JP2004176778A - Dynamic pressure bearing device, method of manufacturing the same, and motor using the same - Google Patents

Dynamic pressure bearing device, method of manufacturing the same, and motor using the same Download PDF

Info

Publication number
JP2004176778A
JP2004176778A JP2002342145A JP2002342145A JP2004176778A JP 2004176778 A JP2004176778 A JP 2004176778A JP 2002342145 A JP2002342145 A JP 2002342145A JP 2002342145 A JP2002342145 A JP 2002342145A JP 2004176778 A JP2004176778 A JP 2004176778A
Authority
JP
Japan
Prior art keywords
housing
press
thrust
bearing
dynamic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002342145A
Other languages
Japanese (ja)
Inventor
Taketo Tamaoka
健人 玉岡
Ryoichi Nakajima
良一 中島
Tetsuya Kurimura
栗村  哲弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Nidec Corp
Original Assignee
NTN Corp
Nidec Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, Nidec Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2002342145A priority Critical patent/JP2004176778A/en
Priority to US10/705,241 priority patent/US7005768B2/en
Priority to CN200710153529A priority patent/CN100582508C/en
Priority to CNB2003101154704A priority patent/CN100348876C/en
Priority to CN200710153530XA priority patent/CN101144499B/en
Publication of JP2004176778A publication Critical patent/JP2004176778A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a specified fixing strength by stabilizing the fixed state of a housing to a holding member. <P>SOLUTION: The fixed surface 7d of the housing comprises a deformation area 7d2 deformed by a specified amount to the outer diameter side according to the press-fitting of a thrust member thereto and the other area 7d1. The deformation area 7d2 has a tapered shape gradually reducing in diameter to the lower side thereof, and is moved backward to the inner diameter side relative to the other area 7d1 by an amount equivalent to the deformation amount according to the press-fitting of a thrust member 10. When the thrust member 10 is press-fitted to the inner periphery of a press-fitted part 7b1, the fixed face 7d of the housing 7 is formed in an axially substantially straight shape over the axially entire area L. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、軸受隙間に生じる潤滑油の動圧作用で軸部材を回転自在に非接触支持する動圧軸受装置、その製造方法及びそれを用いたモータに関する。この軸受装置は、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置などのスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、あるいは電気機器、例えば軸流ファンなどの小型モータ用として好適である。
【0002】
【従来の技術】
上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化などが求められている。これらの要求性能を決定づける構成要素の一つに当該モータのスピンドルを支持する軸受があり、近年では、この種の軸受として、上記要求性能に優れた特性を有する動圧軸受の使用が検討され、あるいは実際に使用されている。
【0003】
例えば、HDD等のディスク駆動装置のスピンドルモータに組込まれる動圧軸受装置では、軸部材をラジアル方向に回転自在に非接触支持するラジアル軸受部と、軸部材をスラスト方向に回転自在に非接触支持するスラスト軸受部とが設けられ、ラジアル軸受部として、軸受スリーブの内周面又は軸部材の外周面に動圧発生用の溝(動圧溝)を設けた動圧軸受が用いられる。スラスト軸受部としては、例えば、軸部材のフランジ部の両端面、又は、これに対向する面(軸受スリーブの端面や、ハウジングに固定されるスラスト部材の端面等)に動圧溝を設けた動圧軸受が用いられる(例えば、特許文献1参照)。
【0004】
通常、軸受スリーブはハウジングの内周に固定され、スラスト部材はハウジングの一端部内周に固定される。また、ハウジングの内部空間に注油した潤滑油が外部に漏れるのを防止するために、ハウジングの他端部にシール部を設ける場合が多い。
【0005】
【特許文献1】
特開2002―061641号公報
【0006】
【発明が解決しようとする課題】
上記ような動圧軸受装置において、スラスト部材をハウジングの一端部内周に固定する手段として圧入を採用する場合がある。また、スラスト部材を圧入した後、圧入部分にハウジングの外部側から接着剤を充填して、該圧入部分を接着剤で封止する場合もある。しかしながら、スラスト部材の圧入に伴い、ハウジングの外周の所定領域が外径側に膨張変形して、次のような問題が生じる可能性がある。
【0007】
例えば、この種の動圧軸受装置を上記各種モータの回転支持部に用いる場合、通常、ハウジングの外周をブラッケット(保持部材)の内周に接着剤を介して密着固定するが、その際の接着強度を考慮して、両者の接着部の軸方向寸法や接着剤の充填隙間が定められている。しかしながら、スラスト部材の圧入に伴い、ハウジング外周の接着面(固定面)の一部領域に膨張変形が生じると、保持部材の内周に装着したときに、接着剤の充填隙間が軸方向で不均一になり、接着強度の低下や共振の問題が起こることが心配される。
【0008】
また、ハウジングの外周をブラッケット(保持部材)の内周に圧入により密着固定することも考えられるが、この場合も、スラスト部材の圧入に伴い、ハウジング外周の圧入面(固定面)の一部領域に膨張変形が生じると、保持部材の内周に圧入したときに締代が軸方向で不均一になり、圧入強度の低下や共振の問題が起こることが心配される。
【0009】
本発明の課題は、ハウジング外周の固定面の膨張変形に起因する上記の問題を解決し、ハウジングと保持部材との固定状態を安定させ、所望の固定強度を得ることである。
【0010】
【課題を解決するための手段】
上記課題を解決するため、本発明は、ハウジングと、ハウジングの内周に固定された軸受スリーブと、軸部およびフランジ部を有する軸部材と、ハウジングの一端部に固定されたスラスト部材と、軸受スリーブと軸部との間に設けられ、ラジアル軸受隙間に生じる潤滑油の動圧作用で軸部をラジアル方向に非接触支持するラジアル軸受部と、軸受スリーブ及びスラスト部材とフランジ部との間に設けられ、スラスト軸受隙間に生じる潤滑油の動圧作用でフランジ部をスラスト方向に非接触支持するスラスト軸受部とを備えた動圧軸受装置において、スラスト部材は、ハウジングの一端部に設けられた圧入部の内周に所定の締代をもって圧入され、ハウジングは、その外周に、所定の軸方向寸法を有し、保持部材の内周に密着固定される固定面を有し、固定面は、スラスト部材の圧入に伴って外径側に所定量変形する変形領域を有し、かつ、スラスト部材を圧入した状態で、軸方向全領域にわたって軸方向に実質的にストレートな形状を有する構成を提供する。
【0011】
ここで、「軸方向に実質的にストレートな形状」には、固定面が軸方向全領域にわたって同一径である形状(完全なストレート形状)の他、固定面の変形領域の全部又は一部が、該変形領域以外の領域に対して、例えば、−30μm以上、+5μm以下の範囲内で半径差を有する形状(略ストレート形状)が含まれる。
【0012】
上記構成によれば、スラスト部材をハウジングの圧入部に圧入した状態で、ハウジングの固定面が軸方向全領域にわたって軸方向に実質的にストレートな形状を有するので、該固定面を保持部材の内周に密着固定したとき、固定状態が安定し、所望の固定強度を得ることができる。
【0013】
また、本発明は、上記課題を解決するため、ハウジングと、ハウジングの内周に固定された軸受スリーブと、軸部およびフランジ部を有する軸部材と、ハウジングの一端部に固定されたスラスト部材と、軸受スリーブと軸部との間に設けられ、ラジアル軸受隙間に生じる潤滑油の動圧作用で軸部をラジアル方向に非接触支持するラジアル軸受部と、軸受スリーブ及びスラスト部材とフランジ部との間に設けられ、スラスト軸受隙間に生じる潤滑油の動圧作用でフランジ部をスラスト方向に非接触支持するスラスト軸受部とを備えた動圧軸受装置を製造する方法において、ハウジングの一端部にスラスト部材を所定の締代で圧入する圧入部を形成すると共に、ハウジングの外周に、所定の軸方向寸法を有し、保持部材の内周に密着固定される固定面を形成し、かつ、スラスト部材の圧入に伴って外径側に所定量変形する該固定面の変形領域を、その変形量に相当する量だけ該固定面の他の領域に対して内径側に後退させ、スラスト部材をハウジングの圧入部の内周に圧入して固定する構成を提供する。
【0014】
ハウジングの固定面の変形領域を、スラスト部材の圧入に伴う変形量に相当する量だけ該固定面の他の領域に対して内径側に後退させることにより、スラスト部材を圧入したとき、ハウジングの固定面が軸方向全領域にわたって軸方向に実質的にストレートな形状となるので、該固定面を保持部材の内周に密着固定したとき、固定状態が安定し、所望の固定強度を得ることができる。
【0015】
以上の構成において、ハウジングの外周の固定面を保持部材の内周に密着固定する手段として、接着剤よる固定、圧入による固定、その他の適宜の固定手段を採用することができる。また、ハウジングの固定面の変形領域を、ハウジングの圧入部の他端側に隣接させて設けることができ、さらに、該変形領域をハウジングの一端側に向かって漸次縮径するテーパ形状に形成することができる。
【0016】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0017】
図1は、この実施形態に係る動圧軸受装置1を組み込んだ情報機器用スピンドルモータの一構成例を示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に装着されたロータ(ディスクハブ)3と、例えば半径方向のギャップを介して対向させたステータ4およびロータマグネット5とを備えている。ステータ4はブラケット6の外周に取付けられ、ロータマグネット5はディスクハブ3の内周に取付けられる。動圧軸受装置1のハウジング7は、例えばブラケット6の内周に接着剤を介して固定される。ディスクハブ3には、磁気ディスク等のディスクDが一又は複数枚保持される。ステータ4に通電すると、ロータマグネット5がステータ4と協働して回転磁界を発生し、それによって、ディスクハブ3および軸部材2が一体となって回転する。
【0018】
図2は、動圧軸受装置1を示している。この動圧軸受装置1は、ハウジング7と、ハウジング7に固定された軸受スリーブ8およびスラスト部材10と、軸部材2とを構成部品して構成される。
【0019】
軸受スリーブ8の内周面8aと軸部材2の軸部2aの外周面2a1との間に第1ラジアル軸受部R1と第2ラジアル軸受部R2とが軸方向に離隔して設けられる。また、軸受スリーブ8の下側端面8cと軸部材2のフランジ部2bの上側端面2b1との間に第1スラスト軸受部S1が設けられ、スラスト部材10の上側端面10aとフランジ部2bの下側端面2b2との間に第2スラスト軸受部S2が設けられる。尚、説明の便宜上、スラスト部材10の側を下側、スラスト部材10と反対の側を上側として説明を進める。
【0020】
ハウジング7は、例えば、黄銅等の軟質金属材料や熱可塑性樹脂等の樹脂材料で形成され、円筒状の側部7bと、側部7bの上端から内径側に一体に延びた環状のシール部7aとを備えている。シール部7aの内周面7a1は、軸部2aの外周に設けられたテーパ面2a2と所定のシール空間Sを介して対向する。また、側部7bの下端部に、スラスト部材10が圧入される圧入部7b1が形成される。圧入部7b1の内周は軸受スリーブ8が固定される内周面7cよりも大径で、圧入部7b1の肉厚は側部7bの主部に比べて薄くなっている。また、ハウジング7の外周に、所定の軸方向寸法Lを有する固定面7dが形成される。
【0021】
図6に拡大して示すように、固定面7dは圧入部7b1の上方に位置し、圧入部7b1の外周に段部7eを介して隣接する。また、固定面7dは、軸方向全領域Lにわたって軸方向に実質的にストレートな形状を有する。
【0022】
図5は、スラスト部材10を圧入部7b1に圧入する前の状態を示している。固定面7dは、スラスト部材10の圧入に伴って外径側に所定量変形する変形領域7d2と、その他領域7d1(スラスト部材10の圧入に伴って膨張変形しない領域)とで構成される。この実施形態において、変形領域7d2は下方に向かって漸次縮径するテーパ形状を有し、圧入部7b1の外周に段部7eを介して隣接する。また、変形領域7d2は、スラスト部材10の圧入に伴う変形量に相当する量だけ、その他領域7d1に対して内径側に後退している。図5の右拡大図における点線は変形領域7d2の変形後の位置を示しており、変形領域7d2の最大後退量は最大変形量(半径方向量)δと等しい。通常、変形領域7d2の最大変形量δはスラスト部材10の圧入時の締代(半径方向量)と等しいか、極近似した値になるので、変形領域7d2の最大後退量はスラスト部材10の圧入時の締代(半径方向量)と等しくなるように設計すると良い。
【0023】
軸部材2は、例えば、ステンレス鋼等の金属材料で形成され、軸部2aと、軸部2aの下端に一体又は別体に設けられたフランジ部2bとを備えている。軸部2aのテーパ面2a2は上側(ハウジング7に対して外部側)に向かって漸次縮径し、軸部材2の回転により遠心力シールとしても機能する。
【0024】
軸受スリーブ8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする燒結金属の多孔質体で円筒状に形成され、ハウジング7の内周面7cの所定位置に固定される。
【0025】
この焼結金属で形成された軸受スリーブ8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面となる上下2つの領域が軸方向に離隔して設けられ、該2つの領域には、例えば図3(a)に示すようなヘリングボーン形状の動圧溝8a1、8a2がそれぞれ形成される。上側の動圧溝8a1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。また、軸受スリーブ8の外周面8dには、1又は複数本の軸方向溝8d1が軸方向全長に亙って形成される。この例では、3本の軸方向溝8d1を円周等間隔に形成している。また、上側端面8bと下側端面8cの外周角部に、それぞれ、チャンファ8e、8fが形成される。
【0026】
第1スラスト軸受部S1のスラスト軸受面となる、軸受スリーブ8の下側端面8cには、例えば図3(b)に示すようなスパイラル形状の動圧溝8c1が形成される。尚、動圧溝の形状として、ヘリングボーン形状や放射溝形状等を採用しても良い。
【0027】
図3(c)に示すように、軸受スリーブ8の上側端面8bは、半径方向の略中央部に設けられたV字断面の円周溝8b1により、内径側領域8b2と外径側領域8b3に区画され、内径側領域8b2には、1又は複数本の半径方向溝8b21が形成される。この例では、3本の半径方向溝8b21を円周等間隔に形成している。
【0028】
図2の円内に拡大して示すように、シール部7aの内側面7a2は、その内径側領域7a21で軸受スリーブ8の上側端面8bの内径側領域8b2と部分的に接触し、その外径側領域7a22は、軸受スリーブ8の上側端面8bから離れるように傾斜状又は湾曲状に形成されている。そのため、内側面7a2の外径側領域7a22と上側端面8b(チャンファ8eを含む)との間に所要の空間容積をもったヌスミ部Pが形成される。ヌスミ部Pの内径側は円周溝8b1と連通し、外径側は軸方向溝8d1と連通する。
【0029】
スラスト部材10は、例えば、黄銅等の金属材料で形成され、ハウジング7の圧入部7b1の内周に圧入固定される。図4に示すように、第2スラスト軸受部S2のスラスト軸受面となる、スラスト部材10の上側端面10aには、例えばヘリングボーン形状の動圧溝10a1が形成される。尚、動圧溝の形状として、スパイラル形状や放射溝形状等を採用しても良い。
【0030】
スラスト部材10の外周部10cは、ハウジング7の圧入部7b1の内周に圧入される圧入面10c1と、圧入面10c1の上端から内径側傾斜方向に延びて上側端面10aに至るテーパ面10c2と、圧入面10c1の下端から内径側傾斜方向に延びて下側端面10bに至るテーパ面10c3とで構成される。
【0031】
この実施形態の動圧軸受装置1は、例えば、次のような工程で組立る。
【0032】
まず、ハウジング7の内周面7cに軸受スリーブ8を挿入し、その上側端面8bをシール部7aの内側面7a2に当接させる。これにより、軸受スリーブ8がハウジング7に対して位置決めされる。尚、ハウジング7の内周面7cに対する軸受スリーブ8の固定は、圧入、接着、圧入と接着の併用、その他の適宜の固定手段で行うことができる。
【0033】
つぎに、軸部材2を軸受スリーブ8に装着する。尚、軸受スリーブ8をハウジング7に固定した状態でその内径寸法を測定しておき、軸部2aの外径寸法(予め測定しておく。)との寸法マッチングを行うことにより、ラジアル軸受隙間を精度良く設定することができる。
【0034】
その後、スラスト部材10をハウジング7の圧入部7b1の内周に所定位置まで圧入して固定する。ハウジング7の固定面7dの変形領域7d2を、スラスト部材10の圧入に伴う変形量に相当する量だけその他領域7d1に対して内径側に後退させているので(図5参照)、スラスト部材10を圧入したとき、ハウジング7の固定面7dは軸方向全領域Lにわたって軸方向に実質的にストレートな形状になる(図6参照)。そのため、ハウジング7の固定面7dをブラケット6の内周に固定したとき、固定状態が安定し、所望の固定強度を得ることができる。
【0035】
上記のようにして組立が完了すると、軸部材2の軸部2aは軸受スリーブ8の内周面8aに挿入され、フランジ部2bは軸受スリーブ8の下側端面8cとスラスト部材10の上側端面10aとの間の空間部に収容された状態となる。その後、シール部7aで密封されたハウジング7の内部空間に、軸受スリーブ8の内部気孔を含め、潤滑流体、例えば潤滑油を充満させる。潤滑油の油面は、シール空間Sの範囲内に維持される。
【0036】
軸部材2の回転時、軸受スリーブ8の内周面8aのラジアル軸受面となる領域(上下2箇所の領域)は、それぞれ、軸部2aの外周面2a1とラジアル軸受隙間を介して対向する。また、軸受スリーブ8の下側端面8cのスラスト軸受面となる領域はフランジ部2bの上側端面2b1とスラスト軸受隙間を介して対向し、スラスト部材10の上側端面10aのスラスト軸受面となる領域はフランジ部2bの下側端面2b2とスラスト軸受隙間を介して対向する。そして、軸部材2の回転に伴い、上記ラジアル軸受隙間に潤滑油の動圧が発生し、軸部材2の軸部2aが上記ラジアル軸受隙間内に形成される潤滑油の油膜によってラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが構成される。同時に、上記スラスト軸受隙間に潤滑油の動圧が発生し、軸部材2のフランジ部2bが上記スラスト軸受隙間内に形成される潤滑油の油膜によって両スラスト方向に回転自在に非接触支持される。これにより、軸部材2をスラスト方向に回転自在に非接触支持する第1スラスト軸受部S1と第2スラスト軸受部S2とが構成される。
【0037】
前述したように、第1ラジアル軸受部R1の動圧溝8a1は、軸方向中心mに対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている{図3(a)}。そのため、軸部材2の回転時、動圧溝8a1による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。そして、この引き込み力の差圧によって、軸受スリーブ8の内周面8aと軸部2aの外周面2a1との間の隙間に満たされた潤滑油が下方に流動し、第1スラスト軸受部S1のスラスト軸受隙間→軸方向溝8d1→ヌスミ部P→円周溝8b1→半径方向溝8b21という経路を循環して、軸受スリーブ8の内周面8aと軸部2aの外周面2a1との間の隙間に戻り、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。このように、潤滑油がハウジング7の内部空間を流動循環するように構成することで、内部空間内の潤滑油の圧力が局部的に負圧になる現象を防止して、負圧発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。また、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際にシール空間S内の潤滑油の油面(気液界面)から外気に排出されるので、気泡による悪影響はより一層効果的に防止される。
【発明の効果】
本発明によれば、スラスト部材を圧入した状態で、ハウジングの固定面が軸方向全領域にわたって軸方向に実質的にストレートな形状を有するので、該固定面を保持部材の内周に固定したとき、固定状態が安定し、所望の固定強度を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る動圧軸受装置を使用した情報機器用スピンドルモータの断面図である。
【図2】本発明に係る動圧軸受装置の一実施形態を示す断面図である。
【図3】軸受スリーブの断面図{図3(a)}、下側端面{図3(b)}、上側端面{図3(c)}を示す図である。
【図4】スラスト部材の上側端面を示す図{図4(a)}、断面図{図4(b)}である。
【図5】ハウジングの圧入部の周辺と固定面の変形領域の周辺を示す部分拡大断面図である(スラスト部材の圧入前)。
【図6】ハウジングの圧入部の周辺と固定面の変形領域の周辺を示す部分拡大断面図である(スラスト部材の圧入後)。
【符号の説明】
1 動圧軸受装置
2 軸部材
2a 軸部
2b フランジ部
7 ハウジング
7b1 圧入部
7d 固定面
7d1 その他領域
7d2 変形領域
8 軸受スリーブ
8a 内周面
10 スラスト部材
R1 ラジアル軸受部
R2 ラジアル軸受部
S1 スラスト軸受部
S2 スラスト軸受部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dynamic pressure bearing device that rotatably supports a shaft member in a non-contact manner by dynamic pressure action of lubricating oil generated in a bearing gap, a method of manufacturing the same, and a motor using the same. This bearing device is a spindle for information equipment, for example, a magnetic disk device such as an HDD or FDD, an optical disk device such as a CD-ROM, a CD-R / RW, a DVD-ROM / RAM, or a magneto-optical disk device such as an MD or MO. It is suitable for a motor, a polygon scanner motor of a laser beam printer (LBP), or a small motor such as an electric device such as an axial fan.
[0002]
[Prior art]
The above various motors are required to have high speed, low cost, low noise, etc. in addition to high rotational accuracy. One of the components that determine these required performances is a bearing that supports the spindle of the motor, and in recent years, as this type of bearing, the use of a dynamic pressure bearing having characteristics excellent in the required performance has been studied. Or it is actually used.
[0003]
