JP5020652B2 - Hydrodynamic bearing device - Google Patents

Hydrodynamic bearing device Download PDF

Info

Publication number
JP5020652B2
JP5020652B2 JP2007025563A JP2007025563A JP5020652B2 JP 5020652 B2 JP5020652 B2 JP 5020652B2 JP 2007025563 A JP2007025563 A JP 2007025563A JP 2007025563 A JP2007025563 A JP 2007025563A JP 5020652 B2 JP5020652 B2 JP 5020652B2
Authority
JP
Japan
Prior art keywords
housing
bearing
reinforcing member
peripheral surface
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007025563A
Other languages
Japanese (ja)
Other versions
JP2008190619A (en
Inventor
敏幸 水谷
政治 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2007025563A priority Critical patent/JP5020652B2/en
Publication of JP2008190619A publication Critical patent/JP2008190619A/en
Application granted granted Critical
Publication of JP5020652B2 publication Critical patent/JP5020652B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、流体軸受装置に関するものである。   The present invention relates to a hydrodynamic bearing device.

流体軸受装置は、軸受隙間に形成される油膜で軸部材を回転自在に支持する軸受装置である。この流体軸受装置は、高速回転、高回転精度、低騒音等の特徴を有するものであり、近年ではその特徴を活かして、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として、より具体的には、HDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、ファンモータなどのモータ用軸受装置として好適に使用されている。   The hydrodynamic bearing device is a bearing device that rotatably supports a shaft member with an oil film formed in a bearing gap. This hydrodynamic bearing device has characteristics such as high-speed rotation, high rotation accuracy, and low noise. In recent years, the hydrodynamic bearing device has been utilized as a motor bearing device for motors mounted on various electrical devices including information devices. More specifically, magnetic disk devices such as HDDs, optical disk devices such as CD-ROM, CD-R / RW, DVD-ROM / RAM, spindle motors such as magneto-optical disk devices such as MD and MO, laser beams, etc. It is suitably used as a bearing device for a motor such as a polygon scanner motor or a fan motor of a printer (LBP).

ディスク装置等のスピンドルモータに組み込まれる流体軸受装置として、例えば図7に示す構成が公知である。同図に示す流体軸受装置71では、側部および底部を一体に有する樹脂製のハウジング77の内周に軸受スリーブ78が固定され、軸受スリーブ78の内周には軸部材72が挿入されている。軸部材72が回転すると、軸部材72の外周面と軸受スリーブ78の内周面との間のラジアル軸受隙間に、軸部材72をラジアル方向に支持するラジアル軸受部75,76が形成される。(例えば、特許文献1を参照)。
特開2005−282779号公報
As a fluid dynamic bearing device incorporated in a spindle motor such as a disk device, for example, a configuration shown in FIG. 7 is known. In the hydrodynamic bearing device 71 shown in the figure, a bearing sleeve 78 is fixed to the inner periphery of a resin housing 77 integrally having a side portion and a bottom portion, and a shaft member 72 is inserted into the inner periphery of the bearing sleeve 78. . When the shaft member 72 rotates, radial bearing portions 75 and 76 that support the shaft member 72 in the radial direction are formed in a radial bearing gap between the outer peripheral surface of the shaft member 72 and the inner peripheral surface of the bearing sleeve 78. (For example, see Patent Document 1).
JP 2005-28279 A

ところで、上記のスピンドルモータ用の流体軸受装置では、軸部材にディスクハブを固定する際や軸受運転中の衝撃付加時に、軸部材を介してハウジングの底部に軸方向の荷重が負荷される場合がある。上記のような有底筒状の樹脂ハウジングは、ハウジングを金属の機械加工品とする場合に比べて低コスト化に有利な反面、荷重負荷時には底部が変形し、スラスト方向における回転精度が低下するおそれが高い。特に負荷荷重が過大である場合には、底部と側部の接続部分が破断して底部が脱落するおそれもある。近年のディスク装置の大容量化等に伴ってディスクハブに搭載されるディスク枚数が増加し(ディスクの多積層化)、底部に作用する負荷荷重が増大する傾向にあり、上記の問題が生じ易くなっている。   By the way, in the above-described hydrodynamic bearing device for a spindle motor, an axial load may be applied to the bottom of the housing via the shaft member when a disk hub is fixed to the shaft member or when an impact is applied during bearing operation. is there. The bottomed cylindrical resin housing is advantageous for cost reduction compared to the case where the housing is a metal machined product, but the bottom portion is deformed when a load is applied, and the rotational accuracy in the thrust direction is lowered. There is a high risk. In particular, when the load is excessive, the connecting portion between the bottom and the side may break and the bottom may fall off. With the increase in capacity of disk devices in recent years, the number of disks mounted on disk hubs has increased (multi-layered disks), and the load applied to the bottom tends to increase, and the above problems are likely to occur. It has become.

本発明の課題は、有底筒状の樹脂ハウジング底部の強度を高め、高い回転精度を誇る流体軸受装置を提供することにある。   An object of the present invention is to provide a hydrodynamic bearing device that increases the strength of the bottom of a bottomed cylindrical resin housing and boasts high rotational accuracy.

上記課題を解決するため、本発明では、側部および底部を一体に有し、ブラケットの内周に固定される樹脂製のハウジングと、ハウジングの内周に固定され、一方の端面が第1スラスト軸受隙間に面する軸受スリーブと、軸受スリーブの内周面が面するラジアル軸受隙間に生じる油膜で支持すべき軸をラジアル方向に支持するラジアル軸受部とを備える流体軸受装置において、外周面にブラケットに対する固定面を有する軸方向部およびこれと一体の半径方向部からなり、軸方向部が周方向に複数設けられた金属製の補強部材がハウジングの底側コーナー部に配置され、ハウジングが、補強部材をインサート部品として射出成形されていることを特徴とする流体軸受装置を提供する。 In order to solve the above problem, the present invention, have a side and bottom together, and a housing made of resin that will be fixed to the inner periphery of the bracket, fixed to the inner periphery of the housing, one end surface is first thrust In a hydrodynamic bearing device comprising a bearing sleeve facing a bearing gap and a radial bearing portion for supporting in a radial direction a shaft to be supported by an oil film generated in a radial bearing gap facing the inner circumferential surface of the bearing sleeve , a bracket is provided on the outer circumferential surface. Ri Do from the axial portion and integral therewith in the radial portion having a fixing surface for the axial portion is more provided with metal reinforcing member in the circumferential direction is arranged on the bottom side corner portions of the housing, the housing, Provided is a fluid dynamic bearing device which is injection-molded with a reinforcing member as an insert part .

上記のように、ハウジングの底側コーナー部に、軸方向部と半径方向部とからなる補強部材を配置することにより、有底筒状の樹脂ハウジングにおける側部と底部の接続部分(連結部分)を補強することができる。そのため、ハウジング底部の強度を高めることができ、軸方向荷重が負荷された場合に底部が変形するのを防止することが、さらには底部が脱落するのを防止することができる。特に、補強部材を金属製とし、これをハウジングの外面側に配置した場合には、ハウジング外面の一部又は全部が金属面に置換されるので、ハウジングをモータブラケットに接着固定する際、相互に固定される樹脂ハウジングの外周面あるいはモータブラケットの内周面に接着強度の向上を図るための別段の工夫(例えば、表面改質処理)を凝らすことなく、両者の固定強度を高めることができる。   As described above, by arranging the reinforcing member including the axial portion and the radial portion at the bottom corner portion of the housing, the connecting portion (connecting portion) between the side portion and the bottom portion in the bottomed cylindrical resin housing. Can be reinforced. Therefore, the strength of the bottom of the housing can be increased, and it is possible to prevent the bottom from being deformed when an axial load is applied, and further to prevent the bottom from falling off. In particular, when the reinforcing member is made of metal and disposed on the outer surface side of the housing, part or all of the outer surface of the housing is replaced with the metal surface. The fixing strength of the both can be increased without elaborating a different device (for example, surface modification treatment) for improving the adhesive strength on the outer peripheral surface of the resin housing to be fixed or the inner peripheral surface of the motor bracket.

補強部材の軸方向部は周方向の複数箇所に設けることが、すなわち周方向で間欠的に設けることができる。例えば、金属製の軸方向部を周方向で連続的に設けた場合(軸方向部を円筒形状とした場合)、一般に樹脂の線膨張係数は金属のそれに比べて十分に大きいので、軸受運転時の温度変化に伴ってハウジングが熱膨張すると、膨張分を外径側に逃がすことができずラジアル軸受隙間の幅精度、すなわちラジアル軸受部における回転精度に悪影響が及ぶおそれがある。これに対し、上記のように軸方向部を周方向の複数箇所に設ければ、補強部材の径方向における剛性が緩和されるので、ラジアル軸受隙間の幅精度に悪影響が及び、ラジアル方向の回転精度が低下するのを回避することができる。   The axial portion of the reinforcing member can be provided at a plurality of locations in the circumferential direction, that is, intermittently provided in the circumferential direction. For example, when a metal axial part is provided continuously in the circumferential direction (when the axial part is cylindrical), the resin generally has a sufficiently large coefficient of linear expansion compared to that of metal. If the housing thermally expands with this temperature change, the expansion cannot be released to the outer diameter side, and the width accuracy of the radial bearing gap, that is, the rotational accuracy of the radial bearing portion may be adversely affected. On the other hand, if the axial portions are provided at a plurality of locations in the circumferential direction as described above, the rigidity in the radial direction of the reinforcing member is relaxed, which adversely affects the width accuracy of the radial bearing gap and causes rotation in the radial direction. It is possible to avoid a decrease in accuracy.

上記のように、荷重負荷時におけるハウジング底部の変形や破断は、側部と底部の接続部分で最も生じ易い。そのため、補強部材の半径方向部は、ハウジングの側部内周面を超える位置まで内径側に延ばして設けるのが望ましい。また、同様の観点から、補強部材の軸方向部は、ハウジングの底部内底面を超える位置まで延ばして設けるのが望ましい。   As described above, the deformation and breakage of the housing bottom portion when a load is applied are most likely to occur at the connecting portion between the side portion and the bottom portion. Therefore, it is desirable that the radial direction portion of the reinforcing member extends to the inner diameter side to a position exceeding the inner peripheral surface of the side portion of the housing. From the same viewpoint, it is desirable that the axial portion of the reinforcing member is provided so as to extend to a position exceeding the bottom inner bottom surface of the housing.

上記構成において、ハウジングは、補強部材をインサート部品として射出成形することができる。かかる構成とすれば、ハウジングの成形と、補強部材の組み付けとを一工程で行うことができるので、補強部材をハウジングに組み付ける手間を省くことができ、補強部材を設けることによるコスト増を極力抑制することができる。   In the above configuration, the housing can be injection-molded using the reinforcing member as an insert part. With such a configuration, the molding of the housing and the assembly of the reinforcing member can be performed in one step, so that the trouble of assembling the reinforcing member to the housing can be saved, and the cost increase due to the provision of the reinforcing member can be suppressed as much as possible can do.

なお、補強部材は、上記のようにハウジングの外面側に配置することができるが、ハウジング底部の強度を高める観点から言えば、補強部材は必ずしもハウジングの外面側に配置する必要はなく、ハウジングの内面側に配置することも、またハウジングの内部に配置する(ハウジングに埋設する)こともできる。   The reinforcing member can be arranged on the outer surface side of the housing as described above. However, from the viewpoint of increasing the strength of the bottom of the housing, the reinforcing member is not necessarily arranged on the outer surface side of the housing. It can be arranged on the inner surface side or can be arranged inside the housing (embedded in the housing).

以上より、本発明によれば、樹脂製のハウジング底部の強度を高めることができ、荷重負荷時に懸念されるスラスト軸受部における回転精度の低下、さらには回転不能となる事態を回避することができる。従って、高い回転精度を誇り、信頼性に富む流体軸受装置を提供することができる。   As described above, according to the present invention, the strength of the resin-made housing bottom can be increased, and a situation in which the rotational accuracy of the thrust bearing portion, which is a concern when a load is applied, can be avoided, and further, the situation where rotation is impossible can be avoided. . Therefore, it is possible to provide a hydrodynamic bearing device that boasts high rotational accuracy and is highly reliable.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、流体軸受装置を組み込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に支持する流体軸受装置1と、軸部材2に装着されたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はモータブラケット(ブラケット)6の外周に取り付けられ、ロータマグネット5はディスクハブ3の内周に取り付けられる。流体軸受装置1のハウジング7は、ブラケット6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが一又は複数枚保持される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、ディスクハブ3および軸部材2が一体となって回転する。   FIG. 1 conceptually shows one configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device. This spindle motor is used for a disk drive device such as an HDD, and has a hydrodynamic bearing device 1 that rotatably supports a shaft member 2, a disk hub 3 mounted on the shaft member 2, and a radial gap, for example. And a stator magnet 4 and a rotor magnet 5 which are opposed to each other. The stator coil 4 is attached to the outer periphery of the motor bracket (bracket) 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is attached to the inner periphery of the bracket 6. The disk hub 3 holds one or more disks D such as magnetic disks. When the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the disk hub 3 and the shaft member 2 are rotated together.

図2は、図1に示す流体軸受装置1の拡大断面図を示すもので、本発明にかかる流体軸受装置の第1実施形態を示すものである。この流体軸受装置1は、側部および底部を一体に有するハウジング7と、ハウジング7の内周に固定された軸受スリーブ8と、軸受スリーブ8の内周に挿入された軸部材2と、ハウジング7の開口部をシールするシール部材9と、ハウジング7の底側コーナー部に配置された補強部材12とを主要な構成部品として備える。なお、以下では、説明の便宜上、ハウジング7の開口側を上側、これと軸方向反対側を下側として説明を進める。   FIG. 2 is an enlarged cross-sectional view of the hydrodynamic bearing device 1 shown in FIG. 1, and shows a first embodiment of the hydrodynamic bearing device according to the present invention. The hydrodynamic bearing device 1 includes a housing 7 having a side portion and a bottom portion integrally, a bearing sleeve 8 fixed to the inner periphery of the housing 7, a shaft member 2 inserted into the inner periphery of the bearing sleeve 8, and the housing 7. The seal member 9 that seals the opening of the housing 7 and the reinforcing member 12 disposed at the bottom corner portion of the housing 7 are provided as main components. In the following description, for convenience of explanation, the description will proceed with the opening side of the housing 7 as the upper side and the opposite side in the axial direction as the lower side.

軸部材2は、例えば、ステンレス鋼等の金属材料で形成され、軸部2aと、軸部2aの下端に一体又は別体に設けられたフランジ部2bとを備えている。軸部材2は、その全体を金属材料で形成する他、例えばフランジ部2bの全体あるいはその一部(例えば両端面)を樹脂で構成し、金属と樹脂のハイブリッド構造とすることもできる。   The shaft member 2 is formed of, for example, a metal material such as stainless steel, and includes a shaft portion 2a and a flange portion 2b provided integrally or separately at the lower end of the shaft portion 2a. The shaft member 2 may be entirely formed of a metal material, or may be a hybrid structure of metal and resin, for example, the entire flange portion 2b or a part thereof (for example, both end surfaces) made of resin.

軸受スリーブ8は、焼結金属からなる多孔質体、特に銅を主成分とする燒結金属の多孔質体で円筒状に形成される。なお、焼結金属に限らず、黄銅等の軟質金属材料、あるいは焼結金属ではない他の多孔質体(多孔質樹脂等)で軸受スリーブ8を形成することも可能である。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body made of sintered metal, in particular, a sintered body of sintered metal mainly composed of copper. The bearing sleeve 8 can be formed not only from a sintered metal but also from a soft metal material such as brass, or another porous body (such as a porous resin) that is not a sintered metal.

軸受スリーブ8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面となる上下2つの領域(図2の黒塗り部分)が軸方向に離隔して設けられ、該2つの領域には、例えば図3に示すようなヘリングボーン形状に配列された複数の動圧溝8a1、8a2がそれぞれ形成される。上側の動圧溝8a1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。なお、動圧溝は、軸部2aの外周面2a1に形成することもでき、またその形状は、スパイラル形状等、公知のその他の形状とすることもできる。軸受スリーブ8の外周面8dには、両端面8b、8cを連通させる1又は複数本の軸方向溝8d1が形成され、本実施形態で軸方向溝8d1は、円周方向の3箇所に等配されている。   The inner peripheral surface 8a of the bearing sleeve 8 is provided with two upper and lower regions (black portions in FIG. 2) which are radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2 and are separated in the axial direction. In the two regions, a plurality of dynamic pressure grooves 8a1 and 8a2 arranged in a herringbone shape as shown in FIG. 3 are formed, for example. The upper dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions), and the axial dimension X1 of the upper region is lower than the axial center m. It is larger than the axial dimension X2 of the side region. The dynamic pressure groove can also be formed on the outer peripheral surface 2a1 of the shaft portion 2a, and the shape thereof can be other known shapes such as a spiral shape. The outer peripheral surface 8d of the bearing sleeve 8 is formed with one or a plurality of axial grooves 8d1 that allow the both end surfaces 8b and 8c to communicate with each other. In this embodiment, the axial grooves 8d1 are equally distributed at three locations in the circumferential direction. Has been.

軸受スリーブ8の下側端面8bには第1スラスト軸受部T1のスラスト軸受面となる領域(図2の黒塗り部分)が設けられ、該領域には、図示は省略するが、例えばスパイラル形状に配列された複数の動圧溝が形成されている。動圧溝は、フランジ部2bの上側端面2b1に形成することもでき、またその形状は、へリングボーン形状等、公知のその他の形状とすることもできる。   The lower end face 8b of the bearing sleeve 8 is provided with a region (blacked portion in FIG. 2) that becomes the thrust bearing surface of the first thrust bearing portion T1, and this region is omitted in illustration, for example, in a spiral shape. A plurality of arranged dynamic pressure grooves are formed. The dynamic pressure groove may be formed on the upper end surface 2b1 of the flange portion 2b, and the shape thereof may be other known shapes such as a herringbone shape.

ハウジング7は、側部と、側部の下端開口部を封止する底部7cとを一体に有する有底筒状を呈する。本実施形態において、側部は、円筒状の小径部7aと、小径部7aの上側に配置された円筒状の大径部7bとで構成されている。小径部7aの内周面7a1および外周面7a2は、それぞれ、大径部7bの内周面7b1および外周面7b2に比べ小径に形成されている。小径部7aの内周面7a1と大径部7bの内周面7b1とは、軸方向と直交する方向の平坦面状に形成された段差面7eで連続している。   The housing 7 has a bottomed cylindrical shape integrally including a side portion and a bottom portion 7c that seals a lower end opening of the side portion. In this embodiment, the side part is comprised by the cylindrical small diameter part 7a and the cylindrical large diameter part 7b arrange | positioned above the small diameter part 7a. The inner peripheral surface 7a1 and the outer peripheral surface 7a2 of the small diameter portion 7a are formed to have a smaller diameter than the inner peripheral surface 7b1 and the outer peripheral surface 7b2 of the large diameter portion 7b, respectively. The inner peripheral surface 7a1 of the small diameter portion 7a and the inner peripheral surface 7b1 of the large diameter portion 7b are continuous with a step surface 7e formed in a flat surface shape in a direction orthogonal to the axial direction.

ハウジング7の内底面7c1には、第2スラスト軸受部T2のスラスト軸受面となる領域(図2の黒塗り部分)が設けられ、該領域には、図示は省略するが、例えばスパイラル形状に配列された複数の動圧溝が形成されている。この動圧溝は、フランジ部2bの下側端面2b2に形成することもでき、またその形状は、ヘリングボーン形状等、公知のその他の形状とすることができる。   The inner bottom surface 7c1 of the housing 7 is provided with a region (blacked portion in FIG. 2) that becomes a thrust bearing surface of the second thrust bearing portion T2, and this region is not illustrated, but is arranged in a spiral shape, for example. A plurality of dynamic pressure grooves are formed. This dynamic pressure groove can also be formed in the lower end surface 2b2 of the flange portion 2b, and the shape thereof can be other known shapes such as a herringbone shape.

ハウジング7の外面の底側コーナー部には、ステンレス鋼等の金属材料で形成され、軸方向部12aと半径方向部12bとを一体に有する断面略L字形状の補強部材12が配置されている。本実施形態において、補強部材12の軸方向部12aは、ハウジング7の底部内底面7c1、さらには第2ラジアル軸受部R2を超える位置まで上方に延び、半径方向部12bは、ハウジング7の小径部内周面7a1、さらには第2スラスト軸受部T2を超える位置まで内径側に延び、その中心には孔が設けられている。軸方向部12aは周方向の複数箇所に設けられ、そのため補強部材12の軸方向部12aは周方向で間欠的な櫛型形状を呈している。   A reinforcing member 12 having a substantially L-shaped cross section, which is formed of a metal material such as stainless steel and integrally includes an axial direction portion 12a and a radial direction portion 12b, is disposed at the bottom corner portion of the outer surface of the housing 7. . In the present embodiment, the axial portion 12 a of the reinforcing member 12 extends upward to a position exceeding the bottom inner bottom surface 7 c 1 of the housing 7 and further the second radial bearing portion R 2, and the radial portion 12 b is within the small diameter portion of the housing 7. It extends to the inner diameter side up to a position exceeding the peripheral surface 7a1 and further the second thrust bearing portion T2, and a hole is provided at the center thereof. The axial portion 12a is provided at a plurality of locations in the circumferential direction. Therefore, the axial portion 12a of the reinforcing member 12 has an intermittent comb shape in the circumferential direction.

ハウジング7は、上記の補強部材12をインサートして樹脂で射出成形される。成形収縮時の収縮量の差による変形を防止するため、ハウジング7の各部7a〜7cは略均一厚に形成されている。なお、図示は省略するが、ハウジング7を射出成形する際、金型内への樹脂の充填は、例えば、補強部材12の半径方向部12bに形成された孔を介して底部7cの外底面の略中央部から行うことができる。   The housing 7 is injection-molded with resin by inserting the reinforcing member 12 described above. In order to prevent deformation due to the difference in shrinkage during molding shrinkage, the portions 7a to 7c of the housing 7 are formed to have a substantially uniform thickness. Although illustration is omitted, when the housing 7 is injection-molded, the resin filling into the mold is performed, for example, on the outer bottom surface of the bottom portion 7c through a hole formed in the radial portion 12b of the reinforcing member 12. It can be performed from a substantially central portion.

ハウジング7を形成する樹脂は主に熱可塑性樹脂であり、例えば、非晶性樹脂として、ポリサルフォン(PSU)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等、結晶性樹脂として、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等を用いることができる。また、上記の樹脂に充填する充填材の種類も特に限定されないが、例えば、充填材として、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、カーボンファイバー、カーボンブラック、黒鉛、カーボンナノマテリアル、金属粉末等の繊維状又は粉末状の導電性充填材を用いることができる。これらの樹脂および充填材は、単独で用い、あるいは、二種以上を混合して使用しても良い。   The resin forming the housing 7 is mainly a thermoplastic resin. For example, as the amorphous resin, polysulfone (PSU), polyethersulfone (PES), polyphenylsulfone (PPSU), polyetherimide (PEI) As the crystalline resin, liquid crystal polymer (LCP), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), or the like can be used. The type of filler to be filled in the resin is not particularly limited. For example, as the filler, fibrous filler such as glass fiber, whisker-like filler such as potassium titanate, and scaly filler such as mica. A fibrous or powdery conductive filler such as carbon fiber, carbon black, graphite, carbon nanomaterial, or metal powder can be used. These resins and fillers may be used alone or in combination of two or more.

シール部材9は、例えば、黄銅等の軟質金属材料やその他の金属材料、あるいは樹脂材料で、リング状の第1シール部9aと、第1シール部9aの外径側から下方に張り出した円筒状の第2シール部9bとを一体に備える断面逆L字形状に形成される。第1シール部9aの内周面9a2は軸部2aの外周面2a1との間に所定容積の第1のシール空間S1を形成する。また、第2シール部9bの外周面9b1は、ハウジング7を構成する大径部7bの内周面7b1との間に所定容積の第2のシール空間S2を形成する。本実施形態において、第1シール部9aの内周面9a2およびハウジング7の大径部7bの内周面7b1は、何れも上方を拡径させたテーパ面状に形成され、そのため第1および第2のシール空間S1,S2は下方に向かって漸次縮小したテーパ形状を呈する。   The seal member 9 is made of, for example, a soft metal material such as brass, another metal material, or a resin material, and a ring-shaped first seal portion 9a and a cylindrical shape projecting downward from the outer diameter side of the first seal portion 9a. The second seal portion 9b is integrally formed with an inverted L-shaped cross section. A first seal space S1 having a predetermined volume is formed between the inner peripheral surface 9a2 of the first seal portion 9a and the outer peripheral surface 2a1 of the shaft portion 2a. Further, the outer peripheral surface 9 b 1 of the second seal portion 9 b forms a second seal space S 2 having a predetermined volume with the inner peripheral surface 7 b 1 of the large diameter portion 7 b constituting the housing 7. In the present embodiment, the inner peripheral surface 9a2 of the first seal portion 9a and the inner peripheral surface 7b1 of the large-diameter portion 7b of the housing 7 are both formed in a tapered surface shape whose diameter is enlarged upward, and therefore the first and first The two seal spaces S1, S2 have a tapered shape that gradually decreases downward.

第1シール部9aの下側端面9a1には、下側端面9a1を横断する一又は複数の径方向溝10が形成されている。図示は省略するが、本実施形態で、径方向溝10は円周方向の三箇所に等配されている。   In the lower end surface 9a1 of the first seal portion 9a, one or a plurality of radial grooves 10 crossing the lower end surface 9a1 are formed. Although illustration is omitted, in this embodiment, the radial grooves 10 are equally arranged at three locations in the circumferential direction.

上記の構成部材からなる流体軸受装置1は、ハウジング7内に軸部材2を収容した状態でハウジング7の内周に軸受スリーブ8を固定し、あるいは、内周に軸部材2を挿入した状態で軸受スリーブ8をハウジング7内に挿入した後固定し、さらに軸受スリーブ8にシール部材9を固定することで組み立てることができる。その後、シール部材9で密封されたハウジング7の内部空間に、軸受スリーブ8の内部気孔を含め潤滑油を充満させれば、図2に示す流体軸受装置1が完成する。   In the hydrodynamic bearing device 1 composed of the above-described constituent members, the shaft sleeve 2 is accommodated in the housing 7 and the bearing sleeve 8 is fixed to the inner periphery of the housing 7 or the shaft member 2 is inserted in the inner periphery. The bearing sleeve 8 can be assembled by inserting it into the housing 7 and then fixing it, and further fixing the seal member 9 to the bearing sleeve 8. Thereafter, when the internal space of the housing 7 sealed by the seal member 9 is filled with lubricating oil including the internal pores of the bearing sleeve 8, the hydrodynamic bearing device 1 shown in FIG. 2 is completed.

なお、ハウジング7と軸受スリーブ8の固定、および軸受スリーブ8とシール部材9の固定は、圧入や接着、さらには圧入接着(接着剤の介在の下で圧入する)で行うことができる。組立後は、シール部材9を構成する第1シール部9aの下側端面9a1が軸受スリーブ8の上側端面8cと当接し、第2シール部9bの下側端面がハウジング7の段差面7eと軸方向隙間11を介して対向する。また、シール部材9は、ハウジング7の大径部7bの内径側に配置される。   The housing 7 and the bearing sleeve 8 can be fixed, and the bearing sleeve 8 and the seal member 9 can be fixed by press-fitting or bonding, or press-fitting (press-fitting with an adhesive). After assembly, the lower end surface 9a1 of the first seal portion 9a constituting the seal member 9 contacts the upper end surface 8c of the bearing sleeve 8, and the lower end surface of the second seal portion 9b is in contact with the stepped surface 7e of the housing 7. Opposing via the directional gap 11. Further, the seal member 9 is disposed on the inner diameter side of the large diameter portion 7 b of the housing 7.

以上の構成からなる流体軸受装置1において、軸部材2が回転すると、軸受スリーブ8の内周面8aのラジアル軸受面となる上下2箇所の領域は、それぞれ、軸部2aの外周面2a1とラジアル軸受隙間を介して対向する。そして、軸部材2の回転に伴って、各ラジアル軸受隙間に形成される油膜は、ラジアル軸受面にそれぞれ形成された動圧溝8a1、8a2の動圧作用によってその油膜剛性を高められ、この圧力によって軸部材2がラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが形成される。   In the hydrodynamic bearing device 1 having the above-described configuration, when the shaft member 2 rotates, the upper and lower two regions serving as the radial bearing surface of the inner peripheral surface 8a of the bearing sleeve 8 are different from the outer peripheral surface 2a1 of the shaft portion 2a. Opposing through the bearing gap. As the shaft member 2 rotates, the oil film formed in each radial bearing gap has its oil film rigidity increased by the dynamic pressure action of the dynamic pressure grooves 8a1 and 8a2 respectively formed on the radial bearing surfaces. Thus, the shaft member 2 is supported in a non-contact manner so as to be rotatable in the radial direction. As a result, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are formed.

また、軸部材2が回転すると、軸受スリーブ8の下側端面8bのスラスト軸受面となる領域は、フランジ部2bの上側端面2b1とスラスト軸受隙間を介して対向し、ハウジング7の内底面7c1のスラスト軸受面となる領域は、フランジ部2bの下側端面2b2とスラスト軸受隙間を介して対向する。そして、軸部材2の回転に伴って、各スラスト軸受隙間に形成される油膜は、スラスト軸受面にそれぞれ形成された動圧溝の動圧作用によってその油膜剛性を高められ、この圧力によって軸部材2が両スラスト方向に回転自在に非接触支持される。これにより、軸部材2を両スラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが形成される。   Further, when the shaft member 2 rotates, a region serving as a thrust bearing surface of the lower end surface 8b of the bearing sleeve 8 faces the upper end surface 2b1 of the flange portion 2b via a thrust bearing gap, and the inner bottom surface 7c1 of the housing 7 The region to be the thrust bearing surface is opposed to the lower end surface 2b2 of the flange portion 2b via the thrust bearing gap. As the shaft member 2 rotates, the oil film formed in the thrust bearing gaps has its oil film rigidity increased by the dynamic pressure action of the dynamic pressure grooves formed on the thrust bearing surfaces. 2 is supported in a non-contact manner so as to be rotatable in both thrust directions. Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which non-contact-support the shaft member 2 rotatably in both thrust directions are formed.

また、軸部材2の回転時には、上述のように、第1および第2のシール空間S1、S2が、ハウジング7の内部側に向かって漸次縮小したテーパ形状を呈しているため、両シール空間S1、S2内の潤滑油は毛細管力による引き込み作用により、シール空間が狭くなる方向、すなわちハウジング7の内部側に向けて引き込まれる。これにより、ハウジング7の内部からの潤滑油の漏れ出しが効果的に防止される。また、シール空間S1、S2は、ハウジング7の内部空間に充満された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内では、潤滑油の油面は常にシール空間S1、S2内にある。   Further, when the shaft member 2 is rotated, as described above, the first and second seal spaces S1 and S2 have a tapered shape that is gradually reduced toward the inner side of the housing 7, and thus both the seal spaces S1. The lubricating oil in S2 is drawn toward the direction in which the seal space becomes narrow, that is, toward the inside of the housing 7, by the drawing action by the capillary force. Thereby, the leakage of the lubricating oil from the inside of the housing 7 is effectively prevented. Further, the seal spaces S1 and S2 have a buffer function for absorbing a volume change amount associated with a temperature change of the lubricating oil filled in the internal space of the housing 7, and within the range of the assumed temperature change, The oil level is always in the seal space S1, S2.

なお、第1シール部9aの内周面9a2を円筒面とする一方、これに対向する軸部2aの外周面2a1にテーパ面を形成してもよく、この場合、第1のシール空間S1には、さらに遠心力シールとしての機能も付加されるのでシール効果が一層高まる。   While the inner peripheral surface 9a2 of the first seal portion 9a is a cylindrical surface, a tapered surface may be formed on the outer peripheral surface 2a1 of the shaft portion 2a opposite to the cylindrical surface. In this case, the first seal space S1 is formed in the first seal space S1. Since a function as a centrifugal seal is further added, the sealing effect is further enhanced.

また、上述したように、上側の動圧溝8a1は、軸方向中心mに対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている(図3参照)。そのため、軸部材2の回転時、動圧溝8a1による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。そして、この引き込み力の差圧によって、軸受スリーブ8の内周面8aと軸部2aの外周面2a1との間の隙間に満たされた潤滑油は、第1スラスト軸受部T1のスラスト軸受隙間→軸受スリーブ8の軸方向溝8d1によって形成される流体通路→第1シール部9aの径方向溝10によって形成される流体通路という経路を循環して、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。   Further, as described above, the upper dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m, and the axial dimension X1 of the upper region from the axial center m is the axial direction of the lower region. It is larger than the dimension X2 (see FIG. 3). Therefore, when the shaft member 2 rotates, the lubricating oil pulling force (pumping force) by the dynamic pressure groove 8a1 is relatively larger in the upper region than in the lower region. The lubricating oil filled in the gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a due to the differential pressure of the pulling force becomes the thrust bearing gap of the first thrust bearing portion T1. The fluid passage formed by the axial groove 8d1 of the bearing sleeve 8 circulates through the path of the fluid passage formed by the radial groove 10 of the first seal portion 9a, and again into the radial bearing gap of the first radial bearing portion R1. Be drawn.

このように、潤滑油がハウジング7の内部空間を流動循環するように構成することで、潤滑油の圧力バランスが保たれると同時に、局部的な負圧の発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。上記の循環経路には、第1のシール空間S1が連通し、さらに軸方向隙間11を介して第2のシール空間S2が連通しているので、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際にシール空間S1、S2内の潤滑油の油面(気液界面)から外気に排出される。従って、気泡による悪影響はより一層効果的に防止される。   In this way, by configuring the lubricating oil to flow and circulate in the internal space of the housing 7, the pressure balance of the lubricating oil is maintained, and at the same time, the generation of bubbles accompanying the generation of local negative pressure, Problems such as leakage of lubricating oil and generation of vibration due to generation can be solved. When the first seal space S1 communicates with the circulation path, and the second seal space S2 communicates with the axial clearance 11, the bubbles are mixed into the lubricating oil for some reason. However, when the bubbles circulate with the lubricating oil, the air is discharged from the oil surface (gas-liquid interface) of the lubricating oil in the seal spaces S1 and S2 to the outside air. Therefore, adverse effects due to air bubbles can be more effectively prevented.

なお、図示は省略するが、軸方向の流体通路はハウジング7の小径部7aの内周面7a1およびシール部材9の第2シール部9bの内周面9b2に軸方向溝を設けることによって形成することもでき、径方向の流体通路は軸受スリーブ8の上側端面8cに径方向溝を設けることによって形成することもできる。   Although not shown, the axial fluid passage is formed by providing axial grooves on the inner peripheral surface 7a1 of the small diameter portion 7a of the housing 7 and the inner peripheral surface 9b2 of the second seal portion 9b of the seal member 9. Alternatively, the radial fluid passage can be formed by providing a radial groove in the upper end surface 8 c of the bearing sleeve 8.

以上に示す流体軸受装置1では、樹脂からなる有底筒状のハウジング7の底側コーナー部に、軸方向部12aと半径方向部12bとからなる金属製の補強部材12を配置しているので、ハウジング7における側部(小径部7a)と底部7cの連結部分を補強することができる。そのため、ハウジング7の底部7cの強度を高めることができ、軸方向荷重が負荷された場合に、底部7cが変形、さらには脱落するのを防止することができる。従って、第2スラスト軸受部T2のスラスト軸受隙間の幅精度、すなわち第2スラスト軸受部T2における回転精度が低下するのを防止することができ、軸受としての機能を長期間に亘って高精度に確保することができる。特に本実施形態では、補強部材12の軸方向部12aがハウジング7の底部内底面7c1を超える位置まで上方に延在すると共に、半径方向部12bがハウジング7の小径部内周面7a1を超える位置まで内径側に延在しているので、上記の効果を一層効果的に享受することができる。   In the hydrodynamic bearing device 1 described above, the metal reinforcing member 12 composed of the axial portion 12a and the radial portion 12b is disposed at the bottom corner portion of the bottomed cylindrical housing 7 made of resin. The connecting portion between the side portion (small diameter portion 7a) and the bottom portion 7c in the housing 7 can be reinforced. Therefore, the strength of the bottom portion 7c of the housing 7 can be increased, and when the axial load is applied, the bottom portion 7c can be prevented from being deformed and further dropped off. Accordingly, it is possible to prevent the width accuracy of the thrust bearing gap of the second thrust bearing portion T2, that is, the rotational accuracy of the second thrust bearing portion T2, from being lowered, and the function as a bearing can be highly accurate over a long period of time. Can be secured. In particular, in this embodiment, the axial direction portion 12a of the reinforcing member 12 extends upward to a position exceeding the bottom inner bottom surface 7c1 of the housing 7, and the radial direction portion 12b extends to a position exceeding the small diameter inner peripheral surface 7a1 of the housing 7. Since it extends to the inner diameter side, the above-described effects can be enjoyed more effectively.

また、かかる構成とすることにより、ハウジング7の小径部7aの外周面7a2、すなわちブラケット6(図1参照)に対する固定面の一部あるいは全部が金属面に置換される。そのため、ハウジング7をブラケット6の内周に接着固定する場合でも、ハウジング7の外周面7a2あるいはブラケット6の内周面に表面改質処理等を施すことなく、モータに対する流体軸受装置1の固定強度(接着強度)を高めることができる。   Further, with this configuration, the outer peripheral surface 7a2 of the small-diameter portion 7a of the housing 7, that is, a part or all of the fixing surface for the bracket 6 (see FIG. 1) is replaced with a metal surface. Therefore, even when the housing 7 is bonded and fixed to the inner periphery of the bracket 6, the fixing strength of the hydrodynamic bearing device 1 with respect to the motor is not applied to the outer peripheral surface 7 a 2 of the housing 7 or the inner peripheral surface of the bracket 6. (Adhesive strength) can be increased.

なお、本実施形態において、補強部材12は、ハウジング7のインサート部品であるため、両者を別工程等で組み付ける手間を省いてこの種の補強部材12を設けることによるコスト増を極力抑制することができる。しかしながら、補強部材12をインサート部品とした場合、ハウジング7と補強部材12とが密着状態となるため、仮に軸方向部12aが円筒形状を呈していると、軸受運転時の温度変化に伴って樹脂製のハウジング7が熱膨張した際、ハウジング7の膨張分を外径側に逃がすことができずラジアル軸受隙間の幅精度が悪化するおそれがある。これに対し、本実施形態では、軸方向部12aを周方向の複数箇所に設けているので、補強部材12の径方向の剛性が緩和される。従って、ハウジング7が熱膨張した場合におけるラジアル軸受隙間の幅精度の悪化、すなわちラジアル方向の回転精度の悪化を回避することができる。   In this embodiment, since the reinforcing member 12 is an insert part of the housing 7, it is possible to suppress the increase in cost due to providing this type of reinforcing member 12 while omitting the trouble of assembling both in a separate process or the like. it can. However, when the reinforcing member 12 is an insert part, the housing 7 and the reinforcing member 12 are in close contact with each other. Therefore, if the axial portion 12a has a cylindrical shape, the resin changes with the temperature change during the bearing operation. When the made housing 7 is thermally expanded, the expansion of the housing 7 cannot be released to the outer diameter side, and the width accuracy of the radial bearing gap may be deteriorated. On the other hand, in this embodiment, since the axial direction part 12a is provided in the multiple places of the circumferential direction, the rigidity of the radial direction of the reinforcement member 12 is relieve | moderated. Accordingly, it is possible to avoid the deterioration of the width accuracy of the radial bearing gap when the housing 7 is thermally expanded, that is, the deterioration of the rotation accuracy in the radial direction.

また、本実施形態の流体軸受装置1では、シール部材9の内周側だけでなく、外周側にもシール空間が形成されている。シール空間は、ハウジング7の内部空間に充満された潤滑油の温度変化に伴う容積変化量を吸収しうる容積を有するものであり、従って本実施形態の構成であれば、第2のシール空間S2をシール部材9の外周側にも設けている分、第1のシール空間S1の軸方向寸法を図7に示す構成よりも小さくすることが可能である。そのため、例えば、軸受装置(ハウジング7)の軸方向寸法を長大化させることなく軸受スリーブ8の軸方向長さ、換言すると両ラジアル軸受部R1、R2間の軸受スパンを図7に示す流体軸受装置よりも大きくすることができ、モーメント剛性を高めることができる。   Further, in the hydrodynamic bearing device 1 of the present embodiment, a seal space is formed not only on the inner peripheral side of the seal member 9 but also on the outer peripheral side. The seal space has a volume capable of absorbing a volume change amount due to a temperature change of the lubricating oil filled in the internal space of the housing 7, and therefore the second seal space S2 has the configuration of this embodiment. The axial dimension of the first seal space S1 can be made smaller than that of the configuration shown in FIG. Therefore, for example, the hydrodynamic bearing device shown in FIG. 7 shows the axial length of the bearing sleeve 8 without increasing the axial dimension of the bearing device (housing 7), in other words, the bearing span between the radial bearing portions R1 and R2. The moment rigidity can be increased.

図4は、本発明に係る流体軸受装置の第2実施形態を示すものである。同図に示す流体軸受装置21が、図2に示す流体軸受装置1と異なる主な点は、ハウジング7の側部の外径寸法を軸方向全長に亘って同一径とした点にある。また、ハウジング7の側部と底部7cの境界部内周には段部が一体的に設けられている。軸部材2のフランジ部2bは段部の内径側に配置され、段部は軸受スリーブ8の位置決め部として使用することができる。従って、スラスト軸受隙間の幅管理を容易に行い得る。これ以外の構成については、図2に示す実施形態に準ずるので、共通の参照番号を付して重複説明を省略する。   FIG. 4 shows a fluid dynamic bearing device according to a second embodiment of the present invention. The main difference between the hydrodynamic bearing device 21 shown in FIG. 2 and the hydrodynamic bearing device 1 shown in FIG. 2 is that the outer diameter of the side portion of the housing 7 is the same diameter over the entire length in the axial direction. Further, a step portion is integrally provided on the inner periphery of the boundary portion between the side portion of the housing 7 and the bottom portion 7c. The flange portion 2 b of the shaft member 2 is disposed on the inner diameter side of the step portion, and the step portion can be used as a positioning portion for the bearing sleeve 8. Accordingly, the width management of the thrust bearing gap can be easily performed. Since the configuration other than this is in accordance with the embodiment shown in FIG. 2, common reference numerals are given and redundant description is omitted.

図5は、本発明に係る流体軸受装置の第3実施形態を示すものである。同図に示す流体軸受装置31が図2に示す流体軸受装置1と異なる主な点は、図2、図4に示す実施形態において補強部材12がハウジング7のインサート部品とされていたのに対し、補強部材12がハウジング7の外径側に隙間接着されている点にある。これ以外の構成については、図2に示す実施形態に準ずるので、共通の参照番号を付して重複説明を省略する。   FIG. 5 shows a third embodiment of the hydrodynamic bearing device according to the present invention. 2 is different from the hydrodynamic bearing device 1 shown in FIG. 2 in that the reinforcing member 12 is an insert part of the housing 7 in the embodiment shown in FIGS. The reinforcing member 12 is bonded to the outer diameter side of the housing 7 with a gap. Since the configuration other than this is in accordance with the embodiment shown in FIG. 2, common reference numerals are given and redundant description is omitted.

なお、図5に示す構成においても、補強部材12の軸方向部12aは、これを周方向に複数設けた櫛型形状を呈しているが、このように補強部材12をハウジング7に対して隙間接着する場合には、軸方向部12aは円筒形状とすることもできる。軸受運転時の温度変化に伴うハウジング7の膨張量は、ハウジング7と補強部材12の間の接着隙間で吸収することができるからである。   In the configuration shown in FIG. 5 as well, the axial portion 12 a of the reinforcing member 12 has a comb shape in which a plurality of the axial portions 12 a are provided in the circumferential direction. When bonding, the axial direction part 12a can also be made into a cylindrical shape. This is because the expansion amount of the housing 7 due to the temperature change during the bearing operation can be absorbed by the adhesive gap between the housing 7 and the reinforcing member 12.

図6(a)は、本発明に係る流体軸受装置の第4実施形態を示すものである。同図に示す流体軸受装置41が以上に示した流体軸受装置と異なる主な点は、補強部材12をハウジング7の外面側ではなく、ハウジング7の内面側に配置した点にある。本実施形態では、図6(b)に示すように、補強部材12の半径方向部12bがフランジ部2bの外周面2b3を超える位置まで内径側に延在し、かつ上側端面12b2がハウジング7の底部内底面7c1と面一に設けられているので、フランジ部2bを介して底部7cに負荷される軸方向荷重は、半径方向部12bで直接受けることができる。従って、荷重負荷時における底部7cの変形を防止することができるのはもちろんのこと、フランジ部2bがハウジング7の内底面7c1に強く圧接した場合に懸念される動圧溝(厳密には動圧溝を区画する「背」の部分)の損傷を防止することができ、第2スラスト軸受部T2における回転性能の低下を効果的に防止することができる。   FIG. 6A shows a fourth embodiment of the hydrodynamic bearing device according to the present invention. The main difference of the hydrodynamic bearing device 41 shown in the figure from the hydrodynamic bearing device shown above is that the reinforcing member 12 is arranged not on the outer surface side of the housing 7 but on the inner surface side of the housing 7. In this embodiment, as shown in FIG. 6B, the radial direction portion 12b of the reinforcing member 12 extends to the inner diameter side to a position exceeding the outer peripheral surface 2b3 of the flange portion 2b, and the upper end surface 12b2 is the housing 7 Since it is provided flush with the bottom inner bottom surface 7c1, the axial load applied to the bottom portion 7c via the flange portion 2b can be directly received by the radial portion 12b. Therefore, it is possible to prevent deformation of the bottom portion 7c when a load is applied, as well as a dynamic pressure groove (strictly speaking, dynamic pressure) that is a concern when the flange portion 2b is in strong pressure contact with the inner bottom surface 7c1 of the housing 7. Damage to the “back” section that divides the groove can be prevented, and a decrease in rotational performance in the second thrust bearing portion T2 can be effectively prevented.

以上では、補強部材12をハウジング7の外面側あるいは内面側に設けた場合について説明を行ったが、ハウジング底部7cの強度を高める観点から言えば、補強部材12は、ハウジング7に埋設することもできる(図示省略)。   Although the case where the reinforcing member 12 is provided on the outer surface side or the inner surface side of the housing 7 has been described above, the reinforcing member 12 may be embedded in the housing 7 from the viewpoint of increasing the strength of the housing bottom 7c. Yes (not shown).

また、図示は省略するが、本発明の構成は、図7に示す形態の流体軸受装置に対しても好適に用いることが可能である。   Moreover, although illustration is abbreviate | omitted, the structure of this invention can be used suitably also with respect to the hydrodynamic bearing apparatus of the form shown in FIG.

以上の説明では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、ヘリングボーン形状やスパイラル形状の動圧溝により潤滑油の動圧作用を発生させる構成を例示しているが、ラジアル軸受部R1、R2として、いわゆるステップ軸受、多円弧軸受、あるいは非真円軸受を、スラスト軸受部T1、T2として、いわゆるステップ軸受や波型軸受を採用しても良い。また、ラジアル軸受部R1、R2のように、2つのラジアル軸受部を軸方向に離隔して設けた構成とする他、軸受スリーブ8の内周側の上下領域に亘って1つのラジアル軸受部を設けた構成としても良い。さらには、ラジアル軸受部R1,R2として動圧発生部を有しないいわゆる真円軸受を、またスラスト軸受部として、軸部材の一端を接触支持するピボット軸受を採用することもできる。   In the above description, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are exemplified by the configuration in which the dynamic pressure action of the lubricating oil is generated by the herringbone-shaped or spiral-shaped dynamic pressure grooves. So-called step bearings, multi-arc bearings, or non-circular bearings may be used as the portions R1 and R2, and so-called step bearings and wave bearings may be employed as the thrust bearing portions T1 and T2. In addition to the configuration in which the two radial bearing portions are separated from each other in the axial direction as in the radial bearing portions R1 and R2, one radial bearing portion is provided over the upper and lower regions on the inner peripheral side of the bearing sleeve 8. It is good also as the provided structure. Furthermore, a so-called perfect circular bearing having no dynamic pressure generating portion may be used as the radial bearing portions R1 and R2, and a pivot bearing that contacts and supports one end of the shaft member may be employed as the thrust bearing portion.

本発明に係る流体軸受装置を組み込んだ情報機器用スピンドルモータの断面図である。It is sectional drawing of the spindle motor for information devices incorporating the hydrodynamic bearing apparatus which concerns on this invention. 本発明に係る流体軸受装置の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the hydrodynamic bearing apparatus which concerns on this invention. 軸受スリーブの断面図である。It is sectional drawing of a bearing sleeve. 本発明に係る流体軸受装置の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the hydrodynamic bearing apparatus which concerns on this invention. 本発明に係る流体軸受装置の第3実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the hydrodynamic bearing apparatus which concerns on this invention. (a)図は、本発明に係る流体軸受装置の第4実施形態を示す断面図、(b)図は、(a)図の一部拡大断面である。(A) The figure is sectional drawing which shows 4th Embodiment of the hydrodynamic bearing apparatus based on this invention, (b) A figure is a partially expanded cross section of (a) figure. 従来構成の流体軸受装置を概念的に示す断面図である。It is sectional drawing which shows notionally the hydrodynamic bearing apparatus of a conventional structure.

符号の説明Explanation of symbols

1,21,31,41 流体軸受装置
2 軸部材
7 ハウジング
7a 小径部(側部)
7b 大径部(側部)
7c 底部
8 軸受スリーブ
9 シール部材
9a 第1シール部
9b 第2シール部
12 補強部材
12a 軸方向部
12b 半径方向部
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S1 第1のシール空間
S2 第2のシール空間
1, 21, 31, 41 Hydrodynamic bearing device 2 Shaft member 7 Housing 7a Small diameter portion (side portion)
7b Large diameter part (side)
7c Bottom portion 8 Bearing sleeve 9 Seal member 9a First seal portion 9b Second seal portion 12 Reinforcing member 12a Axial portion 12b Radial portion R1, R2 Radial bearing portion T1, T2 Thrust bearing portion S1 First seal space S2 Second Seal space

Claims (5)

側部および底部を一体に有し、ブラケットの内周に固定される樹脂製のハウジングと、ハウジングの内周に固定され、一方の端面が第1スラスト軸受隙間に面する軸受スリーブと、軸受スリーブの内周面が面するラジアル軸受隙間に生じる油膜で支持すべき軸をラジアル方向に支持するラジアル軸受部とを備える流体軸受装置において、
外周面にブラケットに対する固定面を有する軸方向部およびこれと一体の半径方向部からなり、軸方向部が周方向に複数設けられた金属製の補強部材がハウジングの底側コーナー部に配置され、ハウジングが、補強部材をインサート部品として射出成形されていることを特徴とする流体軸受装置。
The sides and bottom possess integrally, and made of a resin housing that will be fixed to the inner periphery of the bracket, fixed to the inner periphery of the housing, the bearing sleeve having one end face facing the first thrust bearing gap, bearing sleeve In a hydrodynamic bearing device comprising a radial bearing portion for supporting a shaft to be supported by an oil film generated in a radial bearing gap facing an inner peripheral surface of the bearing in a radial direction,
Ri Do from the axial portion and integral therewith in the radial portion having a fixing surface for the bracket to the outer peripheral surface, the axial portion is more provided with metal reinforcing member in the circumferential direction is arranged on the bottom side corner portions of the housing The hydrodynamic bearing device is characterized in that the housing is injection-molded with the reinforcing member as an insert part .
補強部材の軸方向部の外周面とハウジングの外周面と面一に設けられている請求項1に記載の流体軸受装置。 The hydrodynamic bearing device according to claim 1, wherein an outer peripheral surface of the axial portion of the reinforcing member and an outer peripheral surface of the housing are flush with each other. 補強部材の半径方向部が、ハウジングの側部内周面を超える位置まで内径側に延びている請求項1に記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the radial direction portion of the reinforcing member extends to the inner diameter side to a position exceeding the inner peripheral surface of the side portion of the housing. 補強部材の軸方向部が、ハウジングの底部内底面を超える位置まで延びている請求項1に記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the axial direction portion of the reinforcing member extends to a position exceeding the bottom inner surface of the housing. 支持すべき軸が、ハウジングの底部と軸受スリーブとの間に配置されるフランジ部を有するものであり、補強部材の半径方向部が、フランジ部の外周面を超える位置まで内径側に延びている請求項1に記載の流体軸受装置。 The shaft to be supported has a flange portion disposed between the bottom portion of the housing and the bearing sleeve, and the radial direction portion of the reinforcing member extends to the inner diameter side to a position exceeding the outer peripheral surface of the flange portion. The hydrodynamic bearing device according to claim 1.
JP2007025563A 2007-02-05 2007-02-05 Hydrodynamic bearing device Expired - Fee Related JP5020652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025563A JP5020652B2 (en) 2007-02-05 2007-02-05 Hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007025563A JP5020652B2 (en) 2007-02-05 2007-02-05 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2008190619A JP2008190619A (en) 2008-08-21
JP5020652B2 true JP5020652B2 (en) 2012-09-05

Family

ID=39750902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025563A Expired - Fee Related JP5020652B2 (en) 2007-02-05 2007-02-05 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP5020652B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2089460A1 (en) * 1992-04-02 1993-10-03 Michael D. Dierks Self-locking metal cap and plastic bearing
JP3950990B2 (en) * 2002-04-23 2007-08-01 Ntn株式会社 Hydrodynamic bearing device
JP2005221029A (en) * 2004-02-06 2005-08-18 Sony Corp Bearing unit, motor with it, and electronic apparatus
JP2005299777A (en) * 2004-04-09 2005-10-27 Ntn Corp Hydrodynamic bearing unit
JP4837574B2 (en) * 2007-01-12 2011-12-14 Ntn株式会社 Hydrodynamic bearing device

Also Published As

Publication number Publication date
JP2008190619A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP5274820B2 (en) Hydrodynamic bearing device
WO2006115104A1 (en) Dynamic pressure bearing device
JP5318344B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP4994687B2 (en) Hydrodynamic bearing device
JP4837574B2 (en) Hydrodynamic bearing device
JP4762757B2 (en) Hydrodynamic bearing device
JP4937619B2 (en) Hydrodynamic bearing device
JP4916673B2 (en) Hydrodynamic bearing device
JP2007024089A (en) Dynamic pressure bearing device and motor
JP5220339B2 (en) Hydrodynamic bearing device
JP4948908B2 (en) Hydrodynamic bearing device
JP4689283B2 (en) Hydrodynamic bearing device
JP5020652B2 (en) Hydrodynamic bearing device
JP5318343B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP4579013B2 (en) Hydrodynamic bearing device
JP4949216B2 (en) Hydrodynamic bearing device
JP2011007336A (en) Dynamic pressure bearing device and motor
JP4647585B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP5214401B2 (en) Hydrodynamic bearing device
JP2008256088A (en) Fluid bearing device and motor having the same
JP2006200584A (en) Dynamic pressure bearing device
JP2008064123A (en) Fluid bearing device, and its manufacturing method
JP2007255654A (en) Dynamic pressure bearing device
JP2007192316A (en) Dynamic pressure bearing device
JP2005299777A (en) Hydrodynamic bearing unit

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120613

R150 Certificate of patent or registration of utility model

Ref document number: 5020652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees