JP4360482B2 - Hydrodynamic bearing device - Google Patents

Hydrodynamic bearing device Download PDF

Info

Publication number
JP4360482B2
JP4360482B2 JP2002343829A JP2002343829A JP4360482B2 JP 4360482 B2 JP4360482 B2 JP 4360482B2 JP 2002343829 A JP2002343829 A JP 2002343829A JP 2002343829 A JP2002343829 A JP 2002343829A JP 4360482 B2 JP4360482 B2 JP 4360482B2
Authority
JP
Japan
Prior art keywords
bearing
housing
bearing sleeve
peripheral surface
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002343829A
Other languages
Japanese (ja)
Other versions
JP2004176816A (en
Inventor
健人 玉岡
良一 中島
栗村  哲弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Nidec Corp
Original Assignee
NTN Corp
Nidec America Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, Nidec America Corp filed Critical NTN Corp
Priority to JP2002343829A priority Critical patent/JP4360482B2/en
Priority to US10/705,241 priority patent/US7005768B2/en
Priority to CNB2003101154704A priority patent/CN100348876C/en
Priority to CN200710153530XA priority patent/CN101144499B/en
Publication of JP2004176816A publication Critical patent/JP2004176816A/en
Application granted granted Critical
Publication of JP4360482B2 publication Critical patent/JP4360482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Sealing Of Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軸受隙間に生じる潤滑油の動圧作用で軸部材を回転自在に非接触支持する動圧軸受装置に関する。この軸受装置は、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置などのスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、あるいは電気機器、例えば軸流ファンなどの小型モータ用として好適である。
【0002】
【従来の技術】
上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化などが求められている。これらの要求性能を決定づける構成要素の一つに当該モータのスピンドルを支持する軸受があり、近年では、この種の軸受として、上記要求性能に優れた特性を有する動圧軸受の使用が検討され、あるいは実際に使用されている。
【0003】
例えば、HDD等のディスク駆動装置のスピンドルモータに組込まれる動圧軸受装置では、軸部材をラジアル方向に回転自在に非接触支持するラジアル軸受部と、軸部材をスラスト方向に回転自在に非接触支持するスラスト軸受部とが設けられ、ラジアル軸受部として、軸受スリーブの内周面又は軸部材の外周面に動圧発生用の溝(動圧溝)を設けた動圧軸受が用いられる。スラスト軸受部としては、例えば、軸部材のフランジ部の両端面、又は、これに対向する面(軸受スリーブの端面や、ハウジングに固定されるスラスト部材の端面等)に動圧溝を設けた動圧軸受が用いられる(例えば、特許文献1参照)。
【0004】
通常、軸受スリーブはハウジングの内周の所定位置に固定され、また、ハウジングの内部空間に注油した潤滑油が外部に漏れるのを防止するために、ハウジングの開口部にシール部を設ける場合が多い。
【0005】
【特許文献1】
特開2002―061641号公報
【0006】
【発明が解決しようとする課題】
上記ような動圧軸受装置において、軸受スリーブをハウジングに対して固定する手段として接着剤を使用する場合がある。この場合、例えばハウジングの内周面に予め接着剤を塗布しておき、軸受スリーブをハウジングの内周面に挿入して所定位置に位置決めした後、接着剤を固化させる。しかしながら、接着剤の塗布量によっては、軸受スリーブをハウジングの内周面に挿入して所定位置まで移動させる際に、接着剤の余剰分が軸受スリーブの移動方向前方側に回り込み、軸受スリーブの位置決めや軸受性能に好ましくない影響が生じる可能性がある。
【0007】
例えば、上記特許文献1に記載された動圧軸受装置では、ハウジングの一端部に設けたシール部(鍔部)の内側面に軸受スリーブの一端側端面を当接させることで、軸受スリーブのハウジングに対する位置決めを行うことができるが、余剰接着剤の回り込みがあると、軸受スリーブを最終位置まで移動させた時に、軸受スリーブの一端側端面とシールの内側面との間に接着剤が入り込み、軸受スリーブのハウジングに対する位置が精度良く決まらない場合がある。
【0008】
また、本出願人は、軸受スリーブの外周面に縦溝を形成すると共に、軸受スリーブの一端側端面にこの縦溝と軸受スリーブの内周面とを連通させる横溝を形成して、ハウジングの内部空間に充満された潤滑流体の循環路を形成した動圧軸受装置について既に出願している(特願2002―117297号)。この動圧軸受装置では、余剰接着剤の回り込みにより、横溝が接着剤によって閉塞されてしまう可能性がある。
【0009】
本発明の課題は、余剰接着剤の回り込みを防止し、また、余剰接着剤の回り込みによる影響を回避することである。
【0010】
【課題を解決するための手段】
上記課題を解決するため、本発明は、ハウジングと、ハウジングの内周面に固定された軸受スリーブと、軸部およびフランジ部を有する軸部材と、ハウジングの一端部に設けられたシール部と、ハウジングの他端部に設けられたスラスト部と、軸受スリーブと軸部との間に設けられ、ラジアル軸受隙間に生じる潤滑油の動圧作用で軸部をラジアル方向に非接触支持するラジアル軸受部と、軸受スリーブ及びスラスト部とフランジ部との間に設けられ、スラスト軸受隙間に生じる潤滑油の動圧作用でフランジ部をスラスト方向に非接触支持するスラスト軸受部とを備え、ハウジングの内部空間に潤滑流体が充満された動圧軸受装置において、軸受スリーブはハウジングの内周面に接着剤で固定され、シール部の内側面は、その内径側領域で軸受スリーブの一端側端面の内径側領域と部分的に接触し、その外径側領域は軸受スリーブの一端側端面から離れるようにヌスミ部を形成し、軸受スリーブは、一端側端面の内径側領域に半径方向溝を有すると共に、外周面に軸方向溝を有し、ハウジングの内周面と軸受スリーブの外周面との間に凹状の接着剤溜りが設けられている構成を提供する。
【0011】
上記構成によれば、ハウジングの内部空間に充満された潤滑流体を該内部空間で流動循環させることが可能となり、これにより、該内部空間内の潤滑油の圧力が局部的に負圧になる現象を防止して、負圧発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。また、軸受スリーブをハウジングの内周面に接着剤で固定する際に、接着剤の回り込みが生じたとしても、シール部の内側面の外径側領域と軸受スリーブの一端側端面との間に所要の空間容積をもったヌスミ部があるため、接着剤が半径方向溝の方向に流動しにくくなり、これにより、半径方向溝が接着剤によって閉塞されてしまう事態を回避することができる。さらに、塗布量によって接着剤の余剰分が生じる場合でも、その余剰接着剤が凹状の接着剤溜りによって捕捉され、軸受スリーブの位置決めや軸受性能に好ましくない影響を与える接着剤の回り込みが防止される。
【0012】
上記の接着剤溜りは、ハウジングの内周面または軸受スリーブの外周面に形成することができる。あるいは、ハウジングの内周面と軸受スリーブの外周面の双方に凹状部を相対向させて形成し、両者によって形成される凹状空間を上記の接着剤溜りとすることもできる。好ましくは、上記の接着剤溜りはハウジングの内周面に形成するのが良い。また、接着剤は複数箇所に設けても良い。
【0013】
上記の接着剤溜りの形状は特に限定されないが、軸方向両側に向かって漸次縮小する形状とするのが好ましい。軸受スリーブをハウジングの内周面に挿入する際、余剰分を越える量の接着剤が接着剤溜りに捕捉されてしまう場合が起こり得るが、このような場合でも、軸受スリーブの位置決め後、接着剤が固化するまでの間に、接着剤溜りに過剰に捕捉された接着剤が毛細管現象によって狭小となった軸方向両側に流動し、本来の固定部位(軸受スリーブの外周面とハウジングの内周面との間の充填隙間)に充填される。そのため、固定部位における接着剤量の過不足がなく、安定した固定状態が得られる。
【0017】
以上の構成において、軸受スリーブは焼結金属で形成することができる。
【0018】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0019】
図1は、この実施形態に係る動圧軸受装置1を組み込んだ情報機器用スピンドルモータの一構成例を示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に装着されたロータ(ディスクハブ)3と、例えば半径方向のギャップを介して対向させたステータ4およびロータマグネット5とを備えている。ステータ4はブラケット6の外周に取付けられ、ロータマグネット5はディスクハブ3の内周に取付けられる。動圧軸受装置1のハウジング7は、ブラケット6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが一又は複数枚保持される。ステータ4に通電すると、ステータ4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、ディスクハブ3および軸部材2が一体となって回転する。
【0020】
図2は、動圧軸受装置1を示している。この動圧軸受装置1は、ハウジング7と、ハウジング7に固定された軸受スリーブ8およびスラスト部材10と、軸部材2とを構成部品して構成される。
【0021】
軸受スリーブ8の内周面8aと軸部材2の軸部2aの外周面2a1との間に第1ラジアル軸受部R1と第2ラジアル軸受部R2とが軸方向に離隔して設けられる。また、軸受スリーブ8の下側端面8cと軸部材2のフランジ部2bの上側端面2b1との間に第1スラスト軸受部S1が設けられ、スラスト部材10の端面10aとフランジ部2bの下側端面2b2との間に第2スラスト軸受部S2が設けられる。尚、説明の便宜上、スラスト部材10の側を下側、スラスト部材10と反対の側を上側として説明を進める。
【0022】
ハウジング7は、例えば、黄銅等の軟質金属材料や熱可塑性樹脂等の樹脂材料で形成され、円筒状の側部7bと、側部7bの上端から内径側に一体に延びた環状のシール部7aとを備えている。シール部7aの内周面7a1は、軸部2aの外周に設けられたテーパ面2a2と所定のシール空間Sを介して対向する。尚、軸部2aのテーパ面2a2は上側(ハウジング7に対して外部側)に向かって漸次縮径し、軸部材2の回転により遠心力シールとしても機能する。
【0023】
軸部材2は、例えば、ステンレス鋼等の金属材料で形成され、軸部2aと、軸部2aの下端に一体又は別体に設けられたフランジ部2bとを備えている。
【0024】
軸受スリーブ8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする燒結金属の多孔質体で円筒状に形成され、ハウジング7の内周面7cの所定位置に固定される。
【0025】
この焼結金属で形成された軸受スリーブ8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面となる上下2つの領域が軸方向に離隔して設けられ、該2つの領域には、例えば図3(a)に示すようなヘリングボーン形状の動圧溝8a1、8a2がそれぞれ形成される。上側の動圧溝8a1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。また、軸受スリーブ8の外周面8dには、1又は複数本の軸方向溝8d1が軸方向全長に亙って形成される。この例では、3本の軸方向溝8d1を円周等間隔に形成している。また、上側端面8bと下側端面8cの外周角部に、それぞれ、チャンファ8e、8fが形成される。
【0026】
第1スラスト軸受部S1のスラスト軸受面となる、軸受スリーブ8の下側端面8cには、例えば図3(b)に示すようなスパイラル形状の動圧溝8c1が形成される。尚、動圧溝の形状として、ヘリングボーン形状や放射溝形状等を採用しても良い。
【0027】
図3(c)に示すように、軸受スリーブ8の上側端面8bは、半径方向の略中央部に設けられたV字断面の円周溝8b1により、内径側領域8b2と外径側領域8b3に区画され、内径側領域8b2には、1又は複数本の半径方向溝8b21が形成される。この例では、3本の半径方向溝8b21を円周等間隔に形成している。
【0028】
図2に示すように、この実施形態では、ハウジング7の内周面7cに凹状の接着剤溜りUが形成されている。接着剤溜りUは、例えば、ハウジング7の内周面7cに円周溝状に形成され、その軸方向両側領域はそれぞれテーパ面U1で構成される。そのため、接着剤溜りUは軸方向両側に向かって漸次縮小した形状を有する。
【0029】
また、シール部7aの内側面7a2は、その内径側領域7a21で軸受スリーブ8の上側端面8bの内径側領域8b2と部分的に接触し、その外径側領域7a22は、軸受スリーブ8の上側端面8bから離れるように傾斜状又は湾曲状に形成されている。そのため、内側面7a2の外径側領域7a22と上側端面8b(チャンファ8eを含む)との間に所要の空間容積をもったヌスミ部Pが形成される。ヌスミ部Pの内径側は円周溝8b1と連通し、外径側にはチャンファ8eとの間に形成されたテーパ状空間がある。
【0030】
スラスト部材10は、例えば、黄銅等の金属材料で形成され、ハウジング7の内周面7cの下端部に固定される。図4に示すように、第2スラスト軸受部S2のスラスト軸受面となる、スラスト部材10の端面10aには、例えばヘリングボーン形状の動圧溝10a1が形成される。尚、動圧溝の形状として、スパイラル形状や放射溝形状等を採用しても良い。
【0031】
この実施形態の動圧軸受装置1は、例えば、次のような工程で組立てる。
【0032】
まず、ハウジング7の内周面7cに接着剤を所定量塗布する。そして、軸受スリーブ8をハウジング7の内周面7cに挿入し、その上側端面8bをシール部7aの内側面7a2に当接させる。これにより、軸受スリーブ8がハウジング7に対して位置決めされる。この状態を保持して接着剤を固化させると、軸受スリーブ8がハウジング7に対して位置決めされた状態で固定される。
【0033】
この実施形態において、ハウジング7の内周面7cに接着剤溜りUが設けられているため、塗布量によって接着剤T(図2の円内拡大図を参照)の余剰分が生じる場合でも、その余剰接着剤が凹状の接着剤溜りUによって捕捉され、軸受スリーブ8の位置決めや軸受性能に好ましくない影響を与える接着剤Tの回り込みが防止される。また、接着剤溜りUは、テーパ面U1により、軸方向両側に向かって漸次縮小した形状を有するので、軸受スリーブ8の位置決め後、接着剤Tが固化するまでの間に、接着剤溜りUに過剰に捕捉された接着剤Tが毛細管現象によって狭小となった軸方向両側に流動し、本来の固定部位(軸受スリーブ8の外周面8dとハウジング7の内周面7cとの間の充填隙間)に充填される。そのため、軸受スリーブ8の固定部位における接着剤量の過不足がなく、安定した固定状態が得られる。
【0034】
また、シール部7aの内側面7a2の外径側領域7a22と軸受スリーブ8の上側端面8b(チャンファ8eを含む)との間に所要の空間容積をもったヌスミ部Pが形成されているため、接着剤の回り込みが生じたとしても、接着剤Tが半径方向溝8b21の方向に流動しにくくなる。特に、この実施形態では、ヌスミ部Pの外径側にテーパ状空間(チャンファ8eとの間に形成される)があり、ヌスミ部P内の接着剤Tがテーパ状空間の毛細管現象によって上記固定部位(軸受スリーブ8の外周面8dとハウジング7の内周面7cとの間の充填隙間)の方向に引き寄せられるので、半径方向溝8b21の方向への流動が一層効果的に防止される。これにより、半径方向溝8b21が接着剤Tによって閉塞されてしまう事態が回避される。
【0035】
つぎに、軸部材2を軸受スリーブ8に装着する。尚、軸受スリーブ8をハウジング7に固定した状態でその内径寸法を測定しておき、軸部2aの外径寸法(予め測定しておく。)との寸法マッチングを行うことにより、ラジアル軸受隙間を精度良く設定することができる。
【0036】
その後、スラスト部材10をハウジング7の内周面7cの下端部に装着し、所定位置に位置決めした後、接着剤等の適宜の手段で固定する。
【0037】
上記のようにして組立が完了すると、軸部材2の軸部2aは軸受スリーブ8の内周面8aに挿入され、フランジ部2bは軸受スリーブ8の下側端面8cとスラスト部材10の端面10aとの間の空間部に収容された状態となる。その後、シール部7aで密封されたハウジング7の内部空間に、軸受スリーブ8の内部気孔を含め、潤滑流体、例えば潤滑油を充満させる。潤滑油の油面は、シール空間Sの範囲内に維持される。
【0038】
軸部材2の回転時、軸受スリーブ8の内周面8aのラジアル軸受面となる領域(上下2箇所の領域)は、それぞれ、軸部2aの外周面2a1とラジアル軸受隙間を介して対向する。また、軸受スリーブ8の下側端面8cのスラスト軸受面となる領域はフランジ部2bの上側端面2b1とスラスト軸受隙間を介して対向し、スラスト部材10の端面10aのスラスト軸受面となる領域はフランジ部2bの下側端面2b2とスラスト軸受隙間を介して対向する。そして、軸部材2の回転に伴い、上記ラジアル軸受隙間に潤滑油の動圧が発生し、軸部材2の軸部2aが上記ラジアル軸受隙間内に形成される潤滑油の油膜によってラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが構成される。同時に、上記スラスト軸受隙間に潤滑油の動圧が発生し、軸部材2のフランジ部2bが上記スラスト軸受隙間内に形成される潤滑油の油膜によって両スラスト方向に回転自在に非接触支持される。これにより、軸部材2をスラスト方向に回転自在に非接触支持する第1スラスト軸受部S1と第2スラスト軸受部S2とが構成される。
【0039】
前述したように、第1ラジアル軸受部R1の動圧溝8a1は、軸方向中心mに対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている{図3(a)}。そのため、軸部材2の回転時、動圧溝8a1による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。そして、この引き込み力の差圧によって、軸受スリーブ8の内周面8aと軸部2aの外周面2a1との間の隙間に満たされた潤滑油が下方に流動し、第1スラスト軸受部S1のスラスト軸受隙間→軸方向溝8d1→ヌスミ部P→円周溝8b1→半径方向溝8b21という経路を循環して、軸受スリーブ8の内周面8aと軸部2aの外周面2a1との間の隙間に戻り、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。このように、潤滑油がハウジング7の内部空間を流動循環するように構成することで、内部空間内の潤滑油の圧力が局部的に負圧になる現象を防止して、負圧発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。また、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際にシール空間S内の潤滑油の油面(気液界面)から外気に排出されるので、気泡による悪影響はより一層効果的に防止される。
【0040】
【発明の効果】
本発明は、以下に示す効果を奏する。
)ヌスミ部、半径方向溝、軸方向溝により、ハウジングの内部空間に充満された潤滑流体を該内部空間で流動循環させる構成とすることにより、該内部空間内の潤滑油の圧力が局部的に負圧になる現象を防止して、負圧発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。また、軸受スリーブをハウジングの内周面に接着剤で固定する場合において、接着剤の回り込みが生じたとしても、ヌスミ部により、接着剤が半径方向溝の方向に流動しにくくなるため、半径方向溝が接着剤によって閉塞されてしまう事態を回避することができる。
)ハウジングの内周面と軸受スリーブの外周面との間に凹状の接着剤溜りを有するので、塗布量によって接着剤の余剰分が生じる場合でも、その余剰接着剤が凹状の接着剤溜りによって捕捉され、軸受スリーブの位置決めや軸受性能に好ましくない影響を与える接着剤の回り込みが防止される。
)接着剤溜りを軸方向両側に向かって漸次縮小する形状とすることにより、接着剤溜りに過剰に捕捉された接着剤が毛細管現象によって狭小となった軸方向両側に流動し、本来の固定部位(軸受スリーブの外周面とハウジングの内周面との間の充填隙間)に充填されるので、軸受スリーブの固定部位における接着剤量の過不足がなく、安定した固定状態が得られる。
【図面の簡単な説明】
【図1】本発明に係る動圧軸受装置を使用した情報機器用スピンドルモータの断面図である。
【図2】本発明に係る動圧軸受装置の一実施形態を示す断面図である。
【図3】軸受スリーブの断面図{図3(a)}、下側端面{図3(b)}、上側端面{図3(c)}を示す図である。
【図4】スラスト部材の端面を示す図である。
【符号の説明】
1 動圧軸受装置
2 軸部材
2a 軸部
2b フランジ部
7 ハウジング
7a シール部
7a2 内側面
7a21 内径側領域
7a22 外径側領域
7c 内周面
8 軸受スリーブ
8a 内周面
8b 上側端面
8b1 円周溝
8b2 内径側領域
8b21 半径方向溝
8c 下側端面
8d 外周面
8d1 軸方向溝
R1 ラジアル軸受部
R2 ラジアル軸受部
S1 スラスト軸受部
S2 スラスト軸受部
U 接着剤溜り
P ヌスミ部
10 スラスト部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrodynamic bearing device that rotatably supports a shaft member in a non-contact manner by the hydrodynamic action of lubricating oil generated in a bearing gap. This bearing device is a spindle of information equipment such as magnetic disk devices such as HDD and FDD, optical disk devices such as CD-ROM, CD-R / RW and DVD-ROM / RAM, and magneto-optical disk devices such as MD and MO. It is suitable for a motor, a polygon scanner motor of a laser beam printer (LBP), or an electric device such as a small motor such as an axial fan.
[0002]
[Prior art]
In addition to high rotational accuracy, the various motors are required to have high speed, low cost, low noise, and the like. One of the components that determine the required performance is a bearing that supports the spindle of the motor, and in recent years, as this type of bearing, the use of a hydrodynamic bearing having characteristics excellent in the required performance has been studied. Or it is actually used.
[0003]
For example, in a hydrodynamic bearing device incorporated in a spindle motor of a disk drive device such as an HDD, a radial bearing portion that rotatably supports a shaft member in a radial direction and a non-contact support that rotates a shaft member in a thrust direction. A dynamic bearing having a dynamic pressure generating groove (dynamic pressure groove) on the inner peripheral surface of the bearing sleeve or the outer peripheral surface of the shaft member is used as the radial bearing portion. As the thrust bearing portion, for example, a motion in which dynamic pressure grooves are provided on both end surfaces of the flange portion of the shaft member, or surfaces facing the flange portion (the end surface of the bearing sleeve, the end surface of the thrust member fixed to the housing, etc.). A pressure bearing is used (for example, refer to Patent Document 1).
[0004]
Normally, the bearing sleeve is fixed at a predetermined position on the inner periphery of the housing, and a seal portion is often provided at the opening of the housing in order to prevent the lubricating oil injected into the inner space of the housing from leaking to the outside. .
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-061641
[Problems to be solved by the invention]
In such a dynamic pressure bearing device, an adhesive may be used as means for fixing the bearing sleeve to the housing. In this case, for example, an adhesive is applied in advance to the inner peripheral surface of the housing, and after the bearing sleeve is inserted into the inner peripheral surface of the housing and positioned at a predetermined position, the adhesive is solidified. However, depending on the amount of adhesive applied, when the bearing sleeve is inserted into the inner peripheral surface of the housing and moved to a predetermined position, the excess amount of adhesive wraps around the front of the bearing sleeve in the moving direction, and positioning of the bearing sleeve May adversely affect bearing performance.
[0007]
For example, in the hydrodynamic bearing device described in Patent Document 1, the bearing sleeve housing is brought into contact with an inner surface of a seal portion (a collar portion) provided at one end portion of the housing by contacting one end surface of the bearing sleeve. However, if there is excess adhesive wrap around, the adhesive will enter between the end surface of one end of the bearing sleeve and the inner surface of the seal when the bearing sleeve is moved to the final position. The position of the sleeve relative to the housing may not be determined accurately.
[0008]
Further, the applicant forms a longitudinal groove on the outer peripheral surface of the bearing sleeve, and forms a lateral groove on the end surface on one end side of the bearing sleeve so that the longitudinal groove communicates with the inner peripheral surface of the bearing sleeve. An application has already been filed for a hydrodynamic bearing device in which a circulation path of a lubricating fluid filled in a space is formed (Japanese Patent Application No. 2002-117297). In this hydrodynamic bearing device, the lateral groove may be blocked by the adhesive due to the wraparound of the excess adhesive.
[0009]
An object of the present invention is to prevent the surplus adhesive from wrapping around and to avoid the influence of the surplus adhesive wraparound.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a housing, a bearing sleeve fixed to the inner peripheral surface of the housing, a shaft member having a shaft portion and a flange portion, a seal portion provided at one end portion of the housing, A radial bearing part that is provided between the thrust part provided at the other end of the housing and between the bearing sleeve and the shaft part, and that supports the shaft part in a radial direction by the dynamic pressure action of lubricating oil generated in the radial bearing gap. And a thrust bearing portion provided between the bearing sleeve and the thrust portion and the flange portion and supporting the flange portion in the thrust direction by the dynamic pressure action of lubricating oil generated in the thrust bearing gap, and an internal space of the housing in the dynamic pressure bearing device lubricating fluid is filled, the bearing sleeve is adhesively secured to the inner peripheral surface of the housing, the inner surface of the seal portion, bearing at its inner diameter side region Partially contact the inner diameter side region of the end surface on the one end side of the rib, and the outer diameter side region forms a nose portion away from the one end side end surface of the bearing sleeve, and the bearing sleeve is located on the inner diameter side region of the one end side end surface. Provided is a configuration having a radial groove, an axial groove on the outer peripheral surface, and a concave adhesive reservoir provided between the inner peripheral surface of the housing and the outer peripheral surface of the bearing sleeve.
[0011]
According to the above configuration, the lubricating fluid filled in the internal space of the housing can be circulated and circulated in the internal space, whereby the pressure of the lubricating oil in the internal space becomes a negative pressure locally. Can be eliminated, and problems such as generation of bubbles accompanying the generation of negative pressure, leakage of lubricating oil and generation of vibration due to the generation of bubbles can be solved. In addition, when the bearing sleeve is fixed to the inner peripheral surface of the housing with the adhesive, even if the adhesive wraps around, the gap between the outer diameter side region on the inner side surface of the seal portion and the end surface on the one end side of the bearing sleeve. Since there is a blank portion having a required space volume, it is difficult for the adhesive to flow in the direction of the radial groove, and thus it is possible to avoid a situation where the radial groove is blocked by the adhesive. Further, even when an excess amount of the adhesive is generated depending on the amount of application, the excess adhesive is captured by the concave adhesive reservoir, and the wraparound of the adhesive that adversely affects the positioning of the bearing sleeve and the bearing performance is prevented. .
[0012]
The adhesive reservoir can be formed on the inner peripheral surface of the housing or the outer peripheral surface of the bearing sleeve. Alternatively, the concave portions formed on both the inner peripheral surface of the housing and the outer peripheral surface of the bearing sleeve face each other, and the concave space formed by both can be used as the adhesive reservoir. Preferably, the adhesive reservoir is formed on the inner peripheral surface of the housing. Moreover, you may provide an adhesive agent in multiple places.
[0013]
The shape of the adhesive reservoir is not particularly limited, but is preferably a shape that gradually decreases toward both sides in the axial direction. When the bearing sleeve is inserted into the inner peripheral surface of the housing, an excessive amount of adhesive may be trapped in the adhesive reservoir. Even in such a case, the adhesive is positioned after the bearing sleeve is positioned. The adhesive trapped excessively in the adhesive reservoir flows to both sides in the axial direction narrowed by the capillary phenomenon until it solidifies, and the original fixing part (the outer peripheral surface of the bearing sleeve and the inner peripheral surface of the housing) In the filling gap). Therefore, there is no excess or deficiency in the amount of adhesive at the fixing site, and a stable fixing state can be obtained.
[0017]
In the above configuration, the bearing sleeve can be formed of sintered metal.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0019]
FIG. 1 shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 according to this embodiment. This spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports the shaft member 2 in a non-contact manner, a rotor (disk hub) 3 mounted on the shaft member 2, For example, a stator 4 and a rotor magnet 5 are provided to face each other with a gap in the radial direction. The stator 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is attached to the inner periphery of the bracket 6. The disk hub 3 holds one or more disks D such as magnetic disks. When the stator 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator 4 and the rotor magnet 5, whereby the disk hub 3 and the shaft member 2 are rotated together.
[0020]
FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a housing 7, a bearing sleeve 8 and a thrust member 10 fixed to the housing 7, and a shaft member 2.
[0021]
Between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a of the shaft member 2, the first radial bearing portion R1 and the second radial bearing portion R2 are provided apart from each other in the axial direction. A first thrust bearing portion S1 is provided between the lower end surface 8c of the bearing sleeve 8 and the upper end surface 2b1 of the flange portion 2b of the shaft member 2, and the lower end surface of the end surface 10a of the thrust member 10 and the flange portion 2b. 2nd thrust bearing part S2 is provided between 2b2. For convenience of explanation, the description will be given with the side of the thrust member 10 as the lower side and the side opposite to the thrust member 10 as the upper side.
[0022]
The housing 7 is made of, for example, a soft metal material such as brass or a resin material such as a thermoplastic resin, and has a cylindrical side portion 7b and an annular seal portion 7a integrally extending from the upper end of the side portion 7b to the inner diameter side. And. The inner peripheral surface 7a1 of the seal portion 7a is opposed to the tapered surface 2a2 provided on the outer periphery of the shaft portion 2a via a predetermined seal space S. The tapered surface 2a2 of the shaft portion 2a is gradually reduced in diameter toward the upper side (outside of the housing 7), and functions as a centrifugal force seal by the rotation of the shaft member 2.
[0023]
The shaft member 2 is formed of, for example, a metal material such as stainless steel, and includes a shaft portion 2a and a flange portion 2b provided integrally or separately at the lower end of the shaft portion 2a.
[0024]
The bearing sleeve 8 is formed in a cylindrical shape, for example, of a porous body made of sintered metal, particularly a sintered body of sintered metal mainly composed of copper, and is fixed at a predetermined position on the inner peripheral surface 7 c of the housing 7. .
[0025]
On the inner peripheral surface 8a of the bearing sleeve 8 formed of this sintered metal, two upper and lower regions serving as radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2 are provided apart in the axial direction. In these two regions, for example, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 as shown in FIG. 3A are formed. The upper dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions), and the axial dimension X1 of the upper region is lower than the axial center m. It is larger than the axial dimension X2 of the side region. Further, one or a plurality of axial grooves 8d1 are formed on the outer peripheral surface 8d of the bearing sleeve 8 over the entire axial length. In this example, three axial grooves 8d1 are formed at equal intervals around the circumference. Further, chamfers 8e and 8f are formed at the outer peripheral corners of the upper end face 8b and the lower end face 8c, respectively.
[0026]
A spiral dynamic pressure groove 8c1 as shown in FIG. 3B, for example, is formed on the lower end surface 8c of the bearing sleeve 8 serving as a thrust bearing surface of the first thrust bearing portion S1. In addition, as a shape of the dynamic pressure groove, a herringbone shape, a radiation groove shape, or the like may be adopted.
[0027]
As shown in FIG. 3C, the upper end surface 8b of the bearing sleeve 8 is formed into an inner diameter side region 8b2 and an outer diameter side region 8b3 by a circumferential groove 8b1 having a V-shaped cross section provided at a substantially central portion in the radial direction. One or a plurality of radial grooves 8b21 are formed in the inner diameter side region 8b2. In this example, three radial grooves 8b21 are formed at equal intervals around the circumference.
[0028]
As shown in FIG. 2, in this embodiment, a concave adhesive reservoir U is formed on the inner peripheral surface 7 c of the housing 7. For example, the adhesive reservoir U is formed in a circumferential groove shape on the inner peripheral surface 7 c of the housing 7, and both axial side regions thereof are formed by tapered surfaces U <b> 1. Therefore, the adhesive reservoir U has a shape that gradually decreases toward both axial sides.
[0029]
Further, the inner side surface 7a2 of the seal portion 7a partially contacts the inner diameter side region 8b2 of the upper end surface 8b of the bearing sleeve 8 in the inner diameter side region 7a21, and the outer diameter side region 7a22 thereof is the upper end surface of the bearing sleeve 8. It is formed in an inclined shape or a curved shape so as to be separated from 8b. Therefore, a waste portion P having a required space volume is formed between the outer diameter side region 7a22 of the inner side surface 7a2 and the upper end surface 8b (including the chamfer 8e). An inner diameter side of the Nusumi part P communicates with the circumferential groove 8b1, and an outer diameter side has a tapered space formed between the chamfer 8e.
[0030]
The thrust member 10 is formed of a metal material such as brass, for example, and is fixed to the lower end portion of the inner peripheral surface 7 c of the housing 7. As shown in FIG. 4, for example, a herringbone-shaped dynamic pressure groove 10 a 1 is formed on the end surface 10 a of the thrust member 10 that becomes the thrust bearing surface of the second thrust bearing portion S <b> 2. In addition, you may employ | adopt spiral shape, a radiation groove shape, etc. as a shape of a dynamic pressure groove.
[0031]
The hydrodynamic bearing device 1 of this embodiment is assembled by the following process, for example.
[0032]
First, a predetermined amount of adhesive is applied to the inner peripheral surface 7 c of the housing 7. Then, the bearing sleeve 8 is inserted into the inner peripheral surface 7c of the housing 7, and the upper end surface 8b is brought into contact with the inner side surface 7a2 of the seal portion 7a. Thereby, the bearing sleeve 8 is positioned with respect to the housing 7. When this state is maintained and the adhesive is solidified, the bearing sleeve 8 is fixed while being positioned with respect to the housing 7.
[0033]
In this embodiment, since the adhesive reservoir U is provided on the inner peripheral surface 7c of the housing 7, even when an excess amount of the adhesive T (see the enlarged view in the circle in FIG. 2) is generated depending on the application amount, The surplus adhesive is captured by the concave adhesive reservoir U, and the wraparound of the adhesive T that adversely affects the positioning of the bearing sleeve 8 and the bearing performance is prevented. Further, since the adhesive reservoir U has a shape gradually reduced toward both sides in the axial direction due to the tapered surface U1, the adhesive reservoir U remains in the adhesive reservoir U after the positioning of the bearing sleeve 8 until the adhesive T is solidified. The excessively trapped adhesive T flows to both sides in the axial direction narrowed by capillary action, and is originally fixed (filling gap between the outer peripheral surface 8d of the bearing sleeve 8 and the inner peripheral surface 7c of the housing 7). Filled. Therefore, there is no excess or deficiency in the amount of adhesive at the fixing portion of the bearing sleeve 8, and a stable fixing state can be obtained.
[0034]
In addition, since the Nusumi portion P having a required space volume is formed between the outer diameter side region 7a22 of the inner side surface 7a2 of the seal portion 7a and the upper end surface 8b (including the chamfer 8e) of the bearing sleeve 8, Even if the adhesive wraps around, the adhesive T hardly flows in the direction of the radial groove 8b21. In particular, in this embodiment, there is a tapered space (formed between the chamfer 8e) on the outer diameter side of the Nusumi portion P, and the adhesive T in the Nusumi portion P is fixed by the capillary phenomenon of the tapered space. Since it is attracted in the direction of the portion (the filling gap between the outer peripheral surface 8d of the bearing sleeve 8 and the inner peripheral surface 7c of the housing 7), the flow in the radial groove 8b21 direction is more effectively prevented. Thereby, the situation where the radial direction groove | channel 8b21 is obstruct | occluded with the adhesive agent T is avoided.
[0035]
Next, the shaft member 2 is mounted on the bearing sleeve 8. The inner diameter of the bearing sleeve 8 is measured in a state where the bearing sleeve 8 is fixed to the housing 7, and the radial bearing clearance is reduced by matching the outer diameter of the shaft portion 2a (measured in advance). It can be set with high accuracy.
[0036]
Thereafter, the thrust member 10 is mounted on the lower end portion of the inner peripheral surface 7c of the housing 7, positioned at a predetermined position, and then fixed by an appropriate means such as an adhesive.
[0037]
When the assembly is completed as described above, the shaft portion 2a of the shaft member 2 is inserted into the inner peripheral surface 8a of the bearing sleeve 8, and the flange portion 2b is connected to the lower end surface 8c of the bearing sleeve 8 and the end surface 10a of the thrust member 10. It will be in the state accommodated in the space part between. Thereafter, the internal space of the housing 7 sealed by the seal portion 7 a is filled with a lubricating fluid, for example, lubricating oil, including the internal pores of the bearing sleeve 8. The oil level of the lubricating oil is maintained within the range of the seal space S.
[0038]
When the shaft member 2 rotates, the regions (two upper and lower regions) of the inner peripheral surface 8a of the bearing sleeve 8 are opposed to the outer peripheral surface 2a1 of the shaft portion 2a via the radial bearing gap. Further, the region that becomes the thrust bearing surface of the lower end surface 8c of the bearing sleeve 8 faces the upper end surface 2b1 of the flange portion 2b via the thrust bearing gap, and the region that becomes the thrust bearing surface of the end surface 10a of the thrust member 10 is the flange. It faces the lower end surface 2b2 of the portion 2b via a thrust bearing gap. As the shaft member 2 rotates, the dynamic pressure of the lubricating oil is generated in the radial bearing gap, and the shaft portion 2a of the shaft member 2 is rotated in the radial direction by the lubricating oil film formed in the radial bearing gap. It is supported non-contact freely. Thus, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are configured. At the same time, the dynamic pressure of the lubricating oil is generated in the thrust bearing gap, and the flange portion 2b of the shaft member 2 is rotatably supported in both thrust directions by the oil film of the lubricating oil formed in the thrust bearing gap. . Thereby, the first thrust bearing portion S1 and the second thrust bearing portion S2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the thrust direction are configured.
[0039]
As described above, the dynamic pressure groove 8a1 of the first radial bearing portion R1 is formed to be axially asymmetric with respect to the axial center m, and the axial dimension X1 of the upper region from the axial center m is the lower region. It is larger than the axial dimension X2 of {Fig. 3 (a)}. Therefore, when the shaft member 2 rotates, the lubricating oil pulling force (pumping force) by the dynamic pressure groove 8a1 is relatively larger in the upper region than in the lower region. Then, due to the differential pressure of the pulling force, the lubricating oil filled in the gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a flows downward, and the first thrust bearing portion S1 The clearance between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a is circulated through the path of the thrust bearing clearance → the axial groove 8d1 → the Nusumi portion P → the circumferential groove 8b1 → the radial groove 8b21. Returning to the radial bearing gap of the first radial bearing portion R1. In this way, the structure in which the lubricating oil flows and circulates in the internal space of the housing 7 prevents a phenomenon in which the pressure of the lubricating oil in the internal space becomes a negative pressure locally, resulting in the generation of negative pressure. Problems such as generation of bubbles, leakage of lubricating oil and generation of vibration due to generation of bubbles can be solved. In addition, even if bubbles are mixed in the lubricating oil for some reason, when the bubbles circulate with the lubricating oil, it is discharged from the oil surface (gas-liquid interface) of the lubricating oil in the seal space S to the outside air. The adverse effects due to the bubbles are more effectively prevented.
[0040]
【The invention's effect】
The present invention has the following effects.
( 1 ) The lubricating fluid filled in the internal space of the housing is made to flow and circulate in the internal space by the Nusumi portion, the radial groove, and the axial groove, so that the pressure of the lubricating oil in the internal space is locally The phenomenon of negative pressure can be prevented, and problems such as the generation of bubbles due to the generation of negative pressure, the leakage of lubricating oil and the occurrence of vibration due to the generation of bubbles can be solved. In addition, when the bearing sleeve is fixed to the inner peripheral surface of the housing with an adhesive, even if the adhesive wraps around, the adhesive does not easily flow in the radial groove direction due to the nuisance part. A situation in which the groove is blocked by the adhesive can be avoided.
( 2 ) Since there is a concave adhesive reservoir between the inner peripheral surface of the housing and the outer peripheral surface of the bearing sleeve, even if an excess amount of adhesive is generated depending on the amount of application, the excessive adhesive is a concave adhesive reservoir. This prevents trapping of the adhesive, which adversely affects the positioning of the bearing sleeve and the bearing performance.
( 3 ) By forming the adhesive reservoir into a shape that gradually decreases toward both sides in the axial direction, the adhesive trapped excessively in the adhesive reservoir flows to both sides in the axial direction narrowed by capillary action, Since the fixing portion (filling gap between the outer peripheral surface of the bearing sleeve and the inner peripheral surface of the housing) is filled, there is no excess or deficiency in the amount of adhesive at the fixing portion of the bearing sleeve, and a stable fixing state can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a spindle motor for information equipment using a hydrodynamic bearing device according to the present invention.
FIG. 2 is a cross-sectional view showing an embodiment of a hydrodynamic bearing device according to the present invention.
3 is a cross-sectional view of a bearing sleeve {FIG. 3 (a)}, a lower end face {FIG. 3 (b)}, and an upper end face {FIG. 3 (c)}.
FIG. 4 is a view showing an end face of a thrust member.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 2a Shaft part 2b Flange part 7 Housing 7a Seal part 7a2 Inner side surface 7a21 Inner diameter side area | region 7a22 Outer diameter side area | region 7c Inner peripheral surface 8 Bearing sleeve 8a Inner peripheral surface 8b Upper end surface 8b1 Circumferential groove 8b2 Inner diameter region 8b21 Radial groove 8c Lower end surface 8d Outer peripheral surface 8d1 Axial groove R1 Radial bearing portion R2 Radial bearing portion S1 Thrust bearing portion S2 Thrust bearing portion U Adhesive reservoir P Nusumi portion 10 Thrust member

Claims (5)

ハウジングと、該ハウジングの内周面に固定された軸受スリーブと、軸部およびフランジ部を有する軸部材と、前記ハウジングの一端部に設けられたシール部と、前記ハウジングの他端部に設けられたスラスト部と、前記軸受スリーブと軸部との間に設けられ、ラジアル軸受隙間に生じる潤滑油の動圧作用で前記軸部をラジアル方向に非接触支持するラジアル軸受部と、前記軸受スリーブ及びスラスト部とフランジ部との間に設けられ、スラスト軸受隙間に生じる潤滑油の動圧作用で前記フランジ部をスラスト方向に非接触支持するスラスト軸受部とを備え、前記ハウジングの内部空間に潤滑流体が充満された動圧軸受装置において、
前記軸受スリーブは前記ハウジングの内周面に接着剤で固定され、
前記シール部の内側面は、その内径側領域で前記軸受スリーブの一端側端面の内径側領域と部分的に接触し、その外径側領域は前記軸受スリーブの一端側端面から離れるようにヌスミ部を形成し
前記軸受スリーブは、前記一端側端面の内径側領域に半径方向溝を有すると共に、外周面に軸方向溝を有し、
前記ハウジングの内周面と前記軸受スリーブの外周面との間に凹状の接着剤溜りが設けられていることを特徴とする動圧軸受装置。
A housing, a bearing sleeve fixed to the inner peripheral surface of the housing, a shaft member having a shaft portion and a flange portion, a seal portion provided at one end portion of the housing, and a second end portion of the housing; A radial bearing portion that is provided between the thrust portion, the bearing sleeve and the shaft portion, and supports the shaft portion in a radial direction by a dynamic pressure action of lubricating oil generated in a radial bearing gap, and the bearing sleeve and A thrust bearing portion provided between the thrust portion and the flange portion and configured to support the flange portion in a non-contact manner in a thrust direction by a dynamic pressure action of lubricating oil generated in a thrust bearing gap, and a lubricating fluid is provided in an internal space of the housing In the hydrodynamic bearing device filled with
The bearing sleeve is fixed to the inner peripheral surface of the housing with an adhesive,
The inner surface of the seal portion partially contacts the inner diameter side region of the one end surface of the bearing sleeve in the inner diameter side region, and the outer diameter side region is separated from the one end side end surface of the bearing sleeve. Form the
The bearing sleeve has a radial groove in the inner diameter side region of the end surface on the one end side and an axial groove on the outer peripheral surface;
A hydrodynamic bearing device , wherein a concave adhesive reservoir is provided between an inner peripheral surface of the housing and an outer peripheral surface of the bearing sleeve .
前記接着剤溜りは前記ハウジングの内周面に設けられていることを特徴とする請求項1に記載の動圧軸受装置。  The hydrodynamic bearing device according to claim 1, wherein the adhesive reservoir is provided on an inner peripheral surface of the housing. 前記接着剤溜りは軸方向両側に向かって漸次縮小する形状を有することを特徴とする請求項1又は2に記載の動圧軸受装置。  The hydrodynamic bearing device according to claim 1, wherein the adhesive reservoir has a shape that gradually decreases toward both axial sides. 前記軸受スリーブは焼結金属で形成されていることを特徴とする請求項1からの何れかに記載の動圧軸受装置。The bearing sleeve dynamic pressure bearing device according to any one of claims 1 to 3, characterized in that it is formed of a sintered metal. 請求項1〜の何れかに記載の動圧軸受装置を備えたことを特徴とするモータ。Motor comprising the fluid dynamic bearing device according to any one of claims 1-4.
JP2002343829A 2002-11-26 2002-11-27 Hydrodynamic bearing device Expired - Lifetime JP4360482B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002343829A JP4360482B2 (en) 2002-11-27 2002-11-27 Hydrodynamic bearing device
US10/705,241 US7005768B2 (en) 2002-11-26 2003-11-12 Dynamic bearing device, producing method thereof, and motor using the same
CNB2003101154704A CN100348876C (en) 2002-11-26 2003-11-26 Dynamic pressure bearing, mfg method and motor using same
CN200710153530XA CN101144499B (en) 2002-11-26 2003-11-26 Dynamic pressure bearing device and motor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343829A JP4360482B2 (en) 2002-11-27 2002-11-27 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2004176816A JP2004176816A (en) 2004-06-24
JP4360482B2 true JP4360482B2 (en) 2009-11-11

Family

ID=32705518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343829A Expired - Lifetime JP4360482B2 (en) 2002-11-26 2002-11-27 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4360482B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672379B2 (en) 2005-01-17 2011-04-20 Ntn株式会社 Hydrodynamic bearing device
US7866047B2 (en) 2005-03-18 2011-01-11 Nidec Corporation Sleeve-unit manufacturing method
JP4811186B2 (en) * 2006-08-07 2011-11-09 日本電産株式会社 Hydrodynamic bearing device
JP2008101772A (en) 2006-09-20 2008-05-01 Nippon Densan Corp Sleeve unit manufacturing method, sleeve unit, and motor
JP4680973B2 (en) 2006-11-06 2011-05-11 Gast Japan 株式会社 Manufacturing method of bearing, bearing unit, rotating device, and manufacturing method of sliding member
JP5020706B2 (en) 2007-05-21 2012-09-05 アルファナテクノロジー株式会社 Method for assembling disk drive device
US8007175B2 (en) 2007-11-08 2011-08-30 Panasonic Corporation Hydrodynamic bearing device, and spindle motor and information apparatus equipped with same
JP5133131B2 (en) * 2008-05-21 2013-01-30 Ntn株式会社 Hydrodynamic bearing device
US9341214B2 (en) 2013-07-24 2016-05-17 Nidec Corporation Sleeve, fluid dynamic pressure bearing including the sleeve, spindle motor including the fluid dynamic pressure bearing and electronic equipment including the spindle motor
JP6502036B2 (en) * 2014-08-05 2019-04-17 Ntn株式会社 Fluid dynamic bearing device and motor including the same
JP6553153B2 (en) * 2017-11-09 2019-07-31 ミネベアミツミ株式会社 motor

Also Published As

Publication number Publication date
JP2004176816A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP3942482B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND MOTOR HAVING THE SAME
US7005768B2 (en) Dynamic bearing device, producing method thereof, and motor using the same
JP4236891B2 (en) Hydrodynamic bearing device
JP4360482B2 (en) Hydrodynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2007024267A (en) Fluid bearing device and motor equipped with the same
US20100166346A1 (en) Dynamic bearing device
JP2005337490A (en) Dynamic pressure bearing device
JP4657734B2 (en) Hydrodynamic bearing device
JP4633388B2 (en) Hydrodynamic bearing device
JP4309642B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2003336636A (en) Dynamic pressure bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP3184795B2 (en) Spindle motor and rotating device using the spindle motor as a driving source of the rotating body
JP4754418B2 (en) Hydrodynamic bearing device
JP3784580B2 (en) Hydrodynamic bearing unit and manufacturing method thereof
JP2005163903A (en) Dynamic bearing device
JP2006329391A (en) Dynamic pressure bearing arrangement
JP2003065324A (en) Hydrodyanamic type bearing apparatus
JP2004176778A (en) Dynamic pressure bearing device, method of manufacturing the same, and motor using the same
JP4579218B2 (en) Manufacturing method of hydrodynamic bearing unit
JP2005210896A (en) Spindle motor of disc drive
JP2011112075A (en) Fluid dynamic pressure bearing device
JP5101122B2 (en) Hydrodynamic bearing device
JP2004116623A (en) Fluid bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4360482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term