JP4579013B2 - Hydrodynamic bearing device - Google Patents

Hydrodynamic bearing device Download PDF

Info

Publication number
JP4579013B2
JP4579013B2 JP2005062762A JP2005062762A JP4579013B2 JP 4579013 B2 JP4579013 B2 JP 4579013B2 JP 2005062762 A JP2005062762 A JP 2005062762A JP 2005062762 A JP2005062762 A JP 2005062762A JP 4579013 B2 JP4579013 B2 JP 4579013B2
Authority
JP
Japan
Prior art keywords
housing
bearing
dynamic pressure
bearing device
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005062762A
Other languages
Japanese (ja)
Other versions
JP2006242363A (en
Inventor
政治 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2005062762A priority Critical patent/JP4579013B2/en
Publication of JP2006242363A publication Critical patent/JP2006242363A/en
Application granted granted Critical
Publication of JP4579013B2 publication Critical patent/JP4579013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

本発明は動圧軸受装置に関するものである。   The present invention relates to a hydrodynamic bearing device.

動圧軸受装置は、軸受部材と、軸受部材の内周に挿入した軸部材との相対回転により軸受隙間に生じた流体(潤滑流体)の動圧作用で軸部材を非接触支持する軸受装置である。この動圧軸受装置は、高速回転、高回転精度、低騒音等の特徴を備えるものであり、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等におけるディスクドライブ用のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイール、あるいは軸流ファンなどの小型モータ用として好適である。   The hydrodynamic bearing device is a bearing device that supports the shaft member in a non-contact manner by the hydrodynamic action of fluid (lubricating fluid) generated in the bearing gap due to relative rotation between the bearing member and the shaft member inserted in the inner periphery of the bearing member. is there. This hydrodynamic bearing device has features such as high-speed rotation, high rotation accuracy, and low noise. Information equipment, for example, magnetic disk devices such as HDD and FDD, CD-ROM, CD-R / RW, DVD- Small motors such as optical disk devices such as ROM / RAM, spindle motors for disk drives in magneto-optical disk devices such as MD and MO, polygon scanner motors of laser beam printers (LBP), projector color wheels, or axial fans Suitable for use.

例えば、HDD等のディスク装置のスピンドルモータに組み込まれる動圧軸受装置では、軸部と軸部の外径側に張り出したフランジ部とを有する軸部材をラジアル方向に非接触支持するラジアル軸受部と、スラスト方向に非接触支持するスラスト軸受部とが設けられる。前記動圧軸受において、ラジアル軸受部を構成する軸受部材(軸受スリーブ)の内周面又はこれに対向する軸部の外周面に、動圧発生部としての動圧溝を有するラジアル軸受面が形成される。また、スラスト軸受部を構成する軸受スリーブの端面やハウジングの底部の端面、あるいはこれに対向するフランジ部の端面に、動圧溝を有するスラスト軸受面が形成される(例えば、特許文献1参照)。
特開2002−61641号公報
For example, in a hydrodynamic bearing device incorporated in a spindle motor of a disk device such as an HDD, a radial bearing portion that non-contact supports a shaft member having a shaft portion and a flange portion projecting to the outer diameter side of the shaft portion in a radial direction; And a thrust bearing portion that is supported in a non-contact manner in the thrust direction. In the dynamic pressure bearing, a radial bearing surface having a dynamic pressure groove as a dynamic pressure generating portion is formed on an inner peripheral surface of a bearing member (bearing sleeve) constituting the radial bearing portion or on an outer peripheral surface of a shaft portion opposed thereto. Is done. Further, a thrust bearing surface having a dynamic pressure groove is formed on the end surface of the bearing sleeve constituting the thrust bearing portion, the end surface of the bottom portion of the housing, or the end surface of the flange portion facing the end surface (see, for example, Patent Document 1). .
JP 2002-61641 A

上記の動圧軸受装置では、情報機器の高性能化に伴い、必要とされる高い軸受性能を確保すべく、構成部品の加工精度や組立精度を高める努力がなされている。その一方で、情報機器の著しい低価格化により、この種の動圧軸受装置に対する低コスト化の要求も益々厳しくなっている。また携帯型情報端末の普及に伴い、動圧軸受装置の軽量化も求められている。   In the above-described hydrodynamic bearing device, efforts have been made to increase the processing accuracy and assembly accuracy of component parts in order to ensure the required high bearing performance as the performance of information equipment increases. On the other hand, the demand for cost reduction of this type of hydrodynamic bearing device is becoming more and more severe due to the remarkable price reduction of information equipment. In addition, with the widespread use of portable information terminals, there has been a demand for lighter dynamic bearing devices.

そこで近年、動圧軸受装置を低コスト化および軽量化する手段の一例として、ハウジングを金属材料の機械加工品から樹脂材料の射出成形品に置き換える試みがなされている。この樹脂製ハウジングを使用する場合、動圧軸受装置のモータへの組み込みは金属製ハウジングと同様に、例えば樹脂製ハウジングの外周面を金属製ブラケット(保持部材)の内周面に接着等の手段で固定することが考えられる。   Therefore, in recent years, as an example of means for reducing the cost and weight of the hydrodynamic bearing device, an attempt has been made to replace the housing from a metal machined product with a resin material injection molded product. When this resin housing is used, the dynamic pressure bearing device is incorporated into the motor in the same manner as the metal housing, for example, by bonding the outer peripheral surface of the resin housing to the inner peripheral surface of the metal bracket (holding member). It is possible to fix with.

ところで、モータ(動圧軸受装置)の運転時には、動圧軸受装置およびその周辺温度は高温になる。上記モータの各構成部品はその影響を受け熱膨張を起こすが、一般的に樹脂材料は金属材料よりも線膨張係数が高いため、樹脂材料の熱膨張による寸法変化は金属材料のそれよりも大きくなる。従って、上記のように保持部材が金属材料で、ハウジングが樹脂材料で形成されている場合、ハウジングの膨張量は保持部材のそれを上回る。この場合、ハウジングは高剛性の金属製保持部材によってその外周面を拘束されているため、径方向膨張分の逃げ代がない。そのため、ハウジングの底部が変形し、底部の内底面(スラスト軸受隙間に対向する面)の平面度が悪化するおそれがある。この平面度の悪化は、スラスト軸受部における軸部材の浮上量を不安定化させ、軸受性能の低下を招く。   By the way, during operation of the motor (dynamic pressure bearing device), the dynamic pressure bearing device and the surrounding temperature become high. Each component of the motor is affected by this and causes thermal expansion. Generally, resin materials have a higher coefficient of linear expansion than metal materials, so the dimensional change due to thermal expansion of resin materials is greater than that of metal materials. Become. Therefore, when the holding member is made of a metal material and the housing is made of a resin material as described above, the amount of expansion of the housing exceeds that of the holding member. In this case, since the outer peripheral surface of the housing is constrained by a highly rigid metal holding member, there is no clearance for the radial expansion. For this reason, the bottom of the housing is deformed, and the flatness of the inner bottom surface (the surface facing the thrust bearing gap) of the bottom may be deteriorated. This deterioration in flatness destabilizes the flying height of the shaft member in the thrust bearing portion, leading to a decrease in bearing performance.

そこで本発明の課題は、温度変化による回転精度の低下を抑制できる動圧軸受装置を低コストに提供することである。   Accordingly, an object of the present invention is to provide a hydrodynamic bearing device capable of suppressing a decrease in rotational accuracy due to a temperature change at a low cost.