For example, in a hydrodynamic bearing device incorporated in a spindle motor of a disk drive device such as an HDD, a radial bearing portion that rotatably supports a shaft member in a radial direction in a non-contact manner, and a non-contact support rotatably supports a shaft member in a thrust direction. A thrust bearing portion is provided, and as the radial bearing portion, a dynamic pressure bearing in which a groove (dynamic pressure groove) for generating dynamic pressure is provided on the inner peripheral surface of the bearing sleeve or the outer peripheral surface of the shaft member is used. As the thrust bearing portion, for example, a dynamic pressure groove provided on both end surfaces of a flange portion of a shaft member or a surface opposed thereto (an end surface of a bearing sleeve, an end surface of a thrust member fixed to a housing, or the like). A pressure bearing is used (for example, see Patent Document 1).
[0004]
Usually, the bearing sleeve is fixed to the inner circumference of the housing, and the thrust member is fixed to the inner circumference of one end of the housing. Further, in order to prevent the lubricating oil injected into the internal space of the housing from leaking outside, a seal portion is often provided at the other end of the housing.
[0005]
[Patent Document 1]
JP-A-2002-061641
[Problems to be solved by the invention]
In such a dynamic pressure bearing device, press-fitting may be employed as a means for fixing the thrust member to the inner periphery of one end of the housing. Further, after the thrust member is press-fitted, the press-fitted portion may be filled with an adhesive from the outside of the housing, and the press-fitted portion may be sealed with the adhesive. However, with the press-fitting of the thrust member, a predetermined area on the outer periphery of the housing expands and deforms toward the outer diameter side, and the following problem may occur.
[0007]
For example, when this kind of dynamic pressure bearing device is used for the rotation supporting portion of the above-mentioned various motors, the outer periphery of the housing is usually fixed closely to the inner periphery of the bracket (holding member) via an adhesive. In consideration of the strength, the axial dimension of the bonded portion and the filling gap of the adhesive are determined. However, when the thrust member is press-fitted and a part of the bonding surface (fixed surface) on the outer periphery of the housing undergoes expansion deformation, the gap filled with the adhesive in the axial direction when mounted on the inner periphery of the holding member is not sufficient. There is a concern that uniformity will occur, and that the bonding strength will decrease and resonance will occur.
[0008]
It is also conceivable that the outer periphery of the housing is tightly fixed to the inner periphery of the bracket (holding member) by press-fitting. When expansion deformation occurs in the holding member, the interference becomes uneven in the axial direction when it is press-fitted into the inner periphery of the holding member, and there is a concern that the press-fitting strength is reduced and a problem of resonance occurs.
[0009]
An object of the present invention is to solve the above-described problem caused by the expansion and deformation of the fixing surface on the outer periphery of the housing, stabilize the fixing state between the housing and the holding member, and obtain a desired fixing strength.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a housing, a bearing sleeve fixed to an inner periphery of the housing, a shaft member having a shaft and a flange, a thrust member fixed to one end of the housing, and a bearing. A radial bearing portion provided between the sleeve and the shaft portion and supporting the shaft portion in a non-contact manner in the radial direction by the dynamic pressure action of the lubricating oil generated in the radial bearing gap, and between the bearing sleeve and the thrust member and the flange portion. A thrust member provided at one end of the housing, the thrust member being provided at a first end of the housing. The housing is press-fitted into the inner periphery of the press-fitting portion with a predetermined interference, and the housing has a predetermined axial dimension on its outer periphery and is fixedly fixed to the inner periphery of the holding member. The fixing surface has a deformation area that is deformed by a predetermined amount toward the outer diameter side with the press-fit of the thrust member, and is substantially straight in the axial direction over the entire axial direction in a state where the thrust member is press-fitted. A configuration having a simple shape is provided.
[0011]
Here, the “substantially straight shape in the axial direction” includes not only a shape in which the fixing surface has the same diameter over the entire region in the axial direction (completely straight shape), but also all or a part of the deformation region of the fixing surface. For example, a shape (substantially straight shape) having a radius difference within a range of −30 μm or more and +5 μm or less with respect to an area other than the deformation area is included.
[0012]
According to the above configuration, in a state where the thrust member is pressed into the press-fitting portion of the housing, the fixing surface of the housing has a substantially straight shape in the axial direction over the entire region in the axial direction. When closely fixed to the periphery, the fixing state is stable, and a desired fixing strength can be obtained.
[0013]
According to another aspect of the present invention, there is provided a housing, a bearing sleeve fixed to an inner periphery of the housing, a shaft member having a shaft and a flange, and a thrust member fixed to one end of the housing. A radial bearing portion provided between the bearing sleeve and the shaft portion and supporting the shaft portion in a non-contact manner in the radial direction by the dynamic pressure action of the lubricating oil generated in the radial bearing gap; and the bearing sleeve and the thrust member and the flange portion. A thrust bearing portion provided between the thrust bearing portion and supporting the flange portion in a non-contact manner in the thrust direction by a dynamic pressure action of the lubricating oil generated in the thrust bearing gap. A press-fit portion for press-fitting the member with a predetermined interference is formed, and has a predetermined axial dimension on the outer periphery of the housing, and is firmly fixed to the inner periphery of the holding member. Forming a surface, and deforming the fixed area, which is deformed by a predetermined amount to the outer diameter side with the press-fit of the thrust member, by an amount corresponding to the deformation amount to the inner diameter side with respect to the other area of the fixed surface. And the thrust member is press-fitted into the inner periphery of the press-fitting portion of the housing to be fixed.
