JP4556621B2 - Fluid dynamic pressure bearing and spindle motor - Google Patents

Fluid dynamic pressure bearing and spindle motor Download PDF

Info

Publication number
JP4556621B2
JP4556621B2 JP2004321415A JP2004321415A JP4556621B2 JP 4556621 B2 JP4556621 B2 JP 4556621B2 JP 2004321415 A JP2004321415 A JP 2004321415A JP 2004321415 A JP2004321415 A JP 2004321415A JP 4556621 B2 JP4556621 B2 JP 4556621B2
Authority
JP
Japan
Prior art keywords
gap
dynamic pressure
bearing
pressure bearing
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004321415A
Other languages
Japanese (ja)
Other versions
JP2005155912A5 (en
JP2005155912A (en
Inventor
茂治 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP2004321415A priority Critical patent/JP4556621B2/en
Publication of JP2005155912A publication Critical patent/JP2005155912A/en
Publication of JP2005155912A5 publication Critical patent/JP2005155912A5/ja
Application granted granted Critical
Publication of JP4556621B2 publication Critical patent/JP4556621B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

本発明は、ハードディスク駆動装置等の信号記録再生装置に搭載される流体動圧軸受機構を採用した軸受装置と、その軸受装置を搭載したスピンドルモータに関する。特に、軸受高さが小さな、薄型の軸受装置と、薄型のスピンドルモータに関する。   The present invention relates to a bearing device employing a fluid dynamic pressure bearing mechanism mounted on a signal recording / reproducing device such as a hard disk drive device, and a spindle motor equipped with the bearing device. In particular, the present invention relates to a thin bearing device having a small bearing height and a thin spindle motor.

ハードディスク駆動装置等の信号記録再生装置において使用されるスピンドルモータには、従来から種々の流体動圧軸受が利用されている。流体動圧軸受とは、シャフトとスリーブの間にオイル等の潤滑液を介在させ、その潤滑液に生ずる流体圧力を支持力とする軸受である。   Conventionally, various fluid dynamic pressure bearings are used for spindle motors used in signal recording / reproducing apparatuses such as hard disk drives. A fluid dynamic pressure bearing is a bearing in which a lubricating liquid such as oil is interposed between a shaft and a sleeve, and the fluid pressure generated in the lubricating liquid has a supporting force.

従来の動圧軸受を使用するスピンドルモータの一例を図12に示す。このスピンドルモータは、ロータ105と一体を成す軸体131の外周面と、この軸体131が回転自在に挿通されるスリーブ133の内周面との間に、一対のラジアル軸受部137,137が軸線方向に隔たって配置されている。そして軸体131の一方の端部外周面から半径方向外方に突出するディスク状スラストプレート134の上面とスリーブ133に形成された段部、並びに、スラストプレート134の下面とスリーブ133の一方の開口を閉塞するスラストブッシュ132との間に、それぞれ一対のスラスト軸受部136,136が構成されている。ラジアル軸受部の上方には、第二のテーパシール部140が軸体131の周面に形成されている。   An example of a spindle motor using a conventional dynamic pressure bearing is shown in FIG. This spindle motor has a pair of radial bearing portions 137 and 137 between an outer peripheral surface of a shaft body 131 that is integral with the rotor 105 and an inner peripheral surface of a sleeve 133 through which the shaft body 131 is rotatably inserted. They are arranged apart from each other in the axial direction. The upper surface of the disc-shaped thrust plate 134 projecting radially outward from the outer peripheral surface of one end of the shaft 131 and the step formed on the sleeve 133, and the lower surface of the thrust plate 134 and one opening of the sleeve 133. A pair of thrust bearing portions 136 and 136 are formed between the thrust bush 132 and the thrust bush 132 for closing the shaft. A second taper seal portion 140 is formed on the peripheral surface of the shaft body 131 above the radial bearing portion.

このようなスピンドルモータについて、更に、薄型にする事が求められるようになってきている。小型の情報機器に対する需要が高まっており、それに応じて、ハードディスク駆動装置等に対しても、小型化、薄型化が求められているからである。   Such spindle motors are further required to be thinner. This is because the demand for small information devices is increasing, and accordingly, the hard disk drive and the like are also required to be small and thin.

しかしながら、図12に示したようなスピンドルモータを薄型化する場合、必然的に流体動圧軸受装置の高さにも厳しい制限が課される。この為、二つのラジアル軸受部の間隔も小さくせざるを得なくなるが、これは、特に軸体を倒そうとする外力に対する剛性を低下させ、軸受の設計を著しく困難にしていた。   However, when the spindle motor as shown in FIG. 12 is made thin, severe restrictions are necessarily imposed on the height of the fluid dynamic bearing device. For this reason, the distance between the two radial bearing portions must be reduced, but this particularly reduces the rigidity against an external force that attempts to collapse the shaft body, making the bearing design extremely difficult.

特許文献1には、軸受の小型化を実現する為に、スリーブの端面に薄板を配置し、スリーブ端面との間隙にテーパシールを形成する構造が開示されている。この構成に寄れば、図12におけるテーパシール140が軸線方向ではなく、半径方向に寝た形で配置される。この為、二つのラジアル軸受の間隔を狭める事なく、軸受全体の高さを低くする事が可能になる。   Patent Document 1 discloses a structure in which a thin plate is disposed on the end face of the sleeve and a taper seal is formed in the gap with the sleeve end face in order to realize a reduction in the size of the bearing. According to this configuration, the taper seal 140 in FIG. 12 is arranged in a shape lying in the radial direction, not in the axial direction. For this reason, it is possible to reduce the height of the entire bearing without reducing the distance between the two radial bearings.

しかし、この構造では、軸体周面と薄板との間に形成される小さな間隙を通って、潤滑液が漏れ出すトラブルを十分に抑制する事ができない。この為、特許文献1に開示された軸受は、これまで実用に供される事はなかった。   However, with this structure, it is not possible to sufficiently suppress the trouble that the lubricating liquid leaks through a small gap formed between the shaft body peripheral surface and the thin plate. For this reason, the bearing disclosed in Patent Document 1 has never been put to practical use.

特開平08−331796号Japanese Patent Application Laid-Open No. 08-331796

本発明の目的は、軸受剛性が高く薄型の流体動圧軸受装置、及び、この軸受装置を搭載した薄型のスピンドルモータを提供する事である。   An object of the present invention is to provide a thin fluid dynamic pressure bearing device with high bearing rigidity and a thin spindle motor equipped with the bearing device.

上記の課題を解決する為の、請求項1に記載の流体動圧軸受は、
軸体と、
軸体が挿入され、軸体を中心軸として回転可能に支持する静止部と、
軸体の外周面とこれと対向する静止部の内周面との間に形成されたラジアル間隙と、
ラジアル間隙に充填された潤滑液と、
ラジアル間隙の一部を構成する第一の間隙に形成され、軸体の回転時、潤滑液を作動流体として流体動圧を誘起するラジアル動圧発生溝を有するラジアル動圧軸受と、
ラジアル間隙より径方向外側に位置し、静止部の軸方向に伸びる間隙に形成され、ラジアル間隙に接続する第二のシール部と、
ラジアル間隙の上端部に位置する軸方向に伸びる間隙に形成され、ラジアル間隙、および、第二のシール部に接続し、その軸方向長さが第二のシール部より短い第一のシール部と、
第二のシール部に形成される第二の気液界面と、
第二の気液界面より上側に位置し、第一のシール部に形成される第一の気液界面と、
静止部に形成され、潤滑液で満たされ、且つ、前記ラジアル動圧軸受を介さずに、第二のシール部、第一の間隙の上端部、および、第一のシール部をつなぐ連絡路と
静止部に形成され、潤滑液で満たされ、且つ、ラジアル動圧軸受を介さずに、第二のシール部、連絡路、および、第一の間隙の下端部をつなぐ連通路の一部と、を有し、
第二のシール部は、連絡路および連通路の一部より径方向外側に位置することを特徴とする。
In order to solve the above problems, the fluid dynamic pressure bearing according to claim 1,
A shaft,
Shaft is inserted, and a stationary portion that rotatably supported by the central axis of the shaft,
A radial gap formed between the outer peripheral surface of the shaft body and the inner peripheral surface of the stationary portion facing the shaft body;
A lubricating liquid filled in the radial gap;
A radial dynamic pressure bearing formed in a first gap that constitutes a part of the radial gap, and having a radial dynamic pressure generating groove that induces a fluid dynamic pressure using a lubricating liquid as a working fluid when the shaft is rotated;
A second seal portion that is located radially outward from the radial gap and formed in a gap extending in the axial direction of the stationary portion, and connected to the radial gap;
A first seal portion formed in an axially extending gap located at an upper end portion of the radial gap, connected to the radial gap and the second seal portion, and having an axial length shorter than that of the second seal portion; ,
A second gas-liquid interface formed in the second seal portion;
Located above the second gas-liquid interface, the first gas-liquid interface formed in the first seal part; and
A communication path formed in the stationary portion, filled with a lubricating liquid, and connected to the second seal portion, the upper end portion of the first gap, and the first seal portion without going through the radial dynamic pressure bearing; ,
A part of the communication path formed in the stationary part, filled with the lubricating liquid, and connected to the second seal part, the communication path, and the lower end of the first gap without going through the radial dynamic pressure bearing; Have
The second seal portion is characterized by being positioned radially outward from a part of the communication path and the communication path.

上記の課題を解決する為の、請求項2に記載の流体動圧軸受は、
第二のシール部の間隙は、軸方向に伸びるに従ってその間隙寸法が拡大するテーパ状に形成されていることを特徴とする。
In order to solve the above problems, the fluid dynamic pressure bearing according to claim 2 ,
The gap of the second seal portion is formed in a taper shape in which the gap dimension increases as it extends in the axial direction.