上記課題を解決するため、本発明の動圧軸受装置は、軸部材と、底部を一体に備える有底筒状に樹脂で射出成形されたハウジングと、ハウジングの外周面を保持する金属製の保持部材と、ラジアル軸受隙間を備え、ラジアル軸受隙間に対向する二面の何れか一方に形成された動圧発生部でラジアル軸受隙間に流体の動圧作用を発生させて軸部材をラジアル方向に非接触支持するラジアル軸受部と、ハウジングの底部と軸部材との間のスラスト軸受隙間に生じる流体の動圧作用で軸部材をスラスト方向に非接触支持するスラスト軸受部とを備えるものであって、ハウジングの底部の外周面と、これに対向する保持部材の内周面との間に、両面を非接触にする逃げ部が全周にわたって設けられ、逃げ部は、少なくともハウジング底部の外底面からハウジング底部のスラスト軸受隙間と対向する面を超える軸方向領域にわたって形成されていることを特徴とするものである。 In order to solve the above-described problems, a hydrodynamic bearing device according to the present invention includes a shaft member, a housing injection- molded with resin in a bottomed cylindrical shape integrally including a bottom portion, and a metal holding member that holds the outer peripheral surface of the housing. The bearing and the radial bearing gap are provided, and the dynamic pressure generating portion formed on one of the two surfaces facing the radial bearing gap generates a dynamic pressure action of fluid in the radial bearing gap, thereby causing the shaft member to move in the radial direction. A radial bearing portion that supports contact, and a thrust bearing portion that supports the shaft member in a thrust direction by a dynamic pressure action of a fluid generated in a thrust bearing gap between the bottom portion of the housing and the shaft member, between the outer peripheral surface of the bottom of the housing, and the inner peripheral surface of the holding member opposed thereto, escape portion for the non-contact both sides is provided over the entire circumference, escape portion from the outer bottom surface of the at least housing bottom And it is characterized in that it is formed over the axial region exceeding the thrust bearing gap facing surfaces of Ujingu bottom.

上記のように、ハウジングの底部の外周面と、これに対向する保持部材の内周面との間に、両面を非接触にする逃げ部を設けることで、何らかの理由でハウジングの底部が径方向へ膨張し、あるいは保持部材の内径が縮小した場合でも、保持部材からハウジング底部に作用する半径方向の圧迫力を遮断することができる。従って、底部の平面度の悪化を抑制し、スラスト軸受部における軸部材の浮上量を安定化させることができる。   As described above, by providing a relief portion that makes both surfaces non-contact between the outer peripheral surface of the bottom portion of the housing and the inner peripheral surface of the holding member facing the housing, the bottom portion of the housing is radially oriented for some reason. Even when the holding member expands or the inner diameter of the holding member decreases, the radial compression force acting on the bottom of the housing from the holding member can be blocked. Accordingly, it is possible to suppress the deterioration of the flatness of the bottom portion and stabilize the flying height of the shaft member in the thrust bearing portion.

特に、ハウジングと保持部材を線膨張係数の異なる材料で形成した場合、例えばハウジングを樹脂で形成し、保持部材を金属で形成した場合には、両者の熱膨張量差により、ハウジング底部の膨張量が保持部材のそれを上回り、ハウジングの底部に保持部材から半径方向の圧迫力が作用する場合がある。この場合でも上記と同様に、圧迫力の伝達が逃げ部で遮断されるため、ハウジング底部に圧迫力が作用することはなく、ハウジング底部の変形を抑えることができる。   In particular, when the housing and the holding member are formed of materials having different linear expansion coefficients, for example, when the housing is formed of resin and the holding member is formed of metal, the amount of expansion at the bottom of the housing due to the difference in the amount of thermal expansion between the two. May exceed that of the holding member, and a radial compression force may act on the bottom of the housing from the holding member. Even in this case, similarly to the above, since the transmission of the compression force is blocked by the escape portion, the compression force does not act on the bottom portion of the housing, and the deformation of the bottom portion of the housing can be suppressed.

上記逃げ部は、ハウジング底部の外周を面取りすることで形成することができる。この面取りによりハウジング底部の角部が肉取りされて薄くなるので、ハウジングの底部から円筒状の側部にかけての部分の肉厚を均一化することができる。従って、樹脂材料の固化に伴って生じるヒケの発生を防止し、ハウジングを高精度に型成形することができる。なお、逃げ部はハウジング底部の外周と対向する保持部材の内周に設けることもできる。   The escape portion can be formed by chamfering the outer periphery of the housing bottom. By this chamfering, the corners of the bottom of the housing are thinned and thinned, so that the thickness of the portion from the bottom of the housing to the cylindrical side can be made uniform. Therefore, it is possible to prevent the occurrence of sink marks caused by the solidification of the resin material, and to mold the housing with high accuracy. Note that the relief portion can be provided on the inner periphery of the holding member facing the outer periphery of the housing bottom.

上記逃げ部の軸方向の形成幅が過小である場合、例えば逃げ部の軸方向長さがハウジング底部の肉厚以下の長さである場合には、底部外周のうち、特にスラスト軸受隙間と対向する面(内底面)の外径側の領域が保持部材で保持されるため、熱膨張量差による圧迫力がハウジング底部に作用し、内底面の平面度に悪影響を及ぼすおそれがある。これを回避するため、逃げ部は、軸方向で、ハウジングの底部のスラスト軸受隙間と対向する面(内底面)を超えて形成することが望ましい。   When the axial formation width of the relief portion is too small, for example, when the axial length of the relief portion is equal to or less than the thickness of the bottom of the housing, particularly the thrust bearing gap on the outer periphery of the bottom portion. Since the region on the outer diameter side of the surface (inner bottom surface) is held by the holding member, the compression force due to the difference in thermal expansion acts on the bottom of the housing, which may adversely affect the flatness of the inner bottom surface. In order to avoid this, it is desirable that the escape portion is formed beyond the surface (inner bottom surface) facing the thrust bearing gap at the bottom of the housing in the axial direction.

その一方、逃げ部の軸方向の形成幅が過大である場合、例えば逃げ部が、ラジアル軸受隙間に流体動圧を発生させるための動圧発生部の外径側領域にまで達している場合には、動圧発生部の外径側に存在するハウジングの肉厚が不均一となるため、この部分の熱膨張量が不均一化し、これが原因となってラジアル軸受隙間の幅が軸方向で変動するおそれがある。また、逃げ部の軸方向の形成幅が過大であると、保持部材との固定面が減少するため、所望の固定強度が得られないおそれもある。したがって、逃げ部は、軸方向でラジアル軸受部の動圧発生部に至るまでの領域に形成するのが望ましい。   On the other hand, when the axial formation width of the relief portion is excessive, for example, when the relief portion reaches the outer diameter side region of the dynamic pressure generating portion for generating fluid dynamic pressure in the radial bearing gap. Because the thickness of the housing on the outer diameter side of the dynamic pressure generating part is non-uniform, the amount of thermal expansion of this part becomes non-uniform, which causes the radial bearing gap width to fluctuate in the axial direction. There is a risk. Moreover, since the fixed surface with a holding member will reduce if the formation width of the axial direction of an escape part is excessive, there exists a possibility that desired fixed intensity | strength may not be obtained. Therefore, it is desirable to form the relief portion in a region extending in the axial direction to the dynamic pressure generating portion of the radial bearing portion.

ハウジングの底部外周に形成した逃げ部は、半径方向で、軸部材に設けたフランジ部の外周面よりも外径側に形成されていることが望ましい。動圧軸受装置がモータに組み込まれる際、軸部材の上端には、例えばディスクを載置するためのディスクハブが圧入等の手段で固定される。圧入には相当量の圧入力が必要で(軸受の用途や大きさにもよるが、例えば約1500N程度)、当該圧入力は軸部材のフランジ部を介してハウジングの底部に付加される。このとき、上記逃げ部がフランジ部の外周面よりも内径側に形成されていると、当該逃げ部の部分では底部の肉厚が薄くなっており、底部の特に外径側が圧入力に耐えられず変形する恐れがある。一方上記構成であれば、熱膨張時にも必要な逃げ代を確保しつつ、圧入力にも耐え得る構造とすることができる。   It is desirable that the relief portion formed on the outer periphery of the bottom portion of the housing is formed on the outer diameter side in the radial direction with respect to the outer peripheral surface of the flange portion provided on the shaft member. When the hydrodynamic bearing device is incorporated in the motor, for example, a disk hub for mounting a disk is fixed to the upper end of the shaft member by means such as press fitting. A considerable amount of pressure input is required for press-fitting (for example, about 1500 N, depending on the application and size of the bearing), and the pressure input is applied to the bottom of the housing via the flange portion of the shaft member. At this time, if the relief portion is formed on the inner diameter side of the outer peripheral surface of the flange portion, the thickness of the bottom portion is thin at the relief portion portion, and the outer diameter side of the bottom portion can particularly withstand pressure input. There is a risk of deformation. On the other hand, if it is the said structure, it can be set as the structure which can also be equal to a pressure input, ensuring a necessary escape allowance also at the time of thermal expansion.

なお、本発明におけるラジアル軸受部は、流体の動圧作用により圧力を発生させることができれば特にその形態を問わず、例えばヘリングボーン形状等の軸方向に傾斜した形状の動圧溝を設けた動圧軸受の他、ラジアル軸受隙間に複数のくさび状隙間を有する動圧軸受(多円弧軸受)、複数の軸方向溝形状の動圧溝を円周方向等間隔に設けた動圧軸受(ステップ軸受)で構成することができる。   Note that the radial bearing portion in the present invention is not particularly limited as long as the pressure can be generated by the dynamic pressure action of the fluid. For example, the radial bearing portion has a dynamic pressure groove having a shape inclined in the axial direction such as a herringbone shape. In addition to pressure bearings, dynamic pressure bearings (multi-arc bearings) having a plurality of wedge-shaped gaps in the radial bearing gap, and dynamic pressure bearings (step bearings) in which a plurality of axial groove-shaped dynamic pressure grooves are provided at equal intervals in the circumferential direction ).

以上の構成を有する動圧軸受装置は、ロータマグネットとステータコイルとを有するモータ、例えばHDD等のディスク装置用のスピンドルモータに好ましく使用することができる。   The hydrodynamic bearing device having the above configuration can be preferably used for a motor having a rotor magnet and a stator coil, for example, a spindle motor for a disk device such as an HDD.

以上から明らかなように、本発明によれば、温度変化による回転精度の低下を抑制できる動圧軸受装置を低コストに提供することができる。   As is apparent from the above, according to the present invention, a hydrodynamic bearing device capable of suppressing a decrease in rotational accuracy due to a temperature change can be provided at low cost.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明にかかる動圧軸受装置(流体動圧軸受装置)1を組み込んだ情報機器用スピンドルモータの一構成例を示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、動圧軸受装置1と、動圧軸受装置1の軸部材2に取り付けられたディスクハブ3と、例えば半径方向のギャップを介して対向させたスタータコイル4およびロータマグネット5と、動圧軸受装置1のハウジング7を保持する部材としての保持部材(ブラケット)6とを備えている。ステータコイル4は保持部材6の外周に取り付けられ、ロータマグネット5は、ディスクハブ3の内周に取り付けられている。ディスクハブ3は、その外周に磁気ディスク等のディスクDを一枚または複数枚保持する。また、保持部材6の内周にはハウジング7が取り付けられ、これにより動圧軸受装置1が保持部材6に固定される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する電磁力でロータマグネット5が回転し、それに伴ってディスクハブ3、軸部材2が回転する。   FIG. 1 shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device (fluid fluid dynamic bearing device) 1 according to the present invention. This spindle motor is used for a disk drive device such as an HDD, and is provided via a dynamic pressure bearing device 1, a disk hub 3 attached to a shaft member 2 of the dynamic pressure bearing device 1, and a radial gap, for example. A starter coil 4 and a rotor magnet 5 which are opposed to each other, and a holding member (bracket) 6 as a member for holding a housing 7 of the fluid dynamic bearing device 1 are provided. The stator coil 4 is attached to the outer periphery of the holding member 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The disk hub 3 holds one or more disks D such as magnetic disks on the outer periphery thereof. In addition, a housing 7 is attached to the inner periphery of the holding member 6, whereby the dynamic pressure bearing device 1 is fixed to the holding member 6. When the stator coil 4 is energized, the rotor magnet 5 is rotated by electromagnetic force generated between the stator coil 4 and the rotor magnet 5, and the disk hub 3 and the shaft member 2 are rotated accordingly.

図2は、上記スピンドルモータで使用される動圧軸受装置1の一例を示す拡大断面図である。この動圧軸受装置1は、回転中心に軸部2aを有する軸部材2と、軸部2aをその内周に挿入可能な軸受スリーブ8と、軸受スリーブ8を内周に固定した有底筒状のハウジング7と、ハウジング7の一端開口をシールするシール部材9とを主な構成部材として備える。なお、以下では、説明の便宜上、シール部材9によってシールされる側を上側、その軸方向反対側を下側として説明を進める。   FIG. 2 is an enlarged sectional view showing an example of the hydrodynamic bearing device 1 used in the spindle motor. The hydrodynamic bearing device 1 includes a shaft member 2 having a shaft portion 2a at the center of rotation, a bearing sleeve 8 in which the shaft portion 2a can be inserted into the inner periphery, and a bottomed cylindrical shape in which the bearing sleeve 8 is fixed to the inner periphery. The housing 7 and a seal member 9 for sealing one end opening of the housing 7 are provided as main constituent members. In the following description, for convenience of explanation, the description will be made with the side sealed by the seal member 9 as the upper side and the opposite side in the axial direction as the lower side.

軸部材2は、例えばステンレス鋼等の金属材料で、軸部2aとその一端に一体または別体に設けられたフランジ部2bとで構成される。あるいは、金属部分と樹脂部分とからなるハイブリッド構造(例えば軸部2aを金属材料で形成し、フランジ部2bを樹脂材料で形成する。)とされる。本実施形態において、軸部2aとフランジ部2bとは金属材料で形成され、フランジ部2bの両端面2b1、2b2は動圧溝のない平坦な平滑面に形成されている。   The shaft member 2 is made of, for example, a metal material such as stainless steel, and includes a shaft portion 2a and a flange portion 2b provided at one end of the shaft portion 2a. Or it is set as the hybrid structure (For example, the axial part 2a is formed with a metal material, and the flange part 2b is formed with a resin material) which consists of a metal part and a resin part. In the present embodiment, the shaft portion 2a and the flange portion 2b are formed of a metal material, and both end surfaces 2b1 and 2b2 of the flange portion 2b are formed as flat smooth surfaces without dynamic pressure grooves.

ハウジング7は、円筒状の側部7bと、側部7bの下端側開口を封口する底部7cとで形成されている。この実施形態では、側部7bと底部7cとがLCP(液晶ポリマー)やPPS(ポリフェニレンサルファイド)、あるいはPEEK(ポリエーテルエーテルケトン)等の樹脂材料で一体に射出成形されている。この構成であれば、ハウジング7の組立工数を低減して製造コストを低減することができると共に、ハウジング7を軽量化することができる。   The housing 7 is formed of a cylindrical side portion 7b and a bottom portion 7c that seals the lower end side opening of the side portion 7b. In this embodiment, the side portion 7b and the bottom portion 7c are integrally injection-molded with a resin material such as LCP (liquid crystal polymer), PPS (polyphenylene sulfide), or PEEK (polyether ether ketone). If it is this structure, while the assembly man-hour of the housing 7 can be reduced and manufacturing cost can be reduced, the housing 7 can be reduced in weight.

また、底部7cの内底面7c1の一部環状領域には、図示は省略するが、第2スラスト軸受部T2のスラスト軸受面Cが形成される。スラスト軸受面Cには、動圧発生部として、例えばスパイラル形状やヘリングボーン形状に配列された動圧溝が形成される。この動圧溝はハウジング7の射出成形と同時に形成されるため、別途底部7cに動圧溝を形成する手間を省き、製造コストの低減を図ることができる。   Further, although not shown in the drawing, a thrust bearing surface C of the second thrust bearing portion T2 is formed in a partial annular region of the inner bottom surface 7c1 of the bottom portion 7c. On the thrust bearing surface C, dynamic pressure grooves arranged in, for example, a spiral shape or a herringbone shape are formed as dynamic pressure generating portions. Since this dynamic pressure groove is formed at the same time as the injection molding of the housing 7, it is possible to save the labor of forming the dynamic pressure groove in the bottom portion 7c and reduce the manufacturing cost.

底部7cの外周には、外周角部を面取りした逃げ部11が全周にわたって形成されている。この逃げ部11は、ハウジング7の射出成形と同時に形成されたものであり、底部7cの下側端面(外底面)7c2に一端を有し、外周の所定の軸方向領域に亘って形成されている。なお、ハウジング7成形後の機械加工で逃げ部11を形成することもできる。   On the outer periphery of the bottom portion 7c, a relief portion 11 having a chamfered outer peripheral corner is formed over the entire periphery. The escape portion 11 is formed at the same time as the injection molding of the housing 7, and has one end on the lower end surface (outer bottom surface) 7c2 of the bottom portion 7c, and is formed over a predetermined axial region on the outer periphery. Yes. The relief portion 11 can also be formed by machining after the housing 7 is molded.

軸受スリーブ8は、円筒状に形成され、ハウジング7の内周面に固定される。この実施形態における軸受スリーブ8は、焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体で形成される。なお、焼結金属に限らず、例えば黄銅等の軟質金属で軸受スリーブ8を形成することもできる。   The bearing sleeve 8 is formed in a cylindrical shape and is fixed to the inner peripheral surface of the housing 7. The bearing sleeve 8 in this embodiment is formed of a porous body made of sintered metal, particularly a sintered metal porous body mainly composed of copper. Note that the bearing sleeve 8 can be formed not only of sintered metal but also of soft metal such as brass.

軸受スリーブ8の内周面8aには、図3(a)に示すように、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面となる上下2つの領域が軸方向に離隔して設けられている。上記2つの領域には、動圧発生部として、例えばヘリングボーン形状の動圧溝8a1、8a2がそれぞれ形成されている。上側の動圧溝8a1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。そのため、軸部材2の回転時、動圧溝8a1による流体(例えば潤滑油)の引き込み力(ポンピング力)は、下側の対称形の動圧溝8a2に比べ相対的に大きくなる。   On the inner peripheral surface 8a of the bearing sleeve 8, as shown in FIG. 3A, two upper and lower regions serving as radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2 are separated in the axial direction. Is provided. For example, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 are formed in the two regions as dynamic pressure generating portions. The upper dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions), and the axial dimension X1 of the upper region is lower than the axial center m. It is larger than the axial dimension X2 of the side region. Therefore, when the shaft member 2 rotates, the pulling force (pumping force) of the fluid (for example, lubricating oil) by the dynamic pressure groove 8a1 becomes relatively larger than that of the lower symmetrical dynamic pressure groove 8a2.

また、軸受スリーブ8の下側端面8bの、第1スラスト軸受部T1のスラスト軸受面Bとなる一部環状領域には、図3(b)に示すように、動圧発生部としての、例えばスパイラル形状に配列された複数の動圧溝8b1が形成されている。   Further, as shown in FIG. 3B, a part of the annular region of the lower end surface 8b of the bearing sleeve 8 serving as the thrust bearing surface B of the first thrust bearing portion T1, A plurality of dynamic pressure grooves 8b1 arranged in a spiral shape are formed.

軸受スリーブ8をハウジング7に固定する際には、軸受スリーブ8の下端面8bをハウジング7の内周に設けた段部7dと軸方向で係合させることにより、ハウジング7に対する軸受スリーブ8の軸方向の位置決めが行われ、かつ第1および第2スラスト軸受部のスラスト軸受隙間の幅が規定値に管理される。   When the bearing sleeve 8 is fixed to the housing 7, the shaft 7 of the bearing sleeve 8 with respect to the housing 7 is engaged by engaging the lower end surface 8 b of the bearing sleeve 8 with the step 7 d provided on the inner periphery of the housing 7 in the axial direction. The positioning in the direction is performed, and the width of the thrust bearing gap of the first and second thrust bearing portions is managed to a specified value.

ハウジング7の上端開口部7aには、金属材料あるいは樹脂材料で形成されたシール部材9が圧入、接着等の手段で固定されている。この実施形態でシール部材9は環状をなし、ハウジング7とは別体に形成されている。シール部材9の内周面9aは上方に向かうにつれて漸次拡径し、軸部2aの外周面2a1と所定容積のシール空間Sを介して対向する。また、シール部材9の下側端面9bは軸受スリーブ8の上側端面8cと当接している。シール部材9で密封された動圧軸受装置1の内部空間には流体としての潤滑油が充満され、この状態では、潤滑油の油面はシール空間Sの範囲内に維持される。なお、部品点数の削減および組立工数の削減のため、軸受スリーブ8の内周面8aの上端部側領域をラジアル軸受面となる領域よりもわずかに大径に形成し、この大径に形成した領域の内径側に所定容積のシール空間Sを形成することもできる。   A seal member 9 made of a metal material or a resin material is fixed to the upper end opening 7a of the housing 7 by means such as press-fitting or bonding. In this embodiment, the seal member 9 has an annular shape and is formed separately from the housing 7. The inner peripheral surface 9a of the seal member 9 gradually increases in diameter toward the upper side, and opposes the outer peripheral surface 2a1 of the shaft portion 2a via a seal space S having a predetermined volume. Further, the lower end surface 9 b of the seal member 9 is in contact with the upper end surface 8 c of the bearing sleeve 8. The internal space of the hydrodynamic bearing device 1 sealed with the seal member 9 is filled with lubricating oil as a fluid. In this state, the oil level of the lubricating oil is maintained within the range of the seal space S. In order to reduce the number of parts and the number of assembling steps, the upper end side region of the inner peripheral surface 8a of the bearing sleeve 8 is formed to have a slightly larger diameter than the region serving as the radial bearing surface, and this large diameter is formed. A seal space S having a predetermined volume can be formed on the inner diameter side of the region.

上記構成の動圧軸受装置1において、軸部材2が回転すると、軸受スリーブ8の内周面8aのラジアル軸受面となる上下二つの領域は、それぞれ軸部2aの外周面2a1とラジアル軸受隙間を介して対向する。そして軸部材2の回転に伴い、ラジアル軸受隙間に満たされた潤滑油による動圧作用が発生し、その圧力によって軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが形成される。   In the hydrodynamic bearing device 1 having the above-described configuration, when the shaft member 2 rotates, the upper and lower two regions serving as the radial bearing surface of the inner peripheral surface 8a of the bearing sleeve 8 each have a radial bearing gap between the outer peripheral surface 2a1 of the shaft portion 2a. Opposite through. Along with the rotation of the shaft member 2, a dynamic pressure action is caused by the lubricating oil filled in the radial bearing gap, and the pressure causes the shaft member 2 to rotate in the radial direction in a non-contact manner and to support the first radial bearing portion R 1. A second radial bearing portion R2 is formed.

また、軸部材2のフランジ部2bの上側端面2b1は、軸受スリーブ8の下側端面8bに形成されたスラスト軸受面Bと、スラスト軸受隙間を介して対向する。軸部材2が回転すると、スラスト軸受隙間に満たされた潤滑油が動圧作用を発生し、その圧力によって軸部材2をスラスト方向に回転自在に非接触支持する第1スラスト軸受部T1が形成される。同様に、フランジ部2bの下側端面2b2は、ハウジング7の底部7cの内底面7c1に形成されたスラスト軸受面Cとスラスト軸受隙間を介して対向する。軸部材2が回転すると、スラスト軸受隙間に満たされた潤滑油が動圧作用を発生し、その圧力によって軸部材2をスラスト方向に回転自在に非接触支持する第2スラスト軸受部T2が形成される。   Further, the upper end surface 2b1 of the flange portion 2b of the shaft member 2 faces the thrust bearing surface B formed on the lower end surface 8b of the bearing sleeve 8 via a thrust bearing gap. When the shaft member 2 rotates, the lubricating oil filled in the thrust bearing gap generates a dynamic pressure action, and the first thrust bearing portion T1 that supports the shaft member 2 in a non-contact manner in the thrust direction is formed by the pressure. The Similarly, the lower end surface 2b2 of the flange portion 2b faces the thrust bearing surface C formed on the inner bottom surface 7c1 of the bottom portion 7c of the housing 7 via a thrust bearing gap. When the shaft member 2 rotates, the lubricating oil filled in the thrust bearing gap generates a dynamic pressure action, and the pressure forms a second thrust bearing portion T2 that supports the shaft member 2 in a non-contact manner so as to be rotatable in the thrust direction. The

なお、軸部材2の回転中は、潤滑油がハウジング7の底部7c側に押し込まれるため、このままではスラスト軸受部T1、T2のスラスト軸受隙間での圧力が極端に高まり、これに起因して潤滑油中での気泡の発生や潤滑油の漏れ、あるいは振動の発生が懸念される。この場合でも、例えば図2に示すように、軸受スリーブ8の外周面8dおよびシール部材9の下側端面9bにスラスト軸受隙間(特に第1スラスト軸受部T1のスラスト軸受隙間)とシール空間Sを連通する循環路10a、10bを設ければ、この循環路10a、10bを通って潤滑油がスラスト軸受隙間とシール空間Sとの間で流動するため、かかる圧力差が早期に解消され、上記の弊害を防止することができる。図2では一例として、循環路10aを軸受スリーブ8の外周面8d、および循環路10bをシール部材9の下側端面9bに形成する場合を例示しているが、循環路10aをハウジング7の内周面に、循環路10bを軸受スリーブ8の上側端面8cに形成することもできる。   During the rotation of the shaft member 2, since the lubricating oil is pushed into the bottom 7c side of the housing 7, the pressure in the thrust bearing gap between the thrust bearing portions T1 and T2 increases extremely, and the lubrication is caused thereby. There is concern about the generation of bubbles in oil, leakage of lubricating oil, or generation of vibration. Even in this case, for example, as shown in FIG. 2, a thrust bearing gap (particularly the thrust bearing gap of the first thrust bearing portion T1) and the seal space S are formed on the outer peripheral surface 8d of the bearing sleeve 8 and the lower end surface 9b of the seal member 9. If the circulation paths 10a and 10b that communicate with each other are provided, the lubricating oil flows between the thrust bearing gap and the seal space S through the circulation paths 10a and 10b. It is possible to prevent harmful effects. In FIG. 2, as an example, a case where the circulation path 10 a is formed on the outer peripheral surface 8 d of the bearing sleeve 8 and the circulation path 10 b is formed on the lower end surface 9 b of the seal member 9 is illustrated. A circulation path 10 b can be formed on the upper end surface 8 c of the bearing sleeve 8 on the peripheral surface.

動圧軸受装置1は、以上のようにして形成された後、モータに組み込まれる(図1参照)。動圧軸受装置1がモータに組み込まれる際には、図2に示すようにハウジング7の外周面7b1の一部あるいは全部の軸方向領域が、例えばアルミ合金等の金属材料で形成された保持部材6の内周面に接着、あるいは圧入接着等の手段で固定される。   The hydrodynamic bearing device 1 is formed as described above and then incorporated into a motor (see FIG. 1). When the hydrodynamic bearing device 1 is incorporated into a motor, as shown in FIG. 2, a holding member in which a part or all of the axial direction region of the outer peripheral surface 7b1 of the housing 7 is formed of a metal material such as an aluminum alloy, for example. It is fixed to the inner peripheral surface of 6 by means such as adhesion or press-fit adhesion.

樹脂製ハウジング7を保持部材6に固定する際、図4(b)に示すように、従来の金属製ハウジングと同様に、ハウジング底部7cの外周面を含む外周面7b1を金属製の保持部材6の内周面に固定すると、動圧軸受装置1の昇温による金属と樹脂の熱膨張量差で、底部7cに保持部材6から圧迫力が作用し、この圧迫力で底部7cが変形して内底面7c1の平面度が悪化するおそれがある。内底面7c1の平面度が悪化すると、第2スラスト軸受部T2のスラスト軸受隙間の幅が不安定化するため、軸部材2を安定して浮上させることができず、軸受性能の低下を招くおそれがある。   When the resin housing 7 is fixed to the holding member 6, as shown in FIG. 4 (b), the outer peripheral surface 7b1 including the outer peripheral surface of the housing bottom 7c is formed on the metal holding member 6 as in the conventional metal housing. Is fixed to the inner peripheral surface of the hydrodynamic pressure bearing device 1, a compression force acts on the bottom portion 7 c from the holding member 6 due to a difference in thermal expansion between the metal and the resin due to a temperature rise, and the bottom portion 7 c is deformed by this compression force. The flatness of the inner bottom surface 7c1 may be deteriorated. When the flatness of the inner bottom surface 7c1 is deteriorated, the width of the thrust bearing gap of the second thrust bearing portion T2 becomes unstable, so that the shaft member 2 cannot be stably levitated and the bearing performance may be deteriorated. There is.

これに対し本発明では、図4(a)に示すとおり、底部7cの外周に逃げ部11を設けているので、上記熱膨張量差が生じても、底部7cに保持部材6から内径方向の圧迫力が作用することはなく、底部7cの過剰膨張分が逃げ部11に吸収される。従って、昇温時における底部内底面7c1の平面度の悪化を抑制することができ、スラスト軸受部の軸受性能低下を防止することができる。   On the other hand, in the present invention, as shown in FIG. 4A, the escape portion 11 is provided on the outer periphery of the bottom portion 7c. Therefore, even if the thermal expansion amount difference occurs, the bottom portion 7c has an inner diameter direction from the holding member 6. The pressing force does not act, and the excessive expansion of the bottom portion 7 c is absorbed by the escape portion 11. Accordingly, it is possible to suppress the deterioration of the flatness of the bottom inner bottom surface 7c1 at the time of temperature rise, and it is possible to prevent the bearing performance of the thrust bearing portion from being deteriorated.

ここで、上記逃げ部11の軸方向の形成幅が過小である場合、本図示例でいうと、例えば底部7cの外底面7c2から逃げ部11の上端11aまでの軸方向長さL0が、底部7cの肉厚、すなわち底部7cの外底面7c2から内底面7c1までの軸方向長さL1以下(L0≦L1)となるように形成されている場合、底部7cの外周のうち、特にスラスト軸受隙間と対向する内底面7c1の外径側の領域が保持部材6で保持されるため、熱膨張量差による圧迫力がハウジング7の底部7cに作用し、内底面7c1の平面度に悪影響を及ぼすおそれがある。これを回避するため、この逃げ部11(の上端11a)は、底部7cの内底面7c1を超えた軸方向領域まで、すなわちL0>L1の関係を満たすように形成するのが望ましい。   Here, when the axial formation width of the relief portion 11 is too small, in the illustrated example, for example, the axial length L0 from the outer bottom surface 7c2 of the bottom portion 7c to the upper end 11a of the relief portion 11 is the bottom portion. 7c, that is, the axial length L1 or less (L0 ≦ L1) from the outer bottom surface 7c2 of the bottom portion 7c to the inner bottom surface 7c1 (L0 ≦ L1). Since the outer diameter side region of the inner bottom surface 7c1 opposite to the outer surface is held by the holding member 6, the compression force due to the difference in thermal expansion amount may act on the bottom portion 7c of the housing 7 and adversely affect the flatness of the inner bottom surface 7c1. There is. In order to avoid this, it is desirable that the escape portion 11 (the upper end 11a thereof) is formed so as to satisfy the relationship of L0> L1 up to the axial region beyond the inner bottom surface 7c1 of the bottom portion 7c.

その一方、逃げ部11の軸方向の形成幅が過大である場合、本図示例でいうと、例えば逃げ部11の軸方向長さL0が、外底面7c2から第2ラジアル軸受部R2を構成する動圧発生部の外径側領域までの長さ、すなわち底部7cの外底面7c2から動圧発生部の軸方向下端までの長さL2以上(L0≧L2)となるように形成されている場合、動圧発生部の外径側に存在するハウジング7(側部7b)の肉厚が不均一になるため、この部分では熱膨張量が不均一化し、これが原因となってラジアル軸受隙間の幅が軸方向で変動するおそれがある。また、逃げ部11の軸方向長さL0が増大するということは、保持部材6との固定面が減少することを意味する。固定面が減少すると、保持部材6に対する動圧軸受装置1の固定強度、すなわちモータとしての強度低下を招く恐れがある。以上の観点から、逃げ部11(の上端11a)は、第2ラジアル軸受部R2の動圧発生部に至るまでの領域、すなわちL0<L2の関係を満たすように形成するのが望ましい。   On the other hand, when the axial formation width of the relief portion 11 is excessive, in the illustrated example, for example, the axial length L0 of the relief portion 11 constitutes the second radial bearing portion R2 from the outer bottom surface 7c2. When the length to the outer diameter side region of the dynamic pressure generating portion, that is, the length from the outer bottom surface 7c2 of the bottom portion 7c to the axial lower end of the dynamic pressure generating portion is L2 or more (L0 ≧ L2) Since the thickness of the housing 7 (side portion 7b) existing on the outer diameter side of the dynamic pressure generating portion becomes non-uniform, the amount of thermal expansion becomes non-uniform in this portion, which causes the width of the radial bearing gap. May fluctuate in the axial direction. Further, the increase in the axial length L0 of the escape portion 11 means that the fixing surface with the holding member 6 decreases. When the fixed surface is reduced, there is a risk that the fixing strength of the dynamic pressure bearing device 1 with respect to the holding member 6, that is, the strength as a motor is reduced. From the above viewpoint, it is desirable that the escape portion 11 (the upper end 11a thereof) is formed so as to satisfy the region extending to the dynamic pressure generating portion of the second radial bearing portion R2, that is, the relationship L0 <L2.

ところで、モータの組立時には、ディスク(図1参照)を載置するためのディスクハブ3が軸部材2の上端に圧入、圧入接着等の手段で固定される。ディスクハブ3を圧入する際には、約1500N程度の圧入力が軸部材2の上方から付加され、当該圧入力はフランジ部2bを介して底部7cに付加されることとなる。例えば、逃げ部11がフランジ部2bの外周面2b3よりも内径側に形成されている場合、すなわち、逃げ部11の下端11bの半径r0が、フランジ部2bの外周面2b3の半径r1以下(r0≦r1)となるように形成されている場合、当該逃げ部11の部分では底部7cの肉厚が薄くなるため、底部7cが凹状に変形し平面度が悪化する恐れがある。これを回避するためにも、逃げ部11は、半径方向でフランジ部2bの外周面2b3よりも外径側、すなわちr0>r1の関係を満たすように形成するのが望ましい。   By the way, when the motor is assembled, the disk hub 3 for mounting the disk (see FIG. 1) is fixed to the upper end of the shaft member 2 by means such as press-fitting and press-fitting adhesion. When press-fitting the disk hub 3, a pressure input of about 1500 N is applied from above the shaft member 2, and the pressure input is applied to the bottom 7c via the flange portion 2b. For example, when the escape portion 11 is formed on the inner diameter side of the outer peripheral surface 2b3 of the flange portion 2b, that is, the radius r0 of the lower end 11b of the escape portion 11 is equal to or less than the radius r1 of the outer peripheral surface 2b3 of the flange portion 2b (r0). When formed so as to satisfy ≦ r1), the thickness of the bottom portion 7c is reduced in the portion of the relief portion 11, so that the bottom portion 7c may be deformed into a concave shape and the flatness may be deteriorated. In order to avoid this, it is desirable to form the relief portion 11 so as to satisfy the relationship of the outer diameter side of the outer peripheral surface 2b3 of the flange portion 2b in the radial direction, that is, r0> r1.

また、本実施形態のように、逃げ部11を底部7cの外周に面取りで形成すれば、底部7cの角部が肉取りされて薄くなるので、底部7cから側部7bにかけての部分の肉厚を略均一に形成することができる。特に本実施形態のように、ハウジング7を樹脂材料で形成する場合には、成形時のヒケ等を防止し、高精度なハウジング7を形成することができる。また、ハウジング7の成形型に樹脂材料を充填するゲートは、例えば底部7cの軸心に設けられる(図示省略)。このとき、逃げ部11を面取りで形成しているので、樹脂材料を均一かつスムーズに成形型に充填することができ、ハウジング7を高精度に成形することが可能となる。   Further, as in the present embodiment, if the escape portion 11 is formed by chamfering on the outer periphery of the bottom portion 7c, the corner portion of the bottom portion 7c is thinned and thinned, so that the thickness of the portion from the bottom portion 7c to the side portion 7b is increased. Can be formed substantially uniformly. In particular, as in the present embodiment, when the housing 7 is formed of a resin material, sink marks or the like during molding can be prevented, and the highly accurate housing 7 can be formed. The gate for filling the mold of the housing 7 with a resin material is provided, for example, at the axis of the bottom 7c (not shown). At this time, since the relief portion 11 is formed by chamfering, the resin material can be uniformly and smoothly filled in the mold, and the housing 7 can be molded with high accuracy.

また、逃げ部11は、動圧軸受装置1(ハウジング7)と、保持部材6を接着固定する際の接着剤溜りとしても用いることができるため、接着剤塗布時の作業性および接着強度を向上させることができる。また、以上の説明では逃げ部11を面取りで形成する場合を例示しているが、これ以外にも例えば、底部7cの外周面を段付きにして小径部で逃げ部を形成してもよい。   Further, the relief portion 11 can also be used as an adhesive reservoir when the dynamic pressure bearing device 1 (housing 7) and the holding member 6 are bonded and fixed, thereby improving workability and adhesive strength when applying the adhesive. Can be made. Moreover, although the case where the escape part 11 is formed by chamfering is illustrated in the above description, for example, the escape part may be formed by a small diameter part with the outer peripheral surface of the bottom part 7c being stepped.

また、本実施形態では、ハウジング7を樹脂材料で、保持部材6をアルミ合金等の金属材料で形成する場合を例示したが、これ以外にも例えば高強度を求められる場合には、ハウジング7を黄銅やアルミ等の軟質金属材料で、保持部材6をステンレス鋼等で形成することもできる。   Further, in the present embodiment, the case where the housing 7 is formed of a resin material and the holding member 6 is formed of a metal material such as an aluminum alloy has been exemplified. The holding member 6 can also be formed of stainless steel or the like using a soft metal material such as brass or aluminum.

また、以上の説明では、逃げ部11をハウジング7の底部外周に形成する形態を例示したが、例えば図5に示すように、ハウジング7と対向する保持部材6の内周に逃げ部11を形成することもできる。   Moreover, although the form which forms the escape part 11 in the bottom part outer periphery of the housing 7 was illustrated in the above description, as shown in FIG. 5, for example, the escape part 11 is formed in the inner periphery of the holding member 6 facing the housing 7. You can also

上記の動圧軸受装置1では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、へリングボーン形状やスパイラル形状の動圧溝により流体の動圧作用を発生させる構成を例示しているが、本発明はこれに限定されるものではない。   In the hydrodynamic bearing device 1 described above, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 exemplify a configuration in which a fluid dynamic pressure action is generated by a herringbone-shaped or spiral-shaped hydrodynamic groove. However, the present invention is not limited to this.

例えば、ラジアル軸受部R1、R2として、いわゆる多円弧軸受やステップ軸受を採用しても良い。   For example, so-called multi-arc bearings or step bearings may be employed as the radial bearing portions R1 and R2.

図6は、ラジアル軸受部R1、R2の一方又は双方を多円弧軸受で構成した場合の一例を示している。この例では、軸受スリーブ8の内周面8aのラジアル軸受面となる領域が、3つの円弧面8a3、8a4、8a5で構成されている(いわゆる3円弧軸受)。3つの円弧面8a3、8a4、8a5の曲率中心は、それぞれ、軸受スリーブ8の軸中心Oから等距離オフセットされている。3つの円弧面8a3、8a4、8a5で区画される各領域において、ラジアル軸受隙間は、円周方向の両方向に対して、それぞれ楔状に漸次縮小した形状を有している。そのため、軸受スリーブ8と軸部2aとが相対回転すると、その相対回転の方向に応じて、ラジアル軸受隙間内の潤滑流体が楔状に縮小した最小隙間側に押し込まれて、その圧力が上昇する。このような潤滑流体の動圧作用によって、軸受スリーブ8と軸部2aとが非接触支持される。尚、3つの円弧面8a3、8a4、8a5の相互間の境界部に、分離溝と称される、一段深い軸方向溝を形成しても良い。   FIG. 6 shows an example of a case where one or both of the radial bearing portions R1 and R2 are constituted by multi-arc bearings. In this example, the region that becomes the radial bearing surface of the inner peripheral surface 8a of the bearing sleeve 8 is configured by three arc surfaces 8a3, 8a4, and 8a5 (so-called three arc bearings). The centers of curvature of the three arcuate surfaces 8a3, 8a4, 8a5 are offset from the axial center O of the bearing sleeve 8 by an equal distance. In each region defined by the three arcuate surfaces 8a3, 8a4, and 8a5, the radial bearing gap has a shape that is gradually reduced in a wedge shape in both circumferential directions. For this reason, when the bearing sleeve 8 and the shaft portion 2a rotate relative to each other, the lubricating fluid in the radial bearing gap is pushed into the minimum gap side reduced in a wedge shape in accordance with the direction of the relative rotation, and the pressure rises. The bearing sleeve 8 and the shaft portion 2a are supported in a non-contact manner by the dynamic pressure action of the lubricating fluid. A deeper axial groove called a separation groove may be formed at the boundary between the three arcuate surfaces 8a3, 8a4, 8a5.

図7は、ラジアル軸受部R1、R2の一方又は双方を多円弧軸受で構成した場合の他の例を示している。この例においても、軸受スリーブ8の内周面8aのラジアル軸受面となる領域が、3つの円弧面8a6、8a7、8a8で構成されているが(いわゆる3円弧軸受)、3つの円弧面8a6、8a7、8a8で区画される各領域において、ラジアル軸受隙間は、円周方向の一方向に対して、それぞれ楔状に漸次縮小した形状を有している。このような構成の多円弧軸受は、テーパ軸受と称されることもある。また、3つの円弧面8a6、8a7、8a8の相互間の境界部に、分離溝と称される、一段深い軸方向溝8a9、8a10、8a11が形成されている。そのため、軸受スリーブ8と軸部2aとが所定方向に相対回転すると、ラジアル軸受隙間内の潤滑流体が楔状に縮小した最小隙間側に押し込まれて、その圧力が上昇する。このような潤滑流体の動圧作用によって、軸受スリーブ8と軸部2aとが非接触支持される。   FIG. 7 shows another example in the case where one or both of the radial bearing portions R1 and R2 are configured by multi-arc bearings. In this example as well, the region that becomes the radial bearing surface of the inner peripheral surface 8a of the bearing sleeve 8 is configured by three arc surfaces 8a6, 8a7, and 8a8 (so-called three arc bearings), but the three arc surfaces 8a6, In each region divided by 8a7 and 8a8, the radial bearing gap has a shape gradually reduced in a wedge shape with respect to one direction in the circumferential direction. The multi-arc bearing having such a configuration may be referred to as a taper bearing. Further, deeper axial grooves 8a9, 8a10, 8a11 called separation grooves are formed at boundaries between the three arcuate surfaces 8a6, 8a7, 8a8. Therefore, when the bearing sleeve 8 and the shaft portion 2a are relatively rotated in a predetermined direction, the lubricating fluid in the radial bearing gap is pushed into the minimum gap side reduced in a wedge shape, and the pressure rises. The bearing sleeve 8 and the shaft portion 2a are supported in a non-contact manner by the dynamic pressure action of the lubricating fluid.

図8は、ラジアル軸受部R1、R2の一方又は双方を多円弧軸受で構成した場合の他の例を示している。この例では、図7に示す構成において、3つの円弧面8a6、8a7、8a8の最小隙間側の所定領域αが、それぞれ、軸受スリーブ8の軸中心Oを曲率中心とする同心の円弧で構成されている。従って、各所定領域θにおいて、ラジアル軸受隙間(最小隙間)は一定になる。このような構成の多円弧軸受は、テーパ・フラット軸受と称されることもある。   FIG. 8 shows another example in the case where one or both of the radial bearing portions R1 and R2 are constituted by multi-arc bearings. In this example, in the configuration shown in FIG. 7, the predetermined regions α on the minimum clearance side of the three circular arc surfaces 8 a 6, 8 a 7, 8 a 8 are each formed by concentric circular arcs with the axis center O of the bearing sleeve 8 as the center of curvature. ing. Therefore, in each predetermined area θ, the radial bearing gap (minimum gap) is constant. The multi-arc bearing having such a configuration may be referred to as a tapered flat bearing.

以上の各例における多円弧軸受は、いわゆる3円弧軸受であるが、これに限らず、いわゆる4円弧軸受、5円弧軸受、さらに6円弧以上の数の円弧面で構成された多円弧軸受を採用しても良い。また、ラジアル軸受部を多円弧軸受で構成する場合、ラジアル軸受部R1、R2のように、2つのラジアル軸受部を軸方向に離隔して設けた構成とする他、軸受スリーブ8の内周面8aの上下領域に亘って1つのラジアル軸受部を設けた構成としても良い。   The multi-arc bearings in the above examples are so-called three-arc bearings, but are not limited to this, and so-called four-arc bearings, five-arc bearings, and multi-arc bearings composed of more than six arc surfaces are adopted. You may do it. Further, when the radial bearing portion is constituted by a multi-arc bearing, in addition to the configuration in which two radial bearing portions are provided apart from each other in the axial direction as in the radial bearing portions R1 and R2, the inner peripheral surface of the bearing sleeve 8 is provided. It is good also as a structure which provided the one radial bearing part over the up-and-down area | region of 8a.

なお、上記のラジアル軸受部R1、R2の一方又は双方は、ステップ軸受で構成することもできる(図示省略)。ステップ軸受は、例えば軸受スリーブ8の内周面8aのラジアル軸受面となる領域に、複数の軸方向溝形状の動圧溝を円周方向所定間隔に設けたものである。   Note that one or both of the radial bearing portions R1 and R2 may be configured by step bearings (not shown). In the step bearing, for example, a plurality of axial groove-shaped dynamic pressure grooves are provided at predetermined intervals in the circumferential direction in a region serving as a radial bearing surface of the inner peripheral surface 8 a of the bearing sleeve 8.

また、図示は省略するが、スラスト軸受部T1およびT2のうち一方又は双方は、例えば、スラスト軸受面となる領域に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、いわゆる波型軸受(ステップ型が波型になったもの)等で構成することもできる。   Although illustration is omitted, one or both of the thrust bearing portions T1 and T2 is provided with a plurality of radial groove-shaped dynamic pressure grooves at predetermined intervals in the circumferential direction, for example, in a region serving as a thrust bearing surface. Further, it can be constituted by a so-called step bearing, a so-called wave bearing (the step mold is a wave form), or the like.

以上の実施形態では、動圧軸受装置1の内部に充満する流体(潤滑流体)として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧を発生させることができる流体、例えば磁性流体や空気等の気体を使用することもできる。   In the above embodiment, the lubricating oil is exemplified as the fluid (lubricating fluid) that fills the inside of the hydrodynamic bearing device 1, but other fluids that can generate dynamic pressure in each bearing gap, such as magnetic Gases such as fluid and air can also be used.

まず図9に、理論上底部が完全な平面であるときの軸部材の浮上量を1とした場合における、底部平面度の悪化に対する軸部材の浮上量比の理論計算結果を示す。図9からも明らかなように、平面度が凹側(マイナス側)および凸側(プラス側)の何れに振れた場合でも、軸部材の浮上量は大きく低下することがわかる。従って、底部7cの平面度の悪化を回避することができれば、軸部材の浮上量低下、すなわち動圧軸受装置1の回転性能低下を抑制できることが理論的にも確認された。   First, FIG. 9 shows the theoretical calculation result of the shaft member flying height ratio with respect to the deterioration of the bottom flatness when the shaft member flying height is 1 when the bottom is theoretically a perfect plane. As is apparent from FIG. 9, it can be seen that the flying height of the shaft member is greatly reduced regardless of whether the flatness is swung to the concave side (minus side) or the convex side (plus side). Therefore, it was theoretically confirmed that if the deterioration of the flatness of the bottom portion 7c can be avoided, a decrease in the flying height of the shaft member, that is, a decrease in the rotational performance of the dynamic pressure bearing device 1 can be suppressed.

本発明の有用性を検証するため、図4(a)に示す本発明の構成を有する対策品と、図4(b)に示す構成を有する比較品の、温度変化時(室温下→80℃)における軸部材2の浮上量を測定した。その測定結果を図10に示す。図10からも明らかなように、80℃に昇温させたとき、図4(a)に示す対策品での浮上量の低下量は、図4(b)に示す比較品の変化量に比べて大幅に小さくできることが確認された(低下量は約1/4となった)。   In order to verify the usefulness of the present invention, the countermeasure product having the configuration of the present invention shown in FIG. 4A and the comparative product having the configuration shown in FIG. The flying height of the shaft member 2 was measured. The measurement results are shown in FIG. As is clear from FIG. 10, when the temperature is raised to 80 ° C., the amount of decrease in the flying height of the countermeasure product shown in FIG. 4A is larger than the amount of change of the comparative product shown in FIG. (It was confirmed that the amount of decrease was about 1/4).

動圧軸受装置を組み込んだスピンドルモータの一例を示す断面図である。It is sectional drawing which shows an example of the spindle motor incorporating the dynamic pressure bearing apparatus. 本発明の構成を有する動圧軸受装置の断面図である。It is sectional drawing of the dynamic pressure bearing apparatus which has a structure of this invention. (a)図は軸受スリーブの断面図、(b)図は軸受スリーブの下側端面を示す平面図である。(A) is a sectional view of the bearing sleeve, and (b) is a plan view showing a lower end surface of the bearing sleeve. (a)図は図2におけるA部の拡大断面図、(b)図は現行品におけるA部の拡大断面図である。(A) The figure is an expanded sectional view of the A section in FIG. 2, (b) The figure is an enlarged sectional view of the A section in the current product. 本発明の他の形態を示す拡大断面図である。It is an expanded sectional view showing other forms of the present invention. ラジアル軸受部の他の形態を示す断面図である。It is sectional drawing which shows the other form of a radial bearing part. ラジアル軸受部の他の形態を示す断面図である。It is sectional drawing which shows the other form of a radial bearing part. ラジアル軸受部の他の形態を示す断面図である。It is sectional drawing which shows the other form of a radial bearing part. 理論計算による底部の平面度に対する軸部材の浮上量を示す図である。It is a figure which shows the floating amount of the shaft member with respect to the flatness of the bottom part by theoretical calculation. 本発明の構成を有する対策品と、比較品における軸部材の浮上量測定結果である。It is a measurement result of the floating amount of the shaft member in the countermeasure product having the configuration of the present invention and the comparison product.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
3 ディスクハブ
6 保持部材
7 ハウジング
7b 側部
7c 底部
8 軸受スリーブ
9 シール部材
11 逃げ部
R1 第1ラジアル軸受部
R2 第2ラジアル軸受部
S シール空間
T1 第1スラスト軸受部
T2 第2スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 3 Disc hub 6 Holding member 7 Housing 7b Side part 7c Bottom part 8 Bearing sleeve 9 Seal member 11 Relief part R1 1st radial bearing part R2 2nd radial bearing part S Seal space T1 1st thrust bearing T2 Second thrust bearing

Claims (6)

軸部材と、底部を一体に備える有底筒状に樹脂で射出成形されたハウジングと、ハウジングの外周面を保持する金属製の保持部材と、ラジアル軸受隙間を備え、ラジアル軸受隙間に対向する二面の何れか一方に形成された動圧発生部でラジアル軸受隙間に流体の動圧作用を発生させて軸部材をラジアル方向に非接触支持するラジアル軸受部と、ハウジングの底部と軸部材との間のスラスト軸受隙間に生じる流体の動圧作用で軸部材をスラスト方向に非接触支持するスラスト軸受部とを備える動圧軸受装置において、
ハウジングの底部の外周面と、これに対向する保持部材の内周面との間に、両面を非接触にする逃げ部が全周にわたって設けられ、該逃げ部は、少なくともハウジング底部の外底面からハウジング底部のスラスト軸受隙間と対向する面を超える軸方向領域にわたって形成されていることを特徴とする動圧軸受装置。
The shaft member, a bottomed cylindrical housing integrally provided with a bottom portion, a resin injection molding with a resin, a metal holding member for holding the outer peripheral surface of the housing, a radial bearing gap, and facing the radial bearing gap A radial bearing portion that generates fluid dynamic pressure action in the radial bearing gap at a dynamic pressure generating portion formed on one of the surfaces to support the shaft member in a non-contact manner in the radial direction, and a bottom portion of the housing and the shaft member. In the hydrodynamic bearing device comprising a thrust bearing portion that supports the shaft member in the thrust direction in a non-contact manner by the hydrodynamic action of the fluid generated in the thrust bearing gap between,
Between the outer peripheral surface of the bottom portion of the housing and the inner peripheral surface of the holding member facing the housing, a relief portion that makes both surfaces non-contact is provided over the entire circumference , and the relief portion is at least from the outer bottom surface of the housing bottom portion. A hydrodynamic bearing device, characterized in that the hydrodynamic bearing device is formed over an axial region exceeding a surface of the housing bottom facing the thrust bearing gap .
逃げ部を、ハウジング底部の外周に設けた面取りで形成した請求項1記載の動圧軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein the escape portion is formed by chamfering provided on the outer periphery of the bottom of the housing. 逃げ部を、保持部材の内周に設けた面取りで形成した請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the escape portion is formed by chamfering provided on the inner periphery of the holding member. 逃げ部が、ハウジング底部の外底面からラジアル軸受部の動圧発生部に至るまでの軸方向領域にわたって形成されている請求項1記載の動圧軸受装置。 Relief portion, the dynamic pressure bearing device according to claim 1, characterized in that formed over the axial region up to the dynamic pressure generating portion of the radial bearing portion from the outer bottom surface of the housing bottom. 軸部材にフランジ部が設けられ、逃げ部が、ハウジングの底部外周で、かつ半径方向で、フランジ部の外周面よりも外径側に形成されている請求項1記載の動圧軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein the shaft member is provided with a flange portion, and the relief portion is formed on the outer periphery of the bottom portion of the housing in the radial direction and on the outer diameter side of the outer peripheral surface of the flange portion. 請求項1〜の何れかに記載の動圧軸受装置と、ロータマグネットと、ステータコイルとを有するモータ。 Motor having a dynamic pressure bearing device according to any one of claims 1 to 5, a rotor magnet, and a stator coil.
JP2005062762A 2005-03-07 2005-03-07 Hydrodynamic bearing device Active JP4579013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005062762A JP4579013B2 (en) 2005-03-07 2005-03-07 Hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005062762A JP4579013B2 (en) 2005-03-07 2005-03-07 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2006242363A JP2006242363A (en) 2006-09-14
JP4579013B2 true JP4579013B2 (en) 2010-11-10

Family

ID=37048976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005062762A Active JP4579013B2 (en) 2005-03-07 2005-03-07 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4579013B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142451A (en) * 2012-01-11 2013-07-22 Oiles Corp Sliding bearing
CN114729673A (en) 2019-11-27 2022-07-08 株式会社东芝 Support device and support unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208460A (en) * 1994-01-27 1995-08-11 Ntn Corp Insulated bearing coated with resin
JP2003232341A (en) * 2002-02-12 2003-08-22 Sony Corp Bearing unit, motor and electronic equipment with the bearing unit
JP2003333798A (en) * 2002-05-17 2003-11-21 Nippon Densan Corp Spindle motor and magnetic disc drive
WO2004092600A1 (en) * 2003-03-31 2004-10-28 Ntn Corporation Fluid bearing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208460A (en) * 1994-01-27 1995-08-11 Ntn Corp Insulated bearing coated with resin
JP2003232341A (en) * 2002-02-12 2003-08-22 Sony Corp Bearing unit, motor and electronic equipment with the bearing unit
JP2003333798A (en) * 2002-05-17 2003-11-21 Nippon Densan Corp Spindle motor and magnetic disc drive
WO2004092600A1 (en) * 2003-03-31 2004-10-28 Ntn Corporation Fluid bearing device

Also Published As

Publication number Publication date
JP2006242363A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
KR101213552B1 (en) Dynamic pressure bearing device
JP5274820B2 (en) Hydrodynamic bearing device
US8356938B2 (en) Fluid dynamic bearing apparatus
JP2005321089A (en) Dynamic pressure bearing device
JP2007024146A (en) Dynamic pressure bearing device
JP4738868B2 (en) Hydrodynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP4762757B2 (en) Hydrodynamic bearing device
US20100166346A1 (en) Dynamic bearing device
JP2007051717A (en) Manufacturing method of dynamic pressure bearing device
JP4579013B2 (en) Hydrodynamic bearing device
JP2007071274A (en) Dynamic pressure bearing device
US8197141B2 (en) Fluid dynamic bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP4738964B2 (en) Hydrodynamic bearing device and motor having the same
JP4615328B2 (en) Hydrodynamic bearing device
JP2007100834A (en) Hydrodynamic bearing device
JP4949216B2 (en) Hydrodynamic bearing device
JP4588561B2 (en) Hydrodynamic bearing device
JP2004116623A (en) Fluid bearing device
JP4498932B2 (en) Hydrodynamic bearing device
JP5020652B2 (en) Hydrodynamic bearing device
JP5214401B2 (en) Hydrodynamic bearing device
JP2006200584A (en) Dynamic pressure bearing device
JP2006214542A (en) Fluid bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4579013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250