JP2007327545A - Dynamic-pressure bearing device - Google Patents

Dynamic-pressure bearing device Download PDF

Info

Publication number
JP2007327545A
JP2007327545A JP2006158560A JP2006158560A JP2007327545A JP 2007327545 A JP2007327545 A JP 2007327545A JP 2006158560 A JP2006158560 A JP 2006158560A JP 2006158560 A JP2006158560 A JP 2006158560A JP 2007327545 A JP2007327545 A JP 2007327545A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
radial
peripheral surface
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006158560A
Other languages
Japanese (ja)
Inventor
Seiji Hori
政治 堀
Masaaki Toda
正明 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006158560A priority Critical patent/JP2007327545A/en
Publication of JP2007327545A publication Critical patent/JP2007327545A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic-pressure bearing device that boasts high reliability while suppressing deterioration in bearing performance due to the occurrence of contaminants as much as possible. <P>SOLUTION: The dynamic-pressure bearing device 1 is provided with: a shaft member 5; bearing sleeves 3, 4 that are arranged on the outer-diameter side of the shaft member 5; radial bearing clearances between the outer peripheral face 5a of the shaft member 5 and the respective inner peripheral faces 3a, 4a of both bearing sleeves 3, 4; and a radial dynamic-pressure generation part that generates a fluid dynamic-pressure in each radial bearing clearance. A spacer member 8 made of a porous body is arranged between the bearing sleeves 3, 4. The radial dynamic-pressure generation part is formed into a shape that allows lubricating oil to flow toward the spacer member 8. A circulation path for the lubricating oil that passes through the spacer member 8 composed of a porous body is thereby formed so as to capture the contaminants mixed into the lubricating oil in internal cavities of the spacer member 8 along with the lubricating-oil flow. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、動圧軸受装置に関するものである。   The present invention relates to a hydrodynamic bearing device.

動圧軸受装置は、軸受隙間に生じる潤滑流体の動圧作用で軸部材を非接触支持する軸受装置である。この動圧軸受装置は、高速回転、高回転精度、低騒音等の特徴を有するものであり、近年ではその特徴を活かして、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として、より具体的には、HDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイールモータ、ファンモータなどのモータ用軸受装置として好適に使用される。   The dynamic pressure bearing device is a bearing device that supports a shaft member in a non-contact manner by a dynamic pressure action of a lubricating fluid generated in a bearing gap. This hydrodynamic bearing device has characteristics such as high-speed rotation, high rotation accuracy, and low noise, and in recent years, taking advantage of the characteristics, the bearing device for motors mounted on various electric devices including information equipment. More specifically, magnetic disk devices such as HDD, optical disk devices such as CD-ROM, CD-R / RW, DVD-ROM / RAM, spindle motors such as magneto-optical disk devices such as MD and MO, lasers, etc. It is preferably used as a bearing device for a motor such as a polygon scanner motor of a beam printer (LBP), a color wheel motor of a projector, or a fan motor.

例えば、HDD等のディスク装置のスピンドルモータに組み込まれる動圧軸受装置として、図8に示す構成が知られている。同図に示す動圧軸受装置では、軸部材20をラジアル方向に回転自在に非接触支持するラジアル軸受部Rと、軸部材20をスラスト方向に回転自在に非接触支持するスラスト軸受部T、Tとが設けられる。ラジアル軸受部Rは、軸部21の外周面、あるいはラジアル軸受隙間を介して対向する軸受スリーブ24の内周面に動圧溝等の動圧発生部を設けることによって形成される。また、スラスト軸受部T、Tは、例えば、軸部材20のフランジ部22の両端面、あるいは、スラスト軸受隙間を介してこれに対向する面(例えば、軸受スリーブ24の端面24bや、ハウジング23の内底面23a等)に動圧溝等の動圧発生部を設けることによって形成される。   For example, a configuration shown in FIG. 8 is known as a hydrodynamic bearing device incorporated in a spindle motor of a disk device such as an HDD. In the hydrodynamic bearing device shown in the figure, a radial bearing portion R for supporting the shaft member 20 in a non-contact manner in a radial direction and a thrust bearing portion T, T for supporting the shaft member 20 in a non-contact manner in a thrust direction. And are provided. The radial bearing portion R is formed by providing a dynamic pressure generating portion such as a dynamic pressure groove on the outer peripheral surface of the shaft portion 21 or the inner peripheral surface of the bearing sleeve 24 opposed via the radial bearing gap. Further, the thrust bearing portions T and T are, for example, both end surfaces of the flange portion 22 of the shaft member 20, or surfaces (for example, the end surface 24 b of the bearing sleeve 24, It is formed by providing a dynamic pressure generating part such as a dynamic pressure groove on the inner bottom surface 23a or the like.

また、上記の動圧軸受装置において、軸受スリーブ24にはその外周面24aに両端面を連通する連通溝25と反スラスト軸受端面側に軸受スリーブ24の外周面24aと内周面を連通させる連通溝26が設けられている。この連通溝25、26を設けることにより、ラジアル軸受隙間→スラスト軸受隙間→連通溝25→連通溝26→各軸受隙間という一連の循環通路が構築され、軸受運転時、潤滑流体は主にこの循環通路を辿って軸受内部を流動する(例えば、特許文献1参照)。
特開2003−232353号公報
Further, in the above-described dynamic pressure bearing device, the bearing sleeve 24 has a communication groove 25 that communicates with the outer peripheral surface 24a at both ends, and a communication that communicates the outer peripheral surface 24a and the inner peripheral surface of the bearing sleeve 24 with the opposite end surface of the thrust bearing. A groove 26 is provided. By providing the communication grooves 25 and 26, a series of circulation passages of radial bearing gap → thrust bearing gap → communication groove 25 → communication groove 26 → each bearing gap is constructed. The inside of the bearing flows along the passage (see, for example, Patent Document 1).
JP 2003-232353 A

ところで、上記の動圧軸受装置の運転時、特に起動・停止時には、軸部材と軸受スリーブおよび軸部材とハウジングの摺動接触に伴って、接触領域が摩耗する場合がある。特に近年のディスク装置では、大容量化を目的として、軸部材(厳密には、軸部材に設けられるディスクハブ)に搭載されるディスク枚数、すなわち回転体の重量が増加し、摩耗量が増加する傾向にある。そのため、発生した摩耗粉がコンタミとして潤滑油に混入し、上記の循環通路を通じて軸受内部の各所に分配される結果、潤滑性能の低下、ひいては軸受性能の低下を招く恐れが高まる。また、摩耗粉等のコンタミが軸受隙間内に堆積すると、回転停止を引き起こす可能性もあり、信頼性の低下が懸念される。   By the way, when the above-described hydrodynamic bearing device is operated, particularly when starting and stopping, the contact region may be worn due to sliding contact between the shaft member and the bearing sleeve and the shaft member and the housing. Particularly in recent disk apparatuses, the number of disks mounted on a shaft member (strictly speaking, a disk hub provided on the shaft member), that is, the weight of the rotating body increases, and the amount of wear increases for the purpose of increasing the capacity. There is a tendency. For this reason, the generated wear powder is mixed into the lubricating oil as contamination and distributed to various locations inside the bearing through the circulation passage. As a result, there is an increased risk of lowering the lubrication performance, and consequently lowering the bearing performance. Further, when contamination such as wear powder accumulates in the bearing gap, there is a possibility that rotation may be stopped, and there is a concern that reliability may be lowered.

本発明の課題は、コンタミの発生に起因する軸受性能の低下を可及的に抑制し、高い信頼性を誇る動圧軸受装置を提供することである。   An object of the present invention is to provide a hydrodynamic bearing device that suppresses a decrease in bearing performance due to the occurrence of contamination as much as possible and boasts high reliability.

上記課題を解決するため、本発明は、軸部材と、軸部材の外径側に配置された軸受スリーブと、軸部材の外周面と軸受スリーブの内周面との間に形成されるラジアル軸受隙間と、ラジアル軸受隙間を満たす潤滑流体に動圧作用を発生させるラジアル動圧発生部とを備える動圧軸受装置において、軸受スリーブと別体の多孔質部材を設けると共に、ラジアル動圧発生部を多孔質部材へ向けて潤滑流体が流動する形状に形成し、多孔質部材を通る潤滑流体の循環通路を形成したことを特徴とする動圧軸受装置を提供する。   In order to solve the above problems, the present invention provides a shaft member, a bearing sleeve disposed on the outer diameter side of the shaft member, and a radial bearing formed between the outer peripheral surface of the shaft member and the inner peripheral surface of the bearing sleeve. In a hydrodynamic bearing device including a clearance and a radial dynamic pressure generating portion that generates a dynamic pressure action on a lubricating fluid that satisfies the radial bearing clearance, a porous member that is separate from the bearing sleeve is provided, and the radial dynamic pressure generating portion is Provided is a fluid dynamic bearing device characterized in that a lubricating fluid flows toward a porous member and a circulation passage for the lubricating fluid passing through the porous member is formed.

上記のように、本発明では、軸受スリーブとは別体に設けられ、焼結金属、多孔質樹脂等からなる多孔質部材を通る潤滑流体の循環通路が形成される。かかる構成によれば、軸受運転時、潤滑流体は多孔質部材を通って軸受内部を流動するので、潤滑流体中に摩耗粉等のコンタミが混入した場合でも、コンタミを、潤滑流体と共に多孔質部材の内部に流れ込ませて内部空孔で捕捉することができ、潤滑流体を清浄な状態に保つことができる。従って、コンタミに起因する上記の不具合を回避することが可能となる。   As described above, according to the present invention, a lubricating fluid circulation passage is formed that is provided separately from the bearing sleeve and passes through a porous member made of sintered metal, porous resin, or the like. According to this configuration, when the bearing is operated, the lubricating fluid flows through the porous member through the porous member. Therefore, even when contamination such as wear powder is mixed in the lubricating fluid, the contaminant is mixed with the lubricating fluid. The lubricating fluid can be trapped by the internal holes and kept in a clean state. Therefore, it is possible to avoid the above-described problems caused by contamination.

上記構成の動圧軸受装置には、さらに、スラスト軸受隙間と、スラスト軸受隙間を満たす潤滑流体に動圧作用を発生させるスラスト動圧発生部とを設けることもできる。これにより、スラスト軸受部を回転精度に優れる動圧軸受で構成することが可能となり、例えばスラスト軸受部をピボット軸受で構成する場合に比べ摩耗粉の発生を抑制することができる。このとき、スラスト動圧発生部を、多孔質部材へ向けて潤滑流体が流動する形状に形成すれば、スラスト軸受隙間を満たす潤滑流体中に摩耗粉等のコンタミが混入した場合でも、上記同様、軸受の運転に伴って、コンタミを潤滑流体と共に多孔質部材に流れ込ませ、コンタミを多孔質部材の内部空孔で捕捉することができる。   The dynamic pressure bearing device having the above-described configuration may further include a thrust bearing gap and a thrust dynamic pressure generating section that generates a dynamic pressure action on the lubricating fluid that fills the thrust bearing gap. Thereby, it becomes possible to comprise a thrust bearing part with a hydrodynamic bearing which is excellent in rotation accuracy, for example, compared with the case where a thrust bearing part is constituted with a pivot bearing, generation of wear powder can be controlled. At this time, if the thrust dynamic pressure generating portion is formed in a shape in which the lubricating fluid flows toward the porous member, even if contamination such as wear powder is mixed in the lubricating fluid satisfying the thrust bearing gap, As the bearing is operated, the contamination can flow into the porous member together with the lubricating fluid, and the contamination can be captured by the internal holes of the porous member.

多孔質部材の表面開孔径は、潤滑流体の流入部となる領域で最大としておくのが望ましい。かかる構成とすることにより、一旦多孔質部材に流れ込んだコンタミが外部流出する可能性を低減することができ、上述した不具合が一層発生しにくくなる。なお、ここで言う表面開孔径は、単位面積当たりに存在する各開孔の面積の総和を平均したものを言う。   The surface opening diameter of the porous member is desirably maximized in a region serving as a lubricating fluid inflow portion. By adopting such a configuration, it is possible to reduce the possibility that the contamination once flowing into the porous member flows out to the outside, and the above-described problems are further less likely to occur. In addition, the surface opening diameter said here says what averaged the sum total of the area of each opening which exists per unit area.

軸受スリーブは、潤滑性や成形性を考慮すると焼結金属等の多孔質体で形成するのが望ましい。このように、軸受スリーブを多孔質体で形成する場合、少なくともラジアル軸受隙間に面する内周面の表面開孔径は、多孔質部材における潤滑流体の流入部となる領域の表面開孔径よりも小さく設定しておくのが望ましい。かかる構成とすることにより、例えば、摩耗粉等のコンタミが内周面の表面開孔に入り込み、軸受隙間に滲み出す潤滑流体量を減少させる事態(潤滑不良)を極力回避することができる。なお、軸受スリーブの端部側にスラスト軸受隙間を設ける場合には、内周面と同様に、端面の表面開孔径を、多孔質部材における潤滑流体の流入部となる領域の表面開孔径よりも小さく設定しておくのが望ましい。このような構成は、軸受スリーブと多孔質部材とが別体であることから、例えば、両者を形成する金属粉末の粒径等を異ならせることにより、比較的容易に得ることができる。   The bearing sleeve is preferably formed of a porous body such as sintered metal in consideration of lubricity and formability. In this way, when the bearing sleeve is formed of a porous body, at least the surface opening diameter of the inner peripheral surface facing the radial bearing gap is smaller than the surface opening diameter of the region serving as the lubricating fluid inflow portion in the porous member. It is desirable to set it. By adopting such a configuration, for example, it is possible to avoid as much as possible a situation in which contamination such as wear powder enters the surface opening of the inner peripheral surface and reduces the amount of lubricating fluid that seeps into the bearing gap (lubrication failure). When the thrust bearing gap is provided on the end side of the bearing sleeve, the surface opening diameter of the end surface is set to be larger than the surface opening diameter of the region serving as the inflow portion of the lubricating fluid in the porous member, similarly to the inner peripheral surface. It is desirable to set it small. Such a configuration can be obtained relatively easily by making the particle diameters of the metal powders forming the bearing sleeve and the porous member different from each other, for example.

多孔質部材は軸受スリーブと離隔して設けることもできるが、これだと多孔質部材に向けて潤滑流体を流動させるのが難しくなり、コンタミが軸受内部に拡散する恐れが高まる。そのため、多孔質部材は軸受スリーブと当接させて設けるのが望ましく、これにより、摩耗粉等のコンタミの主要な発生源である各軸受隙間に比較的近い箇所でコンタミを捕捉することができ、コンタミが軸受内部の各所に拡散するのを抑制することが可能となる。その一方で、特に軸受スリーブが多孔質体で形成されている場合には、両者の内部空孔を通じて、コンタミが排除された清浄な潤滑流体を軸受スリーブへ円滑に供給することができ、良好な潤滑性を維持することができる。   The porous member can be provided separately from the bearing sleeve, but this makes it difficult for the lubricating fluid to flow toward the porous member, and the risk of contamination spreading inside the bearing increases. Therefore, it is desirable that the porous member is provided in contact with the bearing sleeve, whereby contamination can be captured at a location relatively close to each bearing gap that is a main source of contamination such as wear powder. It is possible to suppress the contamination from diffusing to various places inside the bearing. On the other hand, particularly when the bearing sleeve is formed of a porous body, a clean lubricating fluid from which contamination has been eliminated can be smoothly supplied to the bearing sleeve through the internal holes of both, which is favorable. Lubricity can be maintained.

以上のように、本発明によれば、コンタミの発生に起因する軸受性能の低下を可及的に抑制し、高い信頼性を誇る動圧発生装置を提供することができる。   As described above, according to the present invention, it is possible to provide a dynamic pressure generating device that can suppress a decrease in bearing performance due to the occurrence of contamination as much as possible and boasts high reliability.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、第1の実施形態に係る動圧軸受装置1を示している。この動圧軸受装置1は、スピンドルモータ、例えばHDD用のスピンドルモータに組み込んで用いられるものである。この動圧軸受装置1は、軸部材5と、軸方向に離隔して軸部材5の外径側に配置された複数、例えば2つの軸受スリーブ(第1軸受スリーブ3、第2軸受スリーブ4)と、該第1、第2軸受スリーブ3、4間に配設されたスペーサ部材8と、第1、第2軸受スリーブ3、4、およびスペーサ部材8を内周に固定可能なハウジング2とを主要な構成部品として備えている。なお、以下説明の便宜上、ハウジング2から軸部材5の端部が突出している側を上側、その軸方向反対側を下側として説明を進める。   FIG. 1 shows a hydrodynamic bearing device 1 according to the first embodiment. The hydrodynamic bearing device 1 is used by being incorporated in a spindle motor, for example, a spindle motor for HDD. The hydrodynamic bearing device 1 includes a shaft member 5 and a plurality of, for example, two bearing sleeves (a first bearing sleeve 3 and a second bearing sleeve 4) disposed on the outer diameter side of the shaft member 5 so as to be separated from each other in the axial direction. A spacer member 8 disposed between the first and second bearing sleeves 3 and 4 and a housing 2 capable of fixing the first and second bearing sleeves 3 and 4 and the spacer member 8 to the inner periphery. It is provided as a major component. For convenience of explanation, the description will be made with the side from which the end of the shaft member 5 protrudes from the housing 2 as the upper side and the opposite side in the axial direction as the lower side.

ハウジング2は、例えば、樹脂材料を射出成形して略円筒状に形成され、軸受スリーブ3、4およびスペーサ部材8が固定される第1内周面2aはストレートな円筒面に形成されている。また、第1内周面2aの両端側には、第1内周面2aよりも大径の第2、第3内周面2b、2cが設けられており、第2、第3内周面2b、2cは段面2d、2eを介してそれぞれ第1内周面2aに繋がっている。   For example, the housing 2 is formed in a substantially cylindrical shape by injection molding a resin material, and the first inner peripheral surface 2a to which the bearing sleeves 3 and 4 and the spacer member 8 are fixed is formed in a straight cylindrical surface. Further, second and third inner peripheral surfaces 2b and 2c having a diameter larger than that of the first inner peripheral surface 2a are provided on both end sides of the first inner peripheral surface 2a, and the second and third inner peripheral surfaces are provided. 2b and 2c are connected to the 1st inner peripheral surface 2a through the step surfaces 2d and 2e, respectively.

ハウジング2を形成する樹脂材料に用いるベース樹脂としては、射出成形可能なものであれば非晶性樹脂・結晶性樹脂を問わず使用可能で、例えば、非晶性樹脂として、ポリサルフォン(PSU)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等、結晶性樹脂として、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等を用いることができる。もちろんこれらは一例にすぎず、使用環境等を考慮してその他のベース樹脂を使用することもできる。また、上記のベース樹脂に充填する充填材の種類も特に限定されないが、例えば、充填材として、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、カーボンファイバー、カーボンブラック、黒鉛、カーボンナノマテリアル、金属粉末等の繊維状又は粉末状の導電性充填材を用いることができる。これらの充填材は、単独で用い、あるいは、二種以上を混合して使用しても良い。   The base resin used for the resin material forming the housing 2 can be any amorphous resin or crystalline resin as long as it can be injection-molded. For example, as the amorphous resin, polysulfone (PSU), Polyethersulfone (PES), polyphenylsulfone (PPSU), polyetherimide (PEI), etc. As crystalline resins, liquid crystal polymer (LCP), polyetheretherketone (PEEK), polybutylene terephthalate (PBT), Polyphenylene sulfide (PPS) or the like can be used. Of course, these are only examples, and other base resins can be used in consideration of the use environment and the like. Also, the type of filler to be filled in the base resin is not particularly limited. For example, as the filler, a fibrous filler such as glass fiber, a whisker-like filler such as potassium titanate, and a scaly filler such as mica Fibrous or powdery conductive fillers such as materials, carbon fibers, carbon black, graphite, carbon nanomaterials, and metal powders can be used. These fillers may be used alone or in combination of two or more.

この他、黄銅やアルミニウム合金等の軟質金属材料、その他の金属材料でハウジング2を形成することもできる。   In addition, the housing 2 can be formed of a soft metal material such as brass or an aluminum alloy, or other metal materials.

軸部材5は、ステンレス鋼等の金属材料で形成され、全体として概ね同径の軸状をなしている。さらに、この実施形態では、軸部材5に環状のシール部材6、7が適宜の固定手段、例えば接着又は圧入接着(圧入と接着の併用)により固定されている。これらシール部材6、7は、軸部材5の外周面5aから外径側に突出した形態となり、それぞれハウジング2の第2、第3内周面2b、2cの内周側に収容される。また、接着剤による固定強度を高めるため、シール部材6、7の固定位置となる軸部材5の外周面5aに接着剤溜まりとなる円周溝5a1、5a2が設けられている。なお、シール部材6、7は、真ちゅう(黄銅)等の軟質金属材料やその他の金属材料で形成しても良いし、樹脂材料で形成しても良い。また、シール部材6、7のうち何れか一方は、軸部材5に一体形成しても良い。   The shaft member 5 is formed of a metal material such as stainless steel, and has a shaft shape with substantially the same diameter as a whole. Furthermore, in this embodiment, the annular seal members 6 and 7 are fixed to the shaft member 5 by an appropriate fixing means, for example, adhesion or press-fit adhesion (combination of press-fit and adhesion). The seal members 6 and 7 protrude from the outer peripheral surface 5a of the shaft member 5 to the outer diameter side, and are accommodated on the inner peripheral sides of the second and third inner peripheral surfaces 2b and 2c of the housing 2, respectively. Further, in order to increase the fixing strength by the adhesive, circumferential grooves 5a1 and 5a2 serving as adhesive reservoirs are provided on the outer peripheral surface 5a of the shaft member 5 serving as a fixing position of the seal members 6 and 7. The seal members 6 and 7 may be formed of a soft metal material such as brass (brass), other metal materials, or a resin material. One of the seal members 6 and 7 may be integrally formed with the shaft member 5.

シール部材6の外周面6aはハウジング2の第2内周面2bとの間に所定容積のシール空間S1を形成し、シール部材7の外周面7aはハウジング2の第3内周面2cとの間に所定容積のシール空間S2を形成する。この実施形態において、シール部材6の外周面6a及びシール部材7の外周面7aは、それぞれハウジング2の外部側に向かって漸次縮径したテーパ面状に形成されている。そのため、シール空間S1、S2は、ハウジング2の内部側に向かって漸次縮小したテーパ形状を呈する。   A predetermined volume of seal space S1 is formed between the outer peripheral surface 6a of the seal member 6 and the second inner peripheral surface 2b of the housing 2, and the outer peripheral surface 7a of the seal member 7 is in contact with the third inner peripheral surface 2c of the housing 2. A seal space S2 having a predetermined volume is formed therebetween. In this embodiment, the outer peripheral surface 6 a of the seal member 6 and the outer peripheral surface 7 a of the seal member 7 are each formed in a tapered surface shape that is gradually reduced in diameter toward the outside of the housing 2. Therefore, the seal spaces S <b> 1 and S <b> 2 have a tapered shape that gradually decreases toward the inner side of the housing 2.

第1、第2軸受スリーブ3、4は共に、例えば、焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体、あるいは銅合金等の金属材料で円筒状に形成され、本実施形態では、双方共に焼結金属で形成されている。両軸受スリーブ3、4は、それぞれ、ハウジング2の第1内周面2aに圧入、接着、あるいは圧入接着等の手段で固定される。   The first and second bearing sleeves 3 and 4 are both cylindrical, for example, a porous body made of sintered metal, particularly a sintered metal porous body mainly composed of copper, or a metal material such as a copper alloy. In this embodiment, both are formed of sintered metal. Both bearing sleeves 3 and 4 are fixed to the first inner peripheral surface 2a of the housing 2 by means such as press-fitting, bonding, or press-fitting adhesion.

図2(b)に示すように、第1軸受スリーブ3の内周面3aには、第1ラジアル軸受部R1のラジアル軸受面A1となる領域が形成され、該ラジアル軸受面A1にはラジアル動圧発生部として、ヘリングボーン形状の動圧溝3a1が形成されている。また、第2軸受スリーブ4の内周面4aには、第2ラジアル軸受部R2のラジアル軸受面A2となる領域が形成され、該ラジアル軸受面A2にはラジアル動圧発生部としてヘリングボーン形状の動圧溝4a1が形成されている。なお、動圧溝3a1、4a1は、ラジアル軸受隙間を介して対向する軸部材5の外周面5aに設けてもよい。   As shown in FIG. 2 (b), the inner peripheral surface 3a of the first bearing sleeve 3 is formed with a region to be a radial bearing surface A1 of the first radial bearing portion R1, and the radial bearing surface A1 has a radial motion. A herringbone-shaped dynamic pressure groove 3a1 is formed as a pressure generating portion. In addition, a region that becomes the radial bearing surface A2 of the second radial bearing portion R2 is formed on the inner peripheral surface 4a of the second bearing sleeve 4, and the radial bearing surface A2 has a herringbone shape as a radial dynamic pressure generating portion. A dynamic pressure groove 4a1 is formed. In addition, you may provide the dynamic pressure grooves 3a1 and 4a1 in the outer peripheral surface 5a of the shaft member 5 which opposes via a radial bearing clearance.

本実施形態において、動圧溝3a1、4a1は、それぞれ、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成され、動圧溝3a1は軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きく、一方、動圧溝4a1は軸方向中心mより下側領域の軸方向寸法X2が上側領域の軸方向寸法X1よりも大きく形成されている。そのため、軸部材5の回転時、動圧溝3a1による潤滑流体の引き込み力(ポンピング力)は、下向きが上向きよりも大きくなり、動圧溝4a1による潤滑流体のポンピング力は、上向きが下向きよりも大きくなる。従って、第1軸受スリーブ3の内周面3aと軸部材5の外周面5aとの間に形成されるラジアル軸受隙間では潤滑流体が下向きに流れ、第2軸受スリーブ4の内周面4aと軸部材5の外周面5aとの間に形成されるラジアル軸受隙間では潤滑流体が上向きに流れる。   In this embodiment, each of the dynamic pressure grooves 3a1 and 4a1 is formed to be axially asymmetric with respect to the axial center m (the axial center of the region between the upper and lower inclined grooves), and the dynamic pressure groove 3a1 is the axial center m. The axial dimension X1 of the upper area is larger than the axial dimension X2 of the lower area, while the dynamic pressure groove 4a1 has an axial dimension X2 of the lower area from the axial center m greater than the axial dimension X1 of the upper area. Is also formed large. Therefore, when the shaft member 5 is rotated, the pulling force (pumping force) of the lubricating fluid by the dynamic pressure groove 3a1 is larger in the downward direction than the upward direction, and the pumping force of the lubricating fluid by the dynamic pressure groove 4a1 is larger than that in the downward direction. growing. Accordingly, in the radial bearing gap formed between the inner peripheral surface 3a of the first bearing sleeve 3 and the outer peripheral surface 5a of the shaft member 5, the lubricating fluid flows downward, and the inner peripheral surface 4a of the second bearing sleeve 4 and the shaft In the radial bearing gap formed between the outer peripheral surface 5a of the member 5, the lubricating fluid flows upward.

また、図2(a)に示すように、第1軸受スリーブ3の上側端面3bの一部又は全部環状領域には、第1スラスト軸受部T1のスラスト軸受面となる領域が形成され、該スラスト軸受面にはスラスト動圧発生部として、ヘリングボーン形状の動圧溝3b1が、内径側へのポンピング力を奏するように形成されている。さらに外周面3dには、円周方向等間隔に配された複数(図示例は3本)の軸方向溝3d1が形成されている。   Further, as shown in FIG. 2 (a), a region that becomes the thrust bearing surface of the first thrust bearing portion T1 is formed in a part or all of the annular region of the upper end surface 3b of the first bearing sleeve 3, and the thrust A herringbone-shaped dynamic pressure groove 3b1 is formed as a thrust dynamic pressure generating portion on the bearing surface so as to exert a pumping force toward the inner diameter side. Furthermore, a plurality of (three in the illustrated example) axial grooves 3d1 are formed on the outer peripheral surface 3d at regular intervals in the circumferential direction.

また、図2(c)に示すように、第2軸受スリーブ4の下側端面4bの一部又は全部環状領域には、第2スラスト軸受部T2のスラスト軸受面となる領域が形成され、該スラスト軸受面にはスラスト動圧発生部として、ヘリングボーン形状の動圧溝4b1が、内径側へのポンピング力を奏するように形成されている。さらに外周面4dには、円周方向等間隔に配された複数(図示例では3本)の軸方向溝4d1が形成されている。動圧溝3b1、4b1の何れか一方又は双方は、スラスト軸受隙間を介して対向するシール部材6、7の端面6b、7bに設けてもよい。   Further, as shown in FIG. 2 (c), a part or the whole annular region of the lower end surface 4b of the second bearing sleeve 4 is formed with a region to be a thrust bearing surface of the second thrust bearing portion T2. A herringbone-shaped dynamic pressure groove 4b1 is formed on the thrust bearing surface as a thrust dynamic pressure generating portion so as to exert a pumping force toward the inner diameter side. Further, a plurality of (three in the illustrated example) axial grooves 4d1 are formed on the outer peripheral surface 4d at regular intervals in the circumferential direction. Either one or both of the dynamic pressure grooves 3b1 and 4b1 may be provided on the end surfaces 6b and 7b of the seal members 6 and 7 facing each other through the thrust bearing gap.

第1、第2軸受スリーブ3、4の間には、本願でいう多孔質部材としての、円筒状のスペーサ部材8が、上側端面8bを第1軸受スリーブ3の下側端面3cと、また下側端面8cを第2軸受スリーブ4の上側端面4cと当接させた状態で、ハウジング2の第1内周面2aに圧入、接着、あるいは圧入接着等の手段で固定されている。スペーサ部材8の内周面8aは両軸受スリーブ3、4の内周面3a、4aよりも大径に形成されており、軸部材5の回転時、軸部材5との間にラジアル軸受隙間は形成されない。このスペーサ部材8の形成材料としては、焼結金属、多孔質樹脂、あるいはセラミック等、公知の多孔質組織を有する材料が選択可能で、本実施形態では焼結金属で形成されている。外周面8dには円周方向等間隔に配された複数(例えば、3本)の軸方向溝8d1が形成されている。なお、両軸受スリーブ3、4およびスペーサ部材8の各軸方向溝3d1、4d1、8d1は、両軸受スリーブ3、4の両端外周縁に設けられた面取り部で連通させることができるため、あえて円周方向の位置決めをする必要はない。   Between the first and second bearing sleeves 3 and 4, a cylindrical spacer member 8 as a porous member referred to in the present application is arranged such that the upper end face 8 b is connected to the lower end face 3 c of the first bearing sleeve 3 and the lower end face 3 c. In a state where the side end face 8 c is in contact with the upper end face 4 c of the second bearing sleeve 4, the side end face 8 c is fixed to the first inner peripheral face 2 a of the housing 2 by means such as press fitting, bonding, or press fitting. The inner peripheral surface 8 a of the spacer member 8 is formed to have a larger diameter than the inner peripheral surfaces 3 a and 4 a of the both bearing sleeves 3 and 4, and a radial bearing gap is not between the shaft member 5 and the shaft member 5 during rotation. Not formed. As a material for forming the spacer member 8, a material having a known porous structure such as a sintered metal, a porous resin, or a ceramic can be selected. In this embodiment, the spacer member 8 is formed of a sintered metal. A plurality of (for example, three) axial grooves 8d1 are formed on the outer peripheral surface 8d at regular intervals in the circumferential direction. The axial grooves 3d1, 4d1, and 8d1 of the both bearing sleeves 3 and 4 and the spacer member 8 can be communicated by chamfers provided at the outer peripheral edges of both ends of the both bearing sleeves 3 and 4. There is no need for circumferential positioning.

スペーサ部材8の内周面8aの表面開孔径は、スペーサ部材8の表面開孔径のうちで最大となるよう形成されている。また、本実施形態で内周面8aの表面開孔径は、第1軸受スリーブ3の内周面3aおよび上側端面3b、第2軸受スリーブ4の内周面4aおよび下側端面4bの表面開孔径よりも大きく形成されている。上記構成のスペーサ部材8は、例えば、両軸受スリーブ3、4よりも粒径の大きな金属粉末を用いて圧縮成形し、その後、内周面8a以外の領域をサイジング(例えば、回転サイジング)するなどして形成することができる。この他、軸受スリーブ3、4と同一粒径の金属粉末を用いた場合でも、その圧縮率を小さくし、その後サイジングすれば上記同様の構成が得られる。   The surface opening diameter of the inner peripheral surface 8 a of the spacer member 8 is formed to be the largest among the surface opening diameters of the spacer member 8. Further, in this embodiment, the surface opening diameter of the inner peripheral surface 8a is the surface opening diameter of the inner peripheral surface 3a and the upper end surface 3b of the first bearing sleeve 3, and the inner peripheral surface 4a and the lower end surface 4b of the second bearing sleeve 4. It is formed larger than. The spacer member 8 having the above-described configuration is compression-molded using, for example, a metal powder having a particle diameter larger than that of the both bearing sleeves 3 and 4 and thereafter sizing (for example, rotational sizing) other than the inner peripheral surface 8a. Can be formed. In addition, even when a metal powder having the same particle diameter as that of the bearing sleeves 3 and 4 is used, the same configuration as described above can be obtained by reducing the compression rate and then sizing the metal powder.

上記の構成部材からなる動圧軸受装置1は、例えば次のような工程で組み立てられる。   The hydrodynamic bearing device 1 composed of the above-described components is assembled, for example, by the following process.

まず、第1軸受スリーブ3の下側端面3cとスペーサ部材8の上側端面8b、および第2軸受スリーブ4の上側端面4cとスペーサ部材8の下側端面8cをそれぞれ当接させた状態で、ハウジング2の第1内周面2aに固定する。これらを固定した状態で、第1軸受スリーブ3の上側端面3bがハウジング2の上側の段面2dと面一になるか、あるいは、段面2dから僅かな寸法だけ突出した状態となるように、また、第2軸受スリーブ4の下側端面4bがハウジング2の下側の段面2eと面一になるか、あるいは段面2eから僅かな寸法だけ突出した状態となるように、各部材は所定の軸方向寸法に形成されている。なお、両軸受スリーブ3、4は、その内周面3a、4a相互間の同軸度が回転性能に大きく影響を及ぼすので、所定の同軸度(例えば、3μm以下)となるように芯出しをした状態で固定される。   First, in a state where the lower end surface 3c of the first bearing sleeve 3 and the upper end surface 8b of the spacer member 8, and the upper end surface 4c of the second bearing sleeve 4 and the lower end surface 8c of the spacer member 8 are in contact with each other, the housing 2 is fixed to the first inner peripheral surface 2a. With these fixed, the upper end surface 3b of the first bearing sleeve 3 is flush with the upper step surface 2d of the housing 2 or protrudes from the step surface 2d by a slight dimension. Further, each member is predetermined so that the lower end surface 4b of the second bearing sleeve 4 is flush with the lower step surface 2e of the housing 2 or protrudes by a slight dimension from the step surface 2e. Are formed in the axial dimension. The two bearing sleeves 3 and 4 are centered so as to have a predetermined coaxiality (for example, 3 μm or less) because the coaxiality between the inner peripheral surfaces 3a and 4a greatly affects the rotational performance. Fixed in state.

つぎに、軸部材5を第1、第2軸受スリーブ3、4及びスペーサ部材8の内周に挿入し、シール部材6、7を第1、第2軸受スリーブ3、4との間に所定のアキシャル隙間を確保した状態で軸部材5の所定位置(円周溝5a1、5a2の外径側)に固定する。なお、組立を簡略化するため、シール部材6、7のうちの何れか一方は、挿入前に予め軸部材5に固定しておくか、あるいは軸部材5に一体形成しておくこともできる。   Next, the shaft member 5 is inserted into the inner circumferences of the first and second bearing sleeves 3 and 4 and the spacer member 8, and the seal members 6 and 7 are placed between the first and second bearing sleeves 3 and 4 in a predetermined manner. The shaft member 5 is fixed to a predetermined position (the outer diameter side of the circumferential grooves 5a1 and 5a2) with the axial gap secured. In order to simplify the assembly, either one of the seal members 6 and 7 can be fixed to the shaft member 5 in advance before insertion, or can be formed integrally with the shaft member 5.

上記の工程を経て組立が完了した後、シール部材6、7でシールされたハウジング2の内部空間に、両軸受スリーブ3,4およびスペーサ部材8の内部空孔も含め、潤滑流体として例えば潤滑油を充填する。潤滑油の充填は、例えば組立が完了した動圧軸受装置1を真空槽内で潤滑油中に浸漬した後、大気圧に開放することにより行うことができる。   After the assembly is completed through the above-described steps, the inner space of the housing 2 sealed by the seal members 6 and 7 includes the inner holes of both the bearing sleeves 3 and 4 and the spacer member 8 as a lubricating fluid, for example, lubricating oil. Fill. Filling the lubricating oil can be performed, for example, by immersing the hydrodynamic bearing device 1 that has been assembled in the lubricating oil in a vacuum chamber and then releasing it to atmospheric pressure.

上記構成の動圧軸受装置1において、軸部材5が回転すると、第1軸受スリーブ3のラジアル軸受面A1および第2軸受スリーブ4のラジアル軸受面A2は、それぞれ軸部材5の外周面5aとラジアル軸受隙間を介して対向する。軸部材5の回転に伴って、各ラジアル軸受隙間に充満された潤滑油は、ラジアル軸受面A1、A2にそれぞれ形成された動圧溝3a1、4a1の動圧作用によってその圧力を高められ、この圧力によって軸部材5がラジアル方向に回転自在に非接触支持される。これにより、軸部材5をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが形成される。   In the hydrodynamic bearing device 1 having the above configuration, when the shaft member 5 rotates, the radial bearing surface A1 of the first bearing sleeve 3 and the radial bearing surface A2 of the second bearing sleeve 4 are respectively in radial relation with the outer peripheral surface 5a of the shaft member 5. Opposing through the bearing gap. As the shaft member 5 rotates, the lubricating oil filled in each radial bearing gap is increased in pressure by the dynamic pressure action of the dynamic pressure grooves 3a1 and 4a1 formed on the radial bearing surfaces A1 and A2, respectively. The shaft member 5 is supported in a non-contact manner so as to be rotatable in the radial direction by the pressure. Thus, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 5 in a non-contact manner so as to be rotatable in the radial direction are formed.

また、軸部材5が回転すると、第1軸受スリーブ3の上側端面3bのスラスト軸受面がシール部材6の下側端面6bと所定のスラスト軸受隙間を介して対向し、第2軸受スリーブ4の下側端面4bのスラスト軸受面がシール部材7の上側端面7bと所定のスラスト軸受隙間を介して対向する。そして軸部材5の回転に伴い、各スラスト軸受隙間に充満された潤滑油は、動圧溝3b1、4b1の動圧作用によってその圧力が高められ、軸部材5が両スラスト方向に回転自在に非接触支持される。これにより、軸部材5を両スラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが形成される。   Further, when the shaft member 5 rotates, the thrust bearing surface of the upper end surface 3b of the first bearing sleeve 3 faces the lower end surface 6b of the seal member 6 via a predetermined thrust bearing gap, and the bottom of the second bearing sleeve 4 The thrust bearing surface of the side end surface 4b faces the upper end surface 7b of the seal member 7 via a predetermined thrust bearing gap. As the shaft member 5 rotates, the lubricating oil filled in the thrust bearing gaps is increased in pressure by the dynamic pressure action of the dynamic pressure grooves 3b1, 4b1, and the shaft member 5 is non-rotatable in both thrust directions. Contact supported. Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which support the shaft member 5 in a non-contact manner so as to be rotatable in both thrust directions are formed.

なお、本実施形態の動圧軸受装置1は、図8に示す構成の動圧軸受装置に比べ、両ラジアル軸受部R1、R2、および両スラスト軸受部T1、T2の軸方向離間距離を比較的大きくとることができる。そのため、図8に示す構成の動圧軸受装置に比べ、モーメント荷重に対する負荷能力(モーメント剛性)に優れた構造となる。   The hydrodynamic bearing device 1 of the present embodiment has a relatively large axial separation distance between the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 as compared with the hydrodynamic bearing device having the configuration shown in FIG. It can be taken big. Therefore, the structure is superior in load capacity (moment rigidity) with respect to moment load as compared with the hydrodynamic bearing device having the configuration shown in FIG.

上記構成の動圧軸受装置1では、両ラジアル軸受部R1、R2および両スラスト軸受部T1、T2で潤滑油に軸受内部方向のポンピング力が付与される結果、第1スラスト軸受部T1のスラスト軸受隙間、第1ラジアル軸受部R1のラジアル軸受隙間、スペーサ部材8の内周面8aと軸部材5の外周面5aとの間の隙間、スペーサ部材8(の内部空孔)、スペーサ部材8の軸方向溝8d1、および第1軸受スリーブ3の軸方向溝3d1で第1の循環通路が構築される。また、第2スラスト軸受部T2のスラスト軸受隙間、第2ラジアル軸受部R2のラジアル軸受隙間、スペーサ部材8の内周面8aと軸部材5の外周面5aとの間の隙間、スペーサ部材8(の内部空孔)、スペーサ部材8の軸方向溝8d1、および第2軸受スリーブ4の軸方向溝4d1で第2の循環通路が構築される。   In the hydrodynamic bearing device 1 having the above-described configuration, as a result of the pumping force in the bearing internal direction being applied to the lubricating oil by the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2, the thrust bearing of the first thrust bearing portion T1. Clearance, radial bearing clearance of the first radial bearing portion R1, clearance between the inner peripheral surface 8a of the spacer member 8 and the outer peripheral surface 5a of the shaft member 5, spacer member 8 (internal void), shaft of the spacer member 8 A first circulation passage is constructed by the directional groove 8 d 1 and the axial groove 3 d 1 of the first bearing sleeve 3. Further, the thrust bearing gap of the second thrust bearing portion T2, the radial bearing gap of the second radial bearing portion R2, the gap between the inner peripheral surface 8a of the spacer member 8 and the outer peripheral surface 5a of the shaft member 5, the spacer member 8 ( ), The axial groove 8d1 of the spacer member 8 and the axial groove 4d1 of the second bearing sleeve 4 constitute a second circulation passage.

そして軸部材5の回転に伴って、潤滑油が上記の循環通路を辿って軸受内部を循環すると、摩耗粉等のコンタミが潤滑油中に混入した場合でも、コンタミはスペーサ部材8の内部空孔で捕捉され、スペーサ部材8を通った潤滑油は清浄なものとなる。このとき、スペーサ部材8の表面開孔径が、潤滑油の流入部となる内周面8aで最大となるように形成されていることから、一旦スペーサ部材8の内部に潤滑油と共に流入したコンタミは、スペーサ部材8の外部に流出することなく、スペーサ部材8の内部空孔で確実に捕捉される。従って、動圧軸受装置1の運転時、例えば起動・停止等の摺動接触の繰り返しによって軸受隙間で生じる摩耗粉が潤滑油にコンタミとして混入した場合、そのコンタミを潤滑油中から排除することができ、これにより、コンタミに起因する潤滑性能の低下等に起因した軸受性能の低下を抑制することが可能となる。   As the shaft member 5 rotates, the lubricating oil circulates inside the bearing along the circulation path, and even if contamination such as wear powder is mixed in the lubricating oil, the contamination is an internal hole in the spacer member 8. The lubricating oil that has been trapped and passed through the spacer member 8 becomes clean. At this time, since the surface opening diameter of the spacer member 8 is formed so as to be maximized on the inner peripheral surface 8a serving as the lubricating oil inflow portion, the contamination once flowing into the spacer member 8 together with the lubricating oil is The air is reliably captured by the internal holes of the spacer member 8 without flowing out of the spacer member 8. Therefore, during operation of the hydrodynamic bearing device 1, for example, when wear powder generated in the bearing gap due to repeated sliding contact such as starting and stopping is mixed as contamination in the lubricating oil, the contamination may be excluded from the lubricating oil. Thus, it is possible to suppress a decrease in bearing performance due to a decrease in lubrication performance due to contamination.

なお、上述のとおり、軸受隙間に面する第1軸受スリーブ3の内周面3aと上側端面3b、および第2軸受スリーブ4の内周面4aと下側端面4bの表面開孔径は、スペーサ部材8の内周面8aの表面開孔径よりも小さく形成されているので、潤滑油は軸受スリーブ3、4のラジアル軸受面A1、A2やスラスト軸受面に比べ、スペーサ部材8(多孔質部材)の内部に流れ込み易くなっている。そのため、摩耗粉等のコンタミが潤滑油の流動循環に伴ってラジアル軸受面A1、A2やスラスト軸受面の表面開孔に入り込み、軸受隙間に滲み出す潤滑油量を減少させる事態を回避することができる。   As described above, the surface opening diameters of the inner peripheral surface 3a and the upper end surface 3b of the first bearing sleeve 3 facing the bearing gap and the inner peripheral surface 4a and the lower end surface 4b of the second bearing sleeve 4 are spacer members. 8 is formed to be smaller than the surface opening diameter of the inner peripheral surface 8a of the spacer 8, the lubricating oil of the spacer member 8 (porous member) is larger than the radial bearing surfaces A1 and A2 of the bearing sleeves 3 and 4 and the thrust bearing surface. It is easy to flow inside. For this reason, it is possible to avoid a situation in which contamination such as wear powder enters the surface opening of the radial bearing surfaces A1 and A2 and the thrust bearing surface as the lubricating oil flows and reduces the amount of lubricating oil that oozes into the bearing gap. it can.

また、ハウジング2の内部空間に充満された潤滑油が上記の循環通路を介して流動循環することにより、潤滑油の圧力バランスが保たれると同時に、局部的な負圧の発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等が防止される。特に本実施形態では、スペーサ部材8と両軸受スリーブ3、4とが端面を相互に当接させた状態で固定されているので、上記の循環通路の他、スペーサ部材8から両軸受スリーブ3、4へ直接清浄な潤滑油を供給することができ、かかる不具合は一層効果的に防止される。また、第1軸受スリーブ3の軸方向溝3d1の一端と、第2軸受スリーブ4の軸方向溝4d1の一端は、それぞれ、大気開放側となるシール空間S1、S2に通じている。そのため、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際に外気開放側に排出されるので、気泡による悪影響はより一層効果的に防止される。   Further, the lubricating oil filled in the internal space of the housing 2 flows and circulates through the circulation passage, so that the pressure balance of the lubricating oil is maintained, and at the same time, air bubbles generated due to the generation of local negative pressure are reduced. Occurrence of leakage of lubricating oil or vibration due to generation and generation of bubbles is prevented. In particular, in the present embodiment, the spacer member 8 and the two bearing sleeves 3 and 4 are fixed in a state in which the end surfaces are in contact with each other. 4 can be supplied directly with clean lubricating oil, and such a problem can be prevented more effectively. In addition, one end of the axial groove 3d1 of the first bearing sleeve 3 and one end of the axial groove 4d1 of the second bearing sleeve 4 communicate with the seal spaces S1 and S2 on the atmosphere release side, respectively. For this reason, even if bubbles are mixed in the lubricating oil for some reason, the bubbles are discharged to the open side when circulating with the lubricating oil, so that the adverse effects of the bubbles can be more effectively prevented.

また、軸部材5の回転時には、上述のように、シール部材6の外周面6aの側とシール部材7の外周面7aの側に形成されるシール空間S1、S2が、ハウジング2の内部側に向かって漸次縮小したテーパ形状を呈しているため、両シール空間S1、S2内の潤滑油は毛細管力による引き込み作用と、回転時の遠心力による引き込み作用とにより、シール空間が狭くなる方向、すなわちハウジング2の内部側に向けて引き込まれる。これにより、ハウジング2の内部からの潤滑油の漏れ出しが効果的に防止される。また、シール空間S1、S2は、ハウジング2の内部空間に充填された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内では、潤滑油の油面は常にシール空間S1、S2内にある。   Further, when the shaft member 5 is rotated, the seal spaces S1 and S2 formed on the outer peripheral surface 6a side of the seal member 6 and the outer peripheral surface 7a side of the seal member 7 are formed on the inner side of the housing 2 as described above. Since the taper shape gradually decreases toward the bottom, the lubricating oil in both the seal spaces S1 and S2 is narrowed by the pulling action by the capillary force and the pulling action by the centrifugal force at the time of rotation, that is, It is pulled toward the inside of the housing 2. Thereby, the leakage of the lubricating oil from the inside of the housing 2 is effectively prevented. Further, the seal spaces S1 and S2 have a buffer function of absorbing a volume change amount accompanying a temperature change of the lubricating oil filled in the internal space of the housing 2, and within the range of the assumed temperature change, The oil level is always in the seal space S1, S2.

また、軸受スリーブ3、4とスペーサ部材8とが別体構造なので、軸受スリーブ3、4およびスペーサ部材8の空孔率を相互に異ならせることもでき、これにより、ハウジング2の内部空間に充満させる潤滑油量を低減することもできる。この場合、シール空間S1、S2の容積を小さく、換言すると、シール空間S1、S2の軸方向寸法を縮小して動圧軸受装置1の軸方向寸法をコンパクト化することが、あるいは、両軸受スリーブ3、4の軸方向寸法を長大化して、動圧軸受装置1のモーメント剛性を高めることも可能である。   Further, since the bearing sleeves 3 and 4 and the spacer member 8 are separate structures, the porosity of the bearing sleeves 3 and 4 and the spacer member 8 can be made different from each other, thereby filling the internal space of the housing 2. It is also possible to reduce the amount of lubricating oil. In this case, it is possible to reduce the volume of the seal spaces S1 and S2, in other words, to reduce the axial dimension of the hydrodynamic bearing device 1 by reducing the axial dimension of the seal spaces S1 and S2, or a double bearing sleeve. It is also possible to increase the moment rigidity of the hydrodynamic bearing device 1 by lengthening the axial dimensions of 3 and 4.

上記実施形態では、多孔質部材としてのスペーサ部材8を焼結金属で形成した場合を説明したが、スペーサ部材8は、例えば多孔質樹脂で形成することもできる。この場合、例えば多孔質部材としてのスペーサ部材8を、互いに開孔径(空孔径)の異なる2つの多孔質樹脂部で構成し、かつ相対的に表面開孔径が大きい方を内径側に設けた構成とすることにより上記同様の構成が得られる。   Although the case where the spacer member 8 as the porous member is formed of a sintered metal has been described in the above embodiment, the spacer member 8 can be formed of, for example, a porous resin. In this case, for example, the spacer member 8 as a porous member is constituted by two porous resin portions having different opening diameters (hole diameters), and the one having a relatively large surface opening diameter is provided on the inner diameter side. By doing so, the same configuration as above can be obtained.

この場合、各多孔質樹脂部は、例えば、気孔形成材を配合した樹脂組成物を射出成形などにより所定の形状に成形した後、気孔形成材を水、アルコール等の溶媒で除去することで形成される。上記構成の多孔質部材(スペーサ部材8)でいえば、例えば予めリング状に形成しておいた何れか一方をインサート部品として用い、他方を射出成形する(インサート成形)ことで形成することができる。かかる構成であれば、潤滑油の流入部となる領域(内周面8a)と、これ以外の領域の開孔径を比較的容易に調整することが可能である。   In this case, each porous resin portion is formed by, for example, forming a resin composition containing a pore-forming material into a predetermined shape by injection molding or the like and then removing the pore-forming material with a solvent such as water or alcohol. Is done. Speaking of the porous member (spacer member 8) having the above-described configuration, for example, one of the members formed in a ring shape in advance can be used as an insert part, and the other can be formed by injection molding (insert molding). . With such a configuration, it is possible to adjust the area of the lubricating oil inflow portion (inner peripheral surface 8a) and the hole diameter in other areas relatively easily.

スペーサ部材8を多孔質樹脂で形成する場合、そのベース樹脂としては、射出成形可能で、かつ求められる耐熱性、耐油性、機械的強度等を満足するものであれば熱可塑性樹脂、熱硬化性樹脂を問わず使用可能で、例えば、以下例示する材料群から選定された一または複数種からなるものが使用可能である。かかるベース樹脂には、強化材や潤滑剤、導電材等の各種充填材を一または複数種配合させることもできる。なお、上記のようにして多孔質樹脂からなるスペーサ部材8を形成する場合、インサートされる側のベース樹脂には、インサート成形に使用するベース樹脂よりも高融点のものが使用される。   When the spacer member 8 is formed of a porous resin, the base resin may be a thermoplastic resin or a thermosetting resin that can be injection-molded and satisfies the required heat resistance, oil resistance, mechanical strength, and the like. Any resin can be used, and for example, one or a plurality of materials selected from the material group exemplified below can be used. One or more kinds of various fillers such as a reinforcing material, a lubricant, and a conductive material can be blended with the base resin. When the spacer member 8 made of a porous resin is formed as described above, a base resin having a melting point higher than that of the base resin used for insert molding is used as the base resin to be inserted.

ここで、ベース樹脂として使用可能な樹脂材料として、例えば、ポリフェニレンサルファイド(PPS)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、ポリエーテルサルフォン(PES)、ポリアミドイミド(PAI)、熱可塑性ポリイミド(TPI)、熱硬化性ポリイミド、ポリアミド(PA)、ポリアミド6T、ポリアミド9T等の芳香族ポリアミド、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)等のフッ素系共重合体樹脂等が挙げられる。   Here, as resin materials that can be used as the base resin, for example, polyphenylene sulfide (PPS), polyether ketone (PEK), polyether ether ketone (PEEK), polyether imide (PEI), polyether sulfone (PES) , Polyamideimide (PAI), thermoplastic polyimide (TPI), thermosetting polyimide, polyamide (PA), polyamide 6T, polyamide 9T, and other aromatic polyamides, tetrafluoroethylene / hexafluoropropylene copolymer (PFA), ethylene -Fluorine-based copolymer resins such as tetrafluoroethylene copolymer (ETFE).

上記のベース樹脂に、ドライブレンド、溶融混錬等、樹脂の混合に一般に使用する混錬法で気孔形成材、充填材を混合させることにより、スペーサ部材8の各部の成形に用いる樹脂組成物が得られる。気孔形成材としては、成形時の融解を防止するため、選定されるベース樹脂の溶融温度よりも高い融点を有し、かつベース樹脂に配合してスペーサ部材8を成形した後、ベース樹脂を溶解させない溶媒を用いて除去可能なものが使用される。この中でも、特に、成形後の除去作業を容易に行い得る(例えば水溶性の)もので、かつ防錆剤として使用できる弱アルカリ性物質などが好適に使用可能である。   A resin composition used for molding each part of the spacer member 8 is obtained by mixing the pore forming material and the filler with the above base resin by a kneading method generally used for resin mixing such as dry blending or melt kneading. can get. As a pore forming material, in order to prevent melting at the time of molding, it has a melting point higher than the melting temperature of the selected base resin, and after blending with the base resin to mold the spacer member 8, the base resin is dissolved. Those which can be removed using a non-solvent are used. Among these, in particular, weak alkaline substances that can be easily removed after molding (for example, water-soluble) and can be used as a rust preventive agent can be suitably used.

気孔形成材としては、安息香酸ナトリウム、酢酸ナトリウム、セバシン酸ナトリウム、コハク酸ナトリウム、あるいはステアリン酸ナトリウムに代表される有機アルカリ金属塩や、炭酸カリウム、モリブデン酸ナトリウム、モリブデン酸カリウム、タングステン酸ナトリウム、三リン酸ナトリウム、ピロリン酸ナトリウムに代表される無機アルカリ金属塩等を使用することができる。この中でも、高融点で、ベース樹脂の選定自由度を高められ、かつ優れた水溶性を示す安息香酸ナトリウム、酢酸ナトリウム、セバシン酸ナトリウムが特に好ましい。これらの金属塩は一種のみ使用する他、二種以上混合して使用しても良い。このように多孔質樹脂でスペーサ部材8を形成する場合、使用する気孔形成材の粒径で摩耗粉等のコンタミを捕捉する機能が決定付けられるので、気孔形成材の粒径は、磨耗粉の大きさを考慮した適切なものが選択使用される。   As the pore-forming material, organic alkali metal salts represented by sodium benzoate, sodium acetate, sodium sebacate, sodium succinate, or sodium stearate, potassium carbonate, sodium molybdate, potassium molybdate, sodium tungstate, Inorganic alkali metal salts such as sodium triphosphate and sodium pyrophosphate can be used. Among these, sodium benzoate, sodium acetate, and sodium sebacate are particularly preferable because they have a high melting point, increase the degree of freedom in selecting a base resin, and exhibit excellent water solubility. These metal salts may be used alone or in combination of two or more. In this way, when the spacer member 8 is formed of a porous resin, since the function of capturing contamination such as wear powder is determined by the particle size of the pore forming material to be used, the particle size of the pore forming material is An appropriate one considering the size is selected and used.

なお、多孔質部材としてのスペーサ部材8は、上記の焼結金属や多孔質樹脂の他、セラミックを用いて形成することもできる。   In addition, the spacer member 8 as a porous member can also be formed using a ceramic other than said sintered metal and porous resin.

また、以上の説明では両軸受スリーブ3,4を焼結金属で形成する場合について説明を行ったが、軸受スリーブ3、4を多孔質体とする場合にはスペーサ部材8と同様に、多孔質樹脂やセラミックで形成することもできる。軸受スリーブ3、4は、多孔質体の他、金属や樹脂の非多孔質体(非孔質体)で形成してもよい。   In the above description, the bearing sleeves 3 and 4 are formed of sintered metal. However, when the bearing sleeves 3 and 4 are made of a porous body, the porous member is formed in the same manner as the spacer member 8. It can also be formed of resin or ceramic. The bearing sleeves 3 and 4 may be formed of a non-porous body (non-porous body) of metal or resin in addition to the porous body.

以上、本発明に係る動圧軸受装置の一実施形態について説明を行ったが、本発明は上記の動圧軸受装置1のみならず、他形態の動圧軸受装置についても同様に適用することが可能である。以下、その動圧軸受装置について、図3〜図5に基づいて説明を行うが、同一の機能・作用を奏する部材・要素には共通の参照番号を付与し、重複説明を省略する。   Although one embodiment of the hydrodynamic bearing device according to the present invention has been described above, the present invention can be applied not only to the above hydrodynamic bearing device 1 but also to other hydrodynamic bearing devices. Is possible. Hereinafter, the hydrodynamic bearing device will be described with reference to FIGS. 3 to 5, but members / elements having the same functions / actions are given common reference numerals, and redundant description is omitted.

図3は、第2の実施形態に係る動圧軸受装置11を示している。この動圧軸受装置11では、第1、第2ラジアル軸受部R1、R2が、ハウジング2の軸方向略中央部に設けられた焼結金属製の軸受スリーブ13の内周面13aと軸部材5の外周面5aとの間に形成される。軸受スリーブ13の軸方向両側には、焼結金属、多孔質樹脂、あるいはセラミック等の多孔質体で形成された円筒状の第1スリーブ部材12、第2スリーブ部材14が設けられる。軸受スリーブ13の上側端面13bと第1スリーブ部材12の下側端面12c、および軸受スリーブ13の下側端面13cと第2スリーブ部材14の上側端面14cは当接されている。第1スリーブ部材12の上側端面12bとシール部材6の下側端面6bとの間に第1スラスト軸受部T1が、第2スリーブ部材14の下側端面14bとシール部材7の上側端面7bとの間に第2スラスト軸受部T2が形成される。第1、第2スリーブ部材12、14の内周面12a、14aは、軸受スリーブ13の内周面13aよりも大径に形成され、従って、第1、第2スリーブ部材12,14の内周面12a、14aと軸部材5の外周面5aとの間にラジアル軸受隙間は形成されない。本実施形態では、第1、第2スリーブ部材12、14が、本願でいう多孔質部材を構成する。   FIG. 3 shows a hydrodynamic bearing device 11 according to the second embodiment. In the dynamic pressure bearing device 11, the first and second radial bearing portions R 1 and R 2 are provided on the inner peripheral surface 13 a of the bearing sleeve 13 made of sintered metal provided at the substantially central portion in the axial direction of the housing 2 and the shaft member 5. Between the outer peripheral surface 5a and the outer peripheral surface 5a. Cylindrical first sleeve member 12 and second sleeve member 14 formed of a porous body such as sintered metal, porous resin, or ceramic are provided on both axial sides of bearing sleeve 13. The upper end surface 13 b of the bearing sleeve 13 and the lower end surface 12 c of the first sleeve member 12, and the lower end surface 13 c of the bearing sleeve 13 and the upper end surface 14 c of the second sleeve member 14 are in contact with each other. The first thrust bearing portion T1 is formed between the lower end surface 14b of the second sleeve member 14 and the upper end surface 7b of the seal member 7 between the upper end surface 12b of the first sleeve member 12 and the lower end surface 6b of the seal member 6. A second thrust bearing portion T2 is formed therebetween. The inner peripheral surfaces 12 a and 14 a of the first and second sleeve members 12 and 14 are formed with a larger diameter than the inner peripheral surface 13 a of the bearing sleeve 13, and accordingly, the inner peripheral surfaces of the first and second sleeve members 12 and 14. A radial bearing gap is not formed between the surfaces 12 a and 14 a and the outer peripheral surface 5 a of the shaft member 5. In this embodiment, the 1st, 2nd sleeve members 12 and 14 comprise the porous member said by this application.

図4(b)に示すように、軸受スリーブ13の内周面13aには、ラジアル軸受部R1、R2のラジアル軸受面A1、A2となる領域が軸方向の二箇所に離隔して設けられ、ラジアル軸受面A1、A2にはラジアル動圧発生部として、それぞれヘリングボーン形状に配列された複数の動圧溝13a1、13a2が形成されている。動圧溝13a1、13a2は、それぞれ、軸方向中心mに対して軸方向非対称に形成され、上側の動圧溝13a1は軸方向中心mより下側領域の軸方向寸法X2が上側領域の軸方向寸法X1よりも大きく、一方、下側の動圧溝13a2は軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きく形成されている。そのため、軸部材5の回転時、ラジアル軸受面A1と軸部材5の外周面5aの間に形成されるラジアル軸受隙間では潤滑油が上向きに流れ、ラジアル軸受面A2と軸部材5の外周面5aとの間に形成されるラジアル軸受隙間では潤滑油が上向きに流れる。   As shown in FIG.4 (b), the area | region used as radial bearing surface A1, A2 of radial bearing part R1, R2 is provided in the inner peripheral surface 13a of the bearing sleeve 13, and it is provided in two axial directions apart, On the radial bearing surfaces A1 and A2, a plurality of dynamic pressure grooves 13a1 and 13a2 arranged in a herringbone shape are formed as radial dynamic pressure generating portions. The dynamic pressure grooves 13a1 and 13a2 are formed to be axially asymmetric with respect to the axial center m, and the upper dynamic pressure groove 13a1 has an axial dimension X2 in a region below the axial center m in the axial direction of the upper region. On the other hand, the lower dynamic pressure groove 13a2 is formed so that the axial dimension X1 in the upper region from the axial center m is larger than the axial dimension X2 in the lower region. Therefore, when the shaft member 5 rotates, the lubricating oil flows upward in the radial bearing gap formed between the radial bearing surface A1 and the outer peripheral surface 5a of the shaft member 5, and the radial bearing surface A2 and the outer peripheral surface 5a of the shaft member 5 The lubricating oil flows upward in the radial bearing gap formed between the two.

また、図4(a)に示すように、第1スリーブ部材12の上側端面12bの一部又は全部環状領域には、第1スラスト軸受部T1のスラスト軸受面となる領域が形成され、該スラスト軸受面にはスラスト動圧発生部として、ヘリングボーン形状の動圧溝12b1が内径側へのポンピング力を奏するように形成されている。さらに外周面12dには、円周方向等間隔に配された複数(図示例は3本)の軸方向溝12d1が形成されている。   Further, as shown in FIG. 4A, a region that becomes the thrust bearing surface of the first thrust bearing portion T1 is formed in a part or all of the annular region of the upper end surface 12b of the first sleeve member 12, and the thrust A herringbone-shaped dynamic pressure groove 12b1 is formed on the bearing surface as a thrust dynamic pressure generating portion so as to exert a pumping force toward the inner diameter side. Furthermore, a plurality of (three in the illustrated example) axial grooves 12d1 are formed on the outer peripheral surface 12d at regular intervals in the circumferential direction.

また図4(c)に示すように、第2スリーブ部材14の下側端面14bの一部又は全部環状領域には、第2スラスト軸受部T2のスラスト軸受面となる領域が形成され、該スラスト軸受面にはスラスト動圧発生部としてヘリングボーン形状の動圧溝14b1が内径側へのポンピング力を奏するように形成されている。さらに外周面14dには、円周方向等間隔に配された複数(図示例では3本)の軸方向溝14d1が形成されている。動圧溝12b1、14b1は、スラスト軸受隙間を介して対向するシール部材6、7の端面6b、7bに形成してもよい。   Further, as shown in FIG. 4C, a region that becomes the thrust bearing surface of the second thrust bearing portion T2 is formed in a part or all of the annular region of the lower end surface 14b of the second sleeve member 14, and the thrust A herringbone-shaped dynamic pressure groove 14b1 is formed on the bearing surface as a thrust dynamic pressure generating portion so as to exert a pumping force toward the inner diameter side. Furthermore, a plurality of (three in the illustrated example) axial grooves 14d1 are formed on the outer peripheral surface 14d at equal intervals in the circumferential direction. The dynamic pressure grooves 12b1 and 14b1 may be formed on the end surfaces 6b and 7b of the seal members 6 and 7 that face each other through the thrust bearing gap.

本実施形態では、軸部材5の回転に伴って、第1スラスト軸受部T1および第1ラジアル軸受部R1で生じるポンピング力によって、例えば、第1スラスト軸受部T1のスラスト軸受隙間および第1ラジアル軸受部R1のラジアル軸受隙間、第1スリーブ部材12の内周面12aと軸部材5の外周面5aとの間の隙間、第1スリーブ部材12(の内部空孔)、第1スリーブ部材12の軸方向溝12d1、軸受スリーブ13の軸方向溝13d1からなる循環通路を辿って潤滑油が循環する。このとき、第1スリーブ部材12の内周面12aの表面開孔径を、第1スリーブ部材12の表面空孔径のうちで最大となるように、かつ軸受スリーブ13の内周面13aの表面開孔径よりも大きくなるように形成しておけば、第1実施形態の動圧軸受装置1と同様に、潤滑油の流動循環に伴って、潤滑油に混入した摩耗粉等のコンタミを第1スリーブ部材12の内部で捕捉することが可能となる。   In the present embodiment, for example, the thrust bearing gap of the first thrust bearing portion T1 and the first radial bearing are generated by the pumping force generated in the first thrust bearing portion T1 and the first radial bearing portion R1 as the shaft member 5 rotates. The radial bearing gap of the portion R1, the gap between the inner peripheral surface 12a of the first sleeve member 12 and the outer peripheral surface 5a of the shaft member 5, the first sleeve member 12 (internal void thereof), the shaft of the first sleeve member 12 Lubricating oil circulates along a circulation path composed of the directional groove 12d1 and the axial groove 13d1 of the bearing sleeve 13. At this time, the surface opening diameter of the inner peripheral surface 12a of the first sleeve member 12 is maximized among the surface hole diameters of the first sleeve member 12, and the surface opening diameter of the inner peripheral surface 13a of the bearing sleeve 13 is set. If it is formed so as to be larger than that, as in the fluid dynamic bearing device 1 of the first embodiment, contamination such as abrasion powder mixed in the lubricating oil is caused by the flow circulation of the lubricating oil in the first sleeve member. 12 can be captured inside.

また、軸受スリーブ13および第2スリーブ部材14の間にも、上記同様、潤滑油が流動する一連の循環通路が構築され、潤滑油の流動循環に伴って、潤滑油に混入した摩耗粉等のコンタミは、第2スリーブ部材14の内部で捕捉される。   In addition, a series of circulation passages through which the lubricating oil flows are constructed between the bearing sleeve 13 and the second sleeve member 14 as well, such as wear powder mixed in the lubricating oil as the lubricating oil flows and circulates. Contamination is captured inside the second sleeve member 14.

図5は、第3の実施形態に係る動圧軸受装置31を示している。この動圧軸受装置31は、上述した第1の実施形態に係る動圧軸受装置1において、ハウジング2の内周面2aが均一径でハウジング2の端面まで延びている点、それに伴ってシール部材6、7が比較的小径になっている点にある。第1の実施形態の動圧軸受装置1に比べて、ハウジング2の形状を簡素化し、かつ、小径化することができるという利点がある。もちろんこの構成を、図3、4に示す第2の実施形態に係る動圧軸受装置11に適用することもできる。   FIG. 5 shows a hydrodynamic bearing device 31 according to the third embodiment. The hydrodynamic bearing device 31 is the same as the hydrodynamic bearing device 1 according to the first embodiment described above, in that the inner peripheral surface 2a of the housing 2 has a uniform diameter and extends to the end surface of the housing 2, and accordingly, a seal member. 6 and 7 have a relatively small diameter. Compared to the hydrodynamic bearing device 1 of the first embodiment, there is an advantage that the shape of the housing 2 can be simplified and the diameter can be reduced. Of course, this configuration can also be applied to the hydrodynamic bearing device 11 according to the second embodiment shown in FIGS.

以上の説明では、ラジアル軸受部R1、R2のラジアル軸受隙間に流体動圧を発生させるラジアル動圧発生部として、ヘリングボーン形状の動圧溝を例示したが、スパイラル形状やその他の形状の動圧溝でも良い。同様に、スラスト軸受部T1、T2のスラスト軸受隙間に流体動圧を発生させるスラスト動圧発生部として、ヘリングボーン形状の動圧溝を例示したが、スパイラル形状やその他の形状の動圧溝でもよい。   In the above description, the herringbone-shaped dynamic pressure groove is exemplified as the radial dynamic pressure generating portion that generates fluid dynamic pressure in the radial bearing gaps of the radial bearing portions R1 and R2, but the dynamic pressure of spiral shape or other shapes is exemplified. A groove may be used. Similarly, a herringbone-shaped dynamic pressure groove has been exemplified as a thrust dynamic pressure generating portion for generating fluid dynamic pressure in the thrust bearing gaps of the thrust bearing portions T1, T2, but a spiral-shaped or other shape dynamic pressure groove is also exemplified. Good.

また、以上の説明では、動圧軸受装置の内部に充満し、ラジアル軸受隙間や、スラスト軸受隙間に動圧作用を生じる流体として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧作用を発生可能な流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。   In the above description, the lubricating oil has been exemplified as a fluid that fills the inside of the hydrodynamic bearing device and generates a hydrodynamic action in the radial bearing gap and the thrust bearing gap. A fluid capable of generating a pressure action, for example, a gas such as air, a fluid lubricant such as a magnetic fluid, or lubricating grease may be used.

図6は、本発明の一実施形態、特に図1に示す実施形態に係る動圧軸受装置1を組込んだHDD用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、動圧軸受装置1と、動圧軸受装置1の軸部材5に装着されたロータ(ディスクハブ)17と、例えば半径方向(ラジアル方向)のギャップを介して対向させたステータコイル15およびロータマグネット16とを備えている。ステータコイル15はブラケット9の外周に取付けられ、ロータマグネット16はディスクハブ17の内周に取付けられている。動圧軸受装置1のハウジング2は、ブラケット9の内周に装着される。ディスクハブ17には、磁気ディスク等のディスクDが一又は複数枚保持される。ステータコイル15に通電すると、ステータコイル15とロータマグネット16との間の電磁力でロータマグネット16が回転し、それによって、ディスクハブ17およびディスクハブ17に保持されたディスクDが軸部材5と一体に回転する。   FIG. 6 conceptually shows a structural example of a spindle motor for HDD incorporating the hydrodynamic bearing device 1 according to an embodiment of the present invention, particularly the embodiment shown in FIG. The spindle motor includes a stator coil that is opposed to the dynamic pressure bearing device 1 and a rotor (disk hub) 17 mounted on the shaft member 5 of the dynamic pressure bearing device 1 via, for example, a radial (radial direction) gap. 15 and the rotor magnet 16. The stator coil 15 is attached to the outer periphery of the bracket 9, and the rotor magnet 16 is attached to the inner periphery of the disk hub 17. The housing 2 of the hydrodynamic bearing device 1 is mounted on the inner periphery of the bracket 9. The disk hub 17 holds one or more disks D such as magnetic disks. When the stator coil 15 is energized, the rotor magnet 16 is rotated by the electromagnetic force between the stator coil 15 and the rotor magnet 16, whereby the disk hub 17 and the disk D held by the disk hub 17 are integrated with the shaft member 5. Rotate to.

上記構成の動圧軸受装置1は、上述したHDD用のスピンドルモータだけでなく、例えばCD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等の情報機器に搭載されるスピンドルモータ用など、情報機器をはじめとする電気機器用の軸受装置として好適に適用可能である。また、本発明のように、摩耗粉をはじめとするコンタミを潤滑油中から除去可能な動圧軸受装置であれば、連続運転中、摩耗粉等の堆積に起因してロックが発生するのを確実に避けることができる。そのため、例えばサーバ用HDDなど、長期間に亘って安定した回転性能を要求される機器に対しても、高い信頼性を有する軸受装置として好適に用いることができる。また、情報機器の大容量化に対応して複数枚のディスクDを搭載したディスク駆動装置に対しても、あるいは高速回転下での高い回転性能を要求されるモータに対しても、好適に用いることができる。   The hydrodynamic bearing device 1 having the above-described configuration is not limited to the above-described spindle motor for HDD, but also includes optical disk devices such as CD-ROM, CD-R / RW, DVD-ROM / RAM, and magneto-optical disks such as MD and MO. The present invention can be suitably applied as a bearing device for electrical equipment including information equipment such as a spindle motor mounted on information equipment such as equipment. In addition, as in the present invention, if the hydrodynamic bearing device is capable of removing contamination such as wear powder from the lubricating oil, the lock is generated due to accumulation of wear powder during continuous operation. It can certainly be avoided. For this reason, it can be suitably used as a highly reliable bearing device even for devices that require stable rotation performance over a long period of time, such as a server HDD. In addition, it is suitably used for a disk drive device equipped with a plurality of disks D corresponding to an increase in capacity of information equipment or a motor that requires high rotational performance under high-speed rotation. be able to.

上記の理由から、本発明にかかる動圧軸受装置はスピンドルモータに限らず、長期間に亘って安定した回転性能を要求される他のモータ、例えばファンモータにも好ましく用いることができる。   For the above reasons, the hydrodynamic bearing device according to the present invention is not limited to the spindle motor, but can be preferably used for other motors that require stable rotation performance over a long period of time, such as a fan motor.

図7は、本発明の第1実施形態に係る動圧軸受装置1を組み込んだファンモータ、その中でも半径方向(ラジアル方向)のギャップを介してステータコイル15およびロータマグネット16を対向させた、いわゆるラジアルギャップ型ファンモータの一例を概念的に示すものである。図示例のモータは、主に、軸部材5の上端外周に固定されるロータ18が外周面に羽根を有する点、およびブラケット9がモータの各構成部品を収容するケーシングとしての機能を果たす点で、図5に示すスピンドルモータと構成を異にする。なお、その他の構成部材は、図6に示すスピンドルモータの各構成部材と機能・作用を同一にするため、共通の参照番号を付して重複説明を省略する。   FIG. 7 shows a so-called fan motor incorporating the hydrodynamic bearing device 1 according to the first embodiment of the present invention, in which the stator coil 15 and the rotor magnet 16 are opposed to each other through a gap in the radial direction (radial direction). An example of a radial gap type fan motor is shown notionally. In the illustrated motor, the rotor 18 fixed to the outer periphery of the upper end of the shaft member 5 has blades on the outer peripheral surface, and the bracket 9 serves as a casing for housing each component of the motor. The configuration is different from that of the spindle motor shown in FIG. The other constituent members have the same functions and functions as the respective constituent members of the spindle motor shown in FIG.

第1の実施形態に係る動圧軸受装置の断面図である。It is sectional drawing of the dynamic pressure bearing apparatus which concerns on 1st Embodiment. (a)図はハウジングに軸受スリーブを固定した状態を示す上面図、(b)図はその断面図、(c)図はその下面図である。(A) is a top view showing a state in which the bearing sleeve is fixed to the housing, (b) is a sectional view thereof, and (c) is a bottom view thereof. 第2の実施形態に係る動圧軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus which concerns on 2nd Embodiment. (a)図は、第2実施形態においてハウジングに軸受スリーブを固定した状態を示す上面図、(b)図はその断面図、(c)図はその下面図である。(A) The figure is a top view which shows the state which fixed the bearing sleeve to the housing in 2nd Embodiment, (b) A figure is the sectional drawing, (c) A figure is the bottom view. 第3の実施形態に係る動圧軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus which concerns on 3rd Embodiment. 動圧軸受装置を組み込んだスピンドルモータを概念的に示す断面図である。It is sectional drawing which shows notionally the spindle motor incorporating the dynamic pressure bearing apparatus. 動圧軸受装置を組み込んだファンモータを概念的に示す断面図である。It is sectional drawing which shows notionally the fan motor incorporating the dynamic pressure bearing apparatus. 従来構成の動圧軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus of a conventional structure.

符号の説明Explanation of symbols

1、11、21 動圧軸受装置
2 ハウジング
3 第1軸受スリーブ
4 第2軸受スリーブ
5 軸部材
6 シール部材
7 シール部材
8 スペーサ部材(多孔質部材)
13 軸受スリーブ
12、14 スリーブ部材(多孔質部材)
R1 第1ラジアル軸受部
R2 第2ラジアル軸受部
T1 第1スラスト軸受部
T2 第2スラスト軸受部
S1、S2 シール空間
DESCRIPTION OF SYMBOLS 1, 11, 21 Dynamic pressure bearing apparatus 2 Housing 3 1st bearing sleeve 4 2nd bearing sleeve 5 Shaft member 6 Seal member 7 Seal member 8 Spacer member (porous member)
13 Bearing sleeve 12, 14 Sleeve member (porous member)
R1 1st radial bearing part R2 2nd radial bearing part T1 1st thrust bearing part T2 2nd thrust bearing part S1, S2 Seal space

Claims (5)

軸部材と、該軸部材の外径側に配置された軸受スリーブと、前記軸部材の外周面と前記軸受スリーブの内周面との間に形成されるラジアル軸受隙間と、該ラジアル軸受隙間を満たす潤滑流体に動圧作用を発生させるラジアル動圧発生部とを備える動圧軸受装置において、
前記軸受スリーブと別体の多孔質部材を設けると共に、前記ラジアル動圧発生部を前記多孔質部材へ向けて潤滑流体が流動する形状に形成し、前記多孔質部材を通る潤滑流体の循環通路を形成したことを特徴とする動圧軸受装置。
A shaft member, a bearing sleeve disposed on the outer diameter side of the shaft member, a radial bearing gap formed between an outer peripheral surface of the shaft member and an inner peripheral surface of the bearing sleeve, and the radial bearing gap In a hydrodynamic bearing device comprising a radial dynamic pressure generating section that generates a dynamic pressure action on a lubricating fluid to be filled,
A porous member that is separate from the bearing sleeve is provided, the radial dynamic pressure generating portion is formed in a shape in which the lubricating fluid flows toward the porous member, and a circulation passage for the lubricating fluid passing through the porous member is formed. A hydrodynamic bearing device characterized by being formed.
さらに、スラスト軸受隙間と、該スラスト軸受隙間を満たす潤滑流体に動圧作用を発生させるスラスト動圧発生部とを備え、該スラスト動圧発生部を、前記多孔質部材へ向けて潤滑流体が流動する形状に形成した請求項1記載の動圧軸受装置。   Furthermore, a thrust bearing gap and a thrust dynamic pressure generating section that generates a dynamic pressure action on the lubricating fluid that fills the thrust bearing gap are provided, and the lubricating fluid flows toward the porous member through the thrust dynamic pressure generating section. The hydrodynamic bearing device according to claim 1, wherein the hydrodynamic bearing device is formed into a shape to be formed. 前記多孔質部材の表面開孔径を、潤滑流体の流入部となる領域で最大とした請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the surface opening diameter of the porous member is maximized in a region serving as a lubricating fluid inflow portion. 前記軸受スリーブが多孔質体からなり、少なくとも内周面の表面開孔径を、前記多孔質部材における潤滑流体の流入部の表面開孔径よりも小さく設定した請求項3記載の動圧軸受装置。   4. The hydrodynamic bearing device according to claim 3, wherein the bearing sleeve is made of a porous body, and at least a surface opening diameter of an inner peripheral surface is set smaller than a surface opening diameter of an inflow portion of the lubricating fluid in the porous member. 前記多孔質部材を前記軸受スリーブと当接させた請求項1又は4に記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the porous member is in contact with the bearing sleeve.
JP2006158560A 2006-06-07 2006-06-07 Dynamic-pressure bearing device Withdrawn JP2007327545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006158560A JP2007327545A (en) 2006-06-07 2006-06-07 Dynamic-pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006158560A JP2007327545A (en) 2006-06-07 2006-06-07 Dynamic-pressure bearing device

Publications (1)

Publication Number Publication Date
JP2007327545A true JP2007327545A (en) 2007-12-20

Family

ID=38928142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006158560A Withdrawn JP2007327545A (en) 2006-06-07 2006-06-07 Dynamic-pressure bearing device

Country Status (1)

Country Link
JP (1) JP2007327545A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090285514A1 (en) * 2006-03-24 2009-11-19 Ntn Corporation Fluid dynamic bearing device
CN104074872A (en) * 2014-07-02 2014-10-01 南通志邦新材料科技有限公司 Oil locking type porous metal material bearing bush

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090285514A1 (en) * 2006-03-24 2009-11-19 Ntn Corporation Fluid dynamic bearing device
US8215843B2 (en) * 2006-03-24 2012-07-10 Ntn Corporation Fluid dynamic bearing device
US8562219B2 (en) 2006-03-24 2013-10-22 Ntn Corporation Fluid dynamic bearing device
CN104074872A (en) * 2014-07-02 2014-10-01 南通志邦新材料科技有限公司 Oil locking type porous metal material bearing bush

Similar Documents

Publication Publication Date Title
JP5274820B2 (en) Hydrodynamic bearing device
WO2006115104A1 (en) Dynamic pressure bearing device
JP6100046B2 (en) Fluid dynamic bearing device and motor including the same
JP5318344B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP5154057B2 (en) Hydrodynamic bearing device
JP2007327544A (en) Dynamic-pressure bearing device
US7625124B2 (en) Fluid bearing device
JP4762757B2 (en) Hydrodynamic bearing device
JP2007024089A (en) Dynamic pressure bearing device and motor
JP2006300181A (en) Dynamic pressure bearing device
JP2007327545A (en) Dynamic-pressure bearing device
JP5220339B2 (en) Hydrodynamic bearing device
JP4754418B2 (en) Hydrodynamic bearing device
JP2005315408A (en) Dynamic bearing device
JP4795116B2 (en) Hydrodynamic bearing device
JP2007239794A (en) Fluid bearing device
JP2011007336A (en) Dynamic pressure bearing device and motor
JP2007263173A (en) Hydrodynamic bearing device
JP5133008B2 (en) Hydrodynamic bearing device
JP2009011018A (en) Fluid bearing device, and manufacturing method thereof
JP5101122B2 (en) Hydrodynamic bearing device
JP2006300178A (en) Fluid bearing device
JP5214401B2 (en) Hydrodynamic bearing device
JP5020652B2 (en) Hydrodynamic bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090901