[0014]
When the thrust member is press-fitted, the deformation area of the fixing face of the housing is retracted toward the inner diameter side with respect to the other area of the fixing face by an amount corresponding to the deformation amount accompanying the press-fitting of the thrust member. Since the surface has a substantially straight shape in the axial direction over the entire region in the axial direction, when the fixing surface is tightly fixed to the inner periphery of the holding member, the fixing state is stable, and a desired fixing strength can be obtained. .
[0015]
In the above configuration, as a means for tightly fixing the outer peripheral fixing surface to the inner periphery of the holding member, fixing with an adhesive, fixing by press fitting, or other appropriate fixing means can be adopted. In addition, a deformation region of the fixed surface of the housing can be provided adjacent to the other end of the press-fit portion of the housing, and the deformation region is formed in a tapered shape that gradually decreases in diameter toward one end of the housing. be able to.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0017]
FIG. 1 shows an example of a configuration of a spindle motor for information equipment incorporating a hydrodynamic bearing device 1 according to this embodiment. The spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2 in a non-contact manner, a rotor (disk hub) 3 mounted on the shaft member 2, For example, a stator 4 and a rotor magnet 5 are provided facing each other via a radial gap. The stator 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is fixed to the inner periphery of the bracket 6 via an adhesive, for example. The disk hub 3 holds one or more disks D such as magnetic disks. When the stator 4 is energized, the rotor magnet 5 generates a rotating magnetic field in cooperation with the stator 4, whereby the disk hub 3 and the shaft member 2 rotate integrally.
[0018]
FIG. 2 shows the dynamic pressure bearing device 1. The hydrodynamic bearing device 1 includes a housing 7, a bearing sleeve 8 and a thrust member 10 fixed to the housing 7, and a shaft member 2.
[0019]
A first radial bearing portion R1 and a second radial bearing portion R2 are provided between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a of the shaft member 2 so as to be separated in the axial direction. Further, a first thrust bearing portion S1 is provided between a lower end surface 8c of the bearing sleeve 8 and an upper end surface 2b1 of the flange portion 2b of the shaft member 2, and a first thrust bearing portion S1 is provided below the upper end surface 10a of the thrust member 10 and the flange portion 2b. A second thrust bearing portion S2 is provided between the second thrust bearing portion S2 and the end surface 2b2. For the sake of convenience, the description will be made with the side of the thrust member 10 being the lower side and the side opposite to the thrust member 10 being the upper side.
[0020]
The housing 7 is made of, for example, a soft metal material such as brass or a resin material such as a thermoplastic resin, and has a cylindrical side portion 7b and an annular seal portion 7a integrally extending from the upper end of the side portion 7b to the inner diameter side. And An inner peripheral surface 7a1 of the seal portion 7a faces a tapered surface 2a2 provided on an outer periphery of the shaft portion 2a via a predetermined seal space S. Further, a press-fitting portion 7b1 into which the thrust member 10 is press-fitted is formed at a lower end portion of the side portion 7b. The inner circumference of the press-fit portion 7b1 is larger in diameter than the inner peripheral surface 7c to which the bearing sleeve 8 is fixed, and the thickness of the press-fit portion 7b1 is smaller than the main portion of the side portion 7b. A fixing surface 7d having a predetermined axial dimension L is formed on the outer periphery of the housing 7.
[0021]
As shown in an enlarged manner in FIG. 6, the fixing surface 7d is located above the press-fitting portion 7b1, and is adjacent to the outer periphery of the press-fitting portion 7b1 via the step 7e. The fixing surface 7d has a substantially straight shape in the axial direction over the entire region L in the axial direction.
[0022]
FIG. 5 shows a state before the thrust member 10 is press-fitted into the press-fitting portion 7b1. The fixing surface 7d includes a deformation region 7d2 that deforms by a predetermined amount toward the outer diameter side with the press-fitting of the thrust member 10, and another region 7d1 (a region that does not expand and deform with the press-fitting of the thrust member 10). In this embodiment, the deformation region 7d2 has a tapered shape whose diameter gradually decreases downward, and is adjacent to the outer periphery of the press-fit portion 7b1 via the step portion 7e. Further, the deformation region 7d2 is retracted toward the inner diameter side with respect to the other region 7d1 by an amount corresponding to the deformation amount accompanying the press-fit of the thrust member 10. The dotted line in the right enlarged view of FIG. 5 indicates the position of the deformation area 7d2 after deformation, and the maximum retreat amount of the deformation area 7d2 is equal to the maximum deformation amount (radial amount) δ. Normally, the maximum deformation amount δ of the deformation region 7d2 is equal to or very close to the interference (radial amount) at the time of press-fitting of the thrust member 10, so the maximum retreat amount of the deformation region 7d2 is the press-fit of the thrust member 10. The design should be made to be equal to the interference (radial amount) at the time.
[0023]
The shaft member 2 is formed of, for example, a metal material such as stainless steel, and includes a shaft portion 2a and a flange portion 2b provided integrally or separately at a lower end of the shaft portion 2a. The tapered surface 2a2 of the shaft portion 2a gradually decreases in diameter toward the upper side (outside of the housing 7), and also functions as a centrifugal force seal by rotation of the shaft member 2.
[0024]
The bearing sleeve 8 is formed of, for example, a porous body made of a sintered metal, particularly a porous body of a sintered metal containing copper as a main component, and is formed in a cylindrical shape, and is fixed at a predetermined position on an inner peripheral surface 7c of the housing 7. .
[0025]
On the inner peripheral surface 8a of the bearing sleeve 8 formed of this sintered metal, two upper and lower regions serving as radial bearing surfaces of a first radial bearing portion R1 and a second radial bearing portion R2 are provided axially separated. In these two regions, for example, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 as shown in FIG. The upper dynamic pressure groove 8a1 is formed asymmetrically in the axial direction with respect to the axial center m (the axial center of the region between the upper and lower inclined grooves), and the axial dimension X1 of the upper region is lower than the axial center m. It is larger than the axial dimension X2 of the side region. One or more axial grooves 8d1 are formed on the outer peripheral surface 8d of the bearing sleeve 8 over the entire length in the axial direction. In this example, three axial grooves 8d1 are formed at equal circumferential intervals. Further, chamfers 8e and 8f are formed at the outer peripheral corners of the upper end face 8b and the lower end face 8c, respectively.
[0026]
For example, a spiral dynamic pressure groove 8c1 as shown in FIG. 3B is formed on the lower end surface 8c of the bearing sleeve 8, which is the thrust bearing surface of the first thrust bearing portion S1. The shape of the dynamic pressure groove may be a herringbone shape, a radial groove shape, or the like.
[0027]
As shown in FIG. 3C, the upper end surface 8b of the bearing sleeve 8 is divided into an inner diameter side region 8b2 and an outer diameter side region 8b3 by a V-shaped cross-sectional circumferential groove 8b1 provided at a substantially central portion in the radial direction. One or more radial grooves 8b21 are formed in the divided inner diameter side region 8b2. In this example, three radial grooves 8b21 are formed at equal circumferential intervals.
[0028]
2, the inner surface 7a2 of the seal portion 7a is partially in contact with the inner diameter region 8b2 of the upper end surface 8b of the bearing sleeve 8 at its inner diameter region 7a21. The side region 7a22 is formed so as to be inclined or curved away from the upper end surface 8b of the bearing sleeve 8. Therefore, a slim part P having a required space volume is formed between the outer diameter side region 7a22 of the inner side surface 7a2 and the upper end surface 8b (including the chamfer 8e). The inner diameter side of the threaded portion P communicates with the circumferential groove 8b1, and the outer diameter side communicates with the axial groove 8d1.
[0029]
The thrust member 10 is formed of, for example, a metal material such as brass, and is press-fitted and fixed to the inner periphery of the press-fitting portion 7b1 of the housing 7. As shown in FIG. 4, for example, a herringbone-shaped dynamic pressure groove 10a1 is formed on the upper end surface 10a of the thrust member 10, which serves as the thrust bearing surface of the second thrust bearing portion S2. The dynamic pressure groove may have a spiral shape, a radial groove shape, or the like.
[0030]
The outer peripheral portion 10c of the thrust member 10 includes a press-fit surface 10c1 that is press-fitted into the inner periphery of the press-fit portion 7b1 of the housing 7, a tapered surface 10c2 that extends from the upper end of the press-fit surface 10c1 in the inclined direction toward the inner diameter side and reaches the upper end surface 10a. The tapered surface 10c3 extends from the lower end of the press-fit surface 10c1 in the inclined direction toward the inner diameter side and reaches the lower end surface 10b.
[0031]
The hydrodynamic bearing device 1 of this embodiment is assembled in, for example, the following steps.
[0032]
First, the bearing sleeve 8 is inserted into the inner peripheral surface 7c of the housing 7, and its upper end surface 8b is brought into contact with the inner surface 7a2 of the seal portion 7a. Thereby, the bearing sleeve 8 is positioned with respect to the housing 7. The fixing of the bearing sleeve 8 to the inner peripheral surface 7c of the housing 7 can be performed by press-fitting, bonding, a combination of press-fitting and bonding, or other appropriate fixing means.
[0033]
Next, the shaft member 2 is mounted on the bearing sleeve 8. Note that the inner diameter of the bearing sleeve 8 is measured in a state where the bearing sleeve 8 is fixed to the housing 7, and dimension matching with the outer diameter of the shaft portion 2a (measured in advance) is performed to reduce the radial bearing gap. It can be set with high accuracy.
[0034]
Thereafter, the thrust member 10 is press-fitted to the inner periphery of the press-fitting portion 7b1 of the housing 7 to a predetermined position and fixed. Since the deformation region 7d2 of the fixed surface 7d of the housing 7 is retracted toward the inner diameter side with respect to the other region 7d1 by an amount corresponding to the deformation amount accompanying the press-fitting of the thrust member 10 (see FIG. 5), the thrust member 10 is moved. When press-fitted, the fixing surface 7d of the housing 7 has a substantially straight shape in the axial direction over the entire region L in the axial direction (see FIG. 6). Therefore, when the fixing surface 7d of the housing 7 is fixed to the inner periphery of the bracket 6, the fixing state is stabilized, and a desired fixing strength can be obtained.
[0035]
When assembly is completed as described above, the shaft portion 2a of the shaft member 2 is inserted into the inner peripheral surface 8a of the bearing sleeve 8, and the flange portion 2b is connected to the lower end surface 8c of the bearing sleeve 8 and the upper end surface 10a of the thrust member 10. And is housed in the space between them. Thereafter, the internal space of the housing 7 sealed with the seal portion 7a is filled with a lubricating fluid, for example, lubricating oil, including the internal pores of the bearing sleeve 8. The oil level of the lubricating oil is maintained within the range of the seal space S.
[0036]
When the shaft member 2 rotates, the regions (two upper and lower regions) of the inner peripheral surface 8a of the bearing sleeve 8 to be radial bearing surfaces respectively oppose the outer peripheral surface 2a1 of the shaft portion 2a via the radial bearing gap. Further, the region of the lower end surface 8c of the bearing sleeve 8 that becomes the thrust bearing surface is opposed to the upper end surface 2b1 of the flange portion 2b via the thrust bearing gap, and the region that becomes the thrust bearing surface of the upper end surface 10a of the thrust member 10 is It faces the lower end surface 2b2 of the flange portion 2b via a thrust bearing gap. Then, with the rotation of the shaft member 2, a dynamic pressure of the lubricating oil is generated in the radial bearing gap, and the shaft portion 2a of the shaft member 2 is rotated in the radial direction by an oil film of the lubricating oil formed in the radial bearing gap. Freely supported in a non-contact manner. Thus, a first radial bearing portion R1 and a second radial bearing portion R2 that rotatably support the shaft member 2 in the radial direction in a non-contact manner are configured. At the same time, a dynamic pressure of lubricating oil is generated in the thrust bearing gap, and the flange portion 2b of the shaft member 2 is rotatably and non-contactly supported in both thrust directions by a lubricating oil film formed in the thrust bearing gap. . Thus, a first thrust bearing portion S1 and a second thrust bearing portion S2 that rotatably support the shaft member 2 in the thrust direction in a non-contact manner are configured.
[0037]
As described above, the dynamic pressure groove 8a1 of the first radial bearing portion R1 is formed so as to be asymmetric in the axial direction with respect to the axial center m, and the axial dimension X1 of the region above the axial center m is the lower region. (FIG. 3A). Therefore, when the shaft member 2 rotates, the lubricating oil drawing force (pumping force) by the dynamic pressure groove 8a1 is relatively larger in the upper region than in the lower region. The lubricating oil filled in the gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a flows downward due to the differential pressure of the pulling force, and the lubricating oil of the first thrust bearing portion S1 The gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a circulates through the path of the thrust bearing gap → the axial groove 8d1 → the threaded portion P → the circumferential groove 8b1 → the radial groove 8b21. And is drawn again into the radial bearing gap of the first radial bearing portion R1. In this way, by configuring the lubricating oil to flow and circulate in the internal space of the housing 7, it is possible to prevent a phenomenon in which the pressure of the lubricating oil in the internal space is locally reduced to a negative pressure. Problems such as generation of air bubbles, leakage of lubricating oil and generation of vibration due to the generation of air bubbles can be solved. Further, even if bubbles are mixed in the lubricating oil for some reason, the bubbles are discharged from the oil surface (gas-liquid interface) of the lubricating oil in the seal space S to the outside air when circulating with the lubricating oil. The adverse effects of air bubbles are more effectively prevented.
【The invention's effect】
According to the present invention, in a state where the thrust member is press-fitted, the fixing surface of the housing has a substantially straight shape in the axial direction over the entire region in the axial direction, so that the fixing surface is fixed to the inner periphery of the holding member. The fixing state is stable, and a desired fixing strength can be obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view of a spindle motor for information equipment using a hydrodynamic bearing device according to the present invention.
FIG. 2 is a cross-sectional view showing one embodiment of a hydrodynamic bearing device according to the present invention.
3 is a sectional view of the bearing sleeve {FIG. 3 (a)}, a lower end surface {FIG. 3 (b)}, and an upper end surface {FIG. 3 (c)}.
FIG. 4 is a view {FIG. 4 (a)} and a sectional view {FIG. 4 (b)} showing an upper end surface of the thrust member.
FIG. 5 is a partially enlarged cross-sectional view showing the periphery of a press-fit portion of a housing and the periphery of a deformation region of a fixing surface (before a thrust member is press-fitted).
FIG. 6 is a partially enlarged cross-sectional view showing the periphery of a press-fit portion of a housing and the periphery of a deformation region of a fixed surface (after press-fit of a thrust member).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dynamic-pressure bearing device 2 Shaft member 2a Shaft part 2b Flange part 7 Housing 7b1 Press-fitting part 7d Fixed surface 7d1 Other region 7d2 Deformation region 8 Bearing sleeve 8a Inner peripheral surface 10 Thrust member R1 Radial bearing portion R2 Radial bearing portion S1 Thrust bearing portion S2 Thrust bearing

Claims (7)

ハウジングと、該ハウジングの内周に固定された軸受スリーブと、軸部およびフランジ部を有する軸部材と、前記ハウジングの一端部に固定されたスラスト部材と、前記軸受スリーブと軸部との間に設けられ、ラジアル軸受隙間に生じる潤滑油の動圧作用で前記軸部をラジアル方向に非接触支持するラジアル軸受部と、前記軸受スリーブ及びスラスト部材とフランジ部との間に設けられ、スラスト軸受隙間に生じる潤滑油の動圧作用で前記フランジ部をスラスト方向に非接触支持するスラスト軸受部とを備えた動圧軸受装置において、
前記スラスト部材は、前記ハウジングの一端部に設けられた圧入部の内周に所定の締代をもって圧入され、
前記ハウジングは、その外周に、所定の軸方向寸法を有し、保持部材の内周に密着固定される固定面を有し、
前記固定面は、前記スラスト部材の圧入に伴って外径側に所定量変形する変形領域を有し、かつ、前記スラスト部材を圧入した状態で、軸方向全領域にわたって軸方向に実質的にストレートな形状を有することを特徴とする請求項1に記載の動圧軸受装置。
A housing, a bearing sleeve fixed to an inner periphery of the housing, a shaft member having a shaft portion and a flange portion, a thrust member fixed to one end of the housing, and a portion between the bearing sleeve and the shaft portion. A radial bearing portion, which is provided and radially supports the shaft portion in a non-contact manner by a dynamic pressure action of lubricating oil generated in the radial bearing gap, and is provided between the bearing sleeve and the thrust member and the flange portion; A thrust bearing portion for supporting the flange portion in a non-contact manner in a thrust direction by a dynamic pressure action of lubricating oil generated in the dynamic pressure bearing device,
The thrust member is press-fitted with a predetermined interference into an inner periphery of a press-fit portion provided at one end of the housing,
The housing has a predetermined axial dimension on its outer periphery, and has a fixed surface that is tightly fixed to the inner periphery of the holding member,
The fixing surface has a deformation region that is deformed by a predetermined amount toward the outer diameter side in accordance with the press-fitting of the thrust member, and, in a state where the thrust member is press-fitted, is substantially straight in the axial direction over the entire axial region. The dynamic pressure bearing device according to claim 1, wherein the dynamic pressure bearing device has a simple shape.
前記固定面の変形領域は、前記ハウジングの圧入部の他端側に隣接していることを特徴とする請求項1に記載の動圧軸受装置。The dynamic pressure bearing device according to claim 1, wherein the deformation area of the fixed surface is adjacent to the other end of the press-fit portion of the housing. 前記固定面の変形領域は、前記スラスト部材を圧入する前の状態で、前記ハウジングの一端側に向かって漸次縮径するテーパ形状を有することを特徴とする請求項1に記載の動圧軸受装置。2. The hydrodynamic bearing device according to claim 1, wherein the deformation region of the fixing surface has a tapered shape that gradually reduces in diameter toward one end of the housing before the thrust member is press-fitted. 3. . ハウジングと、該ハウジングの内周に固定された軸受スリーブと、軸部およびフランジ部を有する軸部材と、前記ハウジングの一端部に固定されたスラスト部材と、前記軸受スリーブと軸部との間に設けられ、ラジアル軸受隙間に生じる潤滑油の動圧作用で前記軸部をラジアル方向に非接触支持するラジアル軸受部と、前記軸受スリーブ及びスラスト部材とフランジ部との間に設けられ、スラスト軸受隙間に生じる潤滑油の動圧作用で前記フランジ部をスラスト方向に非接触支持するスラスト軸受部とを備えた動圧軸受装置を製造する方法において、
前記ハウジングの一端部に前記スラスト部材を所定の締代で圧入する圧入部を形成すると共に、前記ハウジングの外周に、所定の軸方向寸法を有し、保持部材の内周に密着固定される固定面を形成し、かつ、前記スラスト部材の圧入に伴って外径側に所定量変形する該固定面の変形領域を、その変形量に相当する量だけ該固定面の他の領域に対して内径側に後退させ、
前記スラスト部材を前記ハウジングの圧入部の内周に圧入して固定することを特徴とする動圧軸受装置の製造方法。
A housing, a bearing sleeve fixed to an inner periphery of the housing, a shaft member having a shaft portion and a flange portion, a thrust member fixed to one end of the housing, and a portion between the bearing sleeve and the shaft portion. A radial bearing portion, which is provided and radially supports the shaft portion in a non-contact manner by a dynamic pressure action of lubricating oil generated in the radial bearing gap, and is provided between the bearing sleeve and the thrust member and the flange portion; A method for manufacturing a hydrodynamic bearing device comprising: a thrust bearing portion for supporting the flange portion in a thrust direction in a non-contact manner by a dynamic pressure effect of lubricating oil generated in the
A press-fitting portion is formed at one end of the housing to press-fit the thrust member with a predetermined interference, and has a predetermined axial dimension on the outer periphery of the housing and is fixedly fixed to the inner periphery of the holding member. A deformation area of the fixed surface, which forms a surface and deforms by a predetermined amount toward the outer diameter side with the press-fitting of the thrust member, has an inner diameter with respect to another area of the fixed surface by an amount corresponding to the deformation amount. Back to the side,
A method of manufacturing a hydrodynamic bearing device, wherein the thrust member is press-fitted into an inner periphery of a press-fit portion of the housing and fixed.
前記固定面の変形領域を、前記ハウジングの圧入部の他端側に隣接させて設けたことを特徴とする請求項4に記載の動圧軸受装置の製造方法。The method according to claim 4, wherein a deformation region of the fixing surface is provided adjacent to the other end of the press-fit portion of the housing. 前記固定面の変形領域を、前記ハウジングの一端側に向かって漸次縮径するテーパ形状に形成したことを特徴とする請求項5に記載の動圧軸受装置の製造方法。The method according to claim 5, wherein a deformation region of the fixed surface is formed in a tapered shape whose diameter gradually decreases toward one end of the housing. 請求項1から3の何れかに記載の動圧軸受装置を備えたモータ。A motor comprising the dynamic pressure bearing device according to claim 1.
JP2002342145A 2002-11-26 2002-11-26 Dynamic pressure bearing device, method of manufacturing the same, and motor using the same Pending JP2004176778A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002342145A JP2004176778A (en) 2002-11-26 2002-11-26 Dynamic pressure bearing device, method of manufacturing the same, and motor using the same
US10/705,241 US7005768B2 (en) 2002-11-26 2003-11-12 Dynamic bearing device, producing method thereof, and motor using the same
CN200710153529A CN100582508C (en) 2002-11-26 2003-11-26 Dynamic pressure bearing device, method of manufacturing the same, and motor using the same
CNB2003101154704A CN100348876C (en) 2002-11-26 2003-11-26 Dynamic pressure bearing, mfg method and motor using same
CN200710153530XA CN101144499B (en) 2002-11-26 2003-11-26 Dynamic pressure bearing device and motor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002342145A JP2004176778A (en) 2002-11-26 2002-11-26 Dynamic pressure bearing device, method of manufacturing the same, and motor using the same

Publications (1)

Publication Number Publication Date
JP2004176778A true JP2004176778A (en) 2004-06-24

Family

ID=32704277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002342145A Pending JP2004176778A (en) 2002-11-26 2002-11-26 Dynamic pressure bearing device, method of manufacturing the same, and motor using the same

Country Status (2)

Country Link
JP (1) JP2004176778A (en)
CN (2) CN100582508C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103036348A (en) * 2011-09-30 2013-04-10 日本电产株式会社 Motor and disk drive apparatus
WO2023162059A1 (en) * 2022-02-24 2023-08-31 株式会社アイシン Manufacturing method of rotor for electric rotary machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5306747B2 (en) * 2008-09-09 2013-10-02 Ntn株式会社 Hydrodynamic bearing device
CN114233753B (en) * 2021-12-22 2024-01-16 武昌船舶重工集团有限公司 Manufacturing method of plastic sliding bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103036348A (en) * 2011-09-30 2013-04-10 日本电产株式会社 Motor and disk drive apparatus
WO2023162059A1 (en) * 2022-02-24 2023-08-31 株式会社アイシン Manufacturing method of rotor for electric rotary machine

Also Published As

Publication number Publication date
CN101144499B (en) 2010-06-09
CN101144499A (en) 2008-03-19
CN101144498A (en) 2008-03-19
CN100582508C (en) 2010-01-20

Similar Documents

Publication Publication Date Title
US7005768B2 (en) Dynamic bearing device, producing method thereof, and motor using the same
JP3942482B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND MOTOR HAVING THE SAME
JP4236891B2 (en) Hydrodynamic bearing device
JP2005321089A (en) Dynamic pressure bearing device
US8578610B2 (en) Method for manufacturing fluid dynamic bearing device
JP2007327544A (en) Dynamic-pressure bearing device
WO2005059387A1 (en) Fluid bearing device
JP4476670B2 (en) Hydrodynamic bearing device
JP4360482B2 (en) Hydrodynamic bearing device
JP4657734B2 (en) Hydrodynamic bearing device
JP2005337490A (en) Dynamic pressure bearing device
JP2004176778A (en) Dynamic pressure bearing device, method of manufacturing the same, and motor using the same
JP4309642B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP5490396B2 (en) Hydrodynamic bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP2006329391A (en) Dynamic pressure bearing arrangement
JP2005337364A (en) Dynamic pressure bearing device
JP2008144847A (en) Dynamic pressure bearing device
JP2008008472A (en) Fluid bearing device
JP2007071312A (en) Dynamic pressure bearing device
JP2005210896A (en) Spindle motor of disc drive
JP2004116623A (en) Fluid bearing device
JP2009103179A (en) Fluid bearing device
JP2004108546A (en) Hydrodynamic bearing device and spindle motor using the same
JP2006214542A (en) Fluid bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091112

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091211