JP4994687B2 - Hydrodynamic bearing device - Google Patents

Hydrodynamic bearing device Download PDF

Info

Publication number
JP4994687B2
JP4994687B2 JP2006081270A JP2006081270A JP4994687B2 JP 4994687 B2 JP4994687 B2 JP 4994687B2 JP 2006081270 A JP2006081270 A JP 2006081270A JP 2006081270 A JP2006081270 A JP 2006081270A JP 4994687 B2 JP4994687 B2 JP 4994687B2
Authority
JP
Japan
Prior art keywords
peripheral surface
housing
seal
bearing
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006081270A
Other languages
Japanese (ja)
Other versions
JP2007255593A (en
Inventor
政治 堀
貴開 稲塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2006081270A priority Critical patent/JP4994687B2/en
Priority to CN200780009490XA priority patent/CN101405512B/en
Priority to KR1020087024909A priority patent/KR20080102304A/en
Priority to PCT/JP2007/054903 priority patent/WO2007108361A1/en
Priority to US12/293,514 priority patent/US8403565B2/en
Publication of JP2007255593A publication Critical patent/JP2007255593A/en
Application granted granted Critical
Publication of JP4994687B2 publication Critical patent/JP4994687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

本発明は、ラジアル軸受隙間に形成した油膜で軸部材を回転可能に支持する流体軸受装置に関する。   The present invention relates to a hydrodynamic bearing device that rotatably supports a shaft member with an oil film formed in a radial bearing gap.

この種の流体軸受装置として、有底円筒状のハウジングの内周に焼結金属製の軸受スリーブを固定すると共に、軸受スリーブの内周に軸部材を挿入し、軸部材の外周面と軸受スリーブの内周面との間にラジアル軸受隙間を形成した構造が公知である。ハウジング内には、軸受スリーブの軸方向に隣接してシール部材が配置され、このシール部材の内周面と軸部材の外周面との間に潤滑油を満たしたシール空間を形成することにより、毛細管作用でハウジング内部に満たした潤滑油の漏れを防止している。   As this type of hydrodynamic bearing device, a sintered metal bearing sleeve is fixed to the inner periphery of a bottomed cylindrical housing, and a shaft member is inserted into the inner periphery of the bearing sleeve. A structure in which a radial bearing gap is formed between the inner peripheral surface and the inner peripheral surface is known. In the housing, a seal member is disposed adjacent to the axial direction of the bearing sleeve, and by forming a seal space filled with lubricating oil between the inner peripheral surface of the seal member and the outer peripheral surface of the shaft member, Capillary action prevents leakage of lubricating oil filling the housing.

ハウジングやシール部材の一例として、快削黄銅の削り出し品が公知である(例えば、特許文献1参照)。
特開2003−172336
As an example of a housing or a seal member, a machined product of free-cutting brass is known (for example, see Patent Document 1).
JP 2003-172336 A

近年、例えばHDD装置では、大容量化に伴って磁気ディスクの搭載枚数が増える傾向にあり(多積層化)、これによる重量増に応じて軸を支持する流体軸受装置にもさらなる軸受剛性の向上、特にモーメント荷重に対する軸受剛性(モーメント剛性)の向上が求められている。その一方で、低コスト化に対する要請も依然として厳しく、従って、単に軸受剛性を向上させるだけでは足りず、これに伴うコスト高騰を如何に回避するか、という点への配慮も重要となる。   In recent years, for example, in HDD devices, the number of magnetic disks mounted tends to increase as the capacity increases (multi-layered), and the hydrodynamic bearing device that supports the shaft as the weight increases further improves the bearing rigidity. In particular, there is a demand for improvement in bearing rigidity (moment rigidity) against moment load. On the other hand, the demand for cost reduction is still severe, so it is not enough to simply improve the bearing rigidity, and it is also important to consider how to avoid the associated cost increase.

本発明は、かかる実情を考慮し、軸受剛性を向上させた低コストの流体軸受装置の提供を目的とする。   The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a low-cost hydrodynamic bearing device with improved bearing rigidity.

かかる目的を達成するため、本発明にかかる流体軸受装置は、軸部材と、内周に軸部材が挿入され、内周面が軸の外周面との間にラジアル軸受隙間を形成する軸受スリーブと、ラジアル軸受隙間に形成した油膜で軸部材を回転可能に支持するラジアル軸受部と、軸方向一端が開口されると共に、軸方向他端が密閉され、ラジアル軸受部を内部に収容するハウジングと、ハウジングの内部空間を満たす潤滑油と、ハウジングの開口部をシールするシール部材とを有する流体軸受装置において、シール部材に円盤状の第一シール部と、第一シール部から軸方向に突出した円筒状の第二シール部とを設け、第二シール部を軸受スリーブの外周面に嵌合してシール部材を軸受スリーブに固定し、シール部材の第一シール部の内周面と軸部材の外周面との間に第1のシール空間が形成されると共に、シール部材の第二シール部の外周面とハウジングの内周面との間に第2のシール空間が形成され、ハウジングに、軸受スリーブを固定するための内周面を有する小径部と、小径部と一体をなし、内周面が小径部の内周面よりも大きく、かつ外周面が小径部の外周面よりも大きい大径部とが設けられ、ハウジングが樹脂の射出成形で形成され、シール部材のうち、第二シール部の軸受スリーブに嵌合された部分よりも外径側にハウジングの大径部が配置され、かつハウジングがシール部材に対して非接触状態にあることを特徴とするものである。 In order to achieve such an object, a hydrodynamic bearing device according to the present invention includes a shaft member, a bearing sleeve in which a shaft member is inserted on the inner periphery, and a radial bearing gap is formed between the inner peripheral surface and the outer peripheral surface of the shaft. a radial bearing portion for rotatably supporting the shaft member in an oil film formed in the radial bearing gap, with one axial end is opened, the other axial end is sealed, a housing for accommodating the radial bearing portion therein, In a hydrodynamic bearing device having a lubricating oil that fills an inner space of a housing and a seal member that seals an opening of the housing , a disk-shaped first seal portion and a cylinder that protrudes in an axial direction from the first seal portion And a second seal portion is fitted to the outer peripheral surface of the bearing sleeve to fix the seal member to the bearing sleeve, and the inner peripheral surface of the first seal portion of the seal member and the outer periphery of the shaft member Face and Together with the first sealing space is formed between the second sealing space is formed between the outer surface and the inner peripheral surface of the housing of the second seal portion sealing member and the housing, to secure the bearing sleeve A small-diameter portion having an inner peripheral surface, and a large-diameter portion that is integrated with the small-diameter portion, the inner peripheral surface is larger than the inner peripheral surface of the small-diameter portion, and the outer peripheral surface is larger than the outer peripheral surface of the small-diameter portion. The housing is formed by injection molding of resin , and the large-diameter portion of the housing is disposed on the outer diameter side of the seal member that is fitted to the bearing sleeve of the second seal portion, and the housing is the seal member It is characterized by being in a non-contact state .

このようにシール部材の外周面でシール空間(第2のシール空間)を形成することにより、ラジアル軸受部のラジアル軸受隙間よりも外径側にシール空間を配置することが可能となる。そのため、従来のようにラジア軸受隙間とシール空間を軸方向に並べて配置する必要はなく、軸方向で両者の少なくとも一部を重ねて配置することができる。従って、ラジアル軸受部およびシール空間を収容するハウジングの軸方向寸法を削減することができる。これは、ハウジングの軸方向寸法を変えずに隣接するラジアル軸受部間の軸方向スパンを拡大できることを意味する。これにより、軸受剛性、特にモーメント剛性をより一層向上させることが可能となる。   By forming the seal space (second seal space) on the outer peripheral surface of the seal member in this manner, the seal space can be disposed on the outer diameter side of the radial bearing gap of the radial bearing portion. Therefore, it is not necessary to arrange the radial bearing gap and the seal space side by side in the axial direction as in the prior art, and at least a part of both can be arranged in the axial direction. Accordingly, the axial dimension of the housing that accommodates the radial bearing portion and the seal space can be reduced. This means that the axial span between adjacent radial bearing portions can be expanded without changing the axial dimension of the housing. As a result, the bearing rigidity, particularly the moment rigidity can be further improved.

このような構成を採用した場合、ハウジングの形状がより複雑となるので、従来の金属材料の旋削品ではコストアップが著しくなる。これに対し、ハウジングを樹脂の射出成形品とすれば、複雑な形状のハウジングであっても低コストに形成可能となるので、製作コストの高騰を抑制することができる。この射出成形の際には、上記構成から、ハウジングの各部をほぼ均一な肉厚に形成することができる。従って、樹脂が固化する際の成形収縮差によるハウジングの変形を防止することが可能となる。 When such a configuration is adopted, the shape of the housing becomes more complicated, so that the cost of a conventional metal material turning product is significantly increased. On the other hand, if the housing is a resin injection-molded product, even a housing having a complicated shape can be formed at low cost, so that an increase in manufacturing cost can be suppressed. In this injection molding, each part of the housing can be formed with a substantially uniform thickness from the above configuration. Therefore, it is possible to prevent the housing from being deformed due to a difference in molding shrinkage when the resin is solidified.

射出成形後のハウジングは、型開きにより、雄型(コア)の外周に被着した状態で金型から取り出される。この時、ハウジングの開口側の端面に、突き出し機構からの突き出し力を受ける突き出し面を形成することにより、成形品を円滑に脱型することが可能となる。突き出し面には、突き出しピン等から必要な突き出し力を受けられるよう十分な受圧面積が必要となるが、ハウジングの外周面に大径外周面と小径外周面とを設け、シール部材の外径側に大径外周面を配置しておけば、突き出し面に必要とされる受圧面積を容易に確保することができ、円滑な脱型が可能となる。また、このような構成を採用することで、ハウジングのうち、シール部材の外径側の領域とその他の領域とをほぼ等しい肉厚で形成することが可能となり、成形収縮量のばらつきによるハウジングの精度不良を回避することができる。   The housing after injection molding is taken out of the mold while being attached to the outer periphery of the male mold (core) by mold opening. At this time, by forming a protruding surface that receives a protruding force from the protruding mechanism on the end face on the opening side of the housing, the molded product can be smoothly demolded. The projecting surface must have a sufficient pressure-receiving area to receive the necessary projecting force from the projecting pin, etc., but the outer peripheral surface of the housing is provided with a large-diameter outer peripheral surface and a small-diameter outer peripheral surface. If a large-diameter outer peripheral surface is arranged on the surface, the pressure receiving area required for the protruding surface can be easily secured, and smooth demolding becomes possible. In addition, by adopting such a configuration, it becomes possible to form the outer diameter side region of the seal member and other regions of the housing with substantially the same thickness, and the housing may be affected by variations in molding shrinkage. Inaccuracy can be avoided.

以上の説明では、ハウジングを樹脂で成形する場合を説明したが、シール部材を樹脂の射出成形で形成することもできる。シール部材の内周面および外周面でシール空間を形成する関係上、ハウジングのみならずシール部材の形状も複雑化するので、これを樹脂の射出成形品とすれば、旋削品に比べてより一層低コスト化を図ることができる。シール部材のみを樹脂の射出成形品とする他、シール部材とハウジングの双方を樹脂の射出成形品とすることもでき、これによってさらなるコストダウンを図ることが可能となる。   In the above description, the case where the housing is formed of resin has been described. However, the seal member can also be formed by injection molding of resin. Since the seal space is formed by the inner and outer peripheral surfaces of the seal member, the shape of the seal member as well as the housing is complicated, so if this is a resin injection-molded product, it will be much more than a turned product. Cost reduction can be achieved. In addition to using only the seal member as the resin injection-molded product, both the seal member and the housing can be used as the resin injection-molded product, thereby further reducing the cost.

本発明におけるシール部材の具体的構成としては、内周面で第1のシール空間を形成する第1シール部と、第1シール部の一方の端面から軸方向に突出し、外周面で第2のシール空間を形成する第2シール部とを有するものを挙げることができる。   As a specific configuration of the seal member in the present invention, a first seal portion that forms a first seal space on the inner peripheral surface, an axial projection from one end surface of the first seal portion, and a second seal on the outer peripheral surface. The thing which has the 2nd seal part which forms seal space can be mentioned.

流体軸受装置では、ハウジング内に満たした油の圧力のアンバランスを解消するため、ハウジング内で油を循環させる場合が多い。シール部材が上記の構成を有する場合、ハウジング内での油循環を実現するためには、第1シール部の上記一方の端面に油循環用の溝を形成する必要がある。シール部材が旋削品である場合、当該溝はフライス加工で形成せざるを得ず、製作コストの高騰を招くが、本発明のようにシール部材が樹脂の成形品であれば、シール部材の成形と同時に油循環用の溝も型成形することができ、さらなるコストダウンを図ることができる。   In a hydrodynamic bearing device, oil is often circulated in the housing in order to eliminate an imbalance in the pressure of oil filled in the housing. When the seal member has the above-described configuration, it is necessary to form a groove for oil circulation on the one end surface of the first seal portion in order to realize oil circulation in the housing. When the seal member is a turning product, the groove must be formed by milling, which increases the manufacturing cost. However, if the seal member is a resin molded product as in the present invention, the seal member is molded. At the same time, a groove for oil circulation can be molded, and further cost reduction can be achieved.

本発明によれば、流体軸受装置の軸方向寸法の増大を避けつつ軸受剛性を高めることができ、しかもこの種の効果が低コストに得られる。   According to the present invention, bearing rigidity can be increased while avoiding an increase in the axial dimension of the hydrodynamic bearing device, and this kind of effect can be obtained at low cost.

以下、本発明の実施形態を図1〜図7に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は、流体軸受装置の一種である動圧軸受装置(流体動圧軸受装置)1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。この情報機器用スピンドルモータは、HDD等のディスク駆動装置に用いられるもので、動圧軸受装置1と、動圧軸受装置1の軸部材2に取り付けられたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6とを備えている。ステータコイル4は、ブラケット6の例えば外周面に取り付けられ、ロータマグネット5は、ディスクハブ3の内周に取り付けられている。ディスクハブ3は、その外周に磁気ディスク等のディスクDを一枚または複数枚保持する。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する電磁力でロータマグネット5が回転し、それに伴ってディスクハブ3、および軸部材2が一体となって回転する。   FIG. 1 conceptually shows one configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device (fluid fluid dynamic bearing device) 1 which is a kind of fluid bearing device. This spindle motor for information equipment is used for a disk drive device such as an HDD, and includes a dynamic pressure bearing device 1, a disk hub 3 attached to a shaft member 2 of the dynamic pressure bearing device 1, and a radial gap, for example. The stator coil 4 and the rotor magnet 5 and the bracket 6 that are opposed to each other are provided. The stator coil 4 is attached to, for example, the outer peripheral surface of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The disk hub 3 holds one or more disks D such as magnetic disks on the outer periphery thereof. When the stator coil 4 is energized, the rotor magnet 5 is rotated by an electromagnetic force generated between the stator coil 4 and the rotor magnet 5, and the disk hub 3 and the shaft member 2 are rotated integrally therewith.

図2は、上記スピンドルモータで使用される動圧軸受装置1の一実施形態を例示するものである。この動圧軸受装置1は、軸部材2と、有底筒状のハウジング7と、ハウジング7内に収容された軸受スリーブ8と、ハウジング7の一端開口部をシールするシール部材9とを主要構成部品として構成される。なお、以下では、説明の便宜上、ハウジング7の開口側を上側、その軸方向反対側を下側として説明を進める。   FIG. 2 illustrates one embodiment of the hydrodynamic bearing device 1 used in the spindle motor. The hydrodynamic bearing device 1 mainly includes a shaft member 2, a bottomed cylindrical housing 7, a bearing sleeve 8 accommodated in the housing 7, and a seal member 9 that seals one end opening of the housing 7. Configured as a part. In the following description, for convenience of explanation, the description will proceed with the opening side of the housing 7 as the upper side and the opposite side in the axial direction as the lower side.

軸部材2は、ステンレス鋼等の金属材料で形成され、軸部2aと軸部2aの下端に一体又は別体に設けられたフランジ部2bとを備えている。軸部材2の全体を金属で形成する他、例えばフランジ部2bの全体あるいはその一部(例えば両端面)を樹脂で構成することにより、金属と樹脂のハイブリッド構造とすることもできる。   The shaft member 2 is formed of a metal material such as stainless steel, and includes a shaft portion 2a and a flange portion 2b provided integrally or separately at the lower end of the shaft portion 2a. In addition to forming the entire shaft member 2 from metal, for example, by forming the entire flange portion 2b or a part thereof (for example, both end surfaces) from resin, a hybrid structure of metal and resin can be obtained.

ハウジング7は、円筒状の小径部7aと、小径部7aの一端側に配置された大径部7bと、小径部7aの他端開口部を封口する底部7cとで一体構成される。大径部7bの外周面7b1(大径外周面)は小径部7aの外周面7a1(小径外周面)より大径に形成され、同様に大径部7bの内周面7b2も小径部7aの内周面7a2より大径に形成されている。両内周面7a2、7b2の境界面7eは軸方向と直交する方向の平坦面状に形成される。底部7cの内底面7c1には、スラスト軸受面となる動圧溝領域(図2に黒塗りで示す)が形成され、この領域には、動圧発生部として、例えばスパイラル状に配列した複数の動圧溝(図示省略)が形成されている。小径外周面7a1は例えば接着によって図1に示すブラケット6の内周面に固定される。   The housing 7 is integrally formed of a cylindrical small diameter portion 7a, a large diameter portion 7b disposed on one end side of the small diameter portion 7a, and a bottom portion 7c that seals the other end opening of the small diameter portion 7a. The outer peripheral surface 7b1 (large diameter outer peripheral surface) of the large diameter portion 7b is formed to have a larger diameter than the outer peripheral surface 7a1 (small diameter outer peripheral surface) of the small diameter portion 7a. Similarly, the inner peripheral surface 7b2 of the large diameter portion 7b is also formed of the small diameter portion 7a. It has a larger diameter than the inner peripheral surface 7a2. A boundary surface 7e between the inner peripheral surfaces 7a2 and 7b2 is formed in a flat surface shape in a direction orthogonal to the axial direction. The inner bottom surface 7c1 of the bottom portion 7c is formed with a dynamic pressure groove region (shown in black in FIG. 2) serving as a thrust bearing surface. In this region, a plurality of dynamic pressure generating portions arranged in a spiral shape, for example, are formed. A dynamic pressure groove (not shown) is formed. The small-diameter outer peripheral surface 7a1 is fixed to the inner peripheral surface of the bracket 6 shown in FIG.

ハウジング7は、樹脂の射出成形によって形成される。樹脂が固化する際の成形収縮差による変形を防止するため、ハウジング7の各部7a〜7cはほぼ均一な肉厚に形成してある。   The housing 7 is formed by resin injection molding. In order to prevent deformation due to a difference in molding shrinkage when the resin is solidified, each portion 7a to 7c of the housing 7 is formed to have a substantially uniform thickness.

ハウジング7を形成する樹脂は主に熱可塑性樹脂であり、例えば、非晶性樹脂として、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等、結晶性樹脂として、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等を用いることができる。また、上記の樹脂に充填する充填材の種類も特に限定されないが、例えば、充填材として、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、カーボンファイバー、カーボンブラック、黒鉛、カーボンナノマテリアル、金属粉末等の繊維状又は粉末状の導電性充填材を用いることができる。これらの充填材は、単独で用い、あるいは、二種以上を混合して使用しても良い。   The resin forming the housing 7 is mainly a thermoplastic resin. For example, as the amorphous resin, polysulfone (PSF), polyethersulfone (PES), polyphenylsulfone (PPSU), polyetherimide (PEI) As the crystalline resin, liquid crystal polymer (LCP), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), or the like can be used. The type of filler to be filled in the resin is not particularly limited. For example, as the filler, fibrous filler such as glass fiber, whisker-like filler such as potassium titanate, and scaly filler such as mica. A fibrous or powdery conductive filler such as carbon fiber, carbon black, graphite, carbon nanomaterial, or metal powder can be used. These fillers may be used alone or in combination of two or more.

図4は、ハウジング7の射出成形工程を示すものである。図示のように、ハウジング7は、型締めした二つの金型(雄型12と雌型13)のうち、雌型13の軸芯部に設けた点状ゲート14から溶融樹脂をキャビティに射出して成形される。ゲートの構成や数は任意で、複数の点状ゲートやディスクゲートを採用することもできる。ゲート位置も任意で、例えば底部7cの外周縁部にゲート14を配置することもできる。   FIG. 4 shows an injection molding process of the housing 7. As shown in the figure, the housing 7 injects molten resin into a cavity from a dotted gate 14 provided at the axial core portion of the female mold 13 out of two molds (male mold 12 and female mold 13) that are clamped. To be molded. The configuration and number of gates are arbitrary, and a plurality of dotted gates or disk gates can be adopted. The gate position is also arbitrary. For example, the gate 14 can be disposed on the outer peripheral edge of the bottom 7c.

樹脂の固化後に型開きすると、成形品は雄型12に被着した状態で雌型13から取り出される。その後、雄型12に設けた突き出し機構、例えば突き出しピン15で開口側端面7fを押圧することにより、ハウジング7が雄型12から分離される。ハウジング7の突き出しは、突き出しピン以外にも例えば突き出しリングや突き出しプレートで行うこともできる   When the mold is opened after the resin is solidified, the molded product is taken out from the female mold 13 while being attached to the male mold 12. Thereafter, the housing 7 is separated from the male mold 12 by pressing the opening-side end surface 7 f with a protruding mechanism provided on the male mold 12, for example, a protruding pin 15. The protrusion of the housing 7 can be performed by, for example, a protrusion ring or a protrusion plate in addition to the protrusion pin.

軸受スリーブ8は、焼結合金からなる多孔質体、例えば銅を主成分とする焼結金属で円筒状に形成される。焼結金属には潤滑油が含浸されている。この他、中実の金属材料、例えば黄銅等の軟質金属で軸受スリーブ8を形成することもできる。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body made of a sintered alloy, for example, a sintered metal mainly composed of copper. The sintered metal is impregnated with lubricating oil. In addition, the bearing sleeve 8 can be formed of a solid metal material, for example, a soft metal such as brass.

軸受スリーブ8の内周面8aには、ラジアル軸受面となる上下2つの動圧溝領域(図2に黒塗りで示す)が軸方向に離隔して設けられる。これら2つの領域には、図3に示すように、動圧発生部として、例えばヘリングボーン形状に配列した複数の動圧溝Gがそれぞれ形成される。上側の領域の動圧溝Gは軸方向で非対称に形成されており、該領域内では上側の動圧溝の軸方向長さX1が下側の動圧溝の軸方向長さX2よりも若干大きくなっている(X1>X2)。一方、下側の領域の動圧溝Gは軸方向対称に形成され、該領域内では上下の動圧溝Gの軸方向長さがそれぞれ等しい。動圧溝Gを有するラジアル軸受面となる領域は、軸部材2の軸部2aの外周面に形成することもできる。   On the inner peripheral surface 8a of the bearing sleeve 8, two upper and lower dynamic pressure groove regions (shown in black in FIG. 2) serving as radial bearing surfaces are provided apart in the axial direction. In these two regions, as shown in FIG. 3, a plurality of dynamic pressure grooves G arranged in a herringbone shape, for example, are formed as dynamic pressure generating portions. The dynamic pressure groove G in the upper region is formed asymmetrically in the axial direction. In this region, the axial length X1 of the upper dynamic pressure groove is slightly longer than the axial length X2 of the lower dynamic pressure groove. It is larger (X1> X2). On the other hand, the dynamic pressure grooves G in the lower region are formed symmetrically in the axial direction, and the axial lengths of the upper and lower dynamic pressure grooves G are equal in the region. A region serving as a radial bearing surface having the dynamic pressure groove G can also be formed on the outer peripheral surface of the shaft portion 2 a of the shaft member 2.

軸受スリーブ8の下側端面8bには、スラスト軸受面となる動圧溝領域(図2に黒塗りで示す)が形成される。この領域には、動圧発生部として、例えばスパイラル状に配列した複数の動圧溝(図示省略)が形成されている。   A dynamic pressure groove region (shown in black in FIG. 2) serving as a thrust bearing surface is formed on the lower end surface 8b of the bearing sleeve 8. In this region, for example, a plurality of dynamic pressure grooves (not shown) arranged in a spiral shape are formed as dynamic pressure generating portions.

軸受スリーブ8の外周面の一箇所もしくは円周方向に等配した複数箇所には、潤滑油を循環させるための循環溝8dが軸方向に形成される。循環溝8dの両端は軸受スリーブ8の両端面8b、8cに開口している。   A circulation groove 8d for circulating the lubricating oil is formed in the axial direction at one place on the outer peripheral surface of the bearing sleeve 8 or at a plurality of places arranged equally in the circumferential direction. Both ends of the circulation groove 8d are open to both end faces 8b, 8c of the bearing sleeve 8.

シール部材9は、円盤状の第1シール部9aと、第1シール部9aの一方の端面9a1から軸方向に突出した円筒状の第2シール部9bとで断面逆L字形に一体形成される。本実施形態において、第2シール部9bの外周面9b1および内周面9b2は何れも円筒面状に形成されるが、第1シール部9aの内周面9a2は上方を拡径させたテーパ面状に形成される。図6および図7に示すように、上記一方の端面9a1には、潤滑油を循環させるための半径方向の循環溝10が形成されている。この循環溝10は、端面9a1を横断して一箇所もしくは円周方向の等配複数箇所(図7では3箇所)に形成される。このシール部材9も上記ハウジングと同様に樹脂の射出成形品で形成される。使用可能なベース樹脂や充填材は、ハウジング7でのこれらの例示に準じるので、説明を省略する。   The seal member 9 is integrally formed with a disk-shaped first seal portion 9a and a cylindrical second seal portion 9b protruding in an axial direction from one end surface 9a1 of the first seal portion 9a so as to have an inverted L-shaped cross section. . In the present embodiment, the outer peripheral surface 9b1 and the inner peripheral surface 9b2 of the second seal portion 9b are both formed in a cylindrical surface, but the inner peripheral surface 9a2 of the first seal portion 9a is a tapered surface whose diameter is expanded upward. It is formed into a shape. As shown in FIGS. 6 and 7, a radial circulation groove 10 for circulating the lubricating oil is formed on the one end face 9a1. This circulation groove 10 is formed at one place or a plurality of equally spaced places (three places in FIG. 7) in the circumferential direction across the end face 9a1. The seal member 9 is also formed of a resin injection-molded product, like the housing. Usable base resins and fillers are the same as those in the housing 7 and will not be described.

動圧軸受装置1の組立は、ハウジング7内に軸部材2を収容した後、ハウジング7の内周面に軸受スリーブ8を固定し、さらに軸受スリーブ8の外周面上端にシール部材9を固定することで行われる。その後、ハウジング7の内部空間に潤滑油を充満させれば、図2に示す動圧軸受装置1が得られる。ハウジング7と軸受スリーブ8の固定、および軸受スリーブ8とシール部材9の固定は、圧入や接着、さらには圧入接着(接着剤の介在の下で圧入する)で行うことができる。組立後は、シール部材9を構成する第1シール部9aの端面9a1が軸受スリーブ8の上側端面8cと当接し、第2シール部9bの下側端面がハウジング7の内周の境界面7eと軸方向隙間11を介して対向している。また、シール部材9は、ハウジング7の大径部7bの内径側に配置される。   In assembling the hydrodynamic bearing device 1, after the shaft member 2 is accommodated in the housing 7, the bearing sleeve 8 is fixed to the inner peripheral surface of the housing 7, and the seal member 9 is fixed to the upper end of the outer peripheral surface of the bearing sleeve 8. Is done. Thereafter, when the internal space of the housing 7 is filled with lubricating oil, the fluid dynamic bearing device 1 shown in FIG. 2 is obtained. The housing 7 and the bearing sleeve 8 can be fixed, and the bearing sleeve 8 and the seal member 9 can be fixed by press-fitting or bonding, or press-fitting (press-fitting with an adhesive). After assembly, the end surface 9a1 of the first seal portion 9a constituting the seal member 9 contacts the upper end surface 8c of the bearing sleeve 8, and the lower end surface of the second seal portion 9b is the boundary surface 7e on the inner periphery of the housing 7. It is opposed via an axial gap 11. Further, the seal member 9 is disposed on the inner diameter side of the large diameter portion 7 b of the housing 7.

軸部材2の回転時には、軸受スリーブ8の内周面8aのうち、ラジアル軸受面となる上下2箇所の動圧溝領域は、それぞれ軸部2aの外周面とラジアル軸受隙間を介して対向する。また、軸受スリーブ8の下側端面8bのスラスト軸受面となる動圧溝領域がフランジ部2bの上側端面2b1とスラスト軸受隙間を介して対向し、ハウジング底部7cの内底面7c1のスラスト軸受面となる動圧溝領域は、フランジ部2bの下側端面2b2とスラスト軸受隙間を介して対向する。そして、軸部材2の回転に伴い、上記ラジアル軸受隙間に潤滑油の動圧が発生し、軸部材2がラジアル軸受隙間内に形成される潤滑油の油膜によってラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが構成される。同時に、上記スラスト軸受隙間に潤滑油の動圧が発生し、軸部材2が二つのスラスト軸受隙間内に形成される潤滑油の油膜によってスラスト方向に回転自在に非接触支持される。これにより、軸部材2をスラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが構成される。   When the shaft member 2 rotates, the two upper and lower dynamic pressure groove regions serving as the radial bearing surfaces of the inner peripheral surface 8a of the bearing sleeve 8 are opposed to the outer peripheral surface of the shaft portion 2a via the radial bearing gap. Further, the dynamic pressure groove region serving as the thrust bearing surface of the lower end surface 8b of the bearing sleeve 8 faces the upper end surface 2b1 of the flange portion 2b via the thrust bearing gap, and the thrust bearing surface of the inner bottom surface 7c1 of the housing bottom portion 7c The resulting dynamic pressure groove region faces the lower end surface 2b2 of the flange portion 2b via a thrust bearing gap. As the shaft member 2 rotates, dynamic pressure of the lubricating oil is generated in the radial bearing gap, and the shaft member 2 is supported in a non-contact manner so as to be rotatable in the radial direction by the oil film of the lubricating oil formed in the radial bearing gap. Is done. Thus, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are configured. At the same time, the dynamic pressure of the lubricating oil is generated in the thrust bearing gap, and the shaft member 2 is supported in a non-contact manner so as to be rotatable in the thrust direction by the lubricating oil film formed in the two thrust bearing gaps. Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which non-contact-support the shaft member 2 rotatably in a thrust direction are comprised.

第1シール部9aの内周面9a2は、軸部2aの外周面との間に所定の容積をもった第1のシール空間S1を形成する。この実施形態において、第1シール部9aの内周面9a2は上方に向かって漸次拡径したテーパ面状に形成され、そのため第1のシール空間S1は下方に向かって漸次縮小したテーパ形状を呈する。また、第2シール部9aの外周面9b1は、ハウジング7の大径部内周面7b2との間に所定の容積をもった第2のシール空間S2を形成する。この実施形態において、ハウジング7の大径部7bの内周面7b2は、上方に向かって漸次拡径したテーパ面状に形成され、そのため第1および第2のシール空間S1、S2は下方に向かって漸次縮小したテーパ形状を呈する。従って、シール空間S1、S2内の潤滑油は毛細管力による引き込み作用により、シール空間S1、S2が狭くなる方向に向けて引き込まれ、これによりハウジング7の上端開口部がシールされる。シール空間S1、S2は、ハウジング7の内部空間に充満された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能をも有し、油面は常時シール空間S1、S2内にある。第1のシール空間S1と第2のシール空間の容積は、第1のシール空間S1の方が小さい。   The inner peripheral surface 9a2 of the first seal portion 9a forms a first seal space S1 having a predetermined volume with the outer peripheral surface of the shaft portion 2a. In this embodiment, the inner peripheral surface 9a2 of the first seal portion 9a is formed in a tapered surface shape that gradually increases in diameter upward, and therefore the first seal space S1 exhibits a tapered shape that gradually decreases in the downward direction. . The outer peripheral surface 9b1 of the second seal portion 9a forms a second seal space S2 having a predetermined volume with the large-diameter inner peripheral surface 7b2 of the housing 7. In this embodiment, the inner peripheral surface 7b2 of the large-diameter portion 7b of the housing 7 is formed in a tapered surface shape that gradually increases in diameter upward, so that the first and second seal spaces S1, S2 face downward. The taper shape is gradually reduced. Accordingly, the lubricating oil in the seal spaces S1 and S2 is drawn in a direction in which the seal spaces S1 and S2 become narrow due to the drawing action by the capillary force, and thereby the upper end opening of the housing 7 is sealed. The seal spaces S1 and S2 also have a buffer function that absorbs the volume change accompanying the temperature change of the lubricating oil filled in the internal space of the housing 7, and the oil level is always in the seal spaces S1 and S2. The volume of the first seal space S1 and the second seal space is smaller in the first seal space S1.

なお、第1シール部9aの内周面9a2を円筒面とする一方、これに対向する軸部2aの外周面をテーパ面状に形成してもよく、この場合、さらに第1のシール空間S1に遠心力シールとしての機能も付与することができるのでシール効果がより一層高まる。   In addition, while the inner peripheral surface 9a2 of the first seal portion 9a is a cylindrical surface, the outer peripheral surface of the shaft portion 2a facing this may be formed in a tapered surface shape. In this case, the first seal space S1 is further provided. Moreover, since a function as a centrifugal seal can be provided, the sealing effect is further enhanced.

上述のように、第1ラジアル軸受部R1の動圧溝Gは軸方向非対称に形成されており、上側領域の軸方向寸法Xが下側領域の軸方向寸法Yよりも大きくなっている。そのため、軸部材2の回転時、動圧溝Gによる潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。そして、この引き込み力の差圧によって、軸受スリーブ8の内周面8aと軸部2aの外周面との間の隙間に満たされた潤滑油が下方に流動し、第1スラスト軸受部T1のスラスト軸受隙間→軸方向の循環溝8d→半径方向の循環溝10という経路を循環して、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。   As described above, the dynamic pressure groove G of the first radial bearing portion R1 is formed to be axially asymmetric, and the axial dimension X of the upper region is larger than the axial dimension Y of the lower region. Therefore, when the shaft member 2 rotates, the pulling force (pumping force) of the lubricating oil by the dynamic pressure groove G is relatively larger in the upper region than in the lower region. Due to the differential pressure of the pulling force, the lubricating oil filled in the gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface of the shaft portion 2a flows downward, and the thrust of the first thrust bearing portion T1 It circulates along the path of the bearing gap → the axial circulation groove 8d → the radial circulation groove 10 and is again drawn into the radial bearing gap of the first radial bearing portion R1.

このように、潤滑油がハウジング7の内部を流動循環するように構成することで、ハウジング7の内部に満たされた潤滑油の圧力が局所的に負圧になる現象を防止して、負圧発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。この潤滑油の循環経路には、第1のシール空間S1が連通し、さらに軸方向隙間11を介して第2のシール空間S2が連通しているので、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際にこれらシール空間S1、S2内の潤滑油の油面(気液界面)から外気に排出され、気泡による悪影響はより一層効果的に防止される。   In this way, the configuration in which the lubricating oil flows and circulates inside the housing 7 prevents a phenomenon in which the pressure of the lubricating oil filled in the housing 7 becomes a negative pressure locally. Problems such as generation of bubbles accompanying the generation, leakage of lubricating oil and generation of vibration due to the generation of bubbles can be solved. The first seal space S1 communicates with this lubricating oil circulation path, and further, the second seal space S2 communicates with the axial clearance 11, so that bubbles are mixed into the lubricating oil for some reason. Even when the bubbles circulate with the lubricating oil, the lubricating oil in the seal spaces S1 and S2 is discharged from the oil surface (gas-liquid interface) to the outside air, and the adverse effects of the bubbles are further effectively prevented. The

なお、軸方向の循環溝8dはハウジング7の内周面に形成することができ、半径方向の循環溝10は軸受スリーブ8の上側端面8cに形成することもできる。   The axial circulation groove 8 d can be formed on the inner peripheral surface of the housing 7, and the radial circulation groove 10 can be formed on the upper end surface 8 c of the bearing sleeve 8.

本発明においては、前述のようにこのようにシール部材9の内周面だけでなく、外周面によってもシール空間S2が形成されている。従来では、軸部2aの外周面を利用してラジアル軸受隙間およびシール空間の双方を形成しているため、両者は軸方向に並べて配置せざるを得ず、軸方向の所要スペースが嵩む。これに対し、本発明のように、シール部材9の外周面で第2のシール空間S2を形成する場合、第2のシール空間S2をラジアル軸受隙間の外径側に形成することができ、図2に示すように、第2のシール空間S2の形成領域とラジアル軸受隙間(図示例では第1のラジアル軸受部R1のラジアル軸受隙間)の形成領域とを軸方向で重ねることができる。また、バッファ機能を確保する上で必要な油量が第2のシール空間S2でも確保されるので、第1のシール空間S1で保持すべき油量が減り、第1のシール空間S1の低容積化、つまり第1シール部9aの薄肉化を図ることができる。以上の理由から、軸受装置の軸方向寸法の増大を抑えつつ軸受スリーブ8の軸方向寸法を増すことが可能となる。これにより、2つのラジアル軸受部R1、R2間のスパンを長くすることができ、軸受剛性(特にモーメント剛性)を向上させ、HDD装置でのディスクの多積層化に対応することが可能となる。   In the present invention, as described above, the seal space S2 is formed not only by the inner peripheral surface of the seal member 9 but also by the outer peripheral surface. Conventionally, since both the radial bearing gap and the seal space are formed using the outer peripheral surface of the shaft portion 2a, both must be arranged side by side in the axial direction, and the required space in the axial direction increases. In contrast, when the second seal space S2 is formed on the outer peripheral surface of the seal member 9 as in the present invention, the second seal space S2 can be formed on the outer diameter side of the radial bearing gap. As shown in FIG. 2, the formation region of the second seal space S2 and the formation region of the radial bearing gap (in the illustrated example, the radial bearing gap of the first radial bearing portion R1) can be overlapped in the axial direction. Further, since the amount of oil necessary for securing the buffer function is also secured in the second seal space S2, the amount of oil to be retained in the first seal space S1 is reduced, and the low volume of the first seal space S1 is reduced. That is, the thickness of the first seal portion 9a can be reduced. For the above reasons, the axial dimension of the bearing sleeve 8 can be increased while suppressing an increase in the axial dimension of the bearing device. As a result, the span between the two radial bearing portions R1 and R2 can be lengthened, the bearing rigidity (particularly the moment rigidity) can be improved, and it is possible to cope with the multi-stacking of disks in the HDD device.

その一方で、このような構成に応じて形状が複雑化するハウジング7およびシール部材9を樹脂の射出成形品としているので、これらの部材の高コスト化を抑え、安価な動圧軸受装置1を提供することが可能となる。特にシール部材9については、その形状が略円筒状となるので、金属材料の削り出し品では端面9a1に半径方向溝10を形成することが困難となってシール部材9が著しく高コスト化するが、樹脂の射出成形であれば、シール部材9の成形と同時に半径方向溝10を同時に成形することができるので、より一層の低コスト化を図ることができる。   On the other hand, since the housing 7 and the seal member 9 whose shapes are complicated in accordance with such a configuration are made of resin injection-molded products, the cost of these members is suppressed, and the inexpensive hydrodynamic bearing device 1 is provided. It becomes possible to provide. In particular, since the shape of the seal member 9 is substantially cylindrical, it is difficult to form the radial groove 10 in the end surface 9a1 in the case of a metal material cut out, and the seal member 9 is significantly increased in cost. In the case of resin injection molding, since the radial groove 10 can be molded simultaneously with the molding of the seal member 9, the cost can be further reduced.

また、図2に示すように、ハウジング7の外周面を、開口側で他所よりも大径に形成しているので(大径外周面7b1)、シール部材9の外径側に位置する大径部7bで十分な肉厚を確保することができる。従って、射出成形工程において樹脂の固化後、成形品を突き出しピン15等で突き出す際にも、突き出し面7fで十分な大きさの受圧面積を確保することができ、突き出しピン等による円滑な突き出しが可能となる。また、大径部7bを含むハウジング7全体をほぼ均一な肉厚にすることが可能となるので、成形収縮量のばらつきによるハウジング7の精度悪化を回避することができる。図5のハウジング7’は、本願発明との対比のため、大径部7bに相当する部分7b’の外周面を他所と同径寸法に形成したものであるが、この場合、突き出し面7f’で十分な受圧面積を確保することが難しく、かつ大径部7bに相当する部分7b’が他所に比べて薄肉となるので、成形収縮量にばらつきを生じることとなる。   Further, as shown in FIG. 2, since the outer peripheral surface of the housing 7 is formed with a larger diameter on the opening side than other places (large-diameter outer peripheral surface 7 b 1), the large diameter located on the outer diameter side of the seal member 9. A sufficient thickness can be secured by the portion 7b. Therefore, after the resin is solidified in the injection molding process, a sufficiently large pressure receiving area can be secured by the protruding surface 7f even when the molded product is protruded by the protruding pin 15 or the like, and smooth protrusion by the protruding pin or the like can be achieved. It becomes possible. In addition, since the entire housing 7 including the large-diameter portion 7b can be made to have a substantially uniform thickness, it is possible to avoid deterioration in the accuracy of the housing 7 due to variations in the amount of molding shrinkage. For comparison with the present invention, the housing 7 ′ of FIG. 5 is formed by forming the outer peripheral surface of the portion 7b ′ corresponding to the large diameter portion 7b to the same diameter as the other portions. In this case, the protruding surface 7f ′ Therefore, it is difficult to secure a sufficient pressure receiving area, and the portion 7b ′ corresponding to the large diameter portion 7b is thinner than the other portions, so that the amount of molding shrinkage varies.

以上の説明では、第1および第2スラスト軸受部T1、T2の動圧溝を軸受スリーブ8の端面8bやハウジング底部7cの内底面7c1に形成する場合を例示したが、フランジ部2bの両端面2b1、2b2の一方または双方に動圧発生部としての動圧溝を形成することもできる。   In the above description, the case where the dynamic pressure grooves of the first and second thrust bearing portions T1 and T2 are formed on the end surface 8b of the bearing sleeve 8 and the inner bottom surface 7c1 of the housing bottom portion 7c is exemplified. A dynamic pressure groove as a dynamic pressure generating portion may be formed in one or both of 2b1 and 2b2.

また、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、ヘリングボーン形状やスパイラル形状の動圧溝により潤滑油の動圧作用を発生させる構成を例示しているが、ラジアル軸受部R1、R2として、いわゆるステップ軸受や、波型軸受、あるいは多円弧軸受を採用することもでき、スラスト軸受部T1、T2としてステップ軸受や波型軸受を採用することもできる。さらには、ラジアル軸受部R1、R2として、動圧発生部を有しない、いわゆる真円軸受を採用することもでき、スラスト軸受部T1、T2として軸部材の端部を接触支持するピボット軸受を採用することもできる。   Further, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are exemplified by the configuration in which the dynamic pressure action of the lubricating oil is generated by the herringbone-shaped or spiral-shaped dynamic pressure grooves, but the radial bearing portion R1, A so-called step bearing, a wave bearing, or a multi-arc bearing can also be adopted as R2, and a step bearing or a wave bearing can also be adopted as the thrust bearing portions T1 and T2. Further, as the radial bearing portions R1 and R2, so-called perfect circle bearings having no dynamic pressure generating portions can be adopted, and as the thrust bearing portions T1 and T2, pivot bearings that contact and support the end portions of the shaft members are adopted. You can also

本発明にかかる流体軸受装置を組込んだHDD用スピンドルモータの断面図である。It is sectional drawing of the spindle motor for HDD incorporating the hydrodynamic bearing apparatus concerning this invention. 本発明にかかる流体軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus concerning this invention. 軸受スリーブの断面図である。It is sectional drawing of a bearing sleeve. ハウジングの射出成形工程を示す断面図である。It is sectional drawing which shows the injection molding process of a housing. 対比例としてのハウジングを示す断面図である。It is sectional drawing which shows the housing as contrast. シール部材のA−A線(図7参照)での断面図である。It is sectional drawing in the AA line (refer FIG. 7) of a sealing member. B方向(図6参照)から見たシール部材の平面図である。It is a top view of the sealing member seen from the B direction (refer to Drawing 6).

符号の説明Explanation of symbols

1 流体軸受装置(流体動圧軸受装置)
2 軸部材
3 ハブ
4 ステータコイル
5 ロータマグネット
6 ブラケット
7 ハウジング
7a 小径部
7a1 小径外周面
7b 大径部
7b1 大径外周面
7c 底部
7f 突き出し面
8 軸受スリーブ
9 シール部材
9a 第1シール部
9b 第2シール部
10 循環溝
12 雄型
13 雌型
14 ゲート
R1 第1のラジアル軸受部
R2 第2のラジアル軸受部
S1 第1のシール空間
S2 第2のシール空間
T1 第1のスラスト軸受部
T2 第2のスラスト軸受部
1 Fluid bearing device (fluid dynamic pressure bearing device)
2 Shaft member 3 Hub 4 Stator coil 5 Rotor magnet 6 Bracket 7 Housing 7a Small diameter portion 7a1 Small diameter outer peripheral surface 7b Large diameter portion 7b1 Large diameter outer peripheral surface 7c Bottom portion 7f Protruding surface 8 Bearing sleeve 9 Seal member 9a First seal portion 9b Second Seal portion 10 Circulating groove 12 Male die 13 Female die 14 Gate R1 First radial bearing portion R2 Second radial bearing portion S1 First seal space S2 Second seal space T1 First thrust bearing portion T2 Second Thrust bearing

Claims (2)

軸部材と、内周に軸部材が挿入され、内周面が軸の外周面との間にラジアル軸受隙間を形成する軸受スリーブと、ラジアル軸受隙間に形成した油膜で軸部材を回転可能に支持するラジアル軸受部と、軸方向一端が開口されると共に、軸方向他端が密閉され、ラジアル軸受部を内部に収容するハウジングと、ハウジングの内部空間を満たす潤滑油と、ハウジングの開口部をシールするシール部材とを有する流体軸受装置において、
シール部材に円盤状の第一シール部と、第一シール部から軸方向に突出した円筒状の第二シール部とを設け、第二シール部を軸受スリーブの外周面に嵌合してシール部材を軸受スリーブに固定し、シール部材の第一シール部の内周面と軸部材の外周面との間に第1のシール空間が形成されると共に、シール部材の第二シール部の外周面とハウジングの内周面との間に第2のシール空間が形成され、
ハウジングに、軸受スリーブを固定するための内周面を有する小径部と、小径部と一体をなし、内周面が小径部の内周面よりも大きく、かつ外周面が小径部の外周面よりも大きい大径部とが設けられ、ハウジングが樹脂の射出成形で形成され、シール部材のうち、第二シール部の軸受スリーブに嵌合された部分よりも外径側にハウジングの大径部が配置され、かつハウジングがシール部材に対して非接触状態にあることを特徴とする流体軸受装置。
The shaft member is inserted into the inner periphery, the bearing sleeve that forms a radial bearing gap between the inner peripheral surface and the outer peripheral surface of the shaft, and the shaft member is rotatably supported by an oil film formed in the radial bearing gap. A radial bearing portion, one end in the axial direction is opened and the other end in the axial direction is hermetically sealed , the housing that accommodates the radial bearing portion therein, the lubricating oil that fills the inner space of the housing, and the opening in the housing are sealed A hydrodynamic bearing device having a sealing member
The seal member is provided with a disk-shaped first seal portion and a cylindrical second seal portion protruding in the axial direction from the first seal portion, and the second seal portion is fitted to the outer peripheral surface of the bearing sleeve to seal the seal member was fixed to the bearing sleeve, the first seal space between the outer peripheral surface of the inner peripheral surface and the shaft member of the first seal portion of the seal member is formed, the outer peripheral surface of the second seal portion of the seal member A second seal space is formed between the inner peripheral surface of the housing ,
A small-diameter portion having an inner peripheral surface for fixing the bearing sleeve to the housing, and an integral with the small-diameter portion, the inner peripheral surface is larger than the inner peripheral surface of the small-diameter portion, and the outer peripheral surface is larger than the outer peripheral surface of the small-diameter portion And the housing is formed by injection molding of resin, and the large-diameter portion of the housing is located on the outer diameter side of the seal member that is fitted to the bearing sleeve of the second seal portion. A hydrodynamic bearing device, wherein the hydrodynamic bearing device is disposed and the housing is in a non-contact state with respect to the seal member .
ハウジングの大径部の端面に、突き出し機構の突き出し力を受ける突き出し面を形成した請求項1記載の流体軸受装置。 The hydrodynamic bearing device according to claim 1, wherein a protruding surface that receives a protruding force of the protruding mechanism is formed on an end surface of the large-diameter portion of the housing.
JP2006081270A 2006-03-20 2006-03-23 Hydrodynamic bearing device Active JP4994687B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006081270A JP4994687B2 (en) 2006-03-23 2006-03-23 Hydrodynamic bearing device
CN200780009490XA CN101405512B (en) 2006-03-20 2007-03-13 Fluid bearing device
KR1020087024909A KR20080102304A (en) 2006-03-20 2007-03-13 Fluid bearing device
PCT/JP2007/054903 WO2007108361A1 (en) 2006-03-20 2007-03-13 Fluid bearing device
US12/293,514 US8403565B2 (en) 2006-03-20 2007-03-13 Fluid dynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006081270A JP4994687B2 (en) 2006-03-23 2006-03-23 Hydrodynamic bearing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011278440A Division JP2012057800A (en) 2011-12-20 2011-12-20 Fluid bearing device

Publications (2)

Publication Number Publication Date
JP2007255593A JP2007255593A (en) 2007-10-04
JP4994687B2 true JP4994687B2 (en) 2012-08-08

Family

ID=38630036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006081270A Active JP4994687B2 (en) 2006-03-20 2006-03-23 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4994687B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143051A1 (en) * 2007-05-10 2008-11-27 Nidec Corporation Fluid dynamic pressure bearing, motor, and recording disk drive device
JP5212690B2 (en) 2007-05-10 2013-06-19 日本電産株式会社 Fluid dynamic bearing mechanism, motor and recording disk drive
JP5133131B2 (en) * 2008-05-21 2013-01-30 Ntn株式会社 Hydrodynamic bearing device
JP5233854B2 (en) * 2009-06-12 2013-07-10 日本電産株式会社 Bearing device, spindle motor, and disk drive device
CN102695888B (en) 2009-12-24 2015-09-30 Ntn株式会社 Fluid dynamic-pressure bearing device
JP5627996B2 (en) * 2010-11-08 2014-11-19 Ntn株式会社 Housing for fluid dynamic pressure bearing device, method for manufacturing the same, and fluid dynamic pressure bearing device including the same
JP5585679B2 (en) * 2013-03-22 2014-09-10 日本電産株式会社 Beginning of bearing device, spindle motor, and disk drive form

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312213A (en) * 1992-05-08 1993-11-22 Matsushita Electric Ind Co Ltd Dynamic pressure type bearing device and manufacture thereof
JP2001140866A (en) * 1999-11-17 2001-05-22 Seiko Instruments Inc Fluid dynamic pressure bearing and spindle motor
JP4556621B2 (en) * 2003-11-07 2010-10-06 日本電産株式会社 Fluid dynamic pressure bearing and spindle motor
JP4476670B2 (en) * 2004-03-30 2010-06-09 Ntn株式会社 Hydrodynamic bearing device

Also Published As

Publication number Publication date
JP2007255593A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
US8256962B2 (en) Fluid dynamic bearing device
US7798721B2 (en) Fluid dynamic bearing device
JP5274820B2 (en) Hydrodynamic bearing device
JP4994687B2 (en) Hydrodynamic bearing device
JP2006226410A (en) Fluid dynamic pressure bearing device and motor having it
WO2010004828A1 (en) Fluid dynamic pressure bearing device
JP5154057B2 (en) Hydrodynamic bearing device
WO2008065780A1 (en) Fluid bearing device and process for manufacturing the same
JP4837574B2 (en) Hydrodynamic bearing device
JP4476670B2 (en) Hydrodynamic bearing device
JP2006300181A (en) Dynamic pressure bearing device
JP2007051717A (en) Manufacturing method of dynamic pressure bearing device
JP5220339B2 (en) Hydrodynamic bearing device
JP4689283B2 (en) Hydrodynamic bearing device
JP2009103252A (en) Fluid bearing device and motor having the same
JP5318343B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP4916941B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2012057800A (en) Fluid bearing device
JP2006200666A (en) Dynamic-pressure bearing device
JP2009011018A (en) Fluid bearing device, and manufacturing method thereof
JP5020652B2 (en) Hydrodynamic bearing device
JP4937524B2 (en) Hydrodynamic bearing device
JP4685641B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2005337340A (en) Shaft member for dynamic pressure bearing device
JP2006200584A (en) Dynamic pressure bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4994687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250