上記の課題を解決する為の、請求項3に記載の流体動圧軸受は、
第一のシール部の間隙は、上側に向かうに従ってその間隙寸法が拡大するテーパ状に形成され、
第一のシール部のテーパ角は、第二のシール部のテーパ角より大きいことを特徴とする。
In order to solve the above problems, the fluid dynamic pressure bearing according to claim 3 ,
The gap of the first seal portion is formed in a tapered shape in which the gap dimension increases toward the upper side,
The taper angle of the first seal part is larger than the taper angle of the second seal part.

上記の課題を解決する為の、請求項4に記載の流体動圧軸受は、
第二の気液界面の幅は、第一の気液界面の幅より広いことを特徴とする。
In order to solve the above problem, the fluid dynamic pressure bearing according to claim 4 ,
The width of the second gas-liquid interface is characterized by being wider than the width of the first gas-liquid interface.

上記の課題を解決する為の、請求項5に記載の流体動圧軸受は、
第一の気液界面より上側に位置する、軸体の外周面、および、静止部の表面の少なくとも一方には、撥油膜が形成されていることを特徴とする。
In order to solve the above problems, the fluid dynamic pressure bearing according to claim 5 ,
An oil repellent film is formed on at least one of the outer peripheral surface of the shaft body and the surface of the stationary portion located above the first gas-liquid interface.

上記の課題を解決する為の、請求項6に記載の流体動圧軸受は、
潤滑液の気液界面は、第二の気液界面、および、第一の気液界面のみであることを特徴とする。
In order to solve the above problems, the fluid dynamic pressure bearing according to claim 6 ,
The gas-liquid interface of the lubricating liquid is characterized by only the second gas-liquid interface and the first gas-liquid interface.

上記の課題を解決する為の、請求項7に記載の流体動圧軸受は、
軸体、および、ロータマグネットを備えたロータと、
静止部に取り付けられたステータと、
請求項1乃至12のいずれか記載の流体動圧軸受と、を備えることを特徴とする。
In order to solve the above problem, the fluid dynamic pressure bearing according to claim 7 ,
A rotor including a shaft body and a rotor magnet;
A stator attached to the stationary part;
A fluid dynamic pressure bearing according to any one of claims 1 to 12.

請求項1の流体動圧軸受によれば、軸方向の高さが小さく、軸受剛性が高く、かつ潤滑液の漏出或いは気泡の残留による不具合の発生が抑制された、流体動圧軸受が得られる。
これは次の理由による。
According to the fluid dynamic pressure bearing of claim 1, a fluid dynamic pressure bearing is obtained in which the axial height is small, the bearing rigidity is high, and occurrence of problems due to leakage of lubricating liquid or residual bubbles is suppressed. .
This is due to the following reason.

本願発明の流体動圧軸受では、従来、軸体の周面に沿って形成されていたテーパシールを撤去し、軸受空洞端部に形成された第一の界面で潤滑液を支える。この界面は、隣接部位が撥油性を有している為、殆ど移動しない。テーパシールのような長さが不要になる為、軸受を低くする事が可能になる一方で、ラジアル動圧軸受部の軸線方向のサイズは小さくしなくとも良い。   In the fluid dynamic pressure bearing of the present invention, conventionally, the taper seal formed along the peripheral surface of the shaft body is removed, and the lubricating liquid is supported by the first interface formed at the end portion of the bearing cavity. This interface hardly moves because the adjacent portion has oil repellency. Since a length like a taper seal is not required, the bearing can be lowered, while the radial dynamic pressure bearing portion does not have to be reduced in size in the axial direction.

熱膨張等による潤滑液の体積変化は、スリーブ側面に形成したテーパシールで吸収する。スリーブの側面に形成する事により、潤滑液に取り込まれた、或いは生じた気泡が、より容易に排出される。   Changes in the volume of the lubricating liquid due to thermal expansion or the like are absorbed by a taper seal formed on the side surface of the sleeve. By forming on the side surface of the sleeve, bubbles taken in or generated in the lubricating liquid are more easily discharged.

本発明の流体動圧軸受は、第一の間隙の軸方向に隔たった二ヶ所を連通する連通路を有しており、二ヶ所の間には動圧軸受機構が位置している。
この構成によれば、軸受面以外の経路を通じて潤滑液を保持する間隙の両端間で潤滑液が流通できる為、圧力の不均一発生が抑制され、軸受装置の特性が安定し、信頼性が高まる。
The fluid dynamic pressure bearing of the present invention has a communication passage that communicates two places separated in the axial direction of the first gap, and a dynamic pressure bearing mechanism is located between the two places.
According to this configuration, since the lubricating liquid can flow between both ends of the gap that holds the lubricating liquid through a path other than the bearing surface, uneven generation of pressure is suppressed, the characteristics of the bearing device are stabilized, and reliability is increased. .

本発明の流体動圧軸受では、軸体周面及び軸受空洞内周面は、動圧軸受機構の一端側に隣接する部位から、第一の界面近傍までは、親油性を有している。
この構成によれば、回転時に潤滑液に取り込まれる気泡が減少し、軸受の性能が安定すると同時に、長寿命の軸受装置が実現できる。この理由を図1用いて説明する。
In the fluid dynamic pressure bearing of the present invention, the shaft body peripheral surface and the bearing cavity inner peripheral surface are oleophilic from the portion adjacent to one end side of the dynamic pressure bearing mechanism to the vicinity of the first interface.
According to this configuration, bubbles taken into the lubricating liquid at the time of rotation are reduced, the performance of the bearing is stabilized, and a long-life bearing device can be realized. The reason for this will be described with reference to FIG.

図1のa)及びb)は、第一の界面近傍から、ラジアル動圧軸受機構が形成されている領域にかけての、軸受装置の模式断面図を表している。
a)は、第一の界面51付近のスリーブ、シャフト表面は親油性を有している。(図中、撥油性を有する壁面は、二重線で表されている)。b)は比較例であり、第一の界面51は、撥油性を有する壁面の間に形成されている。
FIGS. 1A and 1B are schematic sectional views of the bearing device from the vicinity of the first interface to the region where the radial dynamic pressure bearing mechanism is formed.
a) is a sleeve near the first interface 51, and the shaft surface is oleophilic. (In the figure, the wall having oil repellency is represented by a double line). b) is a comparative example, and the first interface 51 is formed between wall surfaces having oil repellency.

軸体に対して動圧による支持力が働く為には、軸体の周面に対して垂直な成分を持つ流れが潤滑流体中に生じなければならない。このような流れが生じる場合、流体は複雑な流れを呈する。この際、動圧軸受部は、第一の界面側から潤滑液を引き込む様に作用する瞬間があり得る。b)の様に、第一の界面の外側表面に形成された撥油膜が、動圧軸受近傍にまで及んでいる場合、界面の曲率は小さい。このような状況で、上記のような引き込み力が加わると、軸受間隙の奥まで界面が引き込まれ、潤滑液中に気泡や空隙が形成される恐れがある。   In order for the support force by dynamic pressure to act on the shaft body, a flow having a component perpendicular to the peripheral surface of the shaft body must be generated in the lubricating fluid. When such a flow occurs, the fluid exhibits a complex flow. At this time, there may be a moment when the hydrodynamic bearing portion acts to draw the lubricating liquid from the first interface side. As in b), when the oil repellent film formed on the outer surface of the first interface extends to the vicinity of the hydrodynamic bearing, the curvature of the interface is small. In such a situation, when the pulling force as described above is applied, the interface is pulled to the back of the bearing gap, and there is a possibility that bubbles and voids are formed in the lubricating liquid.

本発明の流体動圧軸受では、第一の間隙に保持された潤滑液の圧力を、軸受の一端側から離れる方向に向けて高めるように作用するように構成されている。
この構成によれば、軸受内部の潤滑液を循環させる事が出来る為、軸受間隙(第一の間隙)への気泡の集積が抑制され、軸受装置の性能が安定する。
The fluid dynamic pressure bearing of the present invention is configured to act so as to increase the pressure of the lubricating liquid held in the first gap in a direction away from one end side of the bearing.
According to this configuration, since the lubricating liquid inside the bearing can be circulated, accumulation of bubbles in the bearing gap (first gap) is suppressed, and the performance of the bearing device is stabilized.

本発明の流体動圧軸受では、軸受空洞の開口端を形成する縁部分には、面取りが施されている。
この構成によれば、第一の界面がより安定し、潤滑液の漏れが一層生じにくくなる。これは次の理由による。
In the fluid dynamic pressure bearing of the present invention, chamfering is applied to the edge portion forming the open end of the bearing cavity.
According to this configuration, the first interface is more stable and the lubricating liquid is less likely to leak. This is due to the following reason.

この構成に係わる発明は、シャフト端部の軸受間隙開口部にテーパシールを設けていない。テーパシールがある場合は、軸受加わる衝撃や熱膨張によって、潤滑液を押し出す力が加わった場合でも、界面が第二のテーパシール部内部を移動する事で、潤滑液の漏出は回避できる。本発明でも、第二のテーパシール部は有しているが、同時に、軸受一端側に第一の界面をも有している為、この界面の、衝撃や振動に対する安定性は考慮せざるを得ない。   In the invention relating to this configuration, a taper seal is not provided at the bearing gap opening at the shaft end. When there is a taper seal, leakage of the lubricant can be avoided by moving the interface inside the second taper seal even when a force for pushing out the lubricant is applied due to the impact or thermal expansion applied to the bearing. Even in the present invention, the second tapered seal portion is provided, but at the same time, since the first interface is also provided on one end side of the bearing, the stability of the interface with respect to impact and vibration must be considered. I don't get it.

一般に表面張力で維持されている界面は、幅が狭いほど強く、崩壊しにくい傾向がある。本発明の軸受装置では、軸受間隙端部の第一の界面は、第二のテーパシール部に形成される第二の界面よりも狭幅である為、基本的には衝撃や振動の影響は第二のテーパシール部で吸収される。しかし、瞬間的には界面が円筒空洞の端部を越えて押し出される状況はありうる。   In general, an interface maintained by surface tension tends to be stronger and less likely to collapse as the width is narrower. In the bearing device of the present invention, the first interface of the bearing gap end is narrower than the second interface formed in the second taper seal, so basically the influence of impact and vibration is not Absorbed by the second taper seal. However, there may be situations where the interface is momentarily pushed beyond the end of the cylindrical cavity.

そのような場合に、空洞端部に面取りが施されていなければ、その角や、或いは加工時に生じたバリなどによって潤滑液の一部が断ち切られ、間隙外部に残ってしまう恐れがある。空洞の開口縁を面取り加工しておけば、バリは除去され、角は取り去られる為、そのような事態は生じにくくなる。   In such a case, if the cavity end is not chamfered, part of the lubricating liquid may be cut off by the corners or burrs generated during processing, and may remain outside the gap. If the opening edge of the cavity is chamfered, the burr is removed and the corner is removed, so that such a situation is less likely to occur.

本発明の流体動圧軸受では、面取りが施された部位の軸体方向の長さは、第一の界面の幅の半分よりも大きく、かつ、第二の界面の幅よりも小さい。
この構成によれば、第一の界面が更に安定し、軸受装置の高さを抑制しつつ、潤滑液の漏れが一層生じにくくする事が出来る。
In the fluid dynamic pressure bearing of the present invention, the length in the axial direction of the chamfered portion is larger than half the width of the first interface and smaller than the width of the second interface.
According to this configuration, the first interface is further stabilized, and the height of the bearing device can be suppressed, and the leakage of the lubricating liquid can be further prevented.

先に述べた開口端縁の面取りは、余り大きくては、軸方向長さが長くなって軸受装置の高さを増してしまうが、余りに小さくては効果が低下する。この面取り量の下限としては、第一の界面の曲率を目安とする事が合理的である。上限は、テーパシールを構成する第二の界面の幅の半分とする。これ以上では、第一の界面が第二の界面よりも大きくなってしまうからである。   If the chamfering of the opening edge described above is too large, the axial length becomes long and the height of the bearing device increases, but if it is too small, the effect decreases. As a lower limit of this chamfering amount, it is reasonable to use the curvature of the first interface as a guide. The upper limit is half the width of the second interface constituting the taper seal. This is because the first interface becomes larger than the second interface at a temperature higher than this.

ここで、面取りの大きさは、軸線方向長さrで規定しており、半径方向については請求項中では規定していない。これは、通常の面取りでは、軸線方向と半径方向は、大きさがほぼ等しくするからである。非対称な面取りとしても界面安定化の効果は得られるが、低下する。軸線方向と半径方向の面取りの大きさの比が1:3或いは3:1を越える場合は、面取りによって生ずる角部分に、更に面取りを施すなどの処置を加える事が望ましい。   Here, the size of the chamfer is defined by the axial length r, and the radial direction is not defined in the claims. This is because in normal chamfering, the axial direction and the radial direction are almost equal in size. Even if the asymmetric chamfering is used, the effect of stabilizing the interface is obtained, but it is reduced. When the ratio of the chamfer size in the axial direction and the radial direction exceeds 1: 3 or 3: 1, it is desirable to add a measure such as further chamfering to the corner portion generated by chamfering.

本発明の流体動圧軸受では、面取りが施された部位の表面の内、少なくとも径方向外寄り側半分の領域は、撥油性を有している。
この構成によれば、第一の界面が更に安定し、潤滑液の漏れが一層生じにくくなる。開口端縁からの潤滑液の流出を防ぐ為には、面取り部表面において潤滑液がはじかれ、潤滑液が間隙内に引き戻される効果が生ずる事が望ましいからである。このような効果を得る為には、面取り部において、軸受間隙から遠い側の半分は、撥油性を付与されている必要がある。一方で、軸受間隙内部においては、間隙を構成する面は、親油性を持っている事が望ましい。なお、本願明細書において、"撥油性を有する"とは、潤滑液の接触角が45度よりも大きい事を意味する。より好ましくは、90度以上である。
In the fluid dynamic pressure bearing of the present invention, at least a region on the radially outer side of the surface of the chamfered portion has oil repellency.
According to this configuration, the first interface is further stabilized, and the lubricating liquid is less likely to leak. This is because in order to prevent the lubricating liquid from flowing out from the opening edge, it is desirable that the lubricating liquid be repelled on the surface of the chamfered portion and the lubricating liquid be pulled back into the gap. In order to obtain such an effect, the half of the chamfered portion far from the bearing gap needs to be given oil repellency. On the other hand, in the bearing gap, it is desirable that the surfaces constituting the gap have lipophilicity. In the present specification, “having oil repellency” means that the contact angle of the lubricating liquid is larger than 45 degrees. More preferably, it is 90 degrees or more.

本発明の流体動圧軸受では、第一の間隙が一端側に向かって間隙が拡大する第一のテーパシール部となっており、そのテーパ角は、第二のテーパシール部のテーパ角よりも大きい。
この構成によれば、第一の間隙を一端側に向かって間隙が拡大する構造として第一のテーパシール部を形成する事で、この間隙に形成される第一の界面をより安定させる事が出来る。ただし、第一のテーパシール部テーパ角(以下、第一のテーパ角)は、第二のテーパシール部のテーパ角(以下、第二のテーパ角)よりも大きくする。第一のテーパ角を小さくすると、テーパシール部の軸体方向の長さが長くなって、軸受装置の小型化を阻害するからである。この第一のテーパ角は第二のテーパ角の2倍以上である事がより好ましい。
In the fluid dynamic pressure bearing according to the present invention, the first gap is a first taper seal portion in which the gap is enlarged toward one end side, and the taper angle is larger than the taper angle of the second taper seal portion. large.
According to this configuration, the first interface formed in the gap can be further stabilized by forming the first tapered seal portion as a structure in which the gap is enlarged toward the one end side. I can do it. However, the first taper seal portion taper angle (hereinafter referred to as the first taper angle) is made larger than the taper angle of the second taper seal portion (hereinafter referred to as the second taper angle). This is because if the first taper angle is reduced, the length of the taper seal portion in the shaft body direction is increased, which hinders downsizing of the bearing device. The first taper angle is more preferably twice or more the second taper angle.

本発明の流体動圧軸受では、軸体の他端には、径方向膨大部が形成されており、スリーブの軸受空洞は径方向膨大部を収容する径方向拡大部を有し、径方向膨大部の軸方向表面、及び、これに対向する径方向拡大部の軸方向表面、を軸受面とするスラスト動圧軸受を有している。
この構成によれば、軸線方向の負荷はスラスト動圧軸受によって支持される事になる為、軸受の支持が安定する。
In the fluid dynamic pressure bearing of the present invention, a radially enormous portion is formed at the other end of the shaft body, and the bearing cavity of the sleeve has a radially enlarged portion that accommodates the radially enlarging portion, And a thrust dynamic pressure bearing having a bearing surface that is an axial surface of the portion and an axial surface of the radially enlarged portion facing the axial surface.
According to this configuration, since the axial load is supported by the thrust dynamic pressure bearing, the support of the bearing is stabilized.

本発明の流体動圧軸受では、スリーブの少なくとも一部は、含油多孔質材料から構成されている。
この構成によれば、多孔質体が多量の潤滑液を蓄える事が出来る為、軸受装置の潤滑液保持量が増して、蒸発などによる潤滑液の枯渇が生じにくくなり、長寿命の軸受装置を得る事が出来る。加えて、多孔質体が軸受間隙において生じたダストをトラップできる為、ダストの集積によるトラブルも抑制される。
In the fluid dynamic bearing of the present invention, at least a part of the sleeve is made of an oil-containing porous material.
According to this configuration, since the porous body can store a large amount of the lubricating liquid, the amount of the lubricating liquid retained in the bearing device is increased, and it is difficult for the lubricating liquid to be exhausted due to evaporation or the like. I can get it. In addition, since the porous body can trap dust generated in the bearing gap, trouble due to dust accumulation is also suppressed.

本発明のスピンドルモータは、ベースと、ベースに固定されたステータと、上記記載の流体動圧軸受によってベースに対して回転自在に支持されたロータと、ステータに対向してロータ周面に取り付けられたロータマグネット、を有する。
この構成によれば、上記の流体動圧軸受を採用する事により、振動が少なく長寿命で、かつ、高さの低いスピンドルモータを得る事が出来る。
A spindle motor according to the present invention includes a base, a stator fixed to the base, a rotor supported rotatably with respect to the base by the fluid dynamic pressure bearing described above, and attached to the rotor circumferential surface facing the stator. Rotor magnet.
According to this configuration, by adopting the fluid dynamic pressure bearing described above, it is possible to obtain a spindle motor that has less vibration and has a long life and a low height.

本願発明に係る流体動圧軸受、及び、スピンドルモータを実施する為に好適な形態を、以下の実施例1乃至3に示す。   Examples suitable for carrying out the fluid dynamic pressure bearing and the spindle motor according to the present invention are shown in Examples 1 to 3 below.

(1−1)スピンドルモータの説明
図2は、本願発明に係るスピンドルモータ1の模式断面図である。スピンドルモータ1は、ベースプレート2に取り付けられた本願発明に係る軸受装置3と、ベープレート2上に軸受装置3を取り囲むように設置されたステータ4と、シャフト31の一端に取り付けられたロータ5とから成る。ロータ5は、ハブ6とロータマグネット7とから成り、ロータマグネット7はハブ6の円筒部内周面に取り付けられ、ステータ4の磁極と対向する位置関係にある。このステータ4に通電する事により、回転駆動力が発生する。スピンドルモータ1は、ベースプレート2を介して、ハードディスク装置等の筐体に取り付けられる。
(1-1) Description of Spindle Motor FIG. 2 is a schematic cross-sectional view of the spindle motor 1 according to the present invention. The spindle motor 1 includes a bearing device 3 according to the present invention attached to a base plate 2, a stator 4 installed on the base plate 2 so as to surround the bearing device 3, and a rotor 5 attached to one end of a shaft 31. Consists of. The rotor 5 includes a hub 6 and a rotor magnet 7. The rotor magnet 7 is attached to the inner peripheral surface of the cylindrical portion of the hub 6 and has a positional relationship facing the magnetic poles of the stator 4. When the stator 4 is energized, a rotational driving force is generated. The spindle motor 1 is attached to a housing such as a hard disk device via a base plate 2.

(1−2)軸受装置の全体構成
図3のa)は軸受装置3の模式断面図であり、b)は斜視図である。
(1-2) Overall Configuration of Bearing Device FIG. 3A is a schematic cross-sectional view of the bearing device 3, and b) is a perspective view.

軸受装置3は、略円筒形のスリーブ33と、その円筒部に内嵌されたシャフト31と、スリーブ33を収容する有底円筒形状のハウジング32を主な構成要素としている。   The bearing device 3 includes a substantially cylindrical sleeve 33, a shaft 31 fitted in the cylindrical portion, and a bottomed cylindrical housing 32 that accommodates the sleeve 33 as main components.

図中でシャフト31の下側端部には、スラストプレート34が形成されており、スリーブ33の下側端面にその上面で対向している。図3では、このスラストプレート34を収容する為に、ハウジング内周の底面には、段部41が形成されているが、スラストプレート34の外径とスリーブ33の外径がほぼ等しい場合には、このような段部41は必要ではない。   In the drawing, a thrust plate 34 is formed at the lower end portion of the shaft 31 and faces the lower end surface of the sleeve 33 on its upper surface. In FIG. 3, a step portion 41 is formed on the bottom surface of the inner periphery of the housing to accommodate the thrust plate 34, but when the outer diameter of the thrust plate 34 and the outer diameter of the sleeve 33 are substantially equal. Such a step 41 is not necessary.

(1−3)潤滑液及び連通路
シャフト31の外周面とスリーブ33の内周面の間には、微小な第一の間隙が形成されている。同様に、スラストプレート34とハウジング32の内周面、及び、スリーブ33の下側端面との間にも第二の間隙が保持されている。これらの軸受間隙は、途中で途切れる事なく潤滑液で満たされている。そして、第一の間隙下部と上部は、後述する連通路42によって、連通している。
(1-3) Lubricating liquid and communication path A minute first gap is formed between the outer peripheral surface of the shaft 31 and the inner peripheral surface of the sleeve 33. Similarly, a second gap is also maintained between the thrust plate 34 and the inner peripheral surface of the housing 32 and the lower end surface of the sleeve 33. These bearing gaps are filled with the lubricant without being interrupted. The first gap lower portion and the upper portion communicate with each other through a communication passage 42 described later.

スリーブ33の上端側には、カバー部材35がはめ込まれている。カバー部材35の外周側面とハウジング32の内周面の間には、ハウジングの開口端に向けて間隙が拡大する第二のテーパシール部40が形成されている。
また、カバー部材35には、プレスによって形成された径方向に伸びる凸部43があり、その裏面の凹部とスリーブ33上端面との間に確保される間隙は、潤滑液の連絡路42aとなる。また、この連絡路42aは、連通路42の一部を成す。
A cover member 35 is fitted on the upper end side of the sleeve 33. Between the outer peripheral side surface of the cover member 35 and the inner peripheral surface of the housing 32, a second taper seal portion 40 is formed in which the gap increases toward the opening end of the housing.
Further, the cover member 35 has a convex portion 43 formed by pressing and extending in the radial direction, and a gap secured between the concave portion on the back surface and the upper end surface of the sleeve 33 serves as a communication path 42a for the lubricating liquid. . The communication path 42a forms part of the communication path 42.

スリーブ33の側面には、軸方向に伸びる平坦部44が、円周方向の三ヶ所に亘って形成されている(図4)。この平坦部44は、見かけ上は平坦部であるが、スリーブの中心軸からの距離が中央部で一番小さくなる点で実質的には凹部であって、ハウジングに内嵌する事で、連通路の一部42bとなる。   On the side surface of the sleeve 33, flat portions 44 extending in the axial direction are formed at three locations in the circumferential direction (FIG. 4). The flat portion 44 is apparently a flat portion, but is substantially a recess in that the distance from the central axis of the sleeve is the smallest at the central portion. It becomes a part 42b of the passage.

図5a)は、軸受装置3を図3の上側から見下ろした場合の様相を表す。図5b)は、カバー部材35を取り付ける前の状態を示している。図5a)の点線は、スリーブ33の平坦部44の位置を示している。カバー部材35の上面に形成された凸部43の径方向外側の端部は、平坦部44の上に位置しており、連絡路42a、及び連通路の一部42bは、ここで接続して、一つの連通路42を構成する。連通路42は、軸受間隙と同じく潤滑液で満たされ、第一の間隙の上下の間での潤滑液の行き来を可能にする。   FIG. 5 a) shows an aspect when the bearing device 3 is looked down from the upper side of FIG. 3. FIG. 5b) shows a state before the cover member 35 is attached. The dotted line in FIG. 5 a) shows the position of the flat part 44 of the sleeve 33. The radially outer end of the convex portion 43 formed on the upper surface of the cover member 35 is located on the flat portion 44, and the communication path 42a and the communication path portion 42b are connected here. , One communication path 42 is formed. The communication path 42 is filled with the lubricating liquid like the bearing gap, and allows the lubricating liquid to pass back and forth between the first gap and the upper side.

なお、図3a)の様に、ハウジング底部に段部41が形成されている場合は、スリーブ33側面に形成された連通路42bは、段部41で閉塞されてしまう。これを避ける為に、連通路42bの下端に対応する位置で、段部41の上面に凹部を設け、連通路42bと軸受間隙を接続している。   As shown in FIG. 3 a), when the step 41 is formed at the bottom of the housing, the communication passage 42 b formed on the side surface of the sleeve 33 is blocked by the step 41. In order to avoid this, a recess is provided on the upper surface of the step portion 41 at a position corresponding to the lower end of the communication path 42b, and the communication path 42b and the bearing gap are connected.

カバー部材35の上面には、シャフト31を通す為の孔46が形成されている。この孔の内周面47はシャフト31の周面と微小な間隙を保っており、ここに第一の界面51が形成されている。第二のテーパシール部40は、カバー部材35の下端縁で連通路42と接続している。第二のテーパシール部は途中まで潤滑液で満たされており、第二の界面52が形成されている。第一の界面に隣接するシャフト外周面とカバー部材35の表面には、フッ素系樹脂からなる撥油剤が塗布され、撥油性が付与されている。   A hole 46 for passing the shaft 31 is formed on the upper surface of the cover member 35. The inner peripheral surface 47 of this hole maintains a minute gap with the peripheral surface of the shaft 31, and the first interface 51 is formed here. The second taper seal portion 40 is connected to the communication path 42 at the lower end edge of the cover member 35. The second taper seal portion is partially filled with the lubricating liquid, and a second interface 52 is formed. An oil repellent made of a fluororesin is applied to the outer peripheral surface of the shaft adjacent to the first interface and the surface of the cover member 35 to impart oil repellency.

この軸受装置3では、シャフト31の外周面とスリーブ32内周面との間の間隙を満たす潤滑液は、これら第一、第二の界面以外では、潤滑液は周囲の空気と接してはいない。   In this bearing device 3, the lubricating liquid that fills the gap between the outer peripheral surface of the shaft 31 and the inner peripheral surface of the sleeve 32 is not in contact with the surrounding air except for these first and second interfaces. .

(1−4)動圧軸受
図3において、スリーブ33の円筒型の内周面には、軸線方向に隔たった2ヶ所に、動圧発生溝37、38が形成されており、各々ラジアル動圧軸受を構成する。これらの動圧発生溝は、シャフト31の回転時に、軸受間隙に保持された潤滑液に対して、軸線方向下側に向けて圧力を高めるよう作用する部位と、軸線方向上側に向けて圧力を高めるよう作用する部位が、対となって対向して設けられており、二つの部位の間で高い動圧を発生させ、軸受を支持する。
(1-4) Dynamic Pressure Bearings In FIG. 3, dynamic pressure generating grooves 37 and 38 are formed on the cylindrical inner peripheral surface of the sleeve 33 at two locations separated in the axial direction. Configure the bearing. These dynamic pressure generating grooves provide a portion that acts to increase the pressure toward the lower side in the axial direction and the pressure toward the upper side in the axial direction with respect to the lubricating liquid held in the bearing gap when the shaft 31 rotates. The part which acts to raise is provided as a pair and faces each other, generates a high dynamic pressure between the two parts, and supports the bearing.

なお、図において、軸受面に対して斜めに描かれた二重線はこれら動圧発生溝の存在を表し、二重線が軸受面から離れて行く側に向かって、潤滑液の圧力が高められている事を意味する。図中の二重線は途中で折れ曲がっており、この部位で最も軸受面から離れているが、これは、この部分で最も高い圧力が発生する事を示す。   In the figure, double lines drawn obliquely to the bearing surface indicate the presence of these dynamic pressure generating grooves, and the pressure of the lubricating liquid increases toward the side where the double line goes away from the bearing surface. It means being done. The double line in the figure is bent halfway and is farthest from the bearing surface at this part, which indicates that the highest pressure is generated at this part.

二つのラジアル動圧発生溝37、38の内、上側に位置する37は、上下方向に対称ではなく、下側に向けて圧力を高める部位がより大きく形成されている。この為、動圧発生溝37は、ラジアル方向の軸支持力を発生する一方で、潤滑液を軸受の下方へと押しやる様に作用する。もう一つのラジアル動圧発生溝38は対称であり、また、二つのスラスト動圧発生溝36、36は半径方向に対称に構成されている。   Of the two radial dynamic pressure generating grooves 37, 38, the upper 37 is not symmetrical in the vertical direction, and has a larger portion for increasing the pressure toward the lower side. For this reason, the dynamic pressure generating groove 37 acts to push the lubricating liquid downward of the bearing while generating a radial shaft supporting force. The other radial dynamic pressure generating groove 38 is symmetrical, and the two thrust dynamic pressure generating grooves 36, 36 are configured symmetrically in the radial direction.

動圧発生溝全体では、ラジアル動圧発生溝37の作用によって、潤滑液には、第一の間隙であるラジアル軸受間隙を下方へと流れ、そして、連通路42を通ってラジアル軸受面の上端部である、第一の界面51付近へと還流する流れが生ずる。この流れは、第一の界面51から潤滑液が漏れ出す事を抑制する。また、軸受内部で生じた気泡などを、連通路42と第二のテーパシール部40を介して軸受外部に排出する事を助ける。   In the entire dynamic pressure generating groove, due to the action of the radial dynamic pressure generating groove 37, the lubricant flows downward through the radial bearing gap, which is the first gap, and passes through the communication path 42 to the upper end of the radial bearing surface. The flow which recirculates to the 1st interface 51 vicinity which is a part arises. This flow prevents the lubricant from leaking from the first interface 51. Further, it helps to discharge bubbles generated inside the bearing to the outside of the bearing through the communication path 42 and the second taper seal portion 40.

(1−5)製造方法
カバー部材35及びその取付け方法について、図6及び図7を用いて説明する。
(1-5) Manufacturing Method The cover member 35 and its mounting method will be described with reference to FIGS.

図6はカバー部材35の製造工程の一例を表している。まず、金属製の板材を、打ち抜き、プレスによって、有蓋円筒形状と成し、蓋部の中央に孔46を打ち抜く。同時にプレスによって、蓋部に径方向に伸びる凸部43を形成する(図6a)。   FIG. 6 shows an example of the manufacturing process of the cover member 35. First, a metal plate material is punched and formed into a covered cylindrical shape by pressing, and a hole 46 is punched out in the center of the lid portion. At the same time, a convex portion 43 extending in the radial direction is formed on the lid portion by pressing (FIG. 6a).

次に、カバー部材の中心軸に対して、凸部の位置から60度ずれた場所で、部材の側周面に軸方向に伸びる切り込みを二本入れる。切り込みの間の部材48を水平に持ち上げて、スリット47を形成する(図6b)。   Next, two cuts extending in the axial direction are made in the side peripheral surface of the member at a position shifted by 60 degrees from the position of the convex portion with respect to the central axis of the cover member. The member 48 between the cuts is lifted horizontally to form the slit 47 (FIG. 6b).

部材48はハウジング内周面と当接する長さに切断、成形して、接続部49とする(図6c)。   The member 48 is cut and molded to a length in contact with the inner peripheral surface of the housing to form a connection portion 49 (FIG. 6c).

機械加工が終了した後、蓋部の孔46の周囲に撥油剤を塗布し、撥油性を付与する。この際、孔の内周面や蓋部の裏側(スリーブに接する側)には、撥油剤が回り込まないように注意する。   After the machining is completed, an oil repellent is applied around the hole 46 in the lid to impart oil repellency. At this time, care should be taken so that the oil repellent agent does not enter the inner peripheral surface of the hole or the back side of the lid (the side in contact with the sleeve).

カバー部材35は、この接続部49の先端部で、ハウジングに溶接固定される。溶接方法としては、レーザ溶接、或いは電子ビーム溶接などの、指向性ビーム溶接が適している。また、溶接ではなく接着によって固定しても良い。更に他の方法として、カバー部材35の円筒部分を、スリーブ33に外嵌する形で軽圧入して固定しても良い。   The cover member 35 is welded and fixed to the housing at the distal end portion of the connection portion 49. As the welding method, directional beam welding such as laser welding or electron beam welding is suitable. Moreover, you may fix by adhesion instead of welding. As another method, the cylindrical portion of the cover member 35 may be lightly press-fitted and fixed to the sleeve 33.

なお、軸受装置への潤滑液注入は、カバー部材35を溶接した後で、第二のテーパシール部に潤滑液を滴下して軸受内に行き渡らせても良いが、潤滑液を滴下した後で、カバー部材35を溶接しても良い(図7)。   Note that the lubricating liquid is injected into the bearing device after the cover member 35 is welded, and the lubricating liquid may be dropped on the second taper seal portion and spread in the bearing. The cover member 35 may be welded (FIG. 7).

本発明の軸受装置は、潤滑液と周囲の空気との界面が軸受の2ヶ所にある為、潤滑液の注入時には、潤滑液と軸受隙間中の空気の入れ替わりが比較的円滑で、注入不良が生じにくい。しかし、カバー部材35をつけた後に潤滑液を注入する場合、注入不良の比率が高まる。   In the bearing device of the present invention, since the interface between the lubricating liquid and the surrounding air is at two locations on the bearing, when the lubricating liquid is injected, the replacement of the lubricating liquid with the air in the bearing gap is relatively smooth and poor injection occurs. Hard to occur. However, when the lubricating liquid is injected after the cover member 35 is attached, the ratio of injection failure increases.

カバー部材35をつけた後で第二のテーパシール部40に潤滑液を滴下する場合、潤滑液は、二つの方向に分かれて軸受装置内に広がってゆく。まず、連通路の一部42bを伝って、軸受下部のスラストプレート34周囲に達し、それから、ラジアル動圧軸受が構成されている第一の微小間隙を軸受上部に向かって広がる経路がある。もう一つは、カバー部材35とスリーブ33の間に形成された連絡路42aを伝って、第一の間隙の上部に達し、カバー部材の孔46の内周面50とシャフト31外周面との間の間隙を埋めて、第一の界面を形成する経路である。   When the lubricating liquid is dropped onto the second taper seal portion 40 after the cover member 35 is attached, the lubricating liquid is divided into two directions and spreads in the bearing device. First, there is a path that travels along the part 42b of the communication path, reaches the periphery of the thrust plate 34 at the lower part of the bearing, and then extends toward the upper part of the bearing through the first minute gap in which the radial dynamic pressure bearing is configured. The other is via a connecting path 42a formed between the cover member 35 and the sleeve 33 and reaches the upper portion of the first gap, and the inner peripheral surface 50 of the hole 46 of the cover member and the outer peripheral surface of the shaft 31 are connected. This is a path that fills the gap between them and forms the first interface.

前者と後者を比較した場合、前者の方が早く進行する。この為、軸受内部の空気が十分に排出される前に第一の界面が形成されて空気の逃げ道が塞がれ、軸受内部に気泡が残ってしまう事がある。これに対して、図7に示したように、軸受装置に潤滑液を注入した後でカバー部材35を取り付ける場合は、このような不具合は生じない。   When comparing the former with the latter, the former progresses faster. For this reason, before the air inside the bearing is sufficiently discharged, the first interface is formed, the air escape path is blocked, and bubbles may remain inside the bearing. On the other hand, as shown in FIG. 7, such a problem does not occur when the cover member 35 is attached after the lubricating liquid is injected into the bearing device.

図7の軸受装置のシャフト31bは、カバー部材35の孔46から突出する部分が縮径しており、カバー部材を取り付ける際に、シャフト外周面と孔46の内周面50が接触しにくいようになっている。孔46の直径は、シャフトの内、軸受空洞に収容されている部分の外径よりも大きいのであるが、その差は僅かであり、縮径しておかなければ、カバー部材の取付け作業時に、内周面50などが傷つく恐れがあるからである。なお、縮径部は、シャフト端部から孔の開口近傍に至る、すべての領域に亘って続いている必要はなく、開口からやや離れた位置で終わっていても、傷つき防止の効果は得られる。しかし、図7に示すように、開口近傍に傾斜部80を設けておくと、万一開口付近の撥油膜が失われて潤滑液が漏れ出しても、界面を支える壁面の角度が大きくなる為、潤滑液の漏れ出しを小さく抑制する事が出来る。   The shaft 31b of the bearing device of FIG. 7 has a reduced diameter portion protruding from the hole 46 of the cover member 35, so that the outer peripheral surface of the shaft and the inner peripheral surface 50 of the hole 46 are difficult to contact when the cover member is attached. It has become. The diameter of the hole 46 is larger than the outer diameter of the portion of the shaft accommodated in the bearing cavity, but the difference is slight. If the diameter is not reduced, This is because the inner peripheral surface 50 may be damaged. The reduced diameter portion does not need to continue over the entire region from the end of the shaft to the vicinity of the opening of the hole, and even if it ends at a position slightly away from the opening, the effect of preventing damage can be obtained. . However, as shown in FIG. 7, if the inclined portion 80 is provided in the vicinity of the opening, even if the oil repellent film near the opening is lost and the lubricating liquid leaks, the angle of the wall surface that supports the interface increases. , Leakage of the lubricating liquid can be suppressed to a small level.

なお、潤滑液を注入した後カバー部材を溶接固定する際には、特に、熱による潤滑液の
変質、及び、熱膨張による動圧軸受面への悪影響等が懸念されるが、本願発明の構造では
問題は生じない。
In addition, when the cover member is welded and fixed after injecting the lubricating liquid, there is a concern about the deterioration of the lubricating liquid due to heat and the adverse effect on the dynamic pressure bearing surface due to thermal expansion. Then there is no problem.

まず、溶接時に加えられる熱は、大部分が熱容量の大きなハウジング部に散逸してしまって、第二のテーパシール部40内の潤滑液は殆ど熱せられない。カバー部材35とスリーブ33の間の潤滑液については、接続部49が小さい為、カバー部材に伝わる熱が小さく、問題を生じない。動圧軸受面への影響は、溶接部分が軸受面から遠く離れている為、無視する事が出来る。   First, most of the heat applied during welding is dissipated to the housing portion having a large heat capacity, and the lubricating liquid in the second taper seal portion 40 is hardly heated. With respect to the lubricating liquid between the cover member 35 and the sleeve 33, since the connecting portion 49 is small, heat transmitted to the cover member is small, and no problem occurs. The influence on the hydrodynamic bearing surface can be ignored because the welded part is far away from the bearing surface.

(1−6)素材
この実施例で説明した軸受装置を構成する素材は、必要とされる強度と剛性を備えていれば、基本的には任意のものを選択する事が出来る。金属材料は、一般に十分な強度と剛性を備え、しかも親油性を備えている為、本発明の軸受装置を構成する素材として好適である。
(1-6) Material The material constituting the bearing device described in this embodiment can basically be selected as long as it has the required strength and rigidity. Since the metal material generally has sufficient strength and rigidity and is also oleophilic, it is suitable as a material constituting the bearing device of the present invention.

図2乃至図7に示した軸受装置においては、ハウジングはアルミニウム系合金を素材としている。スリーブには快削性ステンレス鋼を用いており、機械加工の後、表面処理によって表面から介在物を除去している。また、シャフトにはマルテンサイト系ステンレスから、カバー部材は銅合金、或いは、合成樹脂材料から構成されている。合成樹脂材料の中でも、微細な構造の形成が容易な液晶ポリマーが特に適している。カバー部材35の孔部46の内周面50には、必要に応じて親油性を高める為の処理を施しても良い。   In the bearing device shown in FIGS. 2 to 7, the housing is made of an aluminum-based alloy. The sleeve is made of free-cutting stainless steel, and inclusions are removed from the surface by surface treatment after machining. The shaft is made of martensitic stainless steel, and the cover member is made of a copper alloy or a synthetic resin material. Among the synthetic resin materials, a liquid crystal polymer that can easily form a fine structure is particularly suitable. The inner peripheral surface 50 of the hole 46 of the cover member 35 may be subjected to a treatment for enhancing the lipophilicity as necessary.

なお、第一の界面開口近傍に塗布されている撥油膜は、パーフルオロ樹脂を用いている。また、潤滑液はエステル系化合物を基油としている。   The oil repellent film applied in the vicinity of the first interface opening uses a perfluoro resin. The lubricating liquid uses an ester compound as a base oil.

軸受装置3の変形例3’について図8、図9を用いて、説明する。図8a)は、軸受装置3’を、軸受の上側から見下ろした図である。図8b)は、更にカバー部材35’を取り付ける前の状態を示している。   A modification 3 ′ of the bearing device 3 will be described with reference to FIGS. 8 and 9. FIG. 8 a) is a view of the bearing device 3 ′ looking down from above the bearing. FIG. 8b) shows a state before the cover member 35 'is further attached.

軸受装置3と異なり、接続部49がスリーブ33の平坦部44の真上に位置している。そして、凸部43’は、43’a及び43’b二つに分かれており、その間に接続部49が形成されている。   Unlike the bearing device 3, the connecting portion 49 is located immediately above the flat portion 44 of the sleeve 33. The convex portion 43 ′ is divided into two portions 43 ′ a and 43 ′ b, and a connection portion 49 is formed between them.

図9a)は、このカバー部材35’の斜視図である。カバー部材35と同様の方法で形成される為、接続部49に伴って形成されるスリット47も、二つの凸部43’a及び43’bの間に位置し、軸方向に伸びている。   FIG. 9a) is a perspective view of the cover member 35 '. Since the cover member 35 is formed by the same method, the slit 47 formed along with the connecting portion 49 is also located between the two convex portions 43 ′ a and 43 ′ b and extends in the axial direction.

図9b)は、第二の界面の一部の拡大図であり、カバー部材35’を含んだ軸線方向に垂直な面における断面図となっている。ハウジング内周面32とカバー部材35’の外周に形成される第二のテーパシール部40に、潤滑液と空気との界面は形成されるが、カバー部材の内周面とスリーブ外周面との間にも第二のテーパシール部40’が形成され、第二の界面の一部52’が現れる。   FIG. 9b) is an enlarged view of a part of the second interface, and is a cross-sectional view in a plane perpendicular to the axial direction including the cover member 35 '. An interface between the lubricating liquid and air is formed in the second taper seal portion 40 formed on the outer periphery of the housing inner peripheral surface 32 and the cover member 35 ', but the interface between the inner peripheral surface of the cover member and the outer peripheral surface of the sleeve. A second taper seal portion 40 ′ is also formed therebetween, and a part 52 ′ of the second interface appears.

軸受内を循環する潤滑液は、この第二のテーパシール部40’の幅狭の部分から、連絡路42aに流れ込み、軸受上部に還流してゆく。潤滑液中に気泡が含まれていても、気泡は、第二のテーパシール部の幅の狭まっている領域には侵入が困難である為、第二のテーパシール部40’に位置する界面52’側へと追いやられ、スリット47を通って排出される。このように、第二のテーパシール部40’は、潤滑液中の気泡を分離する効率的な篩として機能する為、この軸受装置3’は、潤滑液中の気泡を極めて効率よく排出する事が出来る。   The lubricating fluid circulating in the bearing flows from the narrow portion of the second taper seal portion 40 ′ into the communication path 42 a and returns to the upper portion of the bearing. Even if bubbles are included in the lubricating liquid, it is difficult for the bubbles to enter the area where the width of the second taper seal portion is narrow. Therefore, the interface 52 located at the second taper seal portion 40 '. 'It is driven to the side and discharged through the slit 47. Thus, since the second taper seal portion 40 ′ functions as an efficient sieve that separates the bubbles in the lubricating liquid, the bearing device 3 ′ discharges the bubbles in the lubricating liquid very efficiently. I can do it.

軸受装置3の他の変形例83、93について、図10a)及び図10b)を用いて説明する。   Other modifications 83 and 93 of the bearing device 3 will be described with reference to FIGS. 10a) and 10b).

図10a)では、スリーブ33’の一端部外径を縮径させる事で、ハウジング32’の内周にテーパ部を作る事なく、第二のテーパシール部を形成している。この場合、スリーブ33’は、銅系の多孔質焼結体を用いており、焼結時にテーパ形状を形成している。機械切削でテーパ部を作る必要がなく、加工費用を低減する事が出来る。   In FIG. 10a), the outer diameter of one end of the sleeve 33 'is reduced to form a second taper seal without forming a taper on the inner periphery of the housing 32'. In this case, the sleeve 33 ′ uses a copper-based porous sintered body and forms a tapered shape during sintering. It is not necessary to make a taper by machine cutting, and processing costs can be reduced.

図10b)では、連通路42’をスリーブ33に軸方向の貫通孔を開ける事で形成している。潤滑液が循環する距離の延長が短くなる為、潤滑液の循環がより速やかになり、軸受の性能が安定する。   In FIG. 10 b), the communication path 42 ′ is formed by opening an axial through hole in the sleeve 33. Since the extension of the distance through which the lubricating liquid circulates becomes shorter, the lubricating liquid circulates more quickly and the bearing performance is stabilized.

軸受装置3の変形例73について、図11a)b)c)を用いて説明する。   A modification 73 of the bearing device 3 will be described with reference to FIGS.

図11a)は軸受装置73の軸方向断面図であり、特に、カバー部材35bと、第一の界面51、第二の界面52を含む部位を、拡大表示したものである。また、図11b)及び図11c)は、更に、第一の界面51及び第二の界面52近傍を拡大した図である。   FIG. 11 a) is an axial sectional view of the bearing device 73, and particularly shows an enlarged view of a portion including the cover member 35 b, the first interface 51, and the second interface 52. Further, FIGS. 11b) and 11c) are enlarged views of the vicinity of the first interface 51 and the second interface 52. FIG.

カバー部材35bは、孔部の内周面側面を面取りしてあり、シャフト31の外周面と対向させる事で第一のテーパシール部39が形成されるようになっている。第一のテーパシール部39のテーパ角θaは34度、第二のテーパシール部40のテーパ角θbは5度であり、θaの方が大きく設定されている。界面を安定させる為には、テーパシール部の壁面は十分に濡れ性の良い状態である事が望ましく、この場合、第一の界面51の幅W1は、第二の界面52の幅W2よりも常に狭くなる。θa及びθbの大きさは、上記の値以外でも構わない。しかし、θaではおよそ、15〜50度、θbでは、3〜10度程度とした場合に、良好な特性が得られる。   The cover member 35 b has a chamfered inner side surface of the hole, and the first taper seal portion 39 is formed by facing the outer peripheral surface of the shaft 31. The taper angle θa of the first taper seal portion 39 is 34 degrees, and the taper angle θb of the second taper seal portion 40 is 5 degrees, and θa is set to be larger. In order to stabilize the interface, it is desirable that the wall surface of the taper seal part is sufficiently wettable. In this case, the width W1 of the first interface 51 is larger than the width W2 of the second interface 52. Always narrower. The magnitudes of θa and θb may be other than the above values. However, good characteristics can be obtained when θa is approximately 15 to 50 degrees and θb is approximately 3 to 10 degrees.

第一の界面51は、第二の界面52と異なり、テーパシール部を構成する壁面の内シャフト外周面が相対的に回転している為、界面を乱すストレスが加わる。しかし、幅W1は相対的に狭くなるように構成されており、幅が狭いほど界面は外乱に強い為、このストレスによって界面が破壊される事を防いでいる。   Unlike the second interface 52, the first interface 51 is subjected to stress that disturbs the interface because the outer peripheral surface of the inner shaft of the wall surface constituting the tapered seal portion is relatively rotated. However, the width W1 is configured to be relatively narrow, and the narrower the width, the stronger the interface, so that the interface is prevented from being destroyed by this stress.

第一のテーパシール部の外側には、撥油膜が塗布されている。図11では、撥油膜が塗布された表面は、二重線で表している。シャフト31外周面では、環状の凹部81が形成されており、この凹部に撥油膜が形成されている。この働きは、図7における傾斜部と類似している。カバー部材35bをシャフト31に通して取り付ける際に、孔部内周面との接触によってシャフト外周面の撥油膜が損傷を受ける恐れがあるが、凹部81に撥油膜を塗布する事で、そのような問題を回避できる。   An oil repellent film is applied to the outside of the first taper seal portion. In FIG. 11, the surface to which the oil repellent film is applied is represented by a double line. An annular recess 81 is formed on the outer peripheral surface of the shaft 31, and an oil repellent film is formed in the recess. This function is similar to the inclined portion in FIG. When attaching the cover member 35b through the shaft 31, the oil repellent film on the outer peripheral surface of the shaft may be damaged due to contact with the inner peripheral surface of the hole portion. The problem can be avoided.

カバー部材35b表面の撥油膜は図11では、第一の間隙(第一のテーパシール部39を含む)の内側の内側には塗布されていない。また、第一の界面51の端は、撥油膜が塗布された部位までは達していない。   In FIG. 11, the oil repellent film on the surface of the cover member 35b is not applied to the inside of the first gap (including the first taper seal portion 39). Further, the end of the first interface 51 does not reach the portion where the oil repellent film is applied.

軸受装置73では、第一の間隙からの潤滑液の流出は、まず第一のテーパシール部によって抑制される。撥油膜は、潤滑液に突発的な圧力がかかるなどによって、テーパシール部開口部付近まで界面が移動した場合に、それ以上の外側への移動を抑制する。また、壁面を通じて潤滑液が拡散して外部に漏れる事を防ぐ働きもある。このように、テーパシールと撥油膜の両方によってガードされている為、実施例1の軸受装置3よりも、潤滑液漏れに強い。しかし、第一の間隙部分の軸方向長さが長くなっている為、小型化にはやや不利になっている。   In the bearing device 73, the outflow of the lubricating liquid from the first gap is first suppressed by the first taper seal portion. The oil-repellent film suppresses further outward movement when the interface moves to the vicinity of the opening of the taper seal portion due to sudden pressure applied to the lubricating liquid. It also has the function of preventing the lubricant from diffusing through the wall surface and leaking outside. Thus, since it is guarded by both the taper seal and the oil repellent film, it is more resistant to lubricant leakage than the bearing device 3 of the first embodiment. However, since the axial length of the first gap portion is long, it is somewhat disadvantageous for miniaturization.

なお、以上で説明した実施例は、本発明の実施形態をこれらに限定するものではない。例えば、スラスト側の軸受機構としては、スラスト動圧軸受機構についての記述しかないが、これは、潤滑液の静圧を併用する動圧軸受機構であっても良い。或いは、スラストプレートを省略して軸端で点支持させても良い。また、材質としても、合成樹脂等を用いる事は自由で、それらの変更によって、本発明の効果が失われる訳ではない。   In addition, the Example demonstrated above does not limit embodiment of this invention to these. For example, as the thrust side bearing mechanism, there is only a description about the thrust dynamic pressure bearing mechanism, but this may be a dynamic pressure bearing mechanism that also uses the static pressure of the lubricating liquid. Alternatively, the thrust plate may be omitted and the shaft end may be point-supported. Moreover, it is free to use a synthetic resin or the like as a material, and the effect of the present invention is not lost by changing them.

第一の界面、及び、ラジアル動圧溝の説明図Explanatory drawing of the first interface and radial dynamic pressure groove 本願発明に係るスピンドルモータ1の模式断面図Schematic sectional view of the spindle motor 1 according to the present invention 軸受装置の模式断面図(a)及び斜視図(b)Schematic sectional view (a) and perspective view (b) of the bearing device スリーブの斜視図Perspective view of sleeve 軸受装置の上面図Top view of bearing device カバー部材の製造工程の説明図Explanatory drawing of manufacturing process of cover member カバー部材の取付け方法の説明図Explanatory drawing of how to install cover member 軸受装置の変形例1Modification 1 of bearing device カバー部材の変形例説明図Explanatory drawing of modification of cover member 軸受装置の第2及び3の変形例Second and third modifications of the bearing device 軸受装置の第4の変形例Fourth modification of bearing device 従来の軸受装置を搭載したスピンドルモータSpindle motor with conventional bearing device

1 スピンドルモータ
2 ベースプレート
3、3’、73、83、93 軸受装置
31、31b、131 シャフト
32 ハウジング
33、33’、133 スリーブ
34、134 スラストプレート
35、35’ カバー部材
36、136 スラスト動圧発生溝
37、38、137 ラジアル動圧発生溝
39 第一のテーパシール部
4 ステータ
40、40’、140 第二のテーパシール部
41 段部
42、42’ 連通路
42a 連絡路
42b 連通路の一部
43、43’、43’a、43’b 径方向凸部
44 スリーブの平坦部
47 スリット
48 切り込みの間の部材
49 接続部
5、105 ロータ
50 孔部内周面
51 第一の界面
52、52’ 第二の界面
6 ハブ
7 ロータマグネット
80 シャフト側面の傾斜部
81 シャフト側面の凹部
r 面取り部の軸方向長さ
W1 第一の界面の幅
W2 第二の界面の幅
θa 第一のテーパシール部のテーパ角
θb 第二のテーパシール部のテーパ角
132 スラストブッシュ
DESCRIPTION OF SYMBOLS 1 Spindle motor 2 Base plate 3, 3 ', 73, 83, 93 Bearing apparatus 31, 31b, 131 Shaft 32 Housing 33, 33', 133 Sleeve 34, 134 Thrust plate 35, 35 'Cover member 36, 136 Thrust dynamic pressure generation Grooves 37, 38, 137 Radial dynamic pressure generating groove 39 First taper seal part 4 Stator 40, 40 ', 140 Second taper seal part 41 Step part 42, 42' Communication path 42a Communication path 42b Part of communication path 43, 43 ′, 43′a, 43′b Radial convex portion 44 Sleeve flat portion 47 Slit 48 Member 49 between cuts Connection portion 5, 105 Rotor 50 Hole inner peripheral surface 51 First interface 52, 52 ′ Second interface 6 Hub 7 Rotor magnet 80 Shaft side inclined portion 81 Shaft side concave portion r Chamfered portion axial length W1 First Taper angle θb width W2 width θa first tapered seal portion of the second interface surface second taper angle 132 thrust bush of the tapered seal portion

Claims (7)

軸体と、
前記軸体が挿入され、前記軸体を中心軸として回転可能に支持する静止部と、
前記軸体の外周面とこれと対向する前記静止部の内周面との間に形成されたラジアル間隙と、
前記ラジアル間隙に充填された潤滑液と、
前記ラジアル間隙の一部を構成する第一の間隙に形成され、前記軸体の回転時、前記潤滑液を作動流体として流体動圧を誘起するラジアル動圧発生溝を有するラジアル動圧軸受と、
前記ラジアル間隙より径方向外側に位置し、前記静止部の軸方向に伸びる間隙に形成され、前記ラジアル間隙に接続する第二のシール部と、
前記ラジアル間隙の上端部に位置する軸方向に伸びる間隙に形成され、前記ラジアル間隙、および、前記第二のシール部に接続し、その軸方向長さが第二のシール部より短い第一のシール部と、
前記第二のシール部に形成される第二の気液界面と、
前記第二の気液界面より上側に位置し、前記第一のシール部に形成される第一の気液界面と、
前記静止部に形成され、前記潤滑液で満たされ、且つ、前記ラジアル動圧軸受を介さずに、前記第二のシール部、前記第一の間隙の上端部、および、前記第一のシール部をつなぐ連絡路と
前記静止部に形成され、前記潤滑液で満たされ、且つ、前記ラジアル動圧軸受を介さずに、前記第二のシール部、前記連絡路、および、前記第一の間隙の下端部をつなぐ連通路の一部と、を有し、
前記第二のシール部は、前記連絡路および前記連通路の一部より径方向外側に位置することを特徴とする流体動圧軸受。
A shaft,
A stationary portion in which the shaft body is inserted and rotatably supported with the shaft body as a central axis;
A radial gap formed between the outer peripheral surface of the shaft body and the inner peripheral surface of the stationary part opposite to the outer peripheral surface;
A lubricating liquid filled in the radial gap;
A radial dynamic pressure bearing formed in a first gap constituting a part of the radial gap and having a radial dynamic pressure generating groove for inducing fluid dynamic pressure using the lubricating liquid as a working fluid when the shaft is rotated;
A second seal portion that is positioned radially outward from the radial gap and formed in a gap extending in the axial direction of the stationary portion, and connected to the radial gap;
Formed in an axially extending gap located at the upper end of the radial gap, connected to the radial gap and the second seal part, and the axial length is shorter than the second seal part. A seal part;
A second gas-liquid interface formed in the second seal portion;
A first gas-liquid interface located above the second gas-liquid interface and formed in the first seal part; and
The second seal portion, the upper end portion of the first gap, and the first seal portion are formed in the stationary portion, filled with the lubricating liquid, and not via the radial dynamic pressure bearing. and a communication path that connects,
The continuous portion is formed in the stationary portion, is filled with the lubricating liquid, and connects the second seal portion, the communication path, and the lower end portion of the first gap without going through the radial dynamic pressure bearing. A part of the passage, and
The fluid dynamic pressure bearing according to claim 2, wherein the second seal portion is located radially outside the communication path and a part of the communication path.
前記第二のシール部の間隙は、軸方向に伸びるに従ってその間隙寸法が拡大するテーパ状に形成されていることを特徴とする請求項1に記載の流体動圧軸受。  The fluid dynamic pressure bearing according to claim 1, wherein the gap of the second seal portion is formed in a taper shape in which the gap size increases as it extends in the axial direction. 前記第一のシール部の間隙は、上側に向かうに従ってその間隙寸法が拡大するテーパ状に形成され、  The gap of the first seal part is formed in a tapered shape in which the gap dimension increases toward the upper side,
前記第一のシール部のテーパ角は、前記第二のシール部のテーパ角より大きいことを特徴とする請求項2に記載の流体動圧軸受。  The fluid dynamic pressure bearing according to claim 2, wherein a taper angle of the first seal portion is larger than a taper angle of the second seal portion.
前記第二の気液界面の幅は、前記第一の気液界面の幅より広いことを特徴とする請求項1乃至3のいずれかに記載の流体動圧軸受。  The fluid dynamic pressure bearing according to any one of claims 1 to 3, wherein a width of the second gas-liquid interface is wider than a width of the first gas-liquid interface. 前記第一の気液界面より上側に位置する、前記軸体の外周面、および、前記静止部の表面の少なくとも一方には、撥油膜が形成されていることを特徴とする請求項1乃至4のいずれかに記載の流体動圧軸受。  5. The oil repellent film is formed on at least one of the outer peripheral surface of the shaft body and the surface of the stationary portion located above the first gas-liquid interface. The fluid dynamic pressure bearing according to any one of the above. 前記潤滑液の気液界面は、前記第二の気液界面、および、前記第一の気液界面のみであることを特徴とする請求項1乃至5のいずれかに記載の流体動圧軸受。  The fluid dynamic pressure bearing according to any one of claims 1 to 5, wherein a gas-liquid interface of the lubricating liquid is only the second gas-liquid interface and the first gas-liquid interface. 軸体、および、ロータマグネットを備えたロータと、  A rotor including a shaft body and a rotor magnet;
前記静止部に取り付けられたステータと、  A stator attached to the stationary part;
請求項1乃至6のいずれかに記載の流体動圧軸受と、を備えることを特徴とするスピンドルモータ。A spindle motor comprising: the fluid dynamic pressure bearing according to claim 1.
JP2004321415A 2003-11-07 2004-11-05 Fluid dynamic pressure bearing and spindle motor Expired - Fee Related JP4556621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004321415A JP4556621B2 (en) 2003-11-07 2004-11-05 Fluid dynamic pressure bearing and spindle motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003378667 2003-11-07
JP2004321415A JP4556621B2 (en) 2003-11-07 2004-11-05 Fluid dynamic pressure bearing and spindle motor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010036704A Division JP4930611B2 (en) 2003-11-07 2010-02-22 Fluid dynamic pressure bearing and spindle motor

Publications (3)

Publication Number Publication Date
JP2005155912A JP2005155912A (en) 2005-06-16
JP2005155912A5 JP2005155912A5 (en) 2007-12-20
JP4556621B2 true JP4556621B2 (en) 2010-10-06

Family

ID=34741521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004321415A Expired - Fee Related JP4556621B2 (en) 2003-11-07 2004-11-05 Fluid dynamic pressure bearing and spindle motor

Country Status (1)

Country Link
JP (1) JP4556621B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019005832T5 (en) 2019-01-07 2021-08-05 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. STORAGE DEVICE AND TURBOCHARGER WITH THIS DEVICE

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7635936B2 (en) 2003-11-07 2009-12-22 Nidec Corporation Fluid dynamic pressure bearing and spindle motor
JP2007211815A (en) * 2006-02-07 2007-08-23 Nidec Sankyo Corp Fluid bearing motor
JP4762757B2 (en) * 2006-02-24 2011-08-31 Ntn株式会社 Hydrodynamic bearing device
TWI302582B (en) * 2006-03-17 2008-11-01 Delta Electronics Inc Fan, motor and bearing structure thereof
JP5318343B2 (en) * 2006-11-20 2013-10-16 Ntn株式会社 Hydrodynamic bearing device and manufacturing method thereof
JP5095111B2 (en) * 2006-03-20 2012-12-12 Ntn株式会社 Hydrodynamic bearing device
JP4994687B2 (en) * 2006-03-23 2012-08-08 Ntn株式会社 Hydrodynamic bearing device
US8403565B2 (en) 2006-03-20 2013-03-26 Ntn Corporation Fluid dynamic bearing device
JP2008008313A (en) * 2006-06-27 2008-01-17 Matsushita Electric Ind Co Ltd Method for manufacturing hydrodynamic fluid bearing, and electric motor and rotary device using the same
WO2008143051A1 (en) * 2007-05-10 2008-11-27 Nidec Corporation Fluid dynamic pressure bearing, motor, and recording disk drive device
JP5212690B2 (en) 2007-05-10 2013-06-19 日本電産株式会社 Fluid dynamic bearing mechanism, motor and recording disk drive
JP2009008160A (en) * 2007-06-28 2009-01-15 Nippon Densan Corp Fluid dynamic pressure bearing mechanism, manufacturing method of fluid dynamic pressure bearing, and motor
JP2009264571A (en) * 2008-04-30 2009-11-12 Nippon Densan Corp Fluid dynamic-pressure bearing mechanism, motor, and recording disk driving device
JP5490396B2 (en) * 2008-10-14 2014-05-14 Ntn株式会社 Hydrodynamic bearing device
JP2010187440A (en) 2009-02-10 2010-08-26 Nippon Densan Corp Motor and recording disk drive apparatus
KR101060802B1 (en) 2009-08-06 2011-08-30 삼성전기주식회사 Motor and recording disc drive
KR101079465B1 (en) 2009-10-29 2011-11-03 삼성전기주식회사 Hydrodynamic bearing assembly and motor including the same
JP2013032769A (en) 2011-06-30 2013-02-14 Nippon Densan Corp Fan
JP2012057800A (en) * 2011-12-20 2012-03-22 Ntn Corp Fluid bearing device
US8958174B1 (en) 2013-08-01 2015-02-17 Nidec Corporation Spindle motor and disk drive apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331796A (en) * 1995-06-02 1996-12-13 Matsushita Electric Ind Co Ltd Motor with fluid bearing
JPH0979272A (en) * 1995-09-13 1997-03-25 Sankyo Seiki Mfg Co Ltd Seal device for dynamic pressure bearing
JP2001056023A (en) * 1999-08-18 2001-02-27 Seiko Instruments Inc Spindle motor
JP2002295490A (en) * 2001-04-04 2002-10-09 Matsushita Electric Ind Co Ltd Fluid bearing device and magnetic disk storage unit using the same
JP2003139131A (en) * 2001-11-02 2003-05-14 Nippon Densan Corp Bearing device and motor using the bearing, and disc device using the motor
JP2003244886A (en) * 2002-02-18 2003-08-29 Nippon Densan Corp Spindle motor and recording disc drive

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331796A (en) * 1995-06-02 1996-12-13 Matsushita Electric Ind Co Ltd Motor with fluid bearing
JPH0979272A (en) * 1995-09-13 1997-03-25 Sankyo Seiki Mfg Co Ltd Seal device for dynamic pressure bearing
JP2001056023A (en) * 1999-08-18 2001-02-27 Seiko Instruments Inc Spindle motor
JP2002295490A (en) * 2001-04-04 2002-10-09 Matsushita Electric Ind Co Ltd Fluid bearing device and magnetic disk storage unit using the same
JP2003139131A (en) * 2001-11-02 2003-05-14 Nippon Densan Corp Bearing device and motor using the bearing, and disc device using the motor
JP2003244886A (en) * 2002-02-18 2003-08-29 Nippon Densan Corp Spindle motor and recording disc drive

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019005832T5 (en) 2019-01-07 2021-08-05 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. STORAGE DEVICE AND TURBOCHARGER WITH THIS DEVICE
US11585238B2 (en) 2019-01-07 2023-02-21 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Bearing device and turbocharger including the same

Also Published As

Publication number Publication date
JP2005155912A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
JP4930611B2 (en) Fluid dynamic pressure bearing and spindle motor
JP4556621B2 (en) Fluid dynamic pressure bearing and spindle motor
JP2005155912A5 (en)
US7635936B2 (en) Fluid dynamic pressure bearing and spindle motor
JP3462982B2 (en) Hydrodynamic bearing device and electric motor
WO2006115104A1 (en) Dynamic pressure bearing device
JP2006283773A (en) Dynamic pressure fluid bearing device and small-sized motor having the same
JP2005155689A (en) Fluid bearing device
JP4194348B2 (en) Recording disk drive motor and recording disk drive apparatus
JP4788163B2 (en) Fluid dynamic pressure bearing and spindle motor
JP2005351473A (en) Fluid dynamic bearing, spindle motor provided with fluid dynamic bearing, and recording disc driving device
JP4302413B2 (en) Fluid dynamic bearing, spindle motor and recording disk drive device
JP2006153269A (en) Kinetic pressure bearing unit
US7350975B2 (en) Hydrodynamic bearing device and spindle motor
JP2010078100A (en) Fluid bearing device, spindle motor with the device, and information device
US20100166346A1 (en) Dynamic bearing device
JP2005233419A (en) Hydrodynamic pressure bearing device
JP3155529B2 (en) Motor with fluid dynamic bearing and recording disk drive with this motor
JP4360482B2 (en) Hydrodynamic bearing device
JP2008051133A (en) Bearing unit and motor equipped therewith
JP2008039124A (en) Bearing unit and motor
JP4194610B2 (en) Hydrodynamic bearing device
JP2005337490A (en) Dynamic pressure bearing device
JP3984449B2 (en) Fluid dynamic bearing, spindle motor using the same, and disk drive using the spindle motor
JP2006329391A (en) Dynamic pressure bearing arrangement

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Ref document number: 4556621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees