JP4498932B2 - Hydrodynamic bearing device - Google Patents

Hydrodynamic bearing device Download PDF

Info

Publication number
JP4498932B2
JP4498932B2 JP2005000975A JP2005000975A JP4498932B2 JP 4498932 B2 JP4498932 B2 JP 4498932B2 JP 2005000975 A JP2005000975 A JP 2005000975A JP 2005000975 A JP2005000975 A JP 2005000975A JP 4498932 B2 JP4498932 B2 JP 4498932B2
Authority
JP
Japan
Prior art keywords
housing
bearing
peripheral surface
bearing sleeve
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005000975A
Other languages
Japanese (ja)
Other versions
JP2006189082A (en
Inventor
栗村  哲弥
克夫 柴原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2005000975A priority Critical patent/JP4498932B2/en
Publication of JP2006189082A publication Critical patent/JP2006189082A/en
Application granted granted Critical
Publication of JP4498932B2 publication Critical patent/JP4498932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、軸受隙間に生じる流体(潤滑流体)の油膜で回転部材を非接触支持する流体軸受装置に関するものである。この軸受装置は、情報機器、例えばHDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、その他の小型モータ用として好適である。   The present invention relates to a hydrodynamic bearing device that supports a rotating member in a non-contact manner with an oil film of a fluid (lubricating fluid) generated in a bearing gap. This bearing device is a spindle motor such as an information device, for example, a magnetic disk device such as an HDD, an optical disk device such as a CD-ROM, CD-R / RW, DVD-ROM / RAM, or a magneto-optical disk device such as MD or MO, It is suitable for polygon scanner motors of laser beam printers (LBP) and other small motors.

上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化等が求められている。これらの要求性能を決定づける構成要素の1つに当該モータのスピンドルを支持する軸受があり、近年では、上記要求性能に優れた特性を有する流体軸受の使用が検討され、あるいは実際に使用されている。   In addition to high rotational accuracy, the various motors are required to have high speed, low cost, low noise, and the like. One of the components that determine the required performance is a bearing that supports the spindle of the motor. In recent years, the use of a fluid bearing having characteristics excellent in the required performance has been studied or actually used. .

この種の流体軸受は、軸受隙間内の流体(例えば潤滑油等)に動圧を発生させる動圧発生手段を備えた動圧軸受と、動圧発生手段を備えていない、いわゆる真円軸受(軸受面が真円形状である軸受)とに大別される。   This type of hydrodynamic bearing includes a hydrodynamic bearing provided with dynamic pressure generating means for generating dynamic pressure in a fluid (for example, lubricating oil) in a bearing gap, and a so-called circular bearing (not provided with dynamic pressure generating means). The bearing surface is roughly divided into a bearing having a perfect circular shape.

例えば、HDD等のディスク駆動装置のスピンドルモータに組み込まれる流体軸受装置では、軸部材をラジアル方向に支持するラジアル軸受部およびスラスト方向に支持するスラスト軸受部の双方を動圧軸受で構成する場合がある。この種の流体軸受装置におけるラジアル軸受部としては、例えば軸受スリーブの内周面と、これに対向する軸部材の外周面との何れか一方に、動圧発生部としての動圧溝を形成すると共に、両面間にラジアル軸受隙間を形成するものが知られている(例えば、特許文献1参照)。   For example, in a hydrodynamic bearing device incorporated in a spindle motor of a disk drive device such as an HDD, both a radial bearing portion that supports a shaft member in the radial direction and a thrust bearing portion that supports the shaft direction in a thrust direction may be configured by dynamic pressure bearings. is there. As a radial bearing part in this type of hydrodynamic bearing device, for example, a dynamic pressure groove as a dynamic pressure generating part is formed on either the inner peripheral surface of the bearing sleeve or the outer peripheral surface of the shaft member facing the bearing sleeve. In addition, there is known one that forms a radial bearing gap between both surfaces (see, for example, Patent Document 1).

通常、軸受スリーブはハウジングの内周に所定位置に固定され、また、ハウジングの内部空間に注油した潤滑油が外部に漏れるのを防止するために、ハウジングの開口部にシール部材を配設する場合が多い(特許文献1)。
特開2003−239951号公報
Usually, the bearing sleeve is fixed at a predetermined position on the inner periphery of the housing, and a seal member is provided at the opening of the housing in order to prevent the lubricating oil injected into the inner space of the housing from leaking to the outside. There are many (patent document 1).
JP 2003-239951 A

この種の流体軸受装置は、ハウジング、軸受スリーブ、軸部材をはじめとする種々の部品で構成され、情報機器の益々の高性能化に伴って必要とされる高い軸受性能を確保すべく、各部品の加工精度や組立精度を高める努力がなされている。その一方で、情報機器の低価格化の傾向に伴い、この種の流体軸受装置に対するコスト低減の要求も益々厳しくなっている。   This type of hydrodynamic bearing device is composed of various parts including a housing, a bearing sleeve, and a shaft member. In order to ensure the high bearing performance required as the performance of information equipment increases, Efforts are being made to increase the processing accuracy and assembly accuracy of parts. On the other hand, along with the trend of lowering the price of information equipment, the demand for cost reduction for this type of hydrodynamic bearing device has become increasingly severe.

この種のコスト低減を図る手段の一つとして、ハウジングを金属材料の塑性加工で形成することが考えられる。しかしながら、塑性加工(例えばプレス加工)により形成されたハウジングは、切削等の機械加工によるハウジングに比べて、外周面の真円度が悪く(真円度の値が大きく)なる傾向にある。このようなハウジング外周面の真円度の悪化は、次のような問題を生じさせる可能性がある。   As one of means for reducing this kind of cost, it can be considered that the housing is formed by plastic working of a metal material. However, a housing formed by plastic working (for example, press working) has a tendency that the roundness of the outer peripheral surface is worse (the value of roundness is larger) than a housing made by machining such as cutting. Such deterioration of the roundness of the outer peripheral surface of the housing may cause the following problems.

すなわち、この種の流体軸受装置を上記各種モータの回転支持部に用いる場合、通常、ハウジングの外周面をブラケット(保持部材)の内周面に接着剤を介して密着固定するが、その際の接着強度を考慮して、両者の接着部の軸方向寸法や接着剤の充填隙間が決められている。しかしながら、ハウジングの外周面の真円度が悪いと、保持部材の内周面に装着したときに、接着剤の充填隙間が円周方向で不均一になり、接着強度の低下や共振の問題が懸念される。   That is, when this type of hydrodynamic bearing device is used for the rotation support part of the above-mentioned various motors, the outer peripheral surface of the housing is usually closely fixed to the inner peripheral surface of the bracket (holding member) via an adhesive. In consideration of the adhesive strength, the axial dimension of the adhesive part between them and the filling gap of the adhesive are determined. However, if the roundness of the outer peripheral surface of the housing is poor, the adhesive filling gap becomes non-uniform in the circumferential direction when mounted on the inner peripheral surface of the holding member, resulting in problems such as a decrease in adhesive strength and resonance. Concerned.

また、ハウジングの外周面をブラケットの内周面に圧入により密着固定する方法も考えられるが、この場合も、ハウジングの外周面の真円度が悪いと、保持部材の内周面に圧入したときに、圧入代が円周方向で不均一になり、圧入強度の低下や共振の問題が同様に懸念される。   In addition, a method of fixing the outer peripheral surface of the housing tightly to the inner peripheral surface of the bracket by press fitting is also conceivable. However, in this case, if the roundness of the outer peripheral surface of the housing is poor, the housing is pressed into the inner peripheral surface of the holding member. In addition, the press-fitting allowance becomes non-uniform in the circumferential direction, and there is a similar concern about a decrease in press-fitting strength and a problem of resonance.

本発明の課題は、塑性加工品である金属製ハウジングの外周面の真円度を改善した流体軸受装置を提供することである。   The subject of this invention is providing the hydrodynamic bearing apparatus which improved the roundness of the outer peripheral surface of the metal housing which is a plastic work product.

前記課題を解決するため、本発明は、ハウジングと、ハウジングの内部に固定された軸受スリーブと、ハウジングおよび軸受スリーブに対して相対回転する回転部材と、回転部材と軸受スリーブとの間のラジアル軸受隙間に生じる流体の油膜で回転部材をラジアル方向に非接触支持するラジアル軸受部とを備えたものにおいて、ハウジングは、接着又は圧入でブラケットの内周面に固定され、ハウジングは金属材料のプレス成形品であ、軸受スリーブは焼結金属で形成され、その外周面の真円度が5μm未満となるように寸法サイジングが施されており、軸受スリーブの外周面を全周にわたってハウジングの内周面に圧入して、ハウジングの外周面を軸受スリーブの外周面に倣って変形させることで、ハウジングの外周面の真円度5μm以下としたことを特徴とする流体軸受装置を提供する。なお、ここでいう真円度は、20℃の温度条件下で真円度測定器により測定した周面形状において、該周面形状の外接円の直径と内接円の直径との際の2分の1の値(半径真円度)である。 In order to solve the above problems, the present invention provides a housing, a bearing sleeve fixed inside the housing, a rotating member that rotates relative to the housing and the bearing sleeve, and a radial bearing between the rotating member and the bearing sleeve. The housing is fixed to the inner peripheral surface of the bracket by bonding or press fitting, and the housing is press-molded with a metal material. Shinadea is, the bearing sleeve is formed of sintered metal, the inner circumference of the roundness of the outer circumferential surface has dimensions sizing is performed such that less than 5 [mu] m, housing the outer circumferential surface of the bearing sleeve over the entire circumference By pressing into the surface, the outer peripheral surface of the housing is deformed following the outer peripheral surface of the bearing sleeve, so that the roundness of the outer peripheral surface of the housing is 5 μm or less. Provided is a hydrodynamic bearing device characterized in that it is as below. The roundness referred to here is 2 when the diameter of the circumscribed circle and the diameter of the inscribed circle in the circumferential shape measured by a roundness measuring device under a temperature condition of 20 ° C. It is a value of 1 / (radius roundness).

金属材料を塑性加工(プレス加工等)して形成されたハウジングは、旋削等の機械加工による金属製ハウジングに比べて低コストで製造することができる。また、金属製の軸受スリーブの外周面をハウジングの内周面に圧入した状態で、ハウジングの外周面の真円度が5μm以下となるように構成することで、ハウジングの外周面をブラケットの内周面に接着固定する際に、両部材間の接着隙間が円周方向で不均一となる事態を避け、接着強度の低下や共振を抑えることができる。   A housing formed by plastic working (pressing or the like) of a metal material can be manufactured at a lower cost than a metal housing formed by machining such as turning. Further, the outer peripheral surface of the housing is configured so that the roundness of the outer peripheral surface of the housing is 5 μm or less with the outer peripheral surface of the metal bearing sleeve being press-fitted into the inner peripheral surface of the housing. When bonding and fixing to the peripheral surface, it is possible to avoid a situation in which the bonding gap between the two members is not uniform in the circumferential direction, and to suppress a decrease in bonding strength and resonance.

通常、プレス加工などの塑性加工で形成される金属製ハウジングは、その成形性を考慮して、比較的薄肉に形成される。この場合、金属製の軸受スリーブの圧入に伴い、ハウジングに軸受スリーブ外周面の真円度が転写され、ハウジングの外周面の真円度が上記範囲内に改善される。このような軸受スリーブの外周面の真円度は、例えば軸受スリーブを焼結金属の多孔質体で形成する場合、焼結後の寸法サイジングにより得ることができ、その値は5μm未満に抑えられる。なお、塑性加工で形成した金属製ハウジングが比較的厚肉である場合にも、軸受スリーブの圧入代や、焼結金属製軸受スリーブの剛性(ハウジング圧入時の変形のし難さ)等を適宜調整することで対応することが可能である。   Usually, a metal housing formed by plastic working such as press working is formed to be relatively thin in consideration of its formability. In this case, with the press-fitting of the metal bearing sleeve, the roundness of the outer peripheral surface of the bearing sleeve is transferred to the housing, and the roundness of the outer peripheral surface of the housing is improved within the above range. Such roundness of the outer peripheral surface of the bearing sleeve can be obtained, for example, by dimension sizing after sintering when the bearing sleeve is formed of a sintered metal porous body, and the value can be suppressed to less than 5 μm. . Even when the metal housing formed by plastic processing is relatively thick, the bearing sleeve press-fitting allowance, the rigidity of the sintered metal bearing sleeve (the difficulty of deformation during housing press-fitting), etc. It is possible to cope by adjusting.

上記構成の流体軸受装置は、例えば流体軸受装置を備えたディスク装置のスピンドルモータとして提供することが可能である。   The hydrodynamic bearing device having the above-described configuration can be provided as a spindle motor of a disk device including the hydrodynamic bearing device, for example.

このように、本発明によれば、塑性加工品である金属製ハウジングの外周面の真円度を改善した流体軸受装置を提供することができる。   Thus, according to the present invention, it is possible to provide a hydrodynamic bearing device in which the roundness of the outer peripheral surface of a metal housing that is a plastic work product is improved.

以下、本発明の第1実施形態を図1〜図3に基づいて説明する。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の第1実施形態に係る流体軸受装置(動圧軸受装置)1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する流体軸受装置1と、軸部材2に装着されたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はブラケット6の外周に取付けられ、ロータマグネット5は、ディスクハブ3の内周に取付けられている。また、流体軸受装置1のハウジング7の外周面は、ブラケット6の内周面に、接着又は圧入等の手段で固定される。ディスクハブ3は、その外周に磁気ディスク等のディスク状情報記憶媒体(以下、単にディスクという。)Dを一枚または複数枚保持している。このように構成されたスピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する電磁力でロータマグネット5が回転し、これに伴って、ディスクハブ3およびディスクハブ3に保持されたディスクDが軸部材2と一体に回転する。   FIG. 1 conceptually shows one configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device (dynamic pressure bearing device) 1 according to a first embodiment of the present invention. This spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2 in a non-contact manner, a disk hub 3 mounted on the shaft member 2, and a radial direction, for example. A stator coil 4 and a rotor magnet 5 are provided to face each other through a gap. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The outer peripheral surface of the housing 7 of the hydrodynamic bearing device 1 is fixed to the inner peripheral surface of the bracket 6 by means such as adhesion or press fitting. The disk hub 3 holds one or more disk-shaped information storage media (hereinafter simply referred to as disks) D such as magnetic disks on the outer periphery thereof. In the spindle motor configured as described above, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force generated between the stator coil 4 and the rotor magnet 5. The disk D held by the hub 3 rotates integrally with the shaft member 2.

図2は、流体軸受装置1を示している。この流体軸受装置1は、軸部材2と、ハウジング7と、ハウジング7に固定された軸受スリーブ8およびスラスト部材10と、シール部材9とを主な構成要素として構成されている。なお、説明の便宜上、ハウジング7のスラスト部材10固定側を下側、スラスト部材10の固定側と反対の側を上側として以下説明する。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a shaft member 2, a housing 7, a bearing sleeve 8 and a thrust member 10 fixed to the housing 7, and a seal member 9 as main components. For convenience of explanation, the following description will be made assuming that the fixed side of the thrust member 10 of the housing 7 is the lower side and the side opposite to the fixed side of the thrust member 10 is the upper side.

軸部材2は、例えばステンレス鋼等の金属材料で形成され、あるいは、金属材料と樹脂材料とのハイブリッド構造とされ、軸部2aと、軸部2aの下端に一体または別体に設けられたフランジ部2bを備えている。なお、ハイブリッド構造をなす軸部材2としては、軸部2aの芯部あるいはフランジ部2b、もしくはその双方を樹脂材料で形成したものが使用可能である。   The shaft member 2 is formed of a metal material such as stainless steel or a hybrid structure of a metal material and a resin material, and the shaft portion 2a and a flange provided integrally or separately at the lower end of the shaft portion 2a. Part 2b is provided. In addition, as the shaft member 2 having a hybrid structure, the core portion of the shaft portion 2a, the flange portion 2b, or both of them formed of a resin material can be used.

ハウジング7は、薄肉金属のプレス成形品で、例えば真ちゅう等の軟質金属からなるパイプ材のプレス加工で円筒状に形成される。ここでいうプレス成形品は、金型を取付けたプレス機によって加工された成形品全てを意味し、例えば板金プレス等によって成形されたものも含まれる。また、プレス加工時のバリなどを取り除くため、プレス加工後にバレル研磨等の処理を施すこともできる。   The housing 7 is a thin metal press-formed product, and is formed in a cylindrical shape by pressing a pipe material made of a soft metal such as brass. The press-molded product here means all molded products processed by a press machine attached with a metal mold, and includes, for example, products molded by a sheet metal press or the like. Further, in order to remove burrs and the like at the time of press working, it is possible to perform processing such as barrel polishing after the press working.

軸受スリーブ8は、焼結金属からなる多孔質体、例えば銅を主成分とする焼結金属の多孔質体で円筒状に形成される。この軸受スリーブ8は、詳細については後述するが、スラスト部材10の当接部10bに当接させた状態で、ハウジング7の内周面7aの所定位置に圧入固定される。なお、軸受スリーブ8の外径は、ハウジング7の内径に比べて、後述する軸受スリーブ8の外周面8dのハウジング7の内周面7aに対する所定の圧入代の分だけ大径に形成されている。   The bearing sleeve 8 is formed in a cylindrical shape by a porous body made of sintered metal, for example, a porous body of sintered metal mainly containing copper. As will be described in detail later, the bearing sleeve 8 is press-fitted and fixed at a predetermined position on the inner peripheral surface 7a of the housing 7 in a state of being in contact with the contact portion 10b of the thrust member 10. The outer diameter of the bearing sleeve 8 is formed larger than the inner diameter of the housing 7 by a predetermined press-fitting allowance with respect to the inner peripheral surface 7a of the housing 7 of an outer peripheral surface 8d of the bearing sleeve 8 described later. .

軸受スリーブ8の内周面8aの全面又は一部円筒領域には、ラジアル動圧発生部としての動圧溝が形成される。この実施形態では、例えば図3(a)に示すように、複数の動圧溝8a1、8a2をへリングボーン形状に配列した領域が軸方向に離隔して2箇所形成される。上側の動圧溝8a1の形成領域では、動圧溝8a1が、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。   A dynamic pressure groove as a radial dynamic pressure generating portion is formed on the entire inner surface 8a of the bearing sleeve 8 or a partial cylindrical region. In this embodiment, for example, as shown in FIG. 3A, two regions having a plurality of dynamic pressure grooves 8a1 and 8a2 arranged in a herringbone shape are formed apart from each other in the axial direction. In the formation region of the upper dynamic pressure groove 8a1, the dynamic pressure groove 8a1 is formed to be axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions). The axial dimension X1 of the upper region is larger than the axial dimension X2 of the lower region.

軸受スリーブ8の外周面8dには、1又は複数本の軸方向溝8d1が軸方向全長に亘って形成される。この図示例では、例えば図3(c)に示すように、3本の軸方向溝8d1が円周方向等間隔に形成されている。なお、軸受スリーブ8には、焼結後に寸法サイジングが施され、外周面8dの真円度は5μm未満に矯正される。   One or more axial grooves 8d1 are formed on the outer peripheral surface 8d of the bearing sleeve 8 over the entire axial length. In this illustrated example, as shown in FIG. 3C, for example, three axial grooves 8d1 are formed at equal intervals in the circumferential direction. The bearing sleeve 8 is dimensioned after sintering, and the roundness of the outer peripheral surface 8d is corrected to less than 5 μm.

軸受スリーブ8の下端面8cの全面または一部環状領域には、スラスト動圧発生部として、例えば図3(b)に示すように、複数の動圧溝8c1をスパイラル形状に配列した領域が形成される。   For example, as shown in FIG. 3B, a region where a plurality of dynamic pressure grooves 8c1 are arranged in a spiral shape is formed as a thrust dynamic pressure generating portion on the entire lower surface 8c of the bearing sleeve 8 or a partial annular region. Is done.

軸受スリーブ8の上端面8bは、図3(c)に示すように、半径方向の略中央部に設けられた円周溝8b1により、内径側領域8b2と外径側領域8b3に区画され、内径側領域8b2には、1又は複数本の半径方向溝8b21が形成される。この図示例では、3本の半径方向溝8b21が円周等間隔に形成されている。   As shown in FIG. 3C, the upper end surface 8b of the bearing sleeve 8 is partitioned into an inner diameter side region 8b2 and an outer diameter side region 8b3 by a circumferential groove 8b1 provided at a substantially central portion in the radial direction. One or a plurality of radial grooves 8b21 are formed in the side region 8b2. In the illustrated example, three radial grooves 8b21 are formed at equal intervals around the circumference.

シール部材9は、例えば樹脂材料又は軟質金属材料で環状に形成され、ハウジング7の内周面7a上端に配設される。シール部材9の内周面9aは、軸部2aの外周に設けられたテーパ面2a2と所定のシール空間S1を介して対向する。なお、軸部2aのテーパ面2a2は上側(ハウジング7に対して外部側)に向かって漸次縮径し、軸部材2の回転時には毛細管力シールおよび遠心力シールとして機能する。また、シール部材9の下端面9bは、その外径側領域9b1を内径側領域に比べて軸方向上方に後退させた形態をなす。   The seal member 9 is formed in an annular shape from, for example, a resin material or a soft metal material, and is disposed on the upper end of the inner peripheral surface 7 a of the housing 7. The inner peripheral surface 9a of the seal member 9 faces the tapered surface 2a2 provided on the outer periphery of the shaft portion 2a via a predetermined seal space S1. The tapered surface 2a2 of the shaft portion 2a is gradually reduced in diameter toward the upper side (outside of the housing 7), and functions as a capillary force seal and a centrifugal force seal when the shaft member 2 rotates. Further, the lower end surface 9b of the seal member 9 has a form in which the outer diameter side region 9b1 is retracted upward in the axial direction as compared with the inner diameter side region.

スラスト部材10は、例えば、樹脂材料又は金属材料で形成され、ハウジング7の内周面7a下端に配設される。スラスト部材10の端面10aの一部環状領域または全面には、スラスト動圧発生部として、例えば図3(b)に示す動圧溝8c1と同様の動圧溝をスパイラル形状に複数配列(スパイラルの回転方向は逆)した領域が形成される。この動圧溝形成領域は、フランジ部2bの下端面2b2と対向し、軸部材2の回転時には、動圧溝形成領域と下端面2b2の間に第二スラスト軸受部T2のスラスト軸受隙間を形成する(図2を参照)。また、この実施形態において、スラスト部材10は、端面10aの外周縁部から上方に延びた環状の当接部10bを一体に備えている。当接部10bの上側端面は軸受スリーブ8の下端面8cと当接し、当接部10bの内周面はフランジ部2bの外周面と径方向の隙間を介して対向する。   The thrust member 10 is formed of, for example, a resin material or a metal material, and is disposed at the lower end of the inner peripheral surface 7 a of the housing 7. For example, a plurality of dynamic pressure grooves similar to the dynamic pressure grooves 8c1 shown in FIG. 3B are arranged in a spiral shape on the partial annular region or the entire surface of the end face 10a of the thrust member 10 as a thrust dynamic pressure generating portion (for example, spiral A region having a reverse rotation direction is formed. This dynamic pressure groove forming region faces the lower end surface 2b2 of the flange portion 2b, and when the shaft member 2 rotates, a thrust bearing gap of the second thrust bearing portion T2 is formed between the dynamic pressure groove forming region and the lower end surface 2b2. (See FIG. 2). Further, in this embodiment, the thrust member 10 is integrally provided with an annular contact portion 10b extending upward from the outer peripheral edge portion of the end surface 10a. The upper end surface of the contact portion 10b is in contact with the lower end surface 8c of the bearing sleeve 8, and the inner peripheral surface of the contact portion 10b is opposed to the outer peripheral surface of the flange portion 2b through a radial gap.

この実施形態の流体軸受装置1は、例えば、次のような工程で組立てる。   The hydrodynamic bearing device 1 of this embodiment is assembled in the following process, for example.

まず、ハウジング7の内周面7aの下端部にスラスト部材10を、例えば圧入、接着、溶着、溶接(レーザー溶接を含む)等の手段で固定する。次に、軸部材2を内周に装着した軸受スリーブ8をハウジング7の内周に収容し、軸受スリーブ8の外周面8dをハウジング7の内周面7aに所定の圧入代で圧入すると共に、その下端面8cをスラスト部材10の当接部10bの上側端面に当接させる。   First, the thrust member 10 is fixed to the lower end portion of the inner peripheral surface 7a of the housing 7 by means such as press fitting, adhesion, welding, welding (including laser welding) or the like. Next, the bearing sleeve 8 with the shaft member 2 mounted on the inner periphery is accommodated in the inner periphery of the housing 7, and the outer peripheral surface 8d of the bearing sleeve 8 is press-fitted into the inner peripheral surface 7a of the housing 7 with a predetermined press-fitting allowance, The lower end surface 8 c is brought into contact with the upper end surface of the contact portion 10 b of the thrust member 10.

このように、外周面8dの真円度が5μm未満の軸受スリーブを、所定の圧入代をもってハウジング7の内周面7aに圧入することにより、軸受スリーブ8の外周面8dの真円度がハウジング7に転写され、ハウジング7の外周面の真円度が5μm以下に抑えられる。なお、ハウジング7に対する軸受スリーブ8の固定は、上記の圧入のみによって行ってもよいし、圧入に加え、接着や超音波溶着等の固定手段を併用することもできる。   In this way, by pressing a bearing sleeve having an outer peripheral surface 8d with a roundness of less than 5 μm into the inner peripheral surface 7a of the housing 7 with a predetermined press-fitting allowance, the roundness of the outer peripheral surface 8d of the bearing sleeve 8 is increased. 7 and the roundness of the outer peripheral surface of the housing 7 is suppressed to 5 μm or less. The bearing sleeve 8 may be fixed to the housing 7 only by the press-fitting described above, or in addition to the press-fitting, fixing means such as adhesion or ultrasonic welding may be used in combination.

上記圧入と同時に、軸受スリーブ8の下端面8cをスラスト部材10の当接部10bに当接させることにより、スラスト部材10に対する軸受スリーブ8の軸方向の位置決めが正確になされる。従って、当接部10bとフランジ部2bの軸方向寸法とをそれぞれ管理することにより、後述する第一スラスト軸受部T1と第二スラスト軸受部T2のスラスト軸受隙間を精度良く設定することができる。   Simultaneously with the press-fitting, the lower end surface 8c of the bearing sleeve 8 is brought into contact with the contact portion 10b of the thrust member 10, whereby the axial positioning of the bearing sleeve 8 with respect to the thrust member 10 is accurately performed. Accordingly, by managing the axial dimensions of the contact portion 10b and the flange portion 2b, the thrust bearing gap between the first thrust bearing portion T1 and the second thrust bearing portion T2, which will be described later, can be set with high accuracy.

軸受スリーブ8の固定後、シール部材9をハウジング7の内周面7aの上端部に配し、その下端面9bの内径側領域を軸受スリーブ8の上端面8bの内径側領域8b2に当接させる。そして、この状態で、シール部材9を適宜の手段、例えば圧入、接着、溶接等によってハウジング7に固定する。なお、シール部材9とハウジング7との固定に超音波溶着を用いる場合、図示は省略するが、シール部材9の外周面に凸状のリブを設けることによって、超音波溶着時の固定力を高めることができる。   After fixing the bearing sleeve 8, the seal member 9 is disposed on the upper end portion of the inner peripheral surface 7 a of the housing 7, and the inner diameter side region of the lower end surface 9 b is brought into contact with the inner diameter side region 8 b 2 of the upper end surface 8 b of the bearing sleeve 8. . In this state, the seal member 9 is fixed to the housing 7 by an appropriate means such as press-fitting, adhesion, welding or the like. When ultrasonic welding is used for fixing the seal member 9 and the housing 7, illustration is omitted, but by providing convex ribs on the outer peripheral surface of the seal member 9, the fixing force at the time of ultrasonic welding is increased. be able to.

上記のようにして組立が完了すると、軸部材2の軸部2aは軸受スリーブ8の内周面8aに挿入され、フランジ部2bは軸受スリーブ8の下端面8cとスラスト部材10の端面10aとの間の空間部に収容された状態となる。その後、シール部材9で密封されたハウジング7の内部空間は、軸受スリーブ8の内部空孔を含め、潤滑油で充満される。潤滑油の油面は、シール空間S1の範囲内に維持される。   When the assembly is completed as described above, the shaft portion 2a of the shaft member 2 is inserted into the inner peripheral surface 8a of the bearing sleeve 8, and the flange portion 2b is formed between the lower end surface 8c of the bearing sleeve 8 and the end surface 10a of the thrust member 10. It will be in the state accommodated in the space part between. Thereafter, the internal space of the housing 7 sealed with the seal member 9 is filled with lubricating oil including the internal holes of the bearing sleeve 8. The oil level of the lubricating oil is maintained within the range of the seal space S1.

軸部材2の回転時、軸受スリーブ8の内周面8aのラジアル軸受面となる領域(上下2箇所の領域)は、軸部2aの外周面2a1とラジアル軸受隙間を介して対向する。そして、軸部材2の回転に伴い、上記ラジアル軸受隙間の潤滑油が動圧溝8a1(8a2)の軸方向中心m側に押し込まれ、その圧力が上昇する。このような動圧溝の動圧作用によって、軸部2aを非接触支持する第一ラジアル軸受部R1と第二ラジアル軸受部R2がそれぞれ構成される。   When the shaft member 2 rotates, the region (two upper and lower regions) of the inner peripheral surface 8a of the bearing sleeve 8 is opposed to the outer peripheral surface 2a1 of the shaft portion 2a via the radial bearing gap. As the shaft member 2 rotates, the lubricating oil in the radial bearing gap is pushed toward the axial center m of the dynamic pressure groove 8a1 (8a2), and the pressure rises. The first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft portion 2a in a non-contact manner are configured by the dynamic pressure action of the dynamic pressure groove.

同時に、フランジ部2bの上端面2b1とこれに対向する軸受スリーブ8の下端面8c(動圧溝8c1形成領域)との間のスラスト軸受隙間、およびフランジ部2bの下端面2b2とこれに対向するスラスト部材10の端面10a(動圧溝形成領域)との間のスラスト軸受隙間に、動圧溝の動圧作用により潤滑油の油膜がそれぞれ形成される。そして、これら油膜の圧力によって、フランジ部2bを両スラスト方向に回転自在に非接触支持するスラスト軸受部T1、T2が構成される。   At the same time, the thrust bearing gap between the upper end surface 2b1 of the flange portion 2b and the lower end surface 8c (dynamic pressure groove 8c1 formation region) of the bearing sleeve 8 facing the flange portion 2b, and the lower end surface 2b2 of the flange portion 2b opposes this. An oil film of lubricating oil is formed in the thrust bearing gap between the thrust member 10 and the end surface 10a (dynamic pressure groove forming region) by the dynamic pressure action of the dynamic pressure groove. And the thrust bearing parts T1 and T2 which non-contact-support the flange part 2b rotatably in both thrust directions are comprised by the pressure of these oil films.

また、前述したように、第一ラジアル軸受部R1の動圧溝8a1は、軸方向中心mに対して軸方向非対称(X1>X2)に形成されているため{図3(a)参照}、軸部材2の回転時、動圧溝8a1による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。そして、この引き込み力の差圧によって、軸受スリーブ8の内周面8aと軸部2aの外周面2a1との間の隙間に満たされた潤滑油が下方に流動し、第一スラスト軸受部T1のスラスト軸受隙間→軸方向溝8d1→シール部材9の下端面9bの外径側領域9b1と軸受スリーブ8の上端面8bの外径側領域8b3との間の環状隙間→軸受スリーブ8の上端面8bの円周溝8b1→軸受スリーブ8の上端面8bの半径方向溝8b21という経路を循環して、第一ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。このように、潤滑油がハウジング7の内部空間を流動循環するように構成することで、内部空間内の潤滑油の圧力が局部的に負圧になる現象を防止して、負圧発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。また、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際にシール空間S1内の潤滑油の油面(気液界面)から外気に排出されるので、気泡による悪影響はより一層効果的に防止される。   Further, as described above, the dynamic pressure groove 8a1 of the first radial bearing portion R1 is formed axially asymmetric (X1> X2) with respect to the axial center m {see FIG. 3 (a)}, When the shaft member 2 rotates, the lubricating oil pulling force (pumping force) by the dynamic pressure groove 8a1 is relatively larger in the upper region than in the lower region. Then, due to the differential pressure of the pulling force, the lubricating oil filled in the gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a flows downward, and the first thrust bearing portion T1 Thrust bearing gap → axial groove 8d1 → annular gap between outer diameter side region 9b1 of lower end surface 9b of seal member 9 and outer diameter side region 8b3 of upper end surface 8b of bearing sleeve 8 → upper end surface 8b of bearing sleeve 8 Is circulated through the path of the circumferential groove 8b1 → the radial groove 8b21 of the upper end surface 8b of the bearing sleeve 8 and is drawn into the radial bearing gap of the first radial bearing portion R1 again. In this way, the structure in which the lubricating oil flows and circulates in the internal space of the housing 7 prevents a phenomenon in which the pressure of the lubricating oil in the internal space becomes a negative pressure locally, resulting in the generation of negative pressure. Problems such as generation of bubbles, leakage of lubricating oil and generation of vibration due to generation of bubbles can be solved. Further, even if bubbles are mixed in the lubricating oil for some reason, when the bubbles circulate with the lubricating oil, it is discharged from the oil surface (gas-liquid interface) of the lubricating oil in the seal space S1 to the outside air. The adverse effects due to the bubbles are more effectively prevented.

なお、上記図示例では、スラスト部材10、軸受スリーブ8、シール部材9の順にハウジング7に固定した場合を説明したが、特にこの順序に限定されず、例えば、シール部材9、軸受スリーブ8、スラスト部材10の順にハウジング7に固定しても構わない。   In the illustrated example, the case where the thrust member 10, the bearing sleeve 8, and the seal member 9 are fixed to the housing 7 in this order has been described. However, the order is not particularly limited, and for example, the seal member 9, the bearing sleeve 8, the thrust member The members 10 may be fixed to the housing 7 in the order.

また、上記図示例では、シール部材9をハウジング7とは別体に形成した場合を例示したが、シール部材9をハウジング7と一体に形成することもできる。その場合、図示は省略するが、プレス成形した薄肉円筒状ハウジング7の上端部を、例えばネッキング加工等により縮径させて、ハウジング7の上端から内径側に突出する内径突出部と、内径突出部の内径縁から上方に延びる上方延在部とを設けるのがよい。これにより、上方延在部の内周面は、対向する軸部2aの外周面2a1との間にシール空間を形成する。また、内径突出部の下端面に、軸受スリーブ8の上端面8bを当接させることで、軸受スリーブ8のハウジング7に対する軸方向の位置決めが容易かつ正確になされる。   In the illustrated example, the seal member 9 is formed separately from the housing 7. However, the seal member 9 can be formed integrally with the housing 7. In that case, although not shown in the drawings, the upper end portion of the press-formed thin cylindrical housing 7 is reduced in diameter by, for example, necking or the like, and the inner diameter protruding portion protruding from the upper end of the housing 7 toward the inner diameter side, and the inner diameter protruding portion It is preferable to provide an upwardly extending portion extending upward from the inner diameter edge. Thus, a seal space is formed between the inner peripheral surface of the upward extending portion and the outer peripheral surface 2a1 of the opposed shaft portion 2a. Further, the upper end surface 8b of the bearing sleeve 8 is brought into contact with the lower end surface of the inner diameter protruding portion, whereby the axial positioning of the bearing sleeve 8 with respect to the housing 7 is easily and accurately performed.

この他、スラスト部材10をハウジング7と一体にプレス成形することも可能である。その場合、ハウジング中のスラスト部材10に対応する箇所を他所とは肉厚に形成することもでき、あるいはハウジング7全体に亘って肉厚一定とすることもできる。   In addition, the thrust member 10 can be press-molded integrally with the housing 7. In that case, the portion corresponding to the thrust member 10 in the housing can be formed thicker than the other portions, or the thickness can be made constant over the entire housing 7.

また、スラスト部材10の当接部10bは、スラスト部材と一体に形成される必要はなく、例えば図示は省略するが、スペーサなどの環状部材としてスラスト部材10と別体に形成し、これをスラスト部材10と軸受スリーブ8との間に介在させるようにしてもよい。あるいは、他の位置決め手段により、スラスト部材10の軸方向位置決めを行うことで、当接部10bやスペーサなどの位置決め部材を省略することもできる。同様に、シール部材9も省略可能であり、その場合、図示は省略するが、軸受スリーブ8の内周面8a上端の、ラジアル軸受隙間を形成しない領域と、これに対向する軸部2aの外周面2a1との間にシール空間が形成される。 Further, the abutting portion 10b of the thrust member 10 does not need to be formed integrally with the thrust member. For example, although not shown in the drawing, the thrust member 10 is formed separately from the thrust member 10 as an annular member such as a spacer. You may make it interpose between the member 10 and the bearing sleeve 8. FIG. Or positioning members, such as contact part 10b and a spacer, can also be omitted by performing axial positioning of thrust member 10 with other positioning means. Similarly, the seal member 9 can be omitted. In this case, although not shown in the figure, the upper end of the inner peripheral surface 8a of the bearing sleeve 8 is a region where no radial bearing gap is formed, and the outer periphery of the shaft portion 2a facing this region. A seal space is formed between the surface 2a1.

なお、上記図示例の流体軸受装置について、上記形態の軸受以外に、いわゆるピボット軸受でスラスト軸受部を構成することもできる。また、ラジアル軸受部として、いわゆる真円軸受でラジアル軸受部を構成することもできる。   In addition, about the hydrodynamic bearing apparatus of the said example of illustration, a thrust bearing part can also be comprised with what is called a pivot bearing other than the bearing of the said form. Further, as the radial bearing portion, a so-called perfect circle bearing can be used to constitute the radial bearing portion.

以下、本発明の第2実施形態を図4〜図6に基づいて説明する。なお、第1実施形態と共通の事項については、以下説明を省略する。   Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. Note that the description of items common to the first embodiment will be omitted below.

図4は、本発明の第2実施形態に係る流体軸受装置31を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータも、HDD等のディスク駆動装置に用いられるもので、ディスクハブ33が固定された軸部材32を回転自在に非接触支持する流体軸受装置31と、例えば半径方向のギャップを介して対向させたステータコイル34およびロータマグネット35と、流体軸受装置31のハウジング37外周に固定されるブラケット36を備えている。   FIG. 4 conceptually shows a configuration example of a spindle motor for information equipment incorporating a hydrodynamic bearing device 31 according to the second embodiment of the present invention. This spindle motor is also used in a disk drive device such as an HDD, and is opposed to a hydrodynamic bearing device 31 that rotatably supports a shaft member 32 to which a disk hub 33 is fixed, for example, via a radial gap. The stator coil 34 and the rotor magnet 35, and the bracket 36 fixed to the outer periphery of the housing 37 of the hydrodynamic bearing device 31 are provided.

図5は、流体軸受装置31を示している。この流体軸受装置31は、軸部材32と、ハウジング37と、ハウジング37に固定された軸受スリーブ38、およびシール部材39とを主な構成要素として構成されている。以下では、説明の便宜上、ハウジング37の開口部37aの側を上側、開口部37aと反対の側を下側として説明する。   FIG. 5 shows the hydrodynamic bearing device 31. The hydrodynamic bearing device 31 includes a shaft member 32, a housing 37, a bearing sleeve 38 fixed to the housing 37, and a seal member 39 as main components. Below, for convenience of explanation, the side of the opening 37a of the housing 37 will be described as the upper side, and the side opposite to the opening 37a will be described as the lower side.

軸部材32は、例えばステンレス鋼等の金属材料で形成され、軸部32aと、円盤状のフランジ部32bとを備えている。フランジ部32bは軸部32aの下端よりも上方に設けられ、軸部32aと一体または別体をなす。   The shaft member 32 is formed of a metal material such as stainless steel, for example, and includes a shaft portion 32a and a disk-shaped flange portion 32b. The flange portion 32b is provided above the lower end of the shaft portion 32a, and is integral with or separate from the shaft portion 32a.

ハウジング37は、薄肉金属のプレス成形品であり、例えば真ちゅう等の軟質金属からなる金属板の絞り加工で有底円筒状に形成される。この実施形態において、ハウジング37の側部37bの一端側に開口部37aが形成され、他端側に底部37cが側部37bと一体に形成される。   The housing 37 is a thin metal press-formed product, and is formed into a bottomed cylindrical shape by drawing a metal plate made of a soft metal such as brass. In this embodiment, an opening 37a is formed on one end side of the side portion 37b of the housing 37, and a bottom portion 37c is formed integrally with the side portion 37b on the other end side.

軸受スリーブ38は、焼結金属からなる多孔質体、例えば銅を主成分とする焼結金属の多孔質体で円筒状に形成され、ハウジング37の内周面37dの所定位置に固定される。   The bearing sleeve 38 is formed in a cylindrical shape with a porous body made of sintered metal, for example, a sintered metal porous body mainly composed of copper, and is fixed to a predetermined position on the inner peripheral surface 37 d of the housing 37.

軸受スリーブ38の内周面38aの上下に離隔した領域には、図6に示すように、第一ラジアル軸受部R11および第二ラジアル軸受部R12のラジアル軸受面となる複数の円弧面38a1がそれぞれ形成される。各円弧面38a1は、回転軸心Oからそれぞれ等距離オフセットした点を中心とする偏心円弧面であり、円周方向で等間隔に形成される。各偏心円弧面38a1の間には軸方向の分離溝38a2が形成される。   As shown in FIG. 6, a plurality of arcuate surfaces 38a1 serving as the radial bearing surfaces of the first radial bearing portion R11 and the second radial bearing portion R12 are respectively provided in regions spaced apart from each other on the inner peripheral surface 38a of the bearing sleeve 38. It is formed. Each arc surface 38a1 is an eccentric arc surface centered on a point offset from the rotation axis O by an equal distance, and is formed at equal intervals in the circumferential direction. An axial separation groove 38a2 is formed between each eccentric arc surface 38a1.

軸受スリーブ38の内周面38aに軸部材32の軸部32aを挿入することにより、軸受スリーブ38の偏心円弧面38a1および分離溝38a2と、軸部32aの真円状外周面32a1との間に、第一および第二ラジアル軸受部R11、R12の各ラジアル軸受隙間がそれぞれ形成される。ラジアル軸受隙間のうち、偏心円弧面38a1と真円状外周面32a1とで形成される領域は、隙間幅を円周方向の一方で漸次縮小させたくさび状隙間38a3となる。くさび状隙間38a3の縮小方向は軸部材32の回転方向に一致している。   By inserting the shaft portion 32a of the shaft member 32 into the inner peripheral surface 38a of the bearing sleeve 38, the eccentric arc surface 38a1 and the separation groove 38a2 of the bearing sleeve 38 and the perfect circular outer peripheral surface 32a1 of the shaft portion 32a are interposed. The radial bearing gaps of the first and second radial bearing portions R11 and R12 are formed, respectively. In the radial bearing gap, a region formed by the eccentric arc surface 38a1 and the perfect circular outer circumferential surface 32a1 is a wedge-shaped gap 38a3 in which the gap width is gradually reduced in the circumferential direction. The reduction direction of the wedge-shaped gap 38a3 coincides with the rotation direction of the shaft member 32.

軸受スリーブ38の上端面38bの全面または一部環状領域には、スラスト動圧発生部として、例えば図3(b)に示す動圧溝8c1と同様の動圧溝をスパイラル形状に複数配列(スパイラルの回転方向は逆)した領域が形成される。この上端面38bの動圧溝形成領域は、フランジ部32bの下端面32b2と対向し、軸部材32の回転時には、両面38b、32b2の間にスラスト軸受部T11のスラスト軸受隙間が形成される(図5を参照)。その一方、軸受スリーブ38の下端面38cは動圧溝のない平滑な面となる。軸受スリーブ38の外周面38dの真円度は、所定の寸法サイジングにより5μm未満に設定される。   For example, a plurality of dynamic pressure grooves similar to the dynamic pressure grooves 8c1 shown in FIG. 3B are arranged in a spiral shape on the entire upper surface 38b or a partial annular region of the bearing sleeve 38 as a thrust dynamic pressure generating portion (spiral). The rotation direction is reversed). The dynamic pressure groove forming region of the upper end surface 38b faces the lower end surface 32b2 of the flange portion 32b, and when the shaft member 32 rotates, a thrust bearing gap of the thrust bearing portion T11 is formed between the both surfaces 38b and 32b2. (See FIG. 5). On the other hand, the lower end surface 38c of the bearing sleeve 38 is a smooth surface without a dynamic pressure groove. The roundness of the outer peripheral surface 38d of the bearing sleeve 38 is set to be less than 5 μm by a predetermined dimension sizing.

シール部材39は、例えば樹脂材料又は金属材料で環状に形成され、ハウジング37の開口部37a内周に固定される。シール部材39の円筒状の内周面39aは、ハウジング37の開口部37a内周に固定された状態(図5を参照)では、対向する軸部32aの外周面32a1との間に所定のシール空間S2を形成する。   The seal member 39 is formed in an annular shape with, for example, a resin material or a metal material, and is fixed to the inner periphery of the opening 37 a of the housing 37. When the cylindrical inner peripheral surface 39a of the seal member 39 is fixed to the inner periphery of the opening 37a of the housing 37 (see FIG. 5), a predetermined seal is formed between the cylindrical inner peripheral surface 39a and the outer peripheral surface 32a1 of the opposed shaft portion 32a. A space S2 is formed.

シール部材39の下端面39bは、フランジ部32bの上端面32b1と所定の軸方向隙間を介して対向している。軸部材32が上方へ相対変位すると、フランジ部32bの上端面32b1がシール部材39の下端面39bと軸方向で係合し、軸部材32が係止される。このように、シール部材39は、シール機能と抜け止めの機能を併せ持つ。   The lower end surface 39b of the seal member 39 is opposed to the upper end surface 32b1 of the flange portion 32b via a predetermined axial gap. When the shaft member 32 is relatively displaced upward, the upper end surface 32b1 of the flange portion 32b is engaged with the lower end surface 39b of the seal member 39 in the axial direction, and the shaft member 32 is locked. Thus, the sealing member 39 has both a sealing function and a retaining function.

この実施形態の流体軸受装置31は、例えば、次のような工程で組立てる。   The hydrodynamic bearing device 31 of this embodiment is assembled in the following process, for example.

まず、軸部材32を軸受スリーブ38に装着する。そして、軸受スリーブ38の外周面38dをハウジング37の内周面37dに、所定の圧入代でもって圧入する。このように、外周面38dの真円度が5μm未満の軸受スリーブ38を、所定の圧入代をもってハウジング37の内周面37dに圧入することにより、軸受スリーブ38の外周面38dの真円度がハウジング37に転写され、ハウジング37の外周面の真円度が5μm以下に抑えられる。   First, the shaft member 32 is attached to the bearing sleeve 38. Then, the outer peripheral surface 38d of the bearing sleeve 38 is press-fitted into the inner peripheral surface 37d of the housing 37 with a predetermined press-fitting allowance. Thus, the roundness of the outer peripheral surface 38d of the bearing sleeve 38 is increased by press-fitting the bearing sleeve 38 having a roundness of the outer peripheral surface 38d of less than 5 μm into the inner peripheral surface 37d of the housing 37 with a predetermined press-fitting allowance. Transferred to the housing 37, the roundness of the outer peripheral surface of the housing 37 is suppressed to 5 μm or less.

また、軸受スリーブ38を、その下端面38cがハウジング37の底部37cに当接する位置までハウジング37内周に圧入することにより、ハウジング37に対する軸受スリーブ38の軸方向の位置決めが正確に行われる。   Further, the bearing sleeve 38 is pressed into the inner periphery of the housing 37 until the lower end surface 38 c of the bearing sleeve abuts against the bottom 37 c of the housing 37, whereby the axial positioning of the bearing sleeve 38 with respect to the housing 37 is performed accurately.

次に、シール部材39をハウジング37の開口部37a内周に配し、シール部材39の下端面39bと軸受スリーブ38の上端面38bとの間にフランジ部32bを収容した状態で、例えば接着、圧入、溶接などの手段によりハウジング37に固定する。これにより、図5に示す流体軸受装置31が完成する。この際、シール部材39で密封されたハウジング37の内部空間は、軸受スリーブ38の内部気孔を含め、潤滑油で充満されると共に、潤滑油の油面はシール空間S2の範囲内に維持される。   Next, the seal member 39 is disposed on the inner periphery of the opening 37a of the housing 37, and the flange portion 32b is accommodated between the lower end surface 39b of the seal member 39 and the upper end surface 38b of the bearing sleeve 38, for example, bonding, The housing 37 is fixed by means such as press fitting or welding. Thereby, the hydrodynamic bearing device 31 shown in FIG. 5 is completed. At this time, the internal space of the housing 37 sealed by the seal member 39 is filled with the lubricating oil including the internal pores of the bearing sleeve 38, and the oil level of the lubricating oil is maintained within the range of the sealing space S2. .

上記構成の流体軸受装置31において、軸部材32の回転時、軸受スリーブ38の内周面38aのラジアル軸受面となる領域(上下2箇所の領域)は、軸部32aの外周面32a1とラジアル軸受隙間を介して対向し、それぞれ多円弧軸受(テーパ軸受とも称される)を構成する。軸部材32の回転に伴い、ラジアル軸受隙間内の潤滑油がくさび状隙間38a3の縮小側に押し込まれて、その圧力が上昇する。このような動圧作用によって、軸部32aを非接触支持する第一ラジアル軸受部R11と第二ラジアル軸受部R12がそれぞれ構成される。   In the hydrodynamic bearing device 31 configured as described above, when the shaft member 32 is rotated, a region (two upper and lower regions) serving as a radial bearing surface of the inner peripheral surface 38a of the bearing sleeve 38 corresponds to the outer peripheral surface 32a1 of the shaft portion 32a and the radial bearing. They are opposed to each other through a gap, and each form a multi-arc bearing (also referred to as a taper bearing). As the shaft member 32 rotates, the lubricating oil in the radial bearing gap is pushed into the reduction side of the wedge-shaped gap 38a3, and the pressure rises. By such a dynamic pressure action, a first radial bearing portion R11 and a second radial bearing portion R12 that support the shaft portion 32a in a non-contact manner are configured.

同時に、フランジ部32bの下端面32b2とこれに対向する軸受スリーブ38の上端面38bとの間のスラスト軸受隙間にも、動圧溝の動圧作用により潤滑油の油膜が形成され、この油膜の圧力によって、フランジ部32bをスラスト方向に回転自在に非接触支持するスラスト軸受部T11が構成される。   At the same time, an oil film of lubricating oil is also formed in the thrust bearing gap between the lower end surface 32b2 of the flange portion 32b and the upper end surface 38b of the bearing sleeve 38 facing the flange portion 32b by the dynamic pressure action of the dynamic pressure groove. A thrust bearing portion T11 that supports the flange portion 32b in a non-contact manner so as to be rotatable in the thrust direction is configured by the pressure.

なお、上記図示例では、シール部材39をハウジング37とは別体に形成し、これを後付けでハウジング37に固定した場合を説明したが、例えばシール部材39をハウジング37と一体に樹脂材料で形成することもできる(図示は省略)。その場合には、ハウジング37の底部37cをハウジング37とは別体に形成すればよい。   In the illustrated example, the case where the seal member 39 is formed separately from the housing 37 and fixed to the housing 37 later is described. However, for example, the seal member 39 is formed integrally with the housing 37 from a resin material. It can also be done (not shown). In that case, the bottom 37c of the housing 37 may be formed separately from the housing 37.

また、上記図示例では、シール空間S2を、シール部材39の円筒状の内周面39aと、これに対向する軸部32aの外周面32a1との間に形成した場合を説明したが、本発明は、これ以外の形態に適用することも可能である。例えば図7は、ハウジング37外部側(図7では上側)に向けて径方向隙間幅を漸次拡大させたテーパ状のシール空間S3を形成した場合を例示したものである。   In the illustrated example, the case where the seal space S2 is formed between the cylindrical inner peripheral surface 39a of the seal member 39 and the outer peripheral surface 32a1 of the shaft portion 32a opposite to the cylindrical inner peripheral surface 39a has been described. It is also possible to apply to other forms. For example, FIG. 7 illustrates a case where a tapered seal space S3 is formed in which the radial gap width is gradually increased toward the outside of the housing 37 (the upper side in FIG. 7).

また、図8には、ハウジング37の軸方向寸法を縮小して、流体軸受装置31の小サイズ化を図るため、シール部材39の内周面39aと、フランジ部32bの外周面32b3とを対向させ、この対向面間にテーパ状のシール空間S4を形成したものが例示されている。   Further, in FIG. 8, in order to reduce the axial dimension of the housing 37 and reduce the size of the hydrodynamic bearing device 31, the inner peripheral surface 39 a of the seal member 39 and the outer peripheral surface 32 b 3 of the flange portion 32 b are opposed to each other. In this example, a tapered seal space S4 is formed between the opposing surfaces.

さらに、軸部材32の抜止めを考慮したものとして、例えば図9に示すような構成を挙げることができる。同図におけるシール空間S5は、フランジ部32bに設けられた軸方向の段差によって区画形成された外周面のうち、上側の外周面32b3と、これに対向するシール部材39の内周面39aとの間に形成される。また、段によって区画形成された上端面32b1のうち外径側の端面32b4は、シール部材39の下端面39bと軸方向に対向する。   Furthermore, as an example of taking into consideration the retaining of the shaft member 32, a configuration as shown in FIG. The seal space S5 in the figure is formed by the upper outer peripheral surface 32b3 and the inner peripheral surface 39a of the seal member 39 facing the upper outer peripheral surface 32b3 among the outer peripheral surfaces defined by the axial step provided in the flange portion 32b. Formed between. Further, the end surface 32b4 on the outer diameter side of the upper end surface 32b1 defined by the steps is opposed to the lower end surface 39b of the seal member 39 in the axial direction.

このような構成とすることで、シール空間S5には、遠心力および毛細間力によるシール作用が生じ、潤滑油の外部への漏れ出しが防止される。また、軸部材32の上方への相対変位時、フランジ部32bの外径側端面32b4がシール部材39の下端面39bと軸方向で係合することで、軸部材32の抜止めがなされる。   With such a configuration, the sealing space S5 has a sealing action due to centrifugal force and intercapillary force, and leakage of lubricating oil to the outside is prevented. Further, when the shaft member 32 is relatively displaced upward, the outer diameter side end surface 32b4 of the flange portion 32b is engaged with the lower end surface 39b of the seal member 39 in the axial direction, so that the shaft member 32 is prevented from being detached.

また、この図示例では、シール部材39は、その下端面39bの、外径側端面32b4と対向しない箇所を下方に向けて突出させた形態をなす。そのため、シール部材39の下方突出部39cを軸受スリーブ38の上端面38bに当接させることで、シール部材39の軸方向の位置決めが容易になされる。   In the illustrated example, the sealing member 39 has a form in which a portion of the lower end surface 39b that does not face the outer diameter side end surface 32b4 is protruded downward. Therefore, the lower protrusion 39c of the seal member 39 is brought into contact with the upper end surface 38b of the bearing sleeve 38, whereby the seal member 39 can be easily positioned in the axial direction.

図10は、第一および第二ラジアル軸受部R11、R12を構成する多円弧軸受の他の実施形態を示すものである。この実施形態では、図6に示す構成において、各偏心円弧面38a1の最小隙間側の所定領域θが、それぞれ回転軸心Oを中心とする同心の円弧で構成されている。従って、各所定領域θにおいて、ラジアル軸受隙間(最小隙間)は一定となる。このような構成の多円弧軸受は、テーパ・フラット軸受と称されることもある。   FIG. 10 shows another embodiment of the multi-arc bearing constituting the first and second radial bearing portions R11, R12. In this embodiment, in the configuration shown in FIG. 6, the predetermined region θ on the minimum gap side of each eccentric arc surface 38 a 1 is configured by a concentric arc centering around the rotation axis O. Therefore, in each predetermined area θ, the radial bearing gap (minimum gap) is constant. The multi-arc bearing having such a configuration may be referred to as a tapered flat bearing.

図11では、軸受スリーブ38の内周面38aのラジアル軸受面となる領域が3つの円弧面38a1で形成されると共に、3つの円弧面38a1の中心は、回転軸心Oから等距離オフセットされている。3つの偏心円弧面38a1で区画される各領域において、ラジアル軸受隙間は、円周方向の両方向に対してそれぞれ漸次縮小した形状を有している。   In FIG. 11, a region that is a radial bearing surface of the inner peripheral surface 38 a of the bearing sleeve 38 is formed by three arc surfaces 38 a 1, and the centers of the three arc surfaces 38 a 1 are offset from the rotation axis O by an equal distance. Yes. In each region defined by the three eccentric arc surfaces 38a1, the radial bearing gap has a shape gradually reduced with respect to both directions in the circumferential direction.

以上説明した第一および第二ラジアル軸受部R11、R12の多円弧軸受は、何れもいわゆる3円弧軸受であるが、これに限らず、いわゆる4円弧軸受、5円弧軸受、さらには6円弧以上の数の円弧面で構成された多円弧軸受を採用してもよい。また、ラジアル軸受部R11、R12のように、2つのラジアル軸受部を軸方向に離隔して設けた構成とするほか、軸受スリーブ38の内周面38aの上下領域に亘って1つのラジアル軸受部を設けた構成としてもよい。   The multi-arc bearings of the first and second radial bearing portions R11 and R12 described above are all so-called three-arc bearings, but are not limited thereto, so-called four-arc bearings, five-arc bearings, and more than six arcs. You may employ | adopt the multi-arc bearing comprised by the several circular arc surface. Further, as in the radial bearing portions R11 and R12, two radial bearing portions are provided apart from each other in the axial direction, and one radial bearing portion extends over the upper and lower regions of the inner peripheral surface 38a of the bearing sleeve 38. It is good also as a structure which provided.

また、以上の説明では、ラジアル軸受部R11、R12として、多円弧軸受を採用した場合を例示しているが、これ以外の軸受で構成することも可能である。ラジアル軸受部R11、R12を構成可能な軸受としては、例えば図示は省略するが、軸受スリーブ38の内周面38aのラジアル軸受隙間に面する領域(ラジアル軸受面となる領域)に、複数の軸方向溝形状の動圧溝を形成したステップ軸受が挙げられる。なお、以上説明した多円弧軸受等の軸受は、第1実施形態のラジアル軸受部R1、R2にも、もちろん採用することができる。   Moreover, although the case where a multi-arc bearing is employ | adopted as radial bearing part R11, R12 is illustrated in the above description, it can also be comprised with bearings other than this. As bearings that can constitute the radial bearing portions R11 and R12, for example, although not shown, a plurality of shafts are provided in a region facing the radial bearing gap (region serving as a radial bearing surface) on the inner peripheral surface 38a of the bearing sleeve 38. An example is a step bearing in which a directional groove-shaped dynamic pressure groove is formed. Of course, the bearings such as the multi-arc bearing described above can also be employed in the radial bearing portions R1 and R2 of the first embodiment.

また、以上の第1、第2実施形態では、流体軸受装置1の内部に充満し、ラジアル軸受隙間や、スラスト軸受隙間に動圧作用を生じる流体として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧作用を生じ得る流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。   In the first and second embodiments described above, the lubricating oil is exemplified as the fluid that fills the inside of the hydrodynamic bearing device 1 and generates a dynamic pressure action in the radial bearing gap and the thrust bearing gap. Alternatively, a fluid capable of causing a dynamic pressure action in each bearing gap, for example, a gas such as air, a fluid lubricant such as a magnetic fluid, or lubricating grease may be used.

本発明の第1実施形態に係る流体軸受装置を組み込んだ情報機器用スピンドルモータの断面図である。It is sectional drawing of the spindle motor for information devices incorporating the hydrodynamic bearing apparatus which concerns on 1st Embodiment of this invention. 流体軸受装置の縦断面図である。It is a longitudinal cross-sectional view of a hydrodynamic bearing device. それぞれ軸受スリーブの(a)縦断面図、(b)下端面、(c)上端面である。They are (a) a longitudinal sectional view of the bearing sleeve, (b) a lower end surface, and (c) an upper end surface. 第2実施形態に係る流体軸受装置を組み込んだ情報機器用スピンドルモータの断面図である。It is sectional drawing of the spindle motor for information devices incorporating the hydrodynamic bearing apparatus which concerns on 2nd Embodiment. 流体軸受装置の縦断面図である。It is a longitudinal cross-sectional view of a hydrodynamic bearing device. ラジアル軸受部を示す横断面図である。It is a cross-sectional view which shows a radial bearing part. シール空間の他の構成例を示す拡大断面図である。It is an expanded sectional view showing other examples of composition of seal space. シール空間の他の構成例を示す拡大断面図である。It is an expanded sectional view showing other examples of composition of seal space. シール空間の他の構成例を示す拡大断面図である。It is an expanded sectional view showing other examples of composition of seal space. ラジアル軸受部の他の構成例を示す横断面図である。It is a cross-sectional view which shows the other structural example of a radial bearing part. ラジアル軸受部の他の構成例を示す横断面図である。It is a cross-sectional view which shows the other structural example of a radial bearing part.

符号の説明Explanation of symbols

1 流体軸受装置
2 軸部材
3 ディスクハブ
4 ステータコイル
5 ロータマグネット
6 ブラケット
7 ハウジング
8 軸受スリーブ
8a1、8a2 動圧溝
8c1 動圧溝
9 シール部材
10 スラスト部材
31 流体軸受装置
32 軸部材
37 ハウジング
37a 開口部
37b 側部
37c 底部
38 軸受スリーブ
38a1 偏心円弧面
38a3 くさび状隙間
38d 外周面
39 シール部材
S1、S2、S3、S4、S5 シール空間
R1、R2、R11、R12 ラジアル軸受部
T1、T2、T11 スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Fluid dynamic bearing device 2 Shaft member 3 Disc hub 4 Stator coil 5 Rotor magnet 6 Bracket 7 Housing 8 Bearing sleeve 8a1, 8a2 Dynamic pressure groove 8c1 Dynamic pressure groove 9 Seal member 10 Thrust member 31 Fluid bearing device 32 Shaft member 37 Housing 37a Opening Portion 37b side portion 37c bottom portion 38 bearing sleeve 38a1 eccentric arc surface 38a3 wedge-shaped gap 38d outer peripheral surface 39 seal members S1, S2, S3, S4, S5 seal spaces R1, R2, R11, R12 radial bearing portions T1, T2, T11 thrust Bearing part

Claims (2)

ハウジングと、該ハウジングの内部に固定された軸受スリーブと、前記ハウジングおよび前記軸受スリーブに対して相対回転する回転部材と、該回転部材と前記軸受スリーブとの間のラジアル軸受隙間に生じる流体の油膜で前記回転部材をラジアル方向に非接触支持するラジアル軸受部とを備えた流体軸受装置において、
前記ハウジングは、接着又は圧入でブラケットの内周面に固定され、
前記ハウジングは金属材料のプレス成形品であ、前記軸受スリーブは焼結金属で形成され、その外周面の真円度が5μm未満となるように寸法サイジングが施されており
前記軸受スリーブの外周面を全周にわたって前記ハウジングの内周面に圧入して、前記ハウジングの外周面を前記軸受スリーブの外周面に倣って変形させることで、前記ハウジングの外周面の真円度5μm以下としたことを特徴とする流体軸受装置。
A housing, a bearing sleeve fixed inside the housing, a rotating member rotating relative to the housing and the bearing sleeve, and an oil film of fluid generated in a radial bearing gap between the rotating member and the bearing sleeve In the hydrodynamic bearing device comprising a radial bearing portion for supporting the rotating member in a radial direction in a non-contact manner,
The housing is fixed to the inner peripheral surface of the bracket by adhesion or press fitting,
The housing Ri press forming Shinadea metallic material, wherein the bearing sleeve is formed of sintered metal, and the dimensions sizing is applied as roundness is less than 5μm of its outer peripheral surface,
The outer circumferential surface of the housing is press-fitted into the inner circumferential surface of the housing over the entire circumference, and the outer circumferential surface of the housing is deformed following the outer circumferential surface of the bearing sleeve. The hydrodynamic bearing device is characterized in that the thickness is 5 μm or less.
請求項1に記載の流体軸受装置を有するディスク装置のスピンドルモータ。   A spindle motor of a disk device having the hydrodynamic bearing device according to claim 1.
JP2005000975A 2005-01-05 2005-01-05 Hydrodynamic bearing device Expired - Fee Related JP4498932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005000975A JP4498932B2 (en) 2005-01-05 2005-01-05 Hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005000975A JP4498932B2 (en) 2005-01-05 2005-01-05 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2006189082A JP2006189082A (en) 2006-07-20
JP4498932B2 true JP4498932B2 (en) 2010-07-07

Family

ID=36796479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005000975A Expired - Fee Related JP4498932B2 (en) 2005-01-05 2005-01-05 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4498932B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589954U (en) * 1992-04-30 1993-12-07 エヌティエヌ株式会社 Shell type roller bearing
JP2003148498A (en) * 2001-11-14 2003-05-21 Ntn Corp Dynamic pressure type bearing unit
JP2003239951A (en) * 2002-02-20 2003-08-27 Ntn Corp Dynamic pressure bearing device and manufacturing method therefor
JP2004003582A (en) * 2002-04-05 2004-01-08 Ntn Corp Dynamic-pressure bearing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759703Y2 (en) * 1975-03-29 1982-12-20

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589954U (en) * 1992-04-30 1993-12-07 エヌティエヌ株式会社 Shell type roller bearing
JP2003148498A (en) * 2001-11-14 2003-05-21 Ntn Corp Dynamic pressure type bearing unit
JP2003239951A (en) * 2002-02-20 2003-08-27 Ntn Corp Dynamic pressure bearing device and manufacturing method therefor
JP2004003582A (en) * 2002-04-05 2004-01-08 Ntn Corp Dynamic-pressure bearing device

Also Published As

Publication number Publication date
JP2006189082A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
US8113715B2 (en) Fluid dynamic bearing device
US8356938B2 (en) Fluid dynamic bearing apparatus
JP2007024146A (en) Dynamic pressure bearing device
US8578610B2 (en) Method for manufacturing fluid dynamic bearing device
WO2006085426A1 (en) Housing for fluid bearing device, housing for dynamic pressure bearing device, and method of manufacturing the same
WO2010044327A1 (en) Fluid bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP4498932B2 (en) Hydrodynamic bearing device
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP2008144847A (en) Dynamic pressure bearing device
US20100034493A1 (en) Fluid bearing device
JP2011074951A (en) Fluid dynamic bearing device
JP2009228873A (en) Fluid bearing device
JP4579013B2 (en) Hydrodynamic bearing device
JP2007071312A (en) Dynamic pressure bearing device
JP4588561B2 (en) Hydrodynamic bearing device
JP2006214542A (en) Fluid bearing device
JP4739030B2 (en) Hydrodynamic bearing device
JP2004116623A (en) Fluid bearing device
JP4554324B2 (en) Hydrodynamic bearing device
JP2013053692A (en) Fluid dynamic pressure bearing device and method of manufacturing the same
JP4685641B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP4515151B2 (en) Hydrodynamic bearing device
JP2007263225A (en) Fluid bearing device
JP2006220216A (en) Fluid bearing device housing and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4498932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees