JP2004116623A - Fluid bearing device - Google Patents

Fluid bearing device Download PDF

Info

Publication number
JP2004116623A
JP2004116623A JP2002279476A JP2002279476A JP2004116623A JP 2004116623 A JP2004116623 A JP 2004116623A JP 2002279476 A JP2002279476 A JP 2002279476A JP 2002279476 A JP2002279476 A JP 2002279476A JP 2004116623 A JP2004116623 A JP 2004116623A
Authority
JP
Japan
Prior art keywords
bearing
bearing portion
radial
shaft member
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002279476A
Other languages
Japanese (ja)
Other versions
JP4152707B2 (en
Inventor
Fumitada Satoji
里路 文規
Isao Komori
古森 功
Masaji Shimizu
清水 政次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2002279476A priority Critical patent/JP4152707B2/en
Priority to DE10344591.9A priority patent/DE10344591B4/en
Publication of JP2004116623A publication Critical patent/JP2004116623A/en
Application granted granted Critical
Publication of JP4152707B2 publication Critical patent/JP4152707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • G03G9/09716Inorganic compounds treated with organic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0821Developers with toner particles characterised by physical parameters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Sliding-Contact Bearings (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a lifting phenomenon of a shaft member during rotation. <P>SOLUTION: Of a first radial bearing part R1 and a second radial bearing part R2 provided in two vertical positions, a dynamic pressure groove 8a2 of the second radial bearing part R2 of a lower side (a side near to a thrust bearing part) is formed in an axially asymmetric shape with respect to an axial center m2, and an axial dimension X1 of a lower side area (a side near the thrust bearing part) than the axial center m2 is larger than an axial dimension X2 of an upper side area (a side near a seal part). By this, pumping force of lubricant by the dynamic pressure groove 8a2 becomes relatively larger in the lower side area (the side near the thrust bearing part) with respect to the upper side area (the side near the seal part). By a differential pressure of the pumping force, a phenomenon of a pressure of the lubricant in a thrust bearing part T periphery becoming higher than a pressure of the lubricant in a periphery of the seal part is prevented. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ラジアル軸受隙間に生じる潤滑油の油膜によって回転部材を非接触支持する流体軸受装置に関する。この軸受装置は、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置などのスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、あるいは電気機器、例えば軸流ファンなどの小型モータ用として好適である。
【0002】
【従来の技術】
上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化などが求められている。これらの要求性能を決定づける構成要素の一つに当該モータのスピンドルを支持する軸受があり、近年では、上記要求性能に優れた特性を有する流体軸受の使用が検討され、あるいは実際に使用されている。
【0003】
この種の流体軸受は、軸受隙間内の潤滑油に動圧を発生させる動圧発生手段を備えたいわゆる動圧軸受と、動圧発生手段を備えていないいわゆる真円軸受(軸受面が真円形状である軸受)とに大別される。
【0004】
例えば、HDD等のディスク装置のスピンドルモータに組込まれる流体軸受装置では、軸部材をラジアル方向に非接触支持するラジアル軸受部と、軸部材をスラスト方向に支持するスラスト軸受部とが設けられ、ラジアル軸受部として、軸受スリーブの内周面又は軸部材の外周面に動圧発生用の溝(動圧溝)を設けた動圧軸受が用いられる(例えば、特許文献1参照)。このラジアル軸受部は、高い軸受機能を得るため、軸方向に離隔して複数箇所に設けられる場合が多い。スラスト軸受部としては、例えば、軸部材の端面をハウジングの一端側に設けたスラスト軸受部でスラスト方向に支持する構造の軸受(いわゆるピボット軸受)が用いられる。通常、軸受スリーブはハウジングの内周の所定位置に固定され、また、ハウジングの内部空間に注油した潤滑油が外部に漏れるのを防止するため、ハウジングの他端側にシール部材を配設する場合が多い。
【0005】
【特許文献1】
特開2001―124057号公報
【0006】
【発明が解決しようとする課題】
この種の流体軸受装置では、ラジアル軸受部の軸受隙間や動圧溝の形状・寸法誤差等の理由により、軸受回転時、ハウジング一端側のスラスト軸受部周辺において潤滑油の圧力が高まり、ハウジング他端側のシール部周辺の潤滑油と圧力差が生じる場合がある。例えば、ラジアル軸受面にヘリングボーン形状の動圧溝を設けた動圧軸受を例に取ると、動圧溝が軸方向中心に対して軸方向対称に精度良く形成されている場合、該動圧溝による潤滑油のポンピング力は軸方向中心に対してシール部側とスラスト軸受部側とでバランスするが、製造誤差等により、動圧溝の形状が軸方向非対称になり、軸方向中心に対してシール部側の軸方向寸法がスラスト軸受部側の軸方向寸法よりも大きくなると、該動圧溝による潤滑油のポンピング力はシール部側がスラスト軸受部側に対して相対的に大きくなる。そして、このポンピング力の差圧により、シール部側からスラスト軸受部側に向いた潤滑油の圧力が加わり、これがスラスト軸受部周辺の潤滑油の圧力を高め、シール部周辺の潤滑油との圧力差を生じる原因となる。
【0007】
そして、上記の圧力差により、軸部材はシール部側に押し上げられる方向の軸方向力を受ける(以下、この軸方向力を「押し上げ力」という。)。通常、この種の流体軸受装置が組み込まれるモータでは、マグネットの吸着力などにより、軸部材をスラスト軸受部に押し付ける構造になっているが、上記の押し上げ力がこの押し付け力よりも大きくなると、軸部材の浮き上がり現象が生じ、モータ及びその周辺部位に好ましくない影響を与える可能性がある。
【0008】
本発明の課題は、上記の押し上げ力による軸部材の浮き上がり現象を防止することである。
【0009】
【課題を解決するための手段】
上記課題を解決するため、本発明は、ハウジングと、ハウジングの内部に設けられた軸受スリーブと、軸受スリーブの内周面に挿入された軸部材と、軸受スリーブの内周面と軸部材の外周面との間に設けられ、軸受隙間に生じる潤滑油の油膜で軸部材をラジアル方向に支持するラジアル軸受部と、ハウジングの一端側に設けられ、軸部材の端面をスラスト方向に支持するスラスト軸受部と、ハウジングの他端側に設けられ、軸部材の外周面との間にシール空間を形成するシール部とを備えた流体軸受装置において、軸受スリーブと軸部材との相対回転時に、スラスト軸受部周辺の潤滑油の圧力Ptが、シール部周辺の潤滑油の圧力Psに対して、Pt≦Psとなる構成を提供する。
【0010】
スラスト軸受部周辺の潤滑油の圧力Ptを、シール部周辺の潤滑油の圧力Psと同じか(Pt=Ps)、これよりも低くすることにより(Pt<Ps)、軸部材に対する上記押し上げ力の発生を回避して、軸部材の浮き上がり現象を防止することができる。
【0011】
Pt≦Psにする手段として、ラジアル軸受部を軸方向に離隔して複数箇所に設けると共に、動圧溝を有する動圧軸受とし、スラスト軸受部に最も近い個所に設けられているラジアル軸受部の側から他の箇所に設けられているラジアル軸受部の方向に潤滑油の引き込みが生じるように構成することができる。このように構成することで、スラスト軸受部に最も近いラジアル軸受部側から他のラジアル軸受側に向かう潤滑油の流動、すなわち、スラスト軸受部側からシール部側に向かう潤滑油の流動が生じ、これにより、スラスト軸受部周辺の潤滑油の圧力がシール部周辺の潤滑油の圧力よりも高くなる現象が防止される。
【0012】
より具体的には、次のような手段を採用することができる。
【0013】
第1の手段は、スラスト軸受部に最も近い個所に設けられているラジアル軸受部において、該ラジアル軸受部の動圧溝による潤滑油のポンピング力がシール部側よりもスラスト軸受部側が大きくなるように構成することである。このように構成することで、スラスト軸受部側からシール部側に向かう潤滑油の流動が生じ、これにより、スラスト軸受部周辺の潤滑油の圧力がシール部周辺の潤滑油の圧力よりも高くなる現象が防止される。
【0014】
第1の手段として、スラスト軸受部に最も近い個所に設けられているラジアル軸受部の動圧溝を軸方向非対称に形成することができる。例えば、該動圧溝をヘリングボーン形状とする場合、該動圧溝の軸方向中心に対して、スラスト軸受部側の軸方向寸法をシール部側の軸方向寸法よりも大きくし、若しくは、スラスト軸受部側の溝本数、溝角度、溝深さ等をシール部側と異ならせる。あるいは、第1の手段として、スラスト軸受部に最も近い個所に設けられているラジアル軸受部の動圧溝を軸方向対称に形成する一方、該動圧溝のシール部側端部領域と対向する相手部材の表面に軸受隙間よりも大きな隙間を形成する逃げ部を設けて、シール部側の軸方向寸法を擬似的にスラスト軸受部側の軸方向寸法よりも小さくしても良い。
【0015】
第2の手段は、スラスト軸受部に最も近い個所に設けられているラジアル軸受部を、他の箇所に設けられているラジアル軸受部に対して、軸受隙間内に発生する潤滑油の動圧が高くなるように構成することである。このように構成することで、スラスト軸受部に最も近いラジアル軸受部側から他のラジアル軸受側に向かう潤滑油の流動、すなわち、スラスト軸受部側からシール部側に向かう潤滑油の流動が生じ、これにより、スラスト軸受部周辺の潤滑油の圧力がシール部周辺の潤滑油の圧力よりも高くなる現象が防止される。
【0016】
第2の手段には、スラスト軸受部に最も近い個所に設けられているラジアル軸受部の軸受隙間を、他の個所に設けられているラジアル軸受部の軸受隙間よりも小さくする手段、スラスト軸受部に最も近い個所に設けられているラジアル軸受部の動圧溝と他のラジアル軸受部の動圧溝とで溝本数、溝角度、溝深さ等を異ならせる手段が含まれる。あるいは、第2の手段として、軸受スリーブを焼結金属等の多孔質体で形成すると共に、スラスト軸受部に最も近い個所に設けられているラジアル軸受部を構成する軸受スリーブの軸受面の表面開孔率(表面開孔とは多孔質体組織の内部気孔が外表面に開孔した部位をいい、表面開孔率とは単位面積当たりに占める表面開孔の総面積の比率をいう。)を、他の個所に設けられているラジアル軸受部を構成する軸受スリーブの軸受面の表面開孔率よりも小さくしても良い。
【0017】
また、Pt≦Ps、特にPt=Psにする手段として、ラジアル軸受部を軸方向に離隔して複数箇所に設けると共に、スラスト軸受部に最も近い個所に設けられているラジアル軸受部とスラスト軸受部との間に、該ラジアル軸受部の軸受半径隙間よりも大きな隙間を有する空間部を設けることができる。該空間部を設けることにより、スラスト軸受部周辺における潤滑油の圧力の高まりが緩和され、シール部周辺における潤滑油の圧力よりも高くなる現象が防止される。この手段は、ラジアル軸受部をいわゆる真円軸受(軸受面に動圧溝を有しない軸受)として構成する場合、動圧軸受として構成する場合の双方に適用することができる。
【0018】
上記空間部の隙間の最大値は軸受半径隙間の10倍以上とするのが好ましい。これは次の理由による。一般に、流体軸受の負荷容量Wは下記の式で表すことができる。
W=W1・{αωR/(ΔR)}・β
ここで、W:負荷容量、W1:軸受仕様によって決まる無次元負荷容量、α:潤滑油粘度、ω:回転角速度、R:軸受半径、ΔR:軸受半径隙間、β:偏心率である。
【0019】
上記の式より、軸受半径隙間ΔRが10倍になると、負荷容量Wは1/100になることが分かる。従って、上記空間部の隙間を軸受半径隙間の10倍以上とすることで、上記空間部の負荷容量をラジアル軸受部の負荷容量の1/100(1%)以下にすることができ、これにより、スラスト軸受部周辺における潤滑油の圧力の高まりを効果的に緩和することができる。
【0020】
上記構成において、ハウジングは樹脂材料で形成することができる。樹脂製のハウジングは射出成形等の型成形で形成することができるので、旋削等の機械加工による金属製ハウジングに比べて低コストで製造することができると共に、プレス加工による金属製ハウジングに比べて比較的高い精度を確保することができる。特に、軸受スリーブをインサート部品として、ハウジングを樹脂材料で型成形することにより、ハウジングに対する軸受スリーブの接着等による固定作業を省略できるので、組立工程の簡素化に有利である。この場合、軸受スリーブを焼結金属で形成すると、型成形時に、溶融樹脂が軸受スリーブの固定面の表面開孔から内部気孔内に侵入して固化し、そして、内部気孔内で固化した部分が一種のアンカー効果によって、ハウジングと軸受スリーブとを強固に密着させるので、両者間の相対的な位置ずれが生じず、安定した固定状態が得られる。
【0021】
【発明の実施の形態】
以下、本発明の実施形態を図1〜図5に基づいて説明する。
【0022】
図1は、この実施形態に係る流体軸受装置1を組み込んだ情報機器用スピンドルモータの一構成例を示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に支持する流体軸受装置1と、軸部材2に装着されたディスクハブ3と、半径方向のギャップを介して対向させたモータステータ4およびモータロータ5とを備えている。ステータ4はケーシング6の外周に取付けられ、ロータ5はディスクハブ3の内周に取付けられる。流体軸受装置1のハウジング7は、ケーシング6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが一又は複数枚保持される。ステータ4に通電すると、ステータ4とロータ5との間の励磁力でロータ5が回転し、それによってディスクハブ3および軸部材2が一体となって回転する。
【0023】
図2は、第1の実施形態に係る流体軸受装置(流体動圧軸受装置)1を示している。この流体軸受装置1は、ハウジング7と、軸受スリーブ8と、軸部材2とを構成部品して構成される。
【0024】
軸受スリーブ8の内周面8aと軸部材2の外周面2aとの間に第1ラジアル軸受部R1と第2ラジアル軸受部R2とが軸方向に離隔して設けられる。また、軸部材2の下側端面2bとハウジング7の底部7cの内底面7c2との間にスラスト軸受部Tが設けられる。尚、説明の便宜上、スラスト軸受部Tの側を下側、スラスト軸受部Tと反対の側(シール部7aの側)を上側として説明を進める。
【0025】
軸受スリーブ8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする燒結金属の多孔質体で円筒状に形成される。この焼結金属で形成された軸受スリーブ8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面となる上下2つの領域が軸方向に離隔して設けられ、該2つの領域には、例えば図3に示すようなヘリングボーン形状の動圧溝8a1、8a2がそれぞれ形成される。上側(シール部7aに近い側)の動圧溝8a1は、軸方向中心m1に対して軸方向対称形状に形成されているが(軸方向中心m1からの軸方向寸法はX0)、下側(スラスト軸受部Tに近い側)の動圧溝8a2は、軸方向中心m2に対して軸方向非対称形状に形成されている。この例では、軸方向中心m2より下側領域(スラスト軸受部Tに近い側)の軸方向寸法X1を、上側領域(シール部7aに近い側)の軸方向寸法X2よりも大きくしている(X1>X2)。
【0026】
軸部材2は、例えば、ステンレス鋼等の金属材で形成され、その下側端部に、ハウジング7の底部7cの内底面7c2と協働してスラスト軸受部Tを構成する凸球状の下側端面2bを備えている。
【0027】
ハウジング7は、焼結金属からなる軸受スリーブ8をインサート部品として、樹脂を射出成形(インサート成形)して形成され、円筒状の側部7bと、側部7bの上端から内径側に一体に延びた環状のシール部7aと、側部7bの下端と一体に連続した底部7cとを備えている。シール部7aの内周面7a1は、軸部材2の外周面2aと所定のシール空間Sを介して対向する。上記のインサート成形により、側部7bの内周面7b1は軸受スリーブ8の外周面8dと、シール部7aの内側面7a2は軸受スリーブ8の上側端面8bと、内底面7c1は軸受スリーブ8の下側端面8cと相互に密着した状態で結合される。軸受スリーブ8が多孔質の焼結金属で形成されているので、前述したアンカー効果により、ハウジング7と軸受スリーブ8とが強固に密着して、両者の安定した固定状態が得られる。
【0028】
この実施形態の流体軸受装置1は、上記のインサート成形により相互に固定されたハウジング7および軸受スリーブ8に対して、軸部材2を装着することによって組立ることができる。すなわち、軸部材2を軸受スリーブ8の内周面8aに挿入して、その下側端面2bをハウジング7の内底面7c2に接触させる。そして、軸受スリーブ8の内部気孔を含め、シール部7aで密封されたハウジング7の内部空間に潤滑油を充満する。この潤滑油の油面はシール空間S内に維持される。
【0029】
軸部材2の回転時、軸受スリーブ8の内周面8aのラジアル軸受面となる領域(上下2箇所の領域)は、それぞれ、軸部材2の外周面2aとラジアル軸受隙間を介して対向する。そして、軸部材2の回転に伴い、上記軸受隙間に潤滑油の動圧が発生し、軸部材2が上記軸受隙間内に形成される潤滑油の油膜によってラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが構成される。同時に、軸部材2の下側端面2bがハウジング7の内底面7c2によって接触支持される。これにより、軸部材2をスラスト方向に回転自在に支持するスラスト軸受部Tが構成される。
【0030】
上述したように、上下2箇所に設けられた第1ラジアル軸受部R1と第2ラジアル軸受部R2のうち、下側(スラスト軸受部Tに近い側)の第2ラジアル軸受部R2の動圧溝8a2は、軸方向中心m2に対して軸方向非対称形状に形成されており、軸方向中心m2より下側領域(スラスト軸受部Tに近い側)の軸方向寸法X1が、上側領域(シール部7aに近い側)の軸方向寸法X2よりも大きくなっている。そのため、軸部材2の回転時、動圧溝8a2による潤滑油のポンピング力は下側領域(スラスト軸受部Tに近い側)が上側領域(シール部7aに近い側)に対して相対的に大きくなる。そして、このポンピング力の差圧により、第2ラジアル軸受部R2の側から第1ラジアル軸受部R1の側に向かう潤滑油の流動、すなわち、スラスト軸受部T側からシール部7a側に向かう潤滑油の流動が生じ、これにより、スラスト軸受部Tの周辺における潤滑油の圧力がシール部7aの周辺における潤滑油の圧力よりも高くなる現象が防止される。
【0031】
図4は、第2の実施形態に係る流体軸受装置(流体動圧軸受装置)11を示している。この流体軸受装置11では、第1ラジアル軸受部R1の動圧溝8a1’と第2ラジアル軸受部R2の動圧溝8a2’を共に軸方向対称に形成する一方、第2ラジアル軸受部R2については、その動圧溝8a2’のシール部7a側の端部領域を、軸部材2の外周面2aに設けた逃げ部2cに対向させている。軸部材2の逃げ部2cは、第1ラジアル軸受部R1と第2ラジアル軸受部R2との間の領域に設けられ、逃げ部2cと軸受スリーブ8の内周面8aとの間の隙間は、第2ラジアル軸受部R2(及び第1ラジアル軸受部R1)の軸受隙間よりも大きい。従って、動圧溝8a2’のシール部7a側の端部領域をこの逃げ部2cに対向させることにより、動圧溝8a2’のシール部7a側の軸方向寸法は擬似的にスラスト軸受部T側の軸方向寸法よりも小さくなる。そのため、軸部材2の回転時、動圧溝8a2’による潤滑油のポンピング力は下側領域(スラスト軸受部Tに近い側)が上側領域(シール部7aに近い側)に対して相対的に大きくなる。そして、このポンピング力の差圧により、第2ラジアル軸受部R2の側から第1ラジアル軸受部R1の側に向かう潤滑油の流動、すなわち、スラスト軸受部T側からシール部7a側に向かう潤滑油の流動が生じ、これにより、スラスト軸受部Tの周辺における潤滑油の圧力がシール部7aの周辺における潤滑油の圧力よりも高くなる現象が防止される。
【0032】
図5は、第3の実施形態に係る流体軸受装置(流体動圧軸受装置)におけるスラスト軸受部Tの周辺を示している。この流体軸受装置では、第2ラジアル軸受部R2とスラスト軸受部Tとの間に、第2ラジアル軸受部R2の軸受半径隙間C0よりも大きな隙間C1を有する空間部S1を設けている。
【0033】
この実施形態において、軸部材2の下側端面2bは凸球状に形成され、下側端面2bの曲率半径よりも小さな曲率半径を有する繋ぎ部2dを介して外周面2aと滑らかに連続している。また、空間部S1の隙間C1の最大値は、第2ラジアル軸受部R2の軸受半径隙間C0の10倍以上となるように設定されている。また、第1ラジアル軸受部R1の動圧溝と第2ラジアル軸受部R2の動圧溝は共に軸方向対称に形成されている。その他の構成は、図2に示す実施形態と同様である。
【0034】
第2ラジアル軸受部R2とスラスト軸受部Tとの間に、第2ラジアル軸受部R2の軸受半径隙間C0よりも大きな隙間C1を有する空間部S1を設けることにより、特に、空間部S1の隙間C1の最大値を第2ラジアル軸受部R2の軸受半径隙間C0の10倍以上となるように設定することにより、スラスト軸受部T周辺における潤滑油の圧力の高まりが緩和され、シール部7a周辺における潤滑油の圧力よりも高くなる現象が防止される。
【0035】
【発明の効果】
本発明によれば、軸受スリーブと軸部材との相対回転時に、スラスト軸受部周辺の潤滑油の圧力Ptがシール部周辺の潤滑油の圧力Psに対してPt≦Psとなる構成としたので、軸部材の浮き上がり現象を防止することができる。
【図面の簡単な説明】
【図1】本発明に係る流体軸受装置を使用した情報機器用スピンドルモータの断面図である。
【図2】第1の実施形態に係る流体軸受装置を示す断面図である。
【図3】軸受スリーブの断面図である。
【図4】第2の実施形態に係る流体軸受装置を示す断面図である。
【図5】第3の実施形態に係る流体軸受装置におけるスラスト軸受部の周辺を示す拡大断面図である。
【符号の説明】
1   流体軸受装置(動圧軸受装置)
11   流体軸受装置(動圧軸受装置)
2   軸部材
2a  外周面
2b  端面
2c  逃げ部
7   ハウジング
7a  シール部
8   軸受スリーブ
8a  内周面
8a1、8a1’ 動圧溝
8a2 8a2’ 動圧溝
R1  第1ラジアル軸受部
R2  第2ラジアル軸受部
T   スラスト軸受部
S   シール空間
S1  空間部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrodynamic bearing device that supports a rotating member in a non-contact manner by an oil film of lubricating oil generated in a radial bearing gap. This bearing device is a spindle for information equipment, for example, a magnetic disk device such as an HDD or FDD, an optical disk device such as a CD-ROM, a CD-R / RW, a DVD-ROM / RAM, or a magneto-optical disk device such as an MD or MO. It is suitable for a motor, a polygon scanner motor of a laser beam printer (LBP), or a small motor such as an electric device such as an axial fan.
[0002]
[Prior art]
The above various motors are required to have high speed, low cost, low noise, etc. in addition to high rotational accuracy. One of the components that determine the required performance is a bearing that supports the spindle of the motor.In recent years, the use of a fluid bearing having characteristics excellent in the required performance has been studied or actually used. .
[0003]
Fluid bearings of this type include a so-called dynamic pressure bearing having a dynamic pressure generating means for generating dynamic pressure in lubricating oil in a bearing gap, and a so-called circular bearing without a dynamic pressure generating means (the bearing surface is a perfect circle). Bearings).
[0004]
For example, in a fluid bearing device incorporated in a spindle motor of a disk device such as an HDD, a radial bearing portion that supports a shaft member in a non-contact manner in a radial direction and a thrust bearing portion that supports the shaft member in a thrust direction are provided. As the bearing portion, a dynamic pressure bearing in which a groove (dynamic pressure groove) for generating dynamic pressure is provided on the inner peripheral surface of the bearing sleeve or the outer peripheral surface of the shaft member is used (for example, see Patent Document 1). This radial bearing portion is often provided at a plurality of locations separated in the axial direction in order to obtain a high bearing function. As the thrust bearing, for example, a bearing (so-called pivot bearing) having a structure in which the end surface of the shaft member is supported in the thrust direction by a thrust bearing provided on one end side of the housing is used. Normally, the bearing sleeve is fixed at a predetermined position on the inner periphery of the housing, and a seal member is provided at the other end of the housing to prevent the lubricating oil injected into the internal space of the housing from leaking outside. There are many.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-124057
[Problems to be solved by the invention]
In this type of hydrodynamic bearing device, when the bearing rotates, the pressure of the lubricating oil increases around the thrust bearing at one end of the housing due to the bearing gap of the radial bearing and the shape and dimensional error of the dynamic pressure groove. There may be a pressure difference between the lubricating oil around the end seal and the lubricating oil. For example, taking a dynamic pressure bearing in which a herringbone-shaped dynamic pressure groove is provided on a radial bearing surface as an example, if the dynamic pressure groove is formed with high accuracy in an axially symmetric manner with respect to the axial center, the dynamic pressure The pumping force of the lubricating oil by the groove is balanced between the seal portion side and the thrust bearing portion side with respect to the axial center, but due to manufacturing errors, the shape of the dynamic pressure groove becomes axially asymmetric, and When the axial dimension on the seal portion side becomes larger than the axial dimension on the thrust bearing portion side, the pumping force of the lubricating oil by the dynamic pressure grooves becomes relatively larger on the seal portion side than on the thrust bearing portion side. Due to the differential pressure of the pumping force, the pressure of the lubricating oil from the seal portion side to the thrust bearing portion side is applied, which increases the pressure of the lubricating oil around the thrust bearing portion, and the pressure with the lubricating oil around the seal portion. It causes a difference.
[0007]
Then, the shaft member receives an axial force in a direction in which the shaft member is pushed up toward the seal portion due to the pressure difference (hereinafter, this axial force is referred to as a "push-up force"). Usually, in a motor in which this type of hydrodynamic bearing device is incorporated, a structure is used in which a shaft member is pressed against a thrust bearing portion by an attraction force of a magnet or the like. A lifting phenomenon of the member may occur, which may have an undesired effect on the motor and its surrounding parts.
[0008]
An object of the present invention is to prevent the shaft member from being lifted by the above-described pushing force.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a housing, a bearing sleeve provided inside the housing, a shaft member inserted into an inner peripheral surface of the bearing sleeve, an inner peripheral surface of the bearing sleeve, and an outer periphery of the shaft member. A radial bearing portion provided between the first and second surfaces and radially supporting the shaft member with a lubricating oil film generated in a bearing gap; and a thrust bearing provided on one end side of the housing and supporting the end surface of the shaft member in the thrust direction. And a seal part provided on the other end side of the housing and forming a seal space between the outer peripheral surface of the shaft member and the bearing member. A configuration is provided in which the pressure Pt of the lubricating oil around the part is Pt ≦ Ps with respect to the pressure Ps of the lubricating oil around the seal part.
[0010]
By setting the pressure Pt of the lubricating oil around the thrust bearing portion to be equal to (Pt = Ps) or lower than the pressure Ps of the lubricating oil around the seal portion (Pt <Ps), the push-up force of the shaft member is reduced. It is possible to prevent the shaft member from lifting up by avoiding the occurrence.
[0011]
As means for satisfying Pt ≦ Ps, a radial bearing portion is provided at a plurality of locations spaced apart in the axial direction, a dynamic pressure bearing having a dynamic pressure groove is provided, and a radial bearing portion provided at a location closest to the thrust bearing portion is provided. The lubricating oil can be drawn from the side in the direction of the radial bearing provided at another location. With this configuration, the flow of the lubricating oil from the radial bearing portion side closest to the thrust bearing portion toward the other radial bearing side, that is, the flow of the lubricating oil flowing from the thrust bearing portion side to the seal portion side is generated, This prevents a phenomenon in which the pressure of the lubricating oil around the thrust bearing is higher than the pressure of the lubricating oil around the seal.
[0012]
More specifically, the following means can be adopted.
[0013]
The first means is that, in a radial bearing portion provided at a position closest to the thrust bearing portion, the pumping force of the lubricating oil by the dynamic pressure groove of the radial bearing portion is larger on the thrust bearing portion side than on the seal portion side. Is to be configured. With such a configuration, the flow of the lubricating oil from the thrust bearing portion side to the seal portion side occurs, whereby the pressure of the lubricating oil around the thrust bearing portion becomes higher than the pressure of the lubricating oil around the seal portion. The phenomenon is prevented.
[0014]
As a first means, a dynamic pressure groove of a radial bearing portion provided at a position closest to the thrust bearing portion can be formed asymmetrically in the axial direction. For example, when the dynamic pressure groove has a herringbone shape, the axial dimension on the thrust bearing portion side is larger than the axial dimension on the seal portion side with respect to the axial center of the dynamic pressure groove, or The number of grooves, the groove angle, the groove depth, etc. on the bearing part side are different from those on the seal part side. Alternatively, as a first means, a dynamic pressure groove of a radial bearing portion provided at a position closest to the thrust bearing portion is formed symmetrically in the axial direction, while facing the seal portion side end region of the dynamic pressure groove. A clearance may be provided on the surface of the mating member to form a clearance larger than the bearing clearance, and the axial dimension on the seal part side may be artificially made smaller than the axial dimension on the thrust bearing part side.
[0015]
The second means is that the dynamic pressure of the lubricating oil generated in the bearing gap is changed between the radial bearing portion provided at the location closest to the thrust bearing portion and the radial bearing portion provided at another location. It is configured to be higher. With this configuration, the flow of the lubricating oil from the radial bearing portion side closest to the thrust bearing portion toward the other radial bearing side, that is, the flow of the lubricating oil flowing from the thrust bearing portion side to the seal portion side is generated, This prevents a phenomenon in which the pressure of the lubricating oil around the thrust bearing is higher than the pressure of the lubricating oil around the seal.
[0016]
The second means includes a means for reducing a bearing gap of a radial bearing portion provided at a position closest to the thrust bearing portion to a bearing clearance of a radial bearing portion provided at another position, and a thrust bearing portion. Means for making the number of grooves, the groove angle, the groove depth, and the like different between the dynamic pressure groove of the radial bearing portion provided at the position closest to the above and the dynamic pressure groove of the other radial bearing portion. Alternatively, as a second means, the bearing sleeve is formed of a porous body such as a sintered metal and the surface of the bearing surface of the bearing sleeve constituting the radial bearing portion provided at a position closest to the thrust bearing portion. The porosity (the surface porosity refers to the site where the internal pores of the porous body tissue are opened on the outer surface, and the surface porosity refers to the ratio of the total area of the surface pores per unit area). Alternatively, the opening ratio may be smaller than the surface porosity of the bearing surface of the bearing sleeve constituting the radial bearing portion provided at another location.
[0017]
As means for setting Pt ≦ Ps, particularly Pt = Ps, radial bearings are provided at a plurality of locations spaced apart in the axial direction, and a radial bearing and a thrust bearing provided at a location closest to the thrust bearing are provided. And a space having a gap larger than the bearing radial gap of the radial bearing. By providing the space, the increase in the pressure of the lubricating oil around the thrust bearing portion is reduced, and the phenomenon that the pressure of the lubricating oil around the seal portion becomes higher than the lubricating oil is prevented. This means can be applied to both cases where the radial bearing portion is configured as a so-called perfect circular bearing (a bearing having no dynamic pressure groove on the bearing surface) and when configured as a dynamic pressure bearing.
[0018]
It is preferable that the maximum value of the gap in the space is 10 times or more the bearing gap. This is for the following reason. Generally, the load capacity W of a fluid bearing can be expressed by the following equation.
W = W1 · {αωR 4 / (ΔR) 2 } · β
Here, W: load capacity, W1: dimensionless load capacity determined by bearing specifications, α: lubricating oil viscosity, ω: rotational angular velocity, R: bearing radius, ΔR: bearing radius gap, β: eccentricity.
[0019]
From the above equation, it can be seen that the load capacity W becomes 1/100 when the bearing radial gap ΔR increases tenfold. Therefore, the load capacity of the space can be reduced to 1/100 (1%) or less of the load capacity of the radial bearing by setting the gap of the space to be at least 10 times the bearing radial gap. Thus, it is possible to effectively reduce the increase in the pressure of the lubricating oil around the thrust bearing.
[0020]
In the above configuration, the housing can be formed of a resin material. Since the resin housing can be formed by injection molding or other mold forming, it can be manufactured at a lower cost than a metal housing made by machining such as turning, and also compared to a metal housing made by pressing. Relatively high accuracy can be secured. In particular, by molding the housing with a resin material using the bearing sleeve as an insert part, the work of fixing the bearing sleeve to the housing by bonding or the like can be omitted, which is advantageous in simplifying the assembly process. In this case, if the bearing sleeve is formed of a sintered metal, at the time of molding, the molten resin penetrates into the internal pores from the surface opening of the fixing surface of the bearing sleeve and solidifies, and the solidified portion in the internal pores is formed. Since the housing and the bearing sleeve are firmly adhered to each other by a kind of anchor effect, relative displacement between the two does not occur and a stable fixed state can be obtained.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0022]
FIG. 1 shows an example of the configuration of a spindle motor for information equipment incorporating a hydrodynamic bearing device 1 according to this embodiment. This spindle motor is used in a disk drive device such as an HDD, and includes a fluid bearing device 1 that rotatably supports a shaft member 2, a disk hub 3 mounted on the shaft member 2, and a radial gap. And a motor stator 4 and a motor rotor 5 that face each other. The stator 4 is attached to the outer periphery of the casing 6, and the rotor 5 is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is mounted on the inner periphery of the casing 6. The disk hub 3 holds one or more disks D such as magnetic disks. When the stator 4 is energized, the rotor 5 rotates by the exciting force between the stator 4 and the rotor 5, whereby the disk hub 3 and the shaft member 2 rotate integrally.
[0023]
FIG. 2 shows a hydrodynamic bearing device (fluid dynamic bearing device) 1 according to the first embodiment. The hydrodynamic bearing device 1 includes a housing 7, a bearing sleeve 8, and a shaft member 2 as components.
[0024]
A first radial bearing portion R1 and a second radial bearing portion R2 are provided between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a of the shaft member 2 so as to be separated in the axial direction. A thrust bearing portion T is provided between the lower end surface 2b of the shaft member 2 and the inner bottom surface 7c2 of the bottom 7c of the housing 7. For convenience of explanation, the description will be made with the side of the thrust bearing portion T being the lower side and the side opposite to the thrust bearing portion T (the side of the seal portion 7a) being the upper side.
[0025]
The bearing sleeve 8 is formed of, for example, a porous body made of a sintered metal, in particular, a porous body of a sintered metal containing copper as a main component. On the inner peripheral surface 8a of the bearing sleeve 8 formed of this sintered metal, two upper and lower regions serving as radial bearing surfaces of a first radial bearing portion R1 and a second radial bearing portion R2 are provided axially separated. In these two regions, for example, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 as shown in FIG. 3, respectively, are formed. The dynamic pressure groove 8a1 on the upper side (closer to the seal portion 7a) is formed symmetrically in the axial direction with respect to the axial center m1 (the axial dimension from the axial center m1 is X0), but on the lower side (X0). The dynamic pressure groove 8a2 on the side close to the thrust bearing portion T) is formed in an asymmetric shape in the axial direction with respect to the axial center m2. In this example, the axial dimension X1 in the region below the axial center m2 (the side closer to the thrust bearing portion T) is larger than the axial dimension X2 in the upper region (the side closer to the seal portion 7a) ( X1> X2).
[0026]
The shaft member 2 is formed of, for example, a metal material such as stainless steel. An end face 2b is provided.
[0027]
The housing 7 is formed by injection-molding (insert molding) a resin using a bearing sleeve 8 made of a sintered metal as an insert part, and extends integrally from the upper end of the cylindrical side part 7b to the inner diameter side. It has an annular seal portion 7a and a bottom portion 7c integrally connected to the lower end of the side portion 7b. The inner peripheral surface 7a1 of the seal portion 7a faces the outer peripheral surface 2a of the shaft member 2 via a predetermined seal space S. By the insert molding described above, the inner peripheral surface 7b1 of the side portion 7b is the outer peripheral surface 8d of the bearing sleeve 8, the inner surface 7a2 of the seal portion 7a is the upper end surface 8b of the bearing sleeve 8, and the inner bottom surface 7c1 is the lower portion of the bearing sleeve 8. It is joined with the side end face 8c in a state of being in close contact with each other. Since the bearing sleeve 8 is formed of a porous sintered metal, the housing 7 and the bearing sleeve 8 are firmly adhered to each other by the above-described anchor effect, and a stable fixed state of both is obtained.
[0028]
The hydrodynamic bearing device 1 of this embodiment can be assembled by mounting the shaft member 2 to the housing 7 and the bearing sleeve 8 fixed to each other by the insert molding described above. That is, the shaft member 2 is inserted into the inner peripheral surface 8a of the bearing sleeve 8, and the lower end surface 2b is brought into contact with the inner bottom surface 7c2 of the housing 7. Then, lubricating oil is filled in the internal space of the housing 7 including the internal pores of the bearing sleeve 8 and sealed by the seal portion 7a. The oil level of the lubricating oil is maintained in the seal space S.
[0029]
When the shaft member 2 rotates, the regions (two upper and lower regions) of the inner peripheral surface 8a of the bearing sleeve 8 to be radial bearing surfaces respectively oppose the outer peripheral surface 2a of the shaft member 2 via the radial bearing gap. Then, with the rotation of the shaft member 2, a dynamic pressure of the lubricating oil is generated in the bearing gap, and the shaft member 2 is rotatably and non-contactly supported in the radial direction by an oil film of the lubricating oil formed in the bearing gap. You. Thus, a first radial bearing portion R1 and a second radial bearing portion R2 that rotatably support the shaft member 2 in the radial direction in a non-contact manner are configured. At the same time, the lower end surface 2b of the shaft member 2 is contacted and supported by the inner bottom surface 7c2 of the housing 7. Thus, a thrust bearing portion T that rotatably supports the shaft member 2 in the thrust direction is configured.
[0030]
As described above, of the first radial bearing portion R1 and the second radial bearing portion R2 provided at the upper and lower two places, the dynamic pressure groove of the lower (closer to the thrust bearing portion T) second radial bearing portion R2. 8a2 is formed in an asymmetric shape in the axial direction with respect to the axial center m2, and the axial dimension X1 in a region below the axial center m2 (closer to the thrust bearing portion T) is in the upper region (seal portion 7a). Is larger than the axial dimension X2 on the side closer to (). Therefore, when the shaft member 2 rotates, the pumping force of the lubricating oil by the dynamic pressure groove 8a2 is relatively larger in the lower region (the side closer to the thrust bearing portion T) than in the upper region (the side closer to the seal portion 7a). Become. The differential pressure of the pumping force causes the flow of the lubricating oil from the second radial bearing portion R2 to the first radial bearing portion R1, ie, the lubricating oil flowing from the thrust bearing portion T to the seal portion 7a. This prevents the phenomenon that the pressure of the lubricating oil around the thrust bearing portion T becomes higher than the pressure of the lubricating oil around the seal portion 7a.
[0031]
FIG. 4 shows a hydrodynamic bearing device (fluid dynamic bearing device) 11 according to the second embodiment. In this hydrodynamic bearing device 11, the dynamic pressure groove 8a1 'of the first radial bearing portion R1 and the dynamic pressure groove 8a2' of the second radial bearing portion R2 are both formed axially symmetrically, while the second radial bearing portion R2 is An end region of the dynamic pressure groove 8a2 'on the seal portion 7a side is opposed to a relief portion 2c provided on the outer peripheral surface 2a of the shaft member 2. The relief portion 2c of the shaft member 2 is provided in a region between the first radial bearing portion R1 and the second radial bearing portion R2, and the clearance between the relief portion 2c and the inner peripheral surface 8a of the bearing sleeve 8 is: It is larger than the bearing clearance of the second radial bearing portion R2 (and the first radial bearing portion R1). Accordingly, by making the end region of the dynamic pressure groove 8a2 'on the seal portion 7a side to face the relief portion 2c, the axial dimension of the dynamic pressure groove 8a2' on the seal portion 7a side is pseudo-thrust bearing portion T side. Is smaller than the dimension in the axial direction. Therefore, when the shaft member 2 rotates, the pumping force of the lubricating oil by the dynamic pressure grooves 8a2 'is such that the lower region (the side closer to the thrust bearing portion T) is relatively to the upper region (the side closer to the seal portion 7a). growing. The differential pressure of the pumping force causes the flow of the lubricating oil from the second radial bearing portion R2 to the first radial bearing portion R1, ie, the lubricating oil flowing from the thrust bearing portion T to the seal portion 7a. This prevents the phenomenon that the pressure of the lubricating oil around the thrust bearing portion T becomes higher than the pressure of the lubricating oil around the seal portion 7a.
[0032]
FIG. 5 shows the periphery of a thrust bearing portion T in a hydrodynamic bearing device (fluid dynamic pressure bearing device) according to the third embodiment. In this hydrodynamic bearing device, a space portion S1 having a gap C1 larger than a bearing radial gap C0 of the second radial bearing portion R2 is provided between the second radial bearing portion R2 and the thrust bearing portion T.
[0033]
In this embodiment, the lower end surface 2b of the shaft member 2 is formed in a convex spherical shape, and is smoothly connected to the outer peripheral surface 2a via a connecting portion 2d having a radius of curvature smaller than the radius of curvature of the lower end surface 2b. . The maximum value of the gap C1 in the space S1 is set to be 10 times or more the bearing radius gap C0 of the second radial bearing R2. The dynamic pressure grooves of the first radial bearing portion R1 and the dynamic pressure grooves of the second radial bearing portion R2 are both formed symmetrically in the axial direction. Other configurations are the same as those of the embodiment shown in FIG.
[0034]
By providing a space S1 having a gap C1 larger than the bearing radial gap C0 of the second radial bearing R2 between the second radial bearing R2 and the thrust bearing T, the gap C1 of the space S1 is particularly provided. Is set to be 10 times or more the bearing radial gap C0 of the second radial bearing portion R2, so that the increase in the pressure of the lubricating oil around the thrust bearing portion T is reduced, and the lubrication around the seal portion 7a is reduced. The phenomenon that the pressure becomes higher than the oil pressure is prevented.
[0035]
【The invention's effect】
According to the present invention, at the time of relative rotation between the bearing sleeve and the shaft member, the pressure Pt of the lubricating oil around the thrust bearing portion satisfies Pt ≦ Ps with respect to the pressure Ps of the lubricating oil around the seal portion. The floating phenomenon of the shaft member can be prevented.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a spindle motor for information equipment using a hydrodynamic bearing device according to the present invention.
FIG. 2 is a cross-sectional view illustrating the hydrodynamic bearing device according to the first embodiment.
FIG. 3 is a sectional view of a bearing sleeve.
FIG. 4 is a sectional view showing a hydrodynamic bearing device according to a second embodiment.
FIG. 5 is an enlarged cross-sectional view illustrating the periphery of a thrust bearing in a hydrodynamic bearing device according to a third embodiment.
[Explanation of symbols]
1 Fluid bearing device (dynamic bearing device)
11 Hydrodynamic bearing device (dynamic pressure bearing device)
2 Shaft member 2a Outer peripheral surface 2b End surface 2c Relief portion 7 Housing 7a Seal portion 8 Bearing sleeve 8a Inner peripheral surface 8a1, 8a1 'Dynamic pressure groove 8a2 8a2' Dynamic pressure groove R1 First radial bearing portion R2 Second radial bearing portion T Thrust Bearing S Seal space S1 Space

Claims (7)

ハウジングと、該ハウジングの内部に設けられた軸受スリーブと、該軸受スリーブの内周面に挿入された軸部材と、前記軸受スリーブの内周面と前記軸部材の外周面との間に設けられ、軸受隙間に生じる潤滑油の油膜で前記軸部材をラジアル方向に支持するラジアル軸受部と、前記ハウジングの一端側に設けられ、前記軸部材の端面をスラスト方向に支持するスラスト軸受部と、前記ハウジングの他端側に設けられ、前記軸部材の外周面との間にシール空間を形成するシール部とを備えた流体軸受装置において、
前記軸受スリーブと前記軸部材との相対回転時に、前記スラスト軸受部周辺の潤滑油の圧力Ptが、前記シール部周辺の潤滑油の圧力Psに対して、Pt≦Psとなることを特徴とする流体軸受装置。
A housing, a bearing sleeve provided inside the housing, a shaft member inserted into an inner peripheral surface of the bearing sleeve, and a shaft member provided between an inner peripheral surface of the bearing sleeve and an outer peripheral surface of the shaft member. A radial bearing portion that radially supports the shaft member with an oil film of lubricating oil generated in a bearing gap, a thrust bearing portion provided at one end of the housing, and supporting an end surface of the shaft member in a thrust direction; A fluid bearing device provided on the other end side of the housing, and a seal portion forming a seal space between the housing and the outer peripheral surface of the shaft member.
When the bearing sleeve and the shaft member rotate relative to each other, the pressure Pt of the lubricating oil around the thrust bearing portion satisfies Pt ≦ Ps with respect to the pressure Ps of the lubricating oil around the seal portion. Fluid bearing device.
前記ラジアル軸受部は軸方向に離隔して複数箇所に設けられており、前記ラジアル軸受部は動圧溝を有し、前記スラスト軸受部に最も近い個所に設けられているラジアル軸受部から他の箇所に設けられているラジアル軸受部の方向に潤滑油の引き込みが生じるように構成されていることを特徴とする請求項1記載の流体軸受装置。The radial bearing portion is provided at a plurality of locations apart from each other in the axial direction, the radial bearing portion has a dynamic pressure groove, and the radial bearing portion provided at a location closest to the thrust bearing portion is different from the radial bearing portion. The hydrodynamic bearing device according to claim 1, wherein lubricating oil is drawn in the direction of the radial bearing portion provided at the location. 前記スラスト軸受部に最も近い個所に設けられているラジアル軸受部は、前記動圧溝による潤滑油のポンピング力が前記シール部の側よりも前記スラスト軸受部の側が大きくなるように構成されていることを特徴とする請求項2記載の流体軸受装置。The radial bearing portion provided at a position closest to the thrust bearing portion is configured such that the pumping force of the lubricating oil by the dynamic pressure groove is larger on the thrust bearing portion side than on the seal portion side. The hydrodynamic bearing device according to claim 2, wherein: 前記ラジアル軸受部は軸方向に離隔して複数箇所に設けられており、前記スラスト軸受部に最も近い個所に設けられているラジアル軸受部と前記スラスト軸受部との間に、該ラジアル軸受部の軸受半径隙間よりも大きな隙間を有する空間部が設けられていることを特徴とする請求項1記載の流体軸受装置。The radial bearing portion is provided at a plurality of locations apart from each other in the axial direction, and between the radial bearing portion and the thrust bearing portion provided at a position closest to the thrust bearing portion, the radial bearing portion is provided. 2. The hydrodynamic bearing device according to claim 1, wherein a space having a gap larger than the bearing radius gap is provided. 前記空間部の隙間の最大値は前記軸受半径隙間の10倍以上であることを特徴とする請求項4記載の流体軸受装置。The hydrodynamic bearing device according to claim 4, wherein the maximum value of the gap in the space is at least 10 times the bearing radial gap. 前記軸受スリーブは焼結金属で形成されていることを特徴とする請求項1から5の何れかに記載の流体軸受装置。The hydrodynamic bearing device according to any one of claims 1 to 5, wherein the bearing sleeve is formed of a sintered metal. 前記ハウジングは樹脂材料で形成されていることを特徴とする請求項1から6の何れかに記載の流体軸受装置。7. The hydrodynamic bearing device according to claim 1, wherein the housing is formed of a resin material.
JP2002279476A 2002-09-25 2002-09-25 Hydrodynamic bearing device Expired - Fee Related JP4152707B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002279476A JP4152707B2 (en) 2002-09-25 2002-09-25 Hydrodynamic bearing device
DE10344591.9A DE10344591B4 (en) 2002-09-25 2003-09-25 Toner, its use, two-component developer and method of producing fixed images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002279476A JP4152707B2 (en) 2002-09-25 2002-09-25 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2004116623A true JP2004116623A (en) 2004-04-15
JP4152707B2 JP4152707B2 (en) 2008-09-17

Family

ID=32040457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002279476A Expired - Fee Related JP4152707B2 (en) 2002-09-25 2002-09-25 Hydrodynamic bearing device

Country Status (2)

Country Link
JP (1) JP4152707B2 (en)
DE (1) DE10344591B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304565A (en) * 2005-04-25 2006-11-02 Matsushita Electric Ind Co Ltd Brushless electric motor and its manufacturing method
US7950854B2 (en) 2006-09-29 2011-05-31 Panasonic Corporation Hydrodynamic bearing type rotary device and recording and reproducing apparatus equipped with same
WO2019159787A1 (en) * 2018-02-19 2019-08-22 Ntn株式会社 Fluid dynamic pressure bearing device and motor provided with same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6878133B2 (en) 2016-05-20 2021-05-26 キヤノン株式会社 toner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW350042B (en) * 1994-12-21 1999-01-11 Canon Kk Toner for developing electrostatic image

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304565A (en) * 2005-04-25 2006-11-02 Matsushita Electric Ind Co Ltd Brushless electric motor and its manufacturing method
US7950854B2 (en) 2006-09-29 2011-05-31 Panasonic Corporation Hydrodynamic bearing type rotary device and recording and reproducing apparatus equipped with same
WO2019159787A1 (en) * 2018-02-19 2019-08-22 Ntn株式会社 Fluid dynamic pressure bearing device and motor provided with same

Also Published As

Publication number Publication date
JP4152707B2 (en) 2008-09-17
DE10344591A1 (en) 2004-04-22
DE10344591B4 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
JP3942482B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND MOTOR HAVING THE SAME
KR20100089073A (en) Fluid dynamic-pressure bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2004116667A (en) Dynamic pressure bearing device
JP3774080B2 (en) Hydrodynamic bearing unit
JP4476670B2 (en) Hydrodynamic bearing device
JP2004176816A (en) Dynamic pressure bearing device
JP3983435B2 (en) Hydrodynamic bearing unit
JP4152707B2 (en) Hydrodynamic bearing device
JP4689283B2 (en) Hydrodynamic bearing device
JP2007071274A (en) Dynamic pressure bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP4309642B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2000352416A (en) Dynamic pressure type bearing unit and its manufacture
JP2006329391A (en) Dynamic pressure bearing arrangement
JP4579013B2 (en) Hydrodynamic bearing device
JP4048013B2 (en) Hydrodynamic bearing unit
JP3782918B2 (en) Hydrodynamic bearing unit
JP3828464B2 (en) Spindle motor and disk drive device having the same
JP2001124059A (en) Dynamic pressure bearing unit
JP4024007B2 (en) Hydrodynamic bearing unit
JP2004197889A (en) Dynamic-pressure bearing device
JP4394657B2 (en) Hydrodynamic bearing unit
JP2006194383A (en) Dynamic pressure bearing device
JP7195195B2 (en) Bearing sleeve, hydrodynamic bearing device, and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080702

R150 Certificate of patent or registration of utility model

Ref document number: 4152707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees