能で、かつ求められる耐熱性、耐油性、機械的強度等を満足するものであれば熱可塑性樹脂、熱硬化性樹脂を問わず使用可能で、例えば、以下例示する材料群から選定された一または複数種からなるものが使用可能である。また、ベース樹脂には、強化材や潤滑剤、導電材等の各種充填材を一または複数種配合することもできる。   The base resin that can be used when the sleeve portion 8 is formed of a porous resin is a thermoplastic resin that can be injection-molded and satisfies the required heat resistance, oil resistance, mechanical strength, and the like. Any thermosetting resin can be used. For example, one or a plurality of materials selected from the material group exemplified below can be used. In addition, the base resin may contain one or more kinds of various fillers such as a reinforcing material, a lubricant, and a conductive material.

ベース樹脂として使用可能な樹脂材料として、例えば、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、ポリエーテルサルフォン(PES)、ポリアミドイミド(PAI)、熱可塑性ポリイミド(TPI)、熱硬化性ポリイミド、ポリアミド(PA)、ポリアミド6T、ポリアミド9T等の芳香族ポリアミド、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)等のフッ素系共重合体樹脂等が挙げられる。   Examples of resin materials that can be used as the base resin include polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polyether ketone (PEK), polyether ether ketone (PEEK), polyether imide (PEI), and polyether sulfone. (PES), polyamideimide (PAI), thermoplastic polyimide (TPI), thermosetting polyimide, polyamide (PA), polyamide 6T, polyamide 9T, and other aromatic polyamides, tetrafluoroethylene / hexafluoropropylene copolymer (PFA) ), Fluorine-based copolymer resins such as ethylene / tetrafluoroethylene copolymer (ETFE), and the like.

上記のベース樹脂に、ドライブレンド、溶融混錬等、樹脂の混合に一般に使用する混錬法で気孔形成材、充填材を混合させることにより、スリーブ部8の成形に用いる樹脂組成物が得られる。気孔形成材としては、成形時の融解を防止するため、選定されるベース樹脂の溶融温度よりも高い融点を有し、かつベース樹脂に配合してスリーブ部8を成形した後、ベース樹脂に対して不溶性を有する溶媒を用いて除去可能なものが使用可能である。この中でも、特に、成形後の除去作業を容易に行い得る(例えば水溶性の)もので、かつ防錆剤として使用できる弱アルカリ性物質などが好適に使用可能である。   By mixing the above base resin with a pore-forming material and a filler by a kneading method generally used for resin mixing such as dry blending, melt kneading, etc., a resin composition used for molding the sleeve portion 8 is obtained. . As the pore forming material, in order to prevent melting at the time of molding, the sleeve portion 8 having a melting point higher than the melting temperature of the selected base resin and blended with the base resin is molded, and then the base resin is molded. Those which can be removed by using a solvent having insolubility can be used. Among these, in particular, weak alkaline substances that can be easily removed after molding (for example, water-soluble) and can be used as a rust preventive agent can be suitably used.

気孔形成材としては、安息香酸ナトリウム、酢酸ナトリウム、セバシン酸ナトリウム、コハク酸ナトリウム、あるいはステアリン酸ナトリウムに代表される有機アルカリ金属塩や、炭酸カリウム、モリブデン酸ナトリウム、モリブデン酸カリウム、タングステン酸ナトリウム、三リン酸ナトリウム、ピロリン酸ナトリウムに代表される無機アルカリ金属塩等を使用することができる。この中でも、高融点で、ベース樹脂の選定自由度を高められ、かつ優れた水溶性を示す安息香酸ナトリウム、酢酸ナトリウム、セバシン酸ナトリウムが特に好ましい。これらの金属塩は一種のみ使用する他、二種以上混合して使用しても良い。   As the pore-forming material, organic alkali metal salts represented by sodium benzoate, sodium acetate, sodium sebacate, sodium succinate, or sodium stearate, potassium carbonate, sodium molybdate, potassium molybdate, sodium tungstate, Inorganic alkali metal salts such as sodium triphosphate and sodium pyrophosphate can be used. Among these, sodium benzoate, sodium acetate, and sodium sebacate are particularly preferable because they have a high melting point, increase the degree of freedom in selecting a base resin, and exhibit excellent water solubility. These metal salts may be used alone or in combination of two or more.

また、以上では、ハウジング7(17)とディスクハブ3とを一体形成した回転部材10を用いた動圧軸受装置1について説明を行ったが、例えば、ハウジング7とディスクハブ3とで求められる特性が異なり、一体形成するのが難しい場合には、個別に製作したハウジング7とディスクハブ3とを適宜の手段で一体化した回転部材10を用いることもできる。またあるいは、ハウジング7又はディスクハブ3の何れか一方をインサート部品とし、他方を射出成形した回転部材10を用いることもこともできる。   In the above description, the hydrodynamic bearing device 1 using the rotating member 10 in which the housing 7 (17) and the disk hub 3 are integrally formed has been described. For example, characteristics required for the housing 7 and the disk hub 3 are described. However, if it is difficult to integrally form the rotating member 10, the rotating member 10 in which the housing 7 and the disc hub 3 manufactured individually are integrated by an appropriate means can be used. Alternatively, it is also possible to use a rotating member 10 in which one of the housing 7 and the disk hub 3 is an insert part and the other is injection-molded.

また、以上では、ラジアル動圧発生部をスリーブ部8の外周面8bに、スラスト動圧発生部をスリーブ部8の端面8c,8dに設けた場合について説明を行ったが、これら動圧発生部は、ラジアル軸受隙間およびスラスト軸受隙間を介して対向する面に形成しても良い。   In the above description, the case where the radial dynamic pressure generating portion is provided on the outer peripheral surface 8b of the sleeve portion 8 and the thrust dynamic pressure generating portion is provided on the end surfaces 8c and 8d of the sleeve portion 8 has been described. May be formed on surfaces facing each other via a radial bearing gap and a thrust bearing gap.

また、以上では、ラジアル軸受部R1、R2として、ヘリングボーン形状等の動圧溝により潤滑油の動圧作用を発生させる構成を例示しているが、ラジアル軸受部R1、R2として、いわゆるステップ軸受、多円弧軸受、あるいは非真円軸受を採用しても良い。この場合、ラジアル動圧発生部は、それぞれ、円周方向に複数設けられた軸方向溝、円弧面、調和波形面で構成される。また、以上では、ラジアル軸受部を軸方向2箇所に設けた構成を例示しているが、ラジアル軸受部を軸方向の1箇所あるいは3箇所以上に設けることもできる。   In the above description, the radial bearing portions R1 and R2 are exemplified by a configuration in which the dynamic pressure action of the lubricating oil is generated by a dynamic pressure groove having a herringbone shape or the like, but the radial bearing portions R1 and R2 are so-called step bearings. A multi-arc bearing or a non-circular bearing may be employed. In this case, each of the radial dynamic pressure generating portions is configured by a plurality of axial grooves, circular arc surfaces, and harmonic wave surfaces provided in the circumferential direction. Moreover, although the structure which provided the radial bearing part in the axial direction two places was illustrated above, a radial bearing part can also be provided in the axial direction one place or three places or more.

さらに、図4および図6に示す実施形態のように、スラスト軸受部T1,T2を動圧軸受で構成する場合、スラスト軸受部T1,T2の何れか一方又は双方は、いわゆるステップ軸受や波型軸受を採用しても良い。   Further, as in the embodiment shown in FIGS. 4 and 6, when the thrust bearing portions T1 and T2 are configured by dynamic pressure bearings, either one or both of the thrust bearing portions T1 and T2 are so-called step bearings or wave shapes. A bearing may be adopted.

以上では、動圧軸受装置1をディスク駆動装置用のスピンドルモータに組み込んだ場合について説明を行ったが、本発明の動圧軸受装置1は、高い軸受性能を有するものであるから、高い回転精度が必要とされるその他のモータ、例えばファンモータやポリゴンスキャナモータに好適に使用することができる。動圧軸受装置1をファンモータに使用する場合、ハウジング7にはディスクハブ3に代えてファンを有するロータが設けられ、ポリゴンスキャナモータに使用する場合、ハウジング7にはディスクハブ3に代えてポリゴンミラーが設けられる(何れも図示は省略)。   In the above, the case where the dynamic pressure bearing device 1 is incorporated in a spindle motor for a disk drive device has been described. However, since the dynamic pressure bearing device 1 of the present invention has high bearing performance, it has high rotational accuracy. Therefore, it can be suitably used for other motors that require the above, such as a fan motor and a polygon scanner motor. When the hydrodynamic bearing device 1 is used for a fan motor, the housing 7 is provided with a rotor having a fan instead of the disk hub 3, and when used for a polygon scanner motor, the housing 7 is replaced with a polygon instead of the disk hub 3. A mirror is provided (both are not shown).

ディスク装置用のスピンドルモータを概念的に示す断面図である。It is sectional drawing which shows notionally the spindle motor for disk apparatuses. 本発明に係る動圧軸受装置の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the hydrodynamic bearing apparatus which concerns on this invention. 図2に示す動圧軸受装置で用いる軸部材の斜視図である。FIG. 3 is a perspective view of a shaft member used in the fluid dynamic bearing device shown in FIG. 2. 本発明に係る動圧軸受装置の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the hydrodynamic bearing apparatus which concerns on this invention. 図4に示す動圧軸受装置で用いるスリーブ部の平面図である。It is a top view of the sleeve part used with the fluid dynamic bearing apparatus shown in FIG. 本発明に係る動圧軸受装置の第3実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the hydrodynamic bearing apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部
3 ハブ部(ディスクハブ)
3d ディスク搭載面
4 ステータコイル
5 ロータマグネット
6 ブラケット
7 ハウジング
8 スリーブ部
8b1,8b2 動圧溝(ラジアル動圧発生部)
9 シール部材
10 回転部材
11 軸部材
R1、R2 ラジアル軸受部
T、T1、T2 スラスト軸受部
S、S1、S2 シール空間
1 Hydrodynamic bearing device 2 Shaft 3 Hub (disc hub)
3d Disc mounting surface 4 Stator coil 5 Rotor magnet 6 Bracket 7 Housing 8 Sleeve portion 8b1, 8b2 Dynamic pressure groove (radial dynamic pressure generating portion)
9 Seal member 10 Rotating member 11 Shaft member R1, R2 Radial bearing portion T, T1, T2 Thrust bearing portion S, S1, S2 Seal space

Claims (7)

静止側に設けられた軸部材と、軸部材を内周に収容した回転部材と、軸部材と回転部材の間に形成されるラジアル軸受隙間と、回転部材の回転に伴い、ラジアル軸受隙間に潤滑油の動圧作用を発生させるラジアル動圧発生部とを備える動圧軸受装置において、
軸部材が、外径側への張り出しのない円筒面状の外周面を有する軸部と、軸部の外周に固定された多孔質のスリーブ部とを有し、
回転部材が、少なくとも軸方向の一端が開口し、スリーブ部の外周を覆い、かつ内径側への張り出しのない円筒面状の内周面を備えるハウジングと、ハウジングの外径方向に延び、かつハウジングと一体に形成されたハブ部とを有し、ハウジングの内周面とスリーブ部の外周面との間にラジアル軸受隙間が形成され、
ハウジングの内部空間にスリーブ部の空孔も含めて潤滑油が充満され、
ハウジングの開口部内周にスリーブ部の端面と対向するシール部材を固定し、シール部材の内周面と軸部の外周面との間に、油面を有するシール空間を形成し
シール部材の軸方向一端側の端面よりも軸方向外側に軸部の軸方向一端を突出させ、この突出部が静止側のブラケットに固定されることを特徴とする動圧軸受装置。
The shaft member provided on the stationary side, the rotating member that accommodates the shaft member in the inner periphery, the radial bearing gap formed between the shaft member and the rotating member, and the radial bearing gap is lubricated as the rotating member rotates. In a hydrodynamic bearing device comprising a radial dynamic pressure generating section that generates a dynamic pressure action of oil,
The shaft member has a shaft portion having a cylindrical outer peripheral surface that does not protrude to the outer diameter side, and a porous sleeve portion fixed to the outer periphery of the shaft portion,
The rotating member, at least one axial end is open, a housing provided with a projecting free cylindrical surface shape of the inner peripheral surface of not covering the outer periphery of the sleeve portion, and the inner diameter side, extends in the outer diameter direction of the housing, and A hub portion formed integrally with the housing, and a radial bearing gap is formed between the inner peripheral surface of the housing and the outer peripheral surface of the sleeve portion,
The interior space of the housing is filled with lubricating oil, including the holes in the sleeve,
A seal member facing the end surface of the sleeve portion is fixed to the inner periphery of the opening of the housing, and a seal space having an oil surface is formed between the inner peripheral surface of the seal member and the outer peripheral surface of the shaft portion ,
A hydrodynamic bearing device , wherein one axial end of a shaft portion is protruded axially outward from an end surface on one axial end side of a seal member, and the protruding portion is fixed to a stationary bracket .
スリーブ部が、焼結金属で形成された請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the sleeve portion is formed of a sintered metal. スリーブ部が、多孔質樹脂で形成された請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the sleeve portion is formed of a porous resin. スリーブ部が、軸部をインサート部品として射出成形された請求項3記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 3, wherein the sleeve portion is injection-molded with the shaft portion as an insert part. スリーブ部の外周面に、ラジアル動圧発生部を型成形した請求項4記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 4, wherein a radial dynamic pressure generating portion is molded on the outer peripheral surface of the sleeve portion. 軸部材の一端で回転部材がスラスト方向に接触支持される請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the rotating member is contacted and supported in the thrust direction at one end of the shaft member. スリーブ部の少なくとも一方の端面で形成されるスラスト軸受隙間と、
スラスト軸受隙間に潤滑油の動圧作用を発生させるスラスト動圧発生部と、を備える請求項1記載の動圧軸受装置。
A thrust bearing gap formed on at least one end face of the sleeve portion;
The dynamic pressure bearing device according to claim 1, further comprising: a thrust dynamic pressure generating section that generates a dynamic pressure action of the lubricating oil in the thrust bearing gap.
JP2007213711A 2007-08-20 2007-08-20 Hydrodynamic bearing device Expired - Fee Related JP5133008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007213711A JP5133008B2 (en) 2007-08-20 2007-08-20 Hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007213711A JP5133008B2 (en) 2007-08-20 2007-08-20 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2009047235A JP2009047235A (en) 2009-03-05
JP5133008B2 true JP5133008B2 (en) 2013-01-30

Family

ID=40499635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007213711A Expired - Fee Related JP5133008B2 (en) 2007-08-20 2007-08-20 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP5133008B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020008092A (en) * 2018-07-09 2020-01-16 Ntn株式会社 Fluid dynamic pressure bearing device and motor having bearing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787705A (en) * 1993-09-18 1995-03-31 Tdk Corp Spindle motor
JP3661853B2 (en) * 2001-08-27 2005-06-22 ソニー株式会社 Spindle motor and information recording / reproducing apparatus having spindle motor
JP2006038073A (en) * 2004-07-26 2006-02-09 Nippon Densan Corp Oil dynamic-pressure bearing, motor, and disk unit
JP2005180707A (en) * 2005-02-18 2005-07-07 Ntn Corp Dynamic pressure type sintered oil-impregnated bearing unit

Also Published As

Publication number Publication date
JP2009047235A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
WO2006115104A1 (en) Dynamic pressure bearing device
JP5306747B2 (en) Hydrodynamic bearing device
KR20100089073A (en) Fluid dynamic-pressure bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2007024267A (en) Fluid bearing device and motor equipped with the same
US20100166346A1 (en) Dynamic bearing device
JP4762757B2 (en) Hydrodynamic bearing device
JP2005282779A (en) Fluid bearing device
JP5133008B2 (en) Hydrodynamic bearing device
KR101321383B1 (en) Fluid bearing device
WO2007102312A1 (en) Fluid bearing device
JP4689283B2 (en) Hydrodynamic bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP5220359B2 (en) Hydrodynamic bearing device
JP5005235B2 (en) Hydrodynamic bearing device
JP2009103252A (en) Fluid bearing device and motor having the same
JP2005114164A (en) Dynamic pressure bearing device
JP5101122B2 (en) Hydrodynamic bearing device
JP2010096202A (en) Fluid bearing device and method of manufacturing the same
JP5231095B2 (en) Hydrodynamic bearing device
JP2008075687A (en) Fluid bearing device
JP5005242B2 (en) Hydrodynamic bearing device
JP2009011018A (en) Fluid bearing device, and manufacturing method thereof
JP2006300178A (en) Fluid bearing device
JP2007327545A (en) Dynamic-pressure bearing device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121024

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5133008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees