JP2006207787A - Housing for dynamic pressure bearing device and manufacturing method therefor - Google Patents

Housing for dynamic pressure bearing device and manufacturing method therefor Download PDF

Info

Publication number
JP2006207787A
JP2006207787A JP2005046041A JP2005046041A JP2006207787A JP 2006207787 A JP2006207787 A JP 2006207787A JP 2005046041 A JP2005046041 A JP 2005046041A JP 2005046041 A JP2005046041 A JP 2005046041A JP 2006207787 A JP2006207787 A JP 2006207787A
Authority
JP
Japan
Prior art keywords
housing
peripheral surface
thrust bearing
inner peripheral
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005046041A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Yamashita
信好 山下
Tetsuya Kurimura
栗村  哲弥
Kiyoshi Shimizu
清 清水
Yoshitaka Kahata
芳孝 加畑
Masatoshi Tanigawa
雅俊 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Fukui Byora Co Ltd
Original Assignee
NTN Corp
Fukui Byora Co Ltd
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, Fukui Byora Co Ltd, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005046041A priority Critical patent/JP2006207787A/en
Priority to US11/816,058 priority patent/US8746978B2/en
Priority to CN2006800041560A priority patent/CN101128679B/en
Priority to PCT/JP2006/300235 priority patent/WO2006085426A1/en
Publication of JP2006207787A publication Critical patent/JP2006207787A/en
Priority to US13/210,969 priority patent/US8499456B2/en
Priority to US13/927,818 priority patent/US8756816B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sealing Of Bearings (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a housing for dynamic pressure bearing device and a manufacturing method therefor, heightening the shape accuracy of this type of housing at a low cost. <P>SOLUTION: After a sealing surface 7d and a cylindrical outer peripheral surface 7e provided in the outer periphery of the housing are formed by forging, an inner peripheral surface 7c is formed by forging. In the process of forming the inner peripheral surface, punching is performed from the thin side of a housing raw material 7' (the counter-thrust bearing surface 7a side) to the thick side (the thrust bearing surface 7a side). Thus, the perpendicularity of the thrust bearing surface 7a based on the inner peripheral surface 7c or the outer peripheral surface 7e is finished to 20 μm or less. The coaxiality of the sealing surface 7d based on the inner peripheral surface 7c or the outer peripheral surface 7e is finished to 20 μm or less. The coaxiality of the outer peripheral surface 7e based on the inner peripheral surface 7c is finished to 20 μm or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、動圧軸受装置用のハウジングおよびその製造方法に関するものである。ここでいう動圧軸受装置は、情報機器、例えばHDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、その他の小型モータ用として好適である。   The present invention relates to a housing for a hydrodynamic bearing device and a method for manufacturing the same. The hydrodynamic bearing device referred to here is an information device, for example, a magnetic disk device such as an HDD, an optical disk device such as a CD-ROM, CD-R / RW, or DVD-ROM / RAM, or a magneto-optical disk device such as an MD or MO. This is suitable for a spindle motor, a polygon scanner motor of a laser beam printer (LBP), and other small motors.

上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化等が求められている。これらの要求性能を決定づける構成要素の1つに当該モータのスピンドルを支持する軸受があり、近年では、上記要求性能に優れた特性を有する動圧軸受の使用が検討され、あるいは実際に使用されている。   In addition to high rotational accuracy, the various motors are required to have high speed, low cost, low noise, and the like. One of the components that determine the required performance is a bearing that supports the spindle of the motor. In recent years, the use of a hydrodynamic bearing having characteristics excellent in the required performance has been studied or actually used. Yes.

例えば、HDD等のディスク駆動装置のスピンドルモータに組み込まれる動圧軸受装置では、回転部材をラジアル方向に支持するラジアル軸受部およびスラスト方向に支持するスラスト軸受部の双方を動圧軸受で構成する場合がある。この種の動圧軸受装置におけるスラスト軸受部としては、例えば回転部材に設けられた軸部のフランジ部両端面と、これらに対向する面(軸受スリーブの端面や、ハウジングに固定されるスラスト部材あるいは蓋部材の端面等)の何れか一方に、動圧発生部としての動圧溝を形成すると共に、両面間にスラスト軸受隙間を形成するものが知られている(例えば、特許文献1参照)。
特開2003−239951号公報
For example, in a hydrodynamic bearing device incorporated in a spindle motor of a disk drive device such as an HDD, both the radial bearing portion that supports the rotating member in the radial direction and the thrust bearing portion that supports the thrust direction in the thrust direction are configured by the hydrodynamic bearing. There is. As a thrust bearing portion in this type of dynamic pressure bearing device, for example, both end surfaces of a flange portion of a shaft portion provided on a rotating member, and opposite surfaces thereof (an end surface of a bearing sleeve, a thrust member fixed to a housing, or It is known that a dynamic pressure groove as a dynamic pressure generating portion is formed on either one of the end surfaces of the lid member and the like, and a thrust bearing gap is formed between both surfaces (see, for example, Patent Document 1).
JP 2003-239951 A

最近では、情報機器における情報記録密度の増大や高速回転化に対応するため、上記情報機器用のスピンドルモータには一層の高回転精度化が求められており、この要請に応じるために、上記スピンドルモータに組込まれる動圧軸受装置についても更なる高回転精度が要求されている。   Recently, in order to cope with an increase in information recording density and high-speed rotation in information equipment, the spindle motor for the information equipment has been required to have higher rotational accuracy. Higher rotational accuracy is also required for the hydrodynamic bearing device incorporated in the motor.

動圧軸受装置の回転精度(軸受性能)を高めるためには、動圧が生じるラジアル軸受隙間やスラスト軸受隙間を高精度に管理することが重要となる。そのため、上記各軸受隙間の形成に関与する動圧軸受装置の構成部品には高い寸法精度が要求される。   In order to improve the rotational accuracy (bearing performance) of the hydrodynamic bearing device, it is important to manage the radial bearing gap and the thrust bearing gap in which dynamic pressure is generated with high accuracy. For this reason, high dimensional accuracy is required for the components of the hydrodynamic bearing device involved in the formation of the bearing gaps.

その一方で、最近では、軸受装置の小サイズ化や、部品点数の削減を狙って、上記スラスト軸受隙間を、ハウジングの端面とこれに対向する回転部材(例えばディスクハブ)の端面との間に形成することが検討されている。   On the other hand, recently, with the aim of reducing the size of the bearing device and reducing the number of parts, the thrust bearing gap is formed between the end surface of the housing and the end surface of the rotating member (for example, a disk hub) facing the housing. It is being considered to form.

この場合には、軸受装置の高回転精度を達成するため、軸部材や軸受スリーブのみならず、ハウジングのスラスト軸受面となる端面領域にも高い寸法精度が要求される。あるいは他のハウジング構成面間にも優れた高い形状精度が要求される。しかしながら、既存の加工方法では、加工コストが著しく高騰するためにこれ以上の高精度化は困難な状況にある。   In this case, in order to achieve high rotational accuracy of the bearing device, high dimensional accuracy is required not only for the shaft member and the bearing sleeve but also for the end surface region that becomes the thrust bearing surface of the housing. Alternatively, excellent high shape accuracy is required between other housing constituent surfaces. However, in the existing processing method, since the processing cost is remarkably increased, it is difficult to achieve higher accuracy.

本発明の課題は、形状精度を高めた動圧軸受装置用のハウジングを提供することである。   An object of the present invention is to provide a housing for a hydrodynamic bearing device with improved shape accuracy.

本発明の他の課題は、この種のハウジングの形状精度を低コストに高めることのできる動圧軸受装置用ハウジングの製造方法を提供することである。   Another object of the present invention is to provide a method of manufacturing a housing for a hydrodynamic bearing device that can increase the shape accuracy of this type of housing at low cost.

前記課題を解決するため、本発明は、筒状の鍛造加工品であって、支持すべき回転部材との間にスラスト軸受隙間を形成するスラスト軸受面を備え、内周面あるいは外周面を基準としたスラスト軸受面の直角度が20μm以下である動圧軸受装置用ハウジングを提供する。ここでいう直角度は、基準軸線(ここでは内周面あるいは外周面の各横断面における断面輪郭線の中心を結ぶ線を指す。以下、単に内周面あるいは外周面の軸線という。)に対して直角な幾何学的平面からの平行であるべき平面形体(ここではスラスト軸受面を指す。)の狂いの大きさをいい、その大きさは、基準軸線(内周面あるいは外周面の軸線)に垂直な幾何学的平行二平面でその平面形体(スラスト軸受面)を挟んだとき、平行二平面の間隔が最小になる場合の、二平面の間隔で表される。なお、ここでいうスラスト軸受面は、動圧作用を生じるスラスト軸受隙間に面したものであれば足り、動圧作用を生じるための動圧溝の有無は問わない。   In order to solve the above problems, the present invention is a cylindrical forged product, comprising a thrust bearing surface that forms a thrust bearing gap with a rotating member to be supported, and is based on an inner peripheral surface or an outer peripheral surface. A thrust bearing device housing having a perpendicularity of 20 μm or less is provided. The perpendicularity here refers to a reference axis line (here, a line connecting the centers of cross-sectional contour lines in each cross section of the inner peripheral surface or the outer peripheral surface; hereinafter simply referred to as an axial line of the inner peripheral surface or the outer peripheral surface). This is the magnitude of the deviation of a planar feature (referred to here as a thrust bearing surface) that should be parallel from a right-angled geometric plane, which is the reference axis (inner or outer axis) When the plane shape (thrust bearing surface) is sandwiched between two geometric parallel planes perpendicular to the plane, the distance between the two planes is expressed as the distance between the two parallel planes being minimized. The thrust bearing surface referred to here is sufficient if it faces the thrust bearing gap that generates the dynamic pressure action, and it does not matter whether there is a dynamic pressure groove for generating the dynamic pressure action.

また、前記課題を解決するため、本発明は、筒状の鍛造加工品であって、支持すべき回転部材との間にスラスト軸受隙間を形成するスラスト軸受面と、回転部材との間にシール空間を形成するシール面とを備え、内周面あるいは外周面を基準としたシール面の同軸度が20μm以下である動圧軸受装置用ハウジングを提供する。ここでいう同軸度は、基準軸線(ここでは内周面あるいは外周面の軸線を指す。)と同一直線上にあるべき軸線(ここではシール面の各横断面における断面輪郭線の中心を結ぶ線を指す。以下、単にシール面の軸線という。)の基準軸線からの狂いの大きさをいい、その大きさは、上記軸線(シール面の軸線)を全て含み基準軸線(内周面あるいは外周面の軸線)と同軸である幾何学的に正しい円筒のうち、最も小さい円筒の直径で表される。   In order to solve the above-mentioned problems, the present invention provides a cylindrical forged product, in which a seal is formed between a thrust bearing surface that forms a thrust bearing gap with the rotating member to be supported, and the rotating member. There is provided a housing for a hydrodynamic bearing device, including a seal surface that forms a space, and the coaxiality of the seal surface with respect to the inner peripheral surface or the outer peripheral surface is 20 μm or less. The coaxiality here is an axis that should be on the same straight line as the reference axis (in this case, the axis of the inner or outer peripheral surface) (here, a line connecting the centers of the cross-sectional contour lines in each cross section of the seal surface) In the following, the magnitude of the deviation from the reference axis of the seal surface) is simply referred to as the reference axis (inner peripheral surface or outer peripheral surface) including all of the above axes (seal surface axis). Of the geometrically correct cylinders that are coaxial with the axis), the diameter of the smallest cylinder is represented.

また、前記課題を解決するため、本発明は、筒状の鍛造加工品であって、支持すべき回転部材との間にスラスト軸受隙間を形成するスラスト軸受面を備え、内周面を基準とした外周面の同軸度が20μm以下である動圧軸受装置用ハウジングを提供する。ここでいう同軸度は、基準軸線(ここでは内周面の軸線を指す。)と同一直線上にあるべき軸線(ここでは外周面の軸線を指す。)の基準軸線からの狂いの大きさをいい、その大きさは、上記軸線(外周面の軸線)を全て含み基準軸線(内周面の軸線)と同軸である幾何学的に正しい円筒のうち、最も小さい円筒の直径で表される。   In order to solve the above-mentioned problem, the present invention is a cylindrical forged product comprising a thrust bearing surface that forms a thrust bearing gap with a rotating member to be supported, with the inner peripheral surface as a reference. A hydrodynamic bearing device housing in which the coaxiality of the outer peripheral surface is 20 μm or less is provided. The concentricity here refers to the magnitude of the deviation from the reference axis of the axis (here, the axis of the outer peripheral surface) that should be collinear with the reference axis (here, the axis of the inner peripheral surface). In other words, the size is expressed by the diameter of the smallest cylinder among geometrically correct cylinders that are coaxial with the reference axis (the axis of the inner peripheral surface) including all of the above-mentioned axes (the axis of the outer peripheral surface).

上記各ハウジング構成面間の幾何偏差(形状精度)は、以下説明する発明者の知見に基づき規定されたものである。   The geometric deviation (shape accuracy) between the housing constituent surfaces is defined based on the inventor's knowledge described below.

内周面あるいは外周面を基準としたスラスト軸受面の直角度は、スラスト軸受面とこれに対向する回転部材の端面との間のスラスト軸受隙間の精度を大きく左右する。すなわち、上記スラスト軸受面の直角度が20μmを超えると、上記スラスト軸受隙間の大きい箇所と小さい箇所との差が顕著となる。そのため、上記軸受隙間の小さい箇所では、他所に比べて軸部材の回転トルクが大きくなるなど軸受損失が増加し、上記軸受隙間の大きい箇所では、他所に比べて軸受剛性が低下し、軸振れ性(NRRO)が悪化する恐れがある。また、モータ起動後、回転部材が浮上するのに要する時間が増加し、その間の摺動摩耗が増加するなど、軸受寿命にも悪影響を及ぼす恐れがある。このような観点から、本発明では、内周面あるいは外周面を基準としたスラスト軸受面の直角度を20μm以下とした。   The perpendicularity of the thrust bearing surface with respect to the inner circumferential surface or the outer circumferential surface greatly affects the accuracy of the thrust bearing gap between the thrust bearing surface and the end surface of the rotating member facing the thrust bearing surface. That is, when the perpendicularity of the thrust bearing surface exceeds 20 μm, the difference between the large and small portions of the thrust bearing gap becomes significant. For this reason, the bearing loss increases at a location where the bearing clearance is small, for example, the rotational torque of the shaft member is increased compared to other locations, and the bearing rigidity is reduced at locations where the bearing clearance is large, compared to other locations. (NRRO) may be deteriorated. In addition, after the motor is started, the time required for the rotating member to rise increases, and sliding wear during that time may increase, which may adversely affect the bearing life. From such a viewpoint, in the present invention, the perpendicularity of the thrust bearing surface based on the inner peripheral surface or the outer peripheral surface is set to 20 μm or less.

また、ハウジングの内周面あるいは外周面を基準としたシール面の同軸度は、このシール面とこれに対向する回転部材との間にシール空間を形成するに際し、重要となる。この同軸度が十分でないと(20μmを超えると)、たとえ軸受スリーブのハウジングに対する組付けが高精度に行われたとしても、ハウジングのシール面を、この面に対向すべき回転部材側の面に対して、一定の間隔を以って対向配置することが難しくなる。これにより、両面間に形成されるシール空間のシール隙間が周方向にばらつき、シール性能の低下を招く恐れがある。このような観点から、本発明では、内周面あるいは外周面を基準としたシール面の同軸度を20μm以下とした。   Further, the coaxiality of the seal surface with respect to the inner peripheral surface or outer peripheral surface of the housing is important when a seal space is formed between the seal surface and the rotating member facing the seal surface. If this coaxiality is not sufficient (over 20 μm), even if the bearing sleeve is assembled to the housing with high accuracy, the sealing surface of the housing should be the surface on the rotating member side that should face this surface. On the other hand, it is difficult to dispose them at regular intervals. As a result, the seal gap in the seal space formed between the two surfaces varies in the circumferential direction, which may lead to a decrease in seal performance. From this point of view, in the present invention, the coaxiality of the seal surface based on the inner peripheral surface or the outer peripheral surface is set to 20 μm or less.

また、上述のように、ハウジングの内周面は、回転部材(軸部)の軸受スリーブに対する組付け基準となるのに対し、ハウジングの外周面は、ハウジングに軸受スリーブや回転部材を組付けた動圧軸受装置をモータに組み込む際の位置基準となる。そのため、両面間の同軸度が悪いと(20μmを超えると)、例えばモータの固定側部材(ブラケットなど)に対する組付け精度が低下する、モータの駆動力を生じるコイル・マグネットの対向間隔を適正に管理するのが困難になるなど、モータの回転精度に悪影響を及ぼす可能性がある。かかる観点から、本発明では、ハウジングの内周面に対する外周面の同軸度を20μm以下とした。   Further, as described above, the inner peripheral surface of the housing is a reference for assembling the rotating member (shaft portion) with respect to the bearing sleeve, whereas the outer peripheral surface of the housing is assembled with the bearing sleeve and the rotating member on the housing. This is a position reference when the hydrodynamic bearing device is incorporated into the motor. Therefore, if the concentricity between both surfaces is poor (exceeds 20 μm), for example, the assembly accuracy with respect to the fixed side member (bracket, etc.) of the motor will be lowered. It may adversely affect the rotation accuracy of the motor, for example, it will be difficult to manage. From this viewpoint, in the present invention, the coaxiality of the outer peripheral surface with respect to the inner peripheral surface of the housing is set to 20 μm or less.

この他に満たすべきハウジングの形状精度としては、例えばシール面の軸線に対するスラスト軸受面の直角度があり、この直角度が20μm以下であることが望ましい。また、この他の満たすべき形状精度としては、例えば内周面の軸線を基準としたシール面の振れがあり、この振れが20μm以下であることが望ましい。さらに、この他の満たすべき形状精度としては、例えばシール面の輪郭度があり、この輪郭度が20μm以下であることが望ましい。これらシール面に関する幾何偏差(直角度、面振れ、輪郭度)は、少なくとも何れか一を満足すれば足りるが、上記幾何偏差のうち、二つ以上を満足するものであればなおよい。   In addition to this, the shape accuracy of the housing to be satisfied includes, for example, the perpendicularity of the thrust bearing surface with respect to the axis of the seal surface, and this perpendicularity is preferably 20 μm or less. As another shape accuracy to be satisfied, for example, there is runout of the seal surface based on the axis of the inner peripheral surface, and this runout is desirably 20 μm or less. Further, as another shape accuracy to be satisfied, for example, there is a contour degree of the seal surface, and it is desirable that this contour degree is 20 μm or less. It is sufficient that the geometrical deviation (perpendicularity, surface runout, degree of contour) regarding these seal surfaces satisfies at least one of them, but it is more preferable that two or more of the geometrical deviations are satisfied.

また、前記課題を解決するため、本発明は、筒状をなし、支持すべき回転部材との間にスラスト軸受隙間を形成するスラスト軸受面と、回転部材との間にシール空間を形成するシール面とを備えた動圧軸受装置用ハウジングを製造するに際し、ハウジングの外周面を鍛造成形した後、内周面を鍛造成形する工程を含む動圧軸受装置用ハウジングの製造方法を提供する。   In order to solve the above-mentioned problems, the present invention provides a seal that forms a seal space between a rotating bearing and a thrust bearing surface that forms a thrust bearing gap between the rotating member to be supported and a cylindrical shape. When manufacturing a housing for a hydrodynamic bearing device having a surface, a method for manufacturing a housing for a hydrodynamic bearing device including a step of forging the outer peripheral surface of the housing and then forging the inner peripheral surface is provided.

筒状をなすハウジングは、例えばスラスト軸受面積を確保する等の目的で、そのスラスト軸受面側を反スラスト軸受面側に比べて肉厚に形成する場合が多い。このような場合、例えばハウジングの内周面を鍛造成形した後、外周面を鍛造成形すると、先に内周に形成した孔が変形して、この孔の精度が維持できなくなる可能性があり、また肉厚部の成形が困難となる可能性がある。これに対して、本発明のように、ハウジングの外周面を鍛造成形した後、内周面を鍛造成形すれば、かかる問題を解消して、スラスト軸受面を高精度に成形することができる。また、これらの成形は鍛造でもって行なわれるので、旋削等の機械加工に比べてサイクルタイムの短縮、成形加工前の素材量に対する加工後の素材量の比率向上に伴う材料コストの低減などが可能となる。また、旋削等の機械加工と比べて切粉等の発生もなく、またバリの発生も抑えられるので、洗浄作業の簡素化やバリ取りの手間を省いて、さらなる低コスト化を図ることができる。   The cylindrical housing is often formed with a thicker thickness on the thrust bearing surface side than on the anti-thrust bearing surface side, for example, for the purpose of securing a thrust bearing area. In such a case, for example, if the outer peripheral surface is forged after forging the inner peripheral surface of the housing, the hole previously formed in the inner periphery may be deformed, and the accuracy of this hole may not be maintained, In addition, it may be difficult to form the thick part. On the other hand, if the inner peripheral surface is forged after the outer peripheral surface of the housing is forged as in the present invention, this problem can be solved and the thrust bearing surface can be formed with high accuracy. In addition, since these moldings are performed by forging, the cycle time can be shortened compared to machining such as turning, and the material cost can be reduced by increasing the ratio of the amount of material after processing to the amount of material before forming. It becomes. In addition, there is no generation of swarf etc. compared to machining such as turning, and the generation of burrs can be suppressed, so that it is possible to further reduce costs by simplifying cleaning work and eliminating the need for deburring. .

ハウジング内周面の鍛造成形は、通常、ハウジング素材を軸方向に打ち抜くことで行われるが、この際、ハウジング素材を軸方向反スラスト軸受面側からスラスト軸受面側に向けて打ち抜くのが好ましい。この方法によれば、打ち抜きによるスラスト軸受面側の変形を小さくすることができる。従って、先に形成した外周面の形状を高精度に保ちつつ、内周面を成形することが可能となる。   Forging of the inner peripheral surface of the housing is usually performed by punching the housing material in the axial direction. At this time, it is preferable to punch the housing material from the axially anti-thrust bearing surface side toward the thrust bearing surface side. According to this method, deformation on the thrust bearing surface side due to punching can be reduced. Therefore, it is possible to mold the inner peripheral surface while maintaining the shape of the outer peripheral surface formed earlier with high accuracy.

以上の手順を経て製造された動圧軸受装置用ハウジングは、例えば上記各ハウジング構成面間の形状精度(直角度、同軸度、傾斜度)に優れたものとして提供することができる。   The housing for a hydrodynamic bearing device manufactured through the above procedure can be provided, for example, as having excellent shape accuracy (perpendicularity, coaxiality, inclination) between the housing constituent surfaces.

上記ハウジングは、そのスラスト軸受面に、動圧発生部を形成した構成とすることもできる。この場合、ハウジングのスラスト軸受面とこれに対向する回転部材の端面とのスラスト軸受隙間に生じる流体の動圧作用で回転部材がスラスト方向に非接触支持される。   The housing may be configured such that a dynamic pressure generating portion is formed on the thrust bearing surface. In this case, the rotating member is supported in a non-contact manner in the thrust direction by the dynamic pressure action of the fluid generated in the thrust bearing gap between the thrust bearing surface of the housing and the end surface of the rotating member facing the housing.

また、上記ハウジングは、軸方向両端を開口し、一端側にスラスト軸受面を設けると共に、他端側を蓋部材で封口した構成とすることもできる。   Further, the housing may be configured such that both ends in the axial direction are opened, a thrust bearing surface is provided on one end side, and the other end side is sealed with a lid member.

上記構成のハウジングは、例えばこのハウジングを有する動圧軸受装置として提供することができる。また、この動圧軸受装置は、動圧軸受装置を備えたモータとしても提供可能である。   The housing having the above-described configuration can be provided as, for example, a fluid dynamic bearing device having the housing. The hydrodynamic bearing device can also be provided as a motor provided with the hydrodynamic bearing device.

このように、本発明によれば、動圧軸受装置用ハウジングのスラスト軸受面をはじめ、ハウジングの各構成面を高精度に加工することができ、ハウジングと回転部材との間に形成されるスラスト軸受隙間を高精度に管理することができる。また、その際の加工手段に鍛造を採用することで、かかる加工コストの削減が可能となる。   As described above, according to the present invention, each component surface of the housing, including the thrust bearing surface of the housing for the hydrodynamic bearing device, can be processed with high accuracy, and the thrust formed between the housing and the rotating member. The bearing gap can be managed with high accuracy. In addition, by adopting forging as the processing means at that time, it becomes possible to reduce the processing cost.

以下、本発明の第1実施形態を図1〜図4に基づいて説明する。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の第1実施形態に係る動圧軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部2を備えた回転部材3を回転自在に非接触支持する動圧軸受装置1と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、モータブラケット6とを備えている。ステータコイル4はモータブラケット6の外周に取付けられ、ロータマグネット5は回転部材3の外周に取付けられている。動圧軸受装置1のハウジング7は、モータブラケット6の内周に固定される。回転部材3には、磁気ディスク等のディスク状情報記録媒体(以下、単にディスクという。)が一又は複数枚保持される。このように構成されたスピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する電磁力でロータマグネット5が回転し、これに伴って、回転部材3および回転部材3に保持されたディスクDが軸部2と一体に回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 according to a first embodiment of the present invention. This spindle motor is used in a disk drive device such as an HDD, and is opposed to the hydrodynamic bearing device 1 that rotatably supports the rotating member 3 including the shaft portion 2 through a gap in the radial direction, for example. The stator coil 4 and the rotor magnet 5 and the motor bracket 6 are provided. The stator coil 4 is attached to the outer periphery of the motor bracket 6, and the rotor magnet 5 is attached to the outer periphery of the rotating member 3. The housing 7 of the hydrodynamic bearing device 1 is fixed to the inner periphery of the motor bracket 6. The rotating member 3 holds one or a plurality of disk-shaped information recording media (hereinafter simply referred to as disks) such as magnetic disks. In the spindle motor configured as described above, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force generated between the stator coil 4 and the rotor magnet 5. The disk D held by the member 3 rotates integrally with the shaft portion 2.

図2は、動圧軸受装置1を示している。この動圧軸受装置1は、ハウジング7と、ハウジング7に固定された軸受スリーブ8と、ハウジング7および軸受スリーブ8に対して相対回転する回転部材3とを主な構成要素として構成されている。なお、説明の便宜上、軸方向両端に形成されるハウジング7開口部のうち、蓋部材11で封口される側を下側、封口側と反対の側を上側として以下説明する。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a housing 7, a bearing sleeve 8 fixed to the housing 7, and a rotating member 3 that rotates relative to the housing 7 and the bearing sleeve 8 as main components. For convenience of explanation, in the housing 7 openings formed at both ends in the axial direction, the side sealed by the lid member 11 is the lower side, and the side opposite to the sealing side is the upper side.

回転部材3は、例えばハウジング7の開口側を被冠するハブ部9と、軸受スリーブ8の内周に挿入される軸部2とで構成される。   The rotating member 3 includes, for example, a hub portion 9 that covers the opening side of the housing 7 and a shaft portion 2 that is inserted into the inner periphery of the bearing sleeve 8.

ハブ部9は、ハウジング7の開口側(上側)を覆う円盤部9aと、円盤部9aの外周部から軸方向下方に延びた筒状部9bと、筒状部9bの外周に設けられたディスク搭載面9cおよび鍔部9dとを備えている。図示されていないディスクは、円盤部9aの外周に外嵌され、ディスク搭載面9cに載置される。そして、図示しない適当な保持手段(クランパなど)によってディスクがハブ部9に保持される。   The hub portion 9 includes a disc portion 9a that covers the opening side (upper side) of the housing 7, a cylindrical portion 9b that extends axially downward from the outer peripheral portion of the disc portion 9a, and a disk that is provided on the outer periphery of the cylindrical portion 9b. A mounting surface 9c and a flange 9d are provided. A disc (not shown) is fitted on the outer periphery of the disk portion 9a and placed on the disc mounting surface 9c. Then, the disc is held on the hub portion 9 by appropriate holding means (such as a clamper) not shown.

軸部2は、この実施形態ではハブ部9と一体に形成され、その下端に抜止めとしてフランジ部10を別体に備えている。フランジ部10は、金属製で、例えばねじ結合等の手段により軸部2に固定される。   The shaft portion 2 is formed integrally with the hub portion 9 in this embodiment, and includes a flange portion 10 as a separate member at the lower end thereof. The flange portion 10 is made of metal and is fixed to the shaft portion 2 by means such as screw connection.

軸受スリーブ8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体で円筒状に形成される。   The bearing sleeve 8 is formed in a cylindrical shape, for example, with a porous body made of sintered metal, in particular, a sintered metal porous body mainly composed of copper.

軸受スリーブ8の内周面8aの全面又は一部円筒領域には、ラジアル動圧発生部としての動圧溝が形成される。この実施形態では、例えば図3に示すように、複数の動圧溝8a1、8a2をヘリングボーン形状に配列した領域が軸方向に離隔して2箇所形成される。上側の動圧溝8a1の形成領域では、動圧溝8a1が、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。   A dynamic pressure groove as a radial dynamic pressure generating portion is formed on the entire inner surface 8a of the bearing sleeve 8 or a partial cylindrical region. In this embodiment, for example, as shown in FIG. 3, two regions where a plurality of dynamic pressure grooves 8a1 and 8a2 are arranged in a herringbone shape are formed apart from each other in the axial direction. In the formation region of the upper dynamic pressure groove 8a1, the dynamic pressure groove 8a1 is formed to be axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions). The axial dimension X1 of the upper region is larger than the axial dimension X2 of the lower region.

軸受スリーブ8の下端面8cの全面または一部環状領域には、スラスト動圧発生部として、例えば図示は省略するが、複数の動圧溝をスパイラル形状に配列した領域が形成される。この動圧溝形成領域はスラスト軸受面として、フランジ部10の上端面10aと対向し、軸部2(回転部材3)の回転時には、上端面10aとの間に第二スラスト軸受部T2のスラスト軸受隙間を形成する(図2を参照)。   For example, although not shown in the drawing, a region in which a plurality of dynamic pressure grooves are arranged in a spiral shape is formed on the entire lower surface 8c of the bearing sleeve 8 or a partial annular region. This dynamic pressure groove forming region is opposed to the upper end surface 10a of the flange portion 10 as a thrust bearing surface, and the thrust of the second thrust bearing portion T2 is between the upper end surface 10a and the shaft portion 2 (rotating member 3) when rotating. A bearing gap is formed (see FIG. 2).

ハウジング7は、例えばステンレス鋼等の金属材料で円筒状に形成される。このハウジング7は、その軸方向両端を開口した形状をなし、その他端側を蓋部材11で封口している。一端側の端面(上側端面)の全面または一部環状領域には、スラスト軸受面7aが設けられる。この実施形態では、スラスト軸受面7aに、スラスト動圧発生部として、例えば図4に示すように複数の動圧溝7a1をスパイラル形状に配列した領域が形成される。このスラスト軸受面7a(動圧溝7a1形成領域)は、ハブ部9の円盤部9aの下端面9a1と対向し、回転部材3の回転時には、下端面9a1との間に後述する第一スラスト軸受部T1のスラスト軸受隙間を形成する(図2を参照)。   The housing 7 is formed in a cylindrical shape with a metal material such as stainless steel. The housing 7 has a shape in which both ends in the axial direction are opened, and the other end is sealed with a lid member 11. A thrust bearing surface 7 a is provided on the entire end surface (upper end surface) or a partial annular region on one end side. In this embodiment, a region in which a plurality of dynamic pressure grooves 7a1 are arranged in a spiral shape is formed on the thrust bearing surface 7a as a thrust dynamic pressure generating portion, for example, as shown in FIG. This thrust bearing surface 7a (dynamic pressure groove 7a1 formation region) is opposed to the lower end surface 9a1 of the disk portion 9a of the hub portion 9, and a first thrust bearing described later between the lower end surface 9a1 and the rotating member 3 when rotating. A thrust bearing gap of the portion T1 is formed (see FIG. 2).

ハウジング7の他端側を封口する蓋部材11は、金属材料あるいは樹脂材料で形成され、ハウジング7の他端内周側に設けられた段部7bに固定される。ここで、固定手段は特に限定されず、例えば接着(ルーズ接着、圧入接着を含む)、圧入、溶着(例えば超音波溶着)、溶接(例えばレーザ溶接)などの手段を、材料の組合わせや要求される組付け強度、密封性などに合わせて適宜選択することができる。   The lid member 11 that seals the other end side of the housing 7 is formed of a metal material or a resin material, and is fixed to a step portion 7 b provided on the inner peripheral side of the other end of the housing 7. Here, the fixing means is not particularly limited, and for example, means such as adhesion (including loose adhesion and press-fit adhesion), press-fit, welding (for example, ultrasonic welding), welding (for example, laser welding), combinations of materials and requirements. It can be appropriately selected according to the assembled strength, sealing performance and the like.

ハウジング7の内周面7cには、軸受スリーブ8の外周面8bが、例えば接着(ルーズ接着や圧入接着を含む)、圧入、溶着等の適宜の手段で固定される。   The outer peripheral surface 8b of the bearing sleeve 8 is fixed to the inner peripheral surface 7c of the housing 7 by appropriate means such as bonding (including loose bonding and press-fitting bonding), press-fitting, and welding.

ハウジング7の外周には、上方に向かって漸次拡径するテーパ状のシール面7dが形成されている。このテーパ状のシール面7dは、筒状部9bの内周面9b1との間に、ハウジング7の封口側から上方に向けて半径方向寸法が漸次縮小した環状のシール空間Sを形成する。このシール空間Sは、軸部2およびハブ部9の回転時、第一スラスト軸受部T1のスラスト軸受隙間の外径側と連通している。   On the outer periphery of the housing 7, a tapered seal surface 7 d that gradually increases in diameter upward is formed. The tapered seal surface 7d forms an annular seal space S whose radial dimension is gradually reduced from the sealing side of the housing 7 upward from the inner peripheral surface 9b1 of the cylindrical portion 9b. The seal space S communicates with the outer diameter side of the thrust bearing gap of the first thrust bearing portion T1 when the shaft portion 2 and the hub portion 9 are rotated.

また、ハウジング7外周の下端には、径一定の円筒外周面7eが形成される。この円筒外周面7eは、モータブラケット6の内周面6aに接着、圧入等の手段で固定され、これにより、動圧軸受装置1がモータに組み込まれる。   A cylindrical outer peripheral surface 7e having a constant diameter is formed at the lower end of the outer periphery of the housing 7. The cylindrical outer peripheral surface 7e is fixed to the inner peripheral surface 6a of the motor bracket 6 by means such as adhesion or press-fitting, whereby the dynamic pressure bearing device 1 is incorporated into the motor.

動圧軸受装置1の内部には、軸受スリーブ8の内部気孔(多孔質体組織の気孔)を含め、潤滑油が充填される。潤滑油の油面は常にシール空間S内に維持される。   The hydrodynamic bearing device 1 is filled with lubricating oil including the internal pores of the bearing sleeve 8 (pores of the porous body tissue). The oil level of the lubricating oil is always maintained in the seal space S.

軸部2(回転部材3)の回転時、軸受スリーブ8の内周面8aのラジアル軸受面となる領域(上下2箇所の動圧溝8a1、8a2形成領域)は、軸部2の外周面2aとラジアル軸受隙間を介して対向する。そして、軸部2の回転に伴い、上記ラジアル軸受隙間の潤滑油が動圧溝8a1、8a2の軸方向中心m側に押し込まれ、その圧力が上昇する。このような動圧溝の動圧作用によって、軸部2を非接触支持する第一ラジアル軸受部R1と第二ラジアル軸受部R2がそれぞれ構成される。   When the shaft portion 2 (rotating member 3) rotates, a region (a region where two dynamic pressure grooves 8a1 and 8a2 are formed) on the inner peripheral surface 8a of the bearing sleeve 8 is formed on the outer peripheral surface 2a of the shaft portion 2. And through a radial bearing gap. As the shaft portion 2 rotates, the lubricating oil in the radial bearing gap is pushed into the axial center m of the dynamic pressure grooves 8a1 and 8a2, and the pressure rises. The first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft portion 2 in a non-contact manner are configured by the dynamic pressure action of the dynamic pressure groove.

これと同時に、ハウジング7のスラスト軸受面7a(動圧溝7a1形成領域)とこれに対向するハブ部9(円盤部9a)の下端面9a1との間のスラスト軸受隙間、および軸受スリーブ8の下端面8c(動圧溝形成領域)とこれに対向するフランジ部10の上端面10aとの間のスラスト軸受隙間に、動圧溝の動圧作用により潤滑油の油膜がそれぞれ形成される。そして、これら油膜の圧力によって、回転部材3をスラスト方向に非接触支持する第一スラスト軸受部T1と、第二スラスト軸受部T2が構成される。   At the same time, the thrust bearing clearance between the thrust bearing surface 7a (dynamic pressure groove 7a1 formation region) of the housing 7 and the lower end surface 9a1 of the hub portion 9 (disk portion 9a) opposed thereto, and below the bearing sleeve 8 An oil film of lubricating oil is formed in the thrust bearing gap between the end surface 8c (dynamic pressure groove forming region) and the upper end surface 10a of the flange portion 10 facing the end surface 8c by the dynamic pressure action of the dynamic pressure groove. The pressure of these oil films forms a first thrust bearing portion T1 and a second thrust bearing portion T2 that support the rotating member 3 in a non-contact manner in the thrust direction.

以下、動圧軸受装置1を構成するハウジング7の製造方法の一例を図5を基に説明する。   Hereinafter, an example of the manufacturing method of the housing 7 which comprises the fluid dynamic bearing apparatus 1 is demonstrated based on FIG.

ハウジング7は、この実施形態では、外周面成形工程(A)と、内周面成形工程(B)、およびスラスト軸受面成形工程(C)の3工程を経て製造される。   In this embodiment, the housing 7 is manufactured through three steps: an outer peripheral surface forming step (A), an inner peripheral surface forming step (B), and a thrust bearing surface forming step (C).

(A)外周面成形工程
まず、ワイヤを直線状にした後、適寸に裁断した円柱状のブランク材を、図示しない一対の金型内で冷間鍛造(圧縮)して、ハウジング7の外周面(シール面7dおよび円筒外周面7e)を成形する。なお、冷間鍛造方法としては、上記据込みに限らず、例えば前方押出し、あるいは前方押出しと据込みとの組合わせ等、種々の成形方法を使用することができる。
(A) Outer peripheral surface forming step First, after the wire is linearized, a cylindrical blank material cut to an appropriate size is cold forged (compressed) in a pair of molds (not shown), and the outer periphery of the housing 7 Surfaces (seal surface 7d and cylindrical outer peripheral surface 7e) are formed. Note that the cold forging method is not limited to the above-described upsetting, and various forming methods such as forward extrusion or a combination of forward extrusion and upsetting can be used.

(B)内周面成形工程
次に、外周にシール面7dおよび円筒外周面7eを成形したハウジング素材7’の冷間鍛造により、成形すべきハウジング7の内周面7cを成形する。使用する金型は、例えば図5に示すように、ハウジング素材7’の外周面を拘束するダイ16と、成形すべきスラスト軸受面7aの側からハウジング素材7’を軸方向に拘束する上パンチ17と、成形すべきハウジング7の内周面7cに対応する成形面18aを外周に設けた下パンチ(ロッド)18とで構成される。同図のように、ハウジング素材7’を径方向および軸方向に拘束した状態で、ロッド18を上昇させ(図中矢印の方向)、ハウジング素材7’の内周部を、下端側(反スラスト軸受面7a側)から上端側(スラスト軸受面7a側)に向けて打ち抜く。これにより、ハウジング素材7’が軸方向両端に開口し、その内周が成形面18a(完成品の内周面7c)に倣った形状に成形される。この実施形態では、内周面7cの成形面18aに加えて段部7bに対応した成形部18bを有するロッド18を用いることで、完成品の内周面7cと段部7bとが同時に成形される。
(B) Inner peripheral surface shaping | molding process Next, the inner peripheral surface 7c of the housing 7 which should be shape | molded by cold forging of housing raw material 7 'which shape | molded the sealing surface 7d and the cylindrical outer peripheral surface 7e on the outer periphery. For example, as shown in FIG. 5, the die used is a die 16 that restrains the outer peripheral surface of the housing material 7 ′ and an upper punch that restrains the housing material 7 ′ in the axial direction from the thrust bearing surface 7a to be molded. 17 and a lower punch (rod) 18 having a molding surface 18a corresponding to the inner peripheral surface 7c of the housing 7 to be molded. As shown in the figure, in a state where the housing material 7 ′ is constrained in the radial direction and the axial direction, the rod 18 is raised (in the direction of the arrow in the figure), and the inner peripheral portion of the housing material 7 ′ is moved to the lower end side (anti-thrust). Punching is performed from the bearing surface 7a side) toward the upper end side (thrust bearing surface 7a side). As a result, the housing material 7 ′ is opened at both ends in the axial direction, and the inner periphery thereof is molded into a shape that follows the molding surface 18a (the inner peripheral surface 7c of the finished product). In this embodiment, the inner peripheral surface 7c and the stepped portion 7b of the finished product are simultaneously formed by using the rod 18 having the formed portion 18b corresponding to the stepped portion 7b in addition to the forming surface 18a of the inner peripheral surface 7c. The

このように、ハウジング7外周面の鍛造成形を、内周面7cの鍛造成形に先んじて行うことで、加圧時、ハウジング素材7’の好ましくない変形、特に厚肉部(図中上側)の好ましくない変形を避けることができ、外周に設けられたシール面7dの形状を高精度に維持することができる。   Thus, by forging the outer peripheral surface of the housing 7 prior to the forging of the inner peripheral surface 7c, undesired deformation of the housing material 7 ′, particularly the thick portion (upper side in the figure), during pressurization. Undesirable deformation can be avoided, and the shape of the seal surface 7d provided on the outer periphery can be maintained with high accuracy.

(C)スラスト軸受面成形工程
上記(A)、(B)の工程を経た後、ハウジング素材7’の冷間鍛造により、成形すべきハウジング7のスラスト軸受面7aを成形する。この成形工程において使用する金型は、例えば図5に示すダイ16およびロッド18と、上パンチ17の下端面を、図示は省略するが、成形すべきハウジング7のスラスト軸受面7aに対応する成形面としたものとで構成される。ダイ16およびロッド18によりハウジング素材7’を径方向に拘束した状態で、上パンチ17を下降させ(図中矢印の方向)、上パンチ17の成形面(図示は省略)をハウジング素材7’の上端に所定の加圧力を以って押し付ける。これにより、ハウジング素材7’の上端面が成形面(完成品のスラスト軸受面7a)に倣った形状に成形される。また、この実施形態では、同じく図示は省略するが、上パンチ17の成形面に動圧発生部としての動圧溝7a1に対応した溝型を予め形成したものを用いることにより、ハウジング素材7’にスラスト軸受面7aが成形されると同時に、動圧溝7a1形状が成形される。
(C) Thrust bearing surface forming step After the above steps (A) and (B), the thrust bearing surface 7a of the housing 7 to be formed is formed by cold forging of the housing material 7 '. For example, the die 16 and the rod 18 shown in FIG. 5 and the lower end surface of the upper punch 17 shown in FIG. 5 are omitted in the mold used in this molding process, but the molding corresponding to the thrust bearing surface 7a of the housing 7 to be molded is omitted. It is composed of the surface. In a state where the housing material 7 ′ is constrained in the radial direction by the die 16 and the rod 18, the upper punch 17 is lowered (in the direction of the arrow in the figure), and the molding surface (not shown) of the upper punch 17 is formed on the housing material 7 ′. Press the upper end with a predetermined pressure. As a result, the upper end surface of the housing material 7 'is molded into a shape that follows the molding surface (the thrust bearing surface 7a of the finished product). Further, in this embodiment, although not shown in the figure, the housing material 7 ′ is obtained by using a groove die corresponding to the dynamic pressure groove 7a1 as the dynamic pressure generating portion formed in advance on the molding surface of the upper punch 17. At the same time as the thrust bearing surface 7a is formed, the shape of the dynamic pressure groove 7a1 is formed.

以上の(A)〜(C)工程を経て、完成品としてのハウジング7(図2を参照)が形成される。   The housing 7 (see FIG. 2) as a finished product is formed through the above steps (A) to (C).

上述の製造方法によって製造したハウジング7であれば、内周面7cあるいは外周面7eを基準としたスラスト軸受面7aの直角度を20μm以下(望ましくは10μm以下)に仕上げることができる。   In the case of the housing 7 manufactured by the above manufacturing method, the perpendicularity of the thrust bearing surface 7a based on the inner peripheral surface 7c or the outer peripheral surface 7e can be finished to 20 μm or less (preferably 10 μm or less).

また、内周面7cあるいは外周面7eを基準としたシール面7dの同軸度を20μm以下(望ましくは10μm以下)に仕上げることができる。   Further, the coaxiality of the seal surface 7d based on the inner peripheral surface 7c or the outer peripheral surface 7e can be finished to 20 μm or less (preferably 10 μm or less).

また、内周面7cを基準とした外周面7eの同軸度を20μm以下(望ましくは10μm以下)に仕上げることができる。   Further, the coaxiality of the outer peripheral surface 7e with reference to the inner peripheral surface 7c can be finished to 20 μm or less (preferably 10 μm or less).

また、シール面7dの軸線に対するスラスト軸受面7aの直角度を20μm以下(望ましくは10μm以下)に仕上げることができる。   Further, the perpendicularity of the thrust bearing surface 7a with respect to the axis of the seal surface 7d can be finished to 20 μm or less (preferably 10 μm or less).

また、内周面7cの軸線を基準としたシール面7dの振れを20μm以下(望ましくは10μm以下)に仕上げることができる。   Further, the runout of the seal surface 7d with reference to the axis of the inner peripheral surface 7c can be finished to 20 μm or less (preferably 10 μm or less).

また、シール面7dの輪郭度を20μm以下(望ましくは10μm以下)に仕上げることができる。   Further, the contour degree of the seal surface 7d can be finished to 20 μm or less (desirably 10 μm or less).

これらハウジング7の各構成面間の幾何偏差(形状精度)を上記範囲内の値に抑えることで、軸受性能や回転精度、シール性能などを高めた動圧軸受装置1、あるいはこの動圧軸受装置1を備えたモータを提供することができる。   The hydrodynamic bearing device 1 with improved bearing performance, rotational accuracy, sealing performance, etc. by suppressing the geometric deviation (shape accuracy) between the constituent surfaces of the housing 7 to a value within the above range, or the hydrodynamic bearing device. 1 can be provided.

なお、上記(A)〜(C)工程は、何れも構成可能な金型の一例を例示したに過ぎず、成形品の各形状精度(直角度や同軸度など)を上記範囲内の値に設定可能である限り、他の金型構成を採用することもできる。   The above steps (A) to (C) are merely examples of molds that can be configured, and each shape accuracy (such as squareness and coaxiality) of the molded product is set to a value within the above range. Other mold configurations may be employed as long as they can be set.

以下、本発明の第2実施形態を図6、図7に基づいて説明する。なお、第1実施形態と共通の事項については、以下説明を省略する。   Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. In addition, about a matter common with 1st Embodiment, description is abbreviate | omitted below.

図6は、第2実施形態に係る動圧軸受装置21を組み込んだ情報機器用スピンドルモータの一構成例を示している。このスピンドルモータも、HDD等のディスク駆動装置に用いられるもので、軸部22を備えた回転部材23を回転自在に非接触支持する動圧軸受装置21と、例えば半径方向のギャップを介して対向させたステータコイル24およびロータマグネット25と、動圧軸受装置21のハウジング27外周に固定されるブラケット26を備えている。   FIG. 6 shows a configuration example of a spindle motor for information equipment in which the hydrodynamic bearing device 21 according to the second embodiment is incorporated. This spindle motor is also used in a disk drive device such as an HDD, and is opposed to a hydrodynamic bearing device 21 that rotatably supports a rotating member 23 having a shaft portion 22 through a gap in the radial direction, for example. A stator coil 24 and a rotor magnet 25, and a bracket 26 fixed to the outer periphery of a housing 27 of the hydrodynamic bearing device 21 are provided.

図7は、動圧軸受装置21を示している。この動圧軸受装置21は、ハウジング27と、ハウジング27の内周に固定された軸受スリーブ28と、軸受スリーブ28の内周に軸部22を挿入した状態で、ハウジング27および軸受スリーブ28に対して相対回転する回転部材23とを主な構成部品して構成される。   FIG. 7 shows the hydrodynamic bearing device 21. The hydrodynamic bearing device 21 is formed with respect to the housing 27 and the bearing sleeve 28 in a state where the shaft 27 is inserted into the inner periphery of the housing 27, the bearing sleeve 28 fixed to the inner periphery of the housing 27, and the bearing 27. And the rotating member 23 that rotates relative to the main component.

回転部材23は、主に軸部22と、ハブ部29とで構成される。このうち、軸部22は、例えばステンレス鋼等の金属材料で同一径の軸状に形成される。   The rotating member 23 is mainly composed of a shaft portion 22 and a hub portion 29. Of these, the shaft portion 22 is formed in a shaft shape having the same diameter with a metal material such as stainless steel.

ハブ部29は、この実施形態では、軸部22をインサート部品として樹脂材料を射出成形することで形成される。ハブ部29は、図7に示すように、ハウジング27の開口側(図中上側)を覆う円盤部29aと、円盤部29aの外周部から軸方向下方に延びた筒状部29bと、筒状部29bの外周に設けられたディスク搭載面29cおよび鍔部29dとを備えている。なお、ハブ部29は、例えば金属製であってもよく、その場合には、ハブ部29と軸部22とを一体に成形してもよい。   In this embodiment, the hub portion 29 is formed by injection molding a resin material using the shaft portion 22 as an insert part. As shown in FIG. 7, the hub portion 29 includes a disc portion 29a that covers the opening side (upper side in the drawing) of the housing 27, a cylindrical portion 29b that extends downward in the axial direction from the outer peripheral portion of the disc portion 29a, and a cylindrical shape. A disk mounting surface 29c and a flange part 29d provided on the outer periphery of the part 29b are provided. The hub portion 29 may be made of, for example, metal. In that case, the hub portion 29 and the shaft portion 22 may be integrally formed.

ハウジング27は金属材料(例えばステンレス鋼)の鍛造成形品で、有底筒状に形成される。このハウジング27は、円筒状の側部27aと、側部27aの下端に設けられた底部27bとを備えており、底部27bは側部27aと一体に成形されている。   The housing 27 is a forged molded product of a metal material (for example, stainless steel) and is formed in a bottomed cylindrical shape. The housing 27 includes a cylindrical side portion 27a and a bottom portion 27b provided at the lower end of the side portion 27a. The bottom portion 27b is formed integrally with the side portion 27a.

ハウジング27の開口側端面(上端面)の全面または一部環状領域には、スラスト軸受面27cが形成され、このスラスト軸受面27cに、スラスト動圧発生部として、図示は省略するが、例えば図4と同じ形状に動圧溝を配列した領域が形成される。このスラスト軸受面(動圧溝形成領域)27cは、ハブ部29の円盤部29aの下端面29a1と対向し、軸部22(回転部材23)の回転時には、下端面29a1との間に後述するスラスト軸受部T11のスラスト軸受隙間を形成する(図7を参照)。   A thrust bearing surface 27c is formed on the entire or partial annular region of the opening side end surface (upper end surface) of the housing 27. Although not shown as a thrust dynamic pressure generating portion on the thrust bearing surface 27c, for example, FIG. A region in which the dynamic pressure grooves are arranged in the same shape as 4 is formed. This thrust bearing surface (dynamic pressure groove forming region) 27c faces the lower end surface 29a1 of the disk portion 29a of the hub portion 29, and will be described later with the lower end surface 29a1 when the shaft portion 22 (rotating member 23) rotates. A thrust bearing gap of the thrust bearing portion T11 is formed (see FIG. 7).

側部27aの上方部外周には、上方に向かって漸次拡径するテーパ状のシール面27eが形成され、このシール面27eと、ハブ部29に設けられた筒状部29bの内周面29b1との間に、上方に向かって漸次縮小するテーパ状のシール空間S’が形成される。このシール空間S’は、軸部22およびハブ部29の回転時、スラスト軸受部T11のスラスト軸受隙間の外径側と連通する。また、ハブ部29の筒状部29bの下端内周には、軸部22(回転部材23)の軸方向上方への相対変位時、ハウジング27と軸方向で係合して、軸部22を係止する係止部材30が取付けられている。   On the outer periphery of the upper portion of the side portion 27a, a tapered seal surface 27e that gradually increases in diameter upward is formed. This seal surface 27e and the inner peripheral surface 29b1 of the cylindrical portion 29b provided on the hub portion 29 are formed. Between the two, a tapered seal space S ′ that gradually decreases upward is formed. The seal space S 'communicates with the outer diameter side of the thrust bearing gap of the thrust bearing portion T11 when the shaft portion 22 and the hub portion 29 are rotated. Further, the inner periphery of the lower end of the cylindrical portion 29b of the hub portion 29 is engaged with the housing 27 in the axial direction when the shaft portion 22 (rotating member 23) is relatively displaced in the axial direction, so that the shaft portion 22 is engaged. A locking member 30 for locking is attached.

軸受スリーブ28は例えば金属製の非孔質体あるいは焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体で円筒状に形成され、接着(ルーズ接着や圧入接着を含む)、圧入、溶着等の固定手段によってハウジング27の内周面27dの所定位置に固定される。   The bearing sleeve 28 is formed in a cylindrical shape with a porous body made of, for example, a metal non-porous body or sintered metal, in particular, a sintered metal porous body mainly composed of copper, and bonded (loose bonding or press-fit bonding). And fixed at a predetermined position on the inner peripheral surface 27d of the housing 27 by fixing means such as press fitting and welding.

この実施形態では、上述の如く、ハウジング27のスラスト軸受面27cと、これに対向する円盤部29aの下端面29a1との間にのみスラスト軸受隙間が形成され、軸部22の下端側でスラスト軸受隙間は形成されない。そのため、第2実施形態における軸受スリーブ28は、その内周面28aに、図3に示すような複数の動圧溝を有する一方で、上端面や下端面は動圧溝のない平滑な面となる。   In this embodiment, as described above, a thrust bearing gap is formed only between the thrust bearing surface 27c of the housing 27 and the lower end surface 29a1 of the disk portion 29a opposite to the thrust bearing surface 27c. No gap is formed. Therefore, the bearing sleeve 28 in the second embodiment has a plurality of dynamic pressure grooves as shown in FIG. 3 on its inner peripheral surface 28a, while the upper end surface and the lower end surface are smooth surfaces having no dynamic pressure grooves. Become.

シール空間S’やスラスト軸受隙間を含むハウジング27の内部空間に潤滑油が充満された上記構成の動圧軸受装置21において、軸部22(回転部材23)の回転時、軸受スリーブ28の内周面28aのラジアル軸受面となる領域(上下2箇所の領域)は、軸部22の外周面22aとラジアル軸受隙間を介して対向する。軸部22の回転に伴い、上記ラジアル軸受隙間の潤滑油が動圧溝の軸方向中心側に押し込まれ、その圧力が上昇する。このような動圧溝の動圧作用によって、軸部22を非接触支持する第一ラジアル軸受部R11と第二ラジアル軸受部R12がそれぞれ構成される。   In the hydrodynamic bearing device 21 having the above-described configuration in which the internal space of the housing 27 including the seal space S ′ and the thrust bearing gap is filled with lubricant, the inner periphery of the bearing sleeve 28 is rotated when the shaft portion 22 (rotating member 23) is rotated. The area (two upper and lower areas) of the surface 28a serving as the radial bearing surface is opposed to the outer peripheral surface 22a of the shaft portion 22 via the radial bearing gap. As the shaft portion 22 rotates, the lubricating oil in the radial bearing gap is pushed toward the axial center side of the dynamic pressure groove, and the pressure rises. The first radial bearing portion R11 and the second radial bearing portion R12 that support the shaft portion 22 in a non-contact manner are configured by the dynamic pressure action of the dynamic pressure groove.

同時に、ハブ部29の下端面29a1とこれに対向するハウジング27のスラスト軸受面(動圧溝形成領域)27cとの間のスラスト軸受隙間にも、動圧溝の動圧作用により潤滑油の油膜が形成され、この油膜の圧力によって、軸部22(回転部材23)をスラスト方向に回転自在に非接触支持するスラスト軸受部T11が構成される。   At the same time, the oil film of the lubricating oil is also applied to the thrust bearing gap between the lower end surface 29a1 of the hub portion 29 and the thrust bearing surface (dynamic pressure groove forming region) 27c of the housing 27 opposed thereto by the dynamic pressure action of the dynamic pressure groove. The thrust bearing portion T11 that supports the shaft portion 22 (the rotating member 23) in a non-contact manner so as to be rotatable in the thrust direction is configured by the pressure of the oil film.

この実施形態におけるハウジング27についても、例えば、外周面成形工程(A)と、内周面成形工程(B)、およびスラスト軸受面成形工程(C)の3工程を経て製造される。異なる点は、例えば図示は省略するが、内周面成形工程(B)において、ハウジング素材内周部の開孔作業を行う際の開孔方向を、軸方向スラスト軸受面27c側から反スラスト軸受面27c側へ向かう方向とする点にある。   The housing 27 in this embodiment is also manufactured through three steps, for example, an outer peripheral surface forming step (A), an inner peripheral surface forming step (B), and a thrust bearing surface forming step (C). Although the illustration is omitted, for example, although not shown, in the inner peripheral surface forming step (B), the opening direction when the inner peripheral portion of the housing material is opened is changed from the axial thrust bearing surface 27c side to the anti-thrust bearing. The point is the direction toward the surface 27c.

以上の工程を経て、完成品としてのハウジング27(図7を参照)が形成される。   The housing 27 (see FIG. 7) as a finished product is formed through the above steps.

上述の製造方法によって製造したハウジング27であれば、内周面27dあるいは外周面27fを基準としたスラスト軸受面27cの直角度を20μm以下(望ましくは10μm以下)に仕上げることができる。   In the case of the housing 27 manufactured by the above-described manufacturing method, the perpendicularity of the thrust bearing surface 27c with reference to the inner peripheral surface 27d or the outer peripheral surface 27f can be finished to 20 μm or less (preferably 10 μm or less).

また、内周面27dあるいは外周面27fを基準としたシール面27eの同軸度を20μm以下(望ましくは10μm以下)に仕上げることができる。   Further, the coaxiality of the seal surface 27e with reference to the inner peripheral surface 27d or the outer peripheral surface 27f can be finished to 20 μm or less (preferably 10 μm or less).

また、内周面27dを基準とした外周面27fの同軸度を20μm以下(望ましくは10μm以下)に仕上げることができる。   Further, the coaxiality of the outer peripheral surface 27f with reference to the inner peripheral surface 27d can be finished to 20 μm or less (preferably 10 μm or less).

また、シール面27eの軸線に対するスラスト軸受面27cの直角度を20μm以下(望ましくは10μm以下)に仕上げることができる。   Further, the perpendicularity of the thrust bearing surface 27c with respect to the axis of the seal surface 27e can be finished to 20 μm or less (preferably 10 μm or less).

また、内周面27dの軸線を基準としたシール面27eの振れを20μm以下(望ましくは10μm以下)に仕上げることができる。   Further, the runout of the seal surface 27e with reference to the axis of the inner peripheral surface 27d can be finished to 20 μm or less (preferably 10 μm or less).

また、シール面27eの輪郭度を20μm以下(望ましくは10μm以下)に仕上げることができる。   Further, the contour degree of the seal surface 27e can be finished to 20 μm or less (preferably 10 μm or less).

これらハウジング27の各構成面間の幾何偏差(形状精度)を上記範囲内の値に抑えることで、軸受性能や回転精度、シール性能などを高めた動圧軸受装置21、あるいはこの動圧軸受装置21を備えたモータを提供することができる。   By suppressing the geometric deviation (shape accuracy) between the constituent surfaces of the housing 27 to a value within the above range, the hydrodynamic bearing device 21 with improved bearing performance, rotational accuracy, sealing performance, etc., or the hydrodynamic bearing device. A motor with 21 can be provided.

以上、本発明の第1、第2実施形態を説明したが、本発明はこの実施形態に限定されるものではない。   The first and second embodiments of the present invention have been described above, but the present invention is not limited to this embodiment.

以上の実施形態では、ハウジング7(27)を例えばSUSなどの比較的硬質な金属で鍛造成形した場合を例示したが、これ以外に、例えば真ちゅうなど比較的軟質な金属で鍛造成形した場合についても本発明を同様に適用することができる。   In the above embodiment, the case where the housing 7 (27) is forged with a relatively hard metal such as SUS is exemplified. However, the case where the housing 7 (27) is forged with a relatively soft metal such as brass is also exemplified. The present invention can be similarly applied.

また、以上の実施形態では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2を構成する動圧軸受として、例えばへリングボーン形状やスパイラル形状の動圧溝からなる動圧発生部を用いた軸受を例示しているが、動圧発生部の構成はこれに限定されるものではない。ラジアル軸受部R1、R2として、例えば多円弧軸受、ステップ軸受、テーパ軸受、テーパ・フラット軸受等を使用することもできる。   Moreover, in the above embodiment, as the dynamic pressure bearings constituting the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2, for example, a dynamic pressure generating portion including a herringbone shape or a spiral shape dynamic pressure groove is used. Although the bearing is illustrated, the configuration of the dynamic pressure generating unit is not limited to this. As the radial bearing portions R1 and R2, for example, multi-arc bearings, step bearings, taper bearings, taper / flat bearings, and the like can be used.

また、スラスト軸受部T1、T2の一方又は双方は、例えば図示は省略するが、スラスト軸受面となる領域に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、いわゆる波型軸受(ステップ型が波型になったもの)等で構成することもできる。   One or both of the thrust bearing portions T1 and T2, for example, are not shown in the figure, but a plurality of radial groove-shaped dynamic pressure grooves are provided at predetermined intervals in the circumferential direction in a region serving as a thrust bearing surface. It can also be constituted by a step bearing, a so-called corrugated bearing (the corrugated step mold) or the like.

また、以上の実施形態では、ラジアル軸受部R1、R2やスラスト軸受部T1、T2を動圧軸受で構成した場合を説明したが、これ以外の軸受で構成することもできる。例えば、ラジアル軸受面となる軸受スリーブ8(28)の内周面8aを、動圧溝8a1、8a2等の動圧発生部を設けない真円内周面とし、この内周面と対向する軸部2の真円状外周面2aとで、いわゆる真円軸受を構成することができる。もちろん、以上のラジアル軸受部R1、R2、あるいはスラスト軸受部T1、T2に係る構成は、ラジアル軸受部R11、R12、あるいはスラスト軸受部T11についても同様に適用することができる。   Moreover, although the radial bearing part R1 and R2 and the thrust bearing part T1 and T2 were comprised by the dynamic pressure bearing in the above embodiment, it can also comprise by bearings other than this. For example, the inner peripheral surface 8a of the bearing sleeve 8 (28) serving as a radial bearing surface is a perfect circular inner peripheral surface not provided with a dynamic pressure generating portion such as the dynamic pressure grooves 8a1, 8a2, and a shaft opposed to the inner peripheral surface. A so-called perfect circle bearing can be constituted by the perfect circular outer peripheral surface 2 a of the portion 2. Of course, the configuration related to the radial bearing portions R1 and R2 or the thrust bearing portions T1 and T2 can be similarly applied to the radial bearing portions R11 and R12 or the thrust bearing portion T11.

また、以上の実施形態では、動圧軸受装置1(21)の内部に充満し、軸受スリーブ8と軸部2との間のラジアル軸受隙間や、軸受スリーブ8と軸部2との間、あるいはハウジング7と回転部材3(ハブ部9)との間のスラスト軸受隙間に潤滑膜を形成する流体として、潤滑油を例示したが、それ以外にも各軸受隙間に潤滑膜を形成可能な流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤あるいは潤滑グリース等を使用することもできる。   Moreover, in the above embodiment, the inside of the hydrodynamic bearing device 1 (21) is filled, and the radial bearing gap between the bearing sleeve 8 and the shaft portion 2, the space between the bearing sleeve 8 and the shaft portion 2, or Lubricating oil is exemplified as the fluid that forms the lubricating film in the thrust bearing gap between the housing 7 and the rotating member 3 (hub portion 9), but other fluids that can form a lubricating film in each bearing gap, For example, a gas such as air, a fluid lubricant such as magnetic fluid, or lubricating grease may be used.

本発明の第1実施形態に係る動圧軸受装置を組込んだ情報機器用スピンドルモータの断面図である。1 is a cross-sectional view of a spindle motor for information equipment incorporating a fluid dynamic bearing device according to a first embodiment of the present invention. 動圧軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus. 軸受スリーブの縦断面図である。It is a longitudinal cross-sectional view of a bearing sleeve. ハウジングを矢印Aの方向から見た図である。It is the figure which looked at the housing from the direction of arrow A. ハウジングの製造工程の一例を示す概略図である。It is the schematic which shows an example of the manufacturing process of a housing. 本発明の第2実施形態に係る動圧軸受装置を組込んだ情報機器用スピンドルモータの断面図である。It is sectional drawing of the spindle motor for information devices incorporating the dynamic pressure bearing apparatus which concerns on 2nd Embodiment of this invention. 動圧軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部
3 回転部材
4 ステータコイル
5 ロータマグネット
6 モータブラケット
7 ハウジング
7a スラスト軸受面
7d シール面
8 軸受スリーブ
9 ハブ部
10 フランジ部
11 蓋部材
13 ダイ
13a 成形面
18 ロッド
18a 成形面
21 動圧軸受装置
22 軸部
23 回転部材
24 ステータコイル
25 ロータマグネット
26 モータブラケット
27 ハウジング
27c スラスト軸受面
27e シール面
28 軸受スリーブ
29 ハブ部
30 係止部材
R1、R2、R11、R12 ラジアル軸受部
T1、T2、T11 スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft part 3 Rotating member 4 Stator coil 5 Rotor magnet 6 Motor bracket 7 Housing 7a Thrust bearing surface 7d Seal surface 8 Bearing sleeve 9 Hub part 10 Flange part 11 Lid member 13 Die 13a Molding surface 18 Rod 18a Molding Surface 21 Dynamic pressure bearing device 22 Shaft portion 23 Rotating member 24 Stator coil 25 Rotor magnet 26 Motor bracket 27 Housing 27c Thrust bearing surface 27e Seal surface 28 Bearing sleeve 29 Hub portion 30 Locking members R1, R2, R11, R12 Radial bearing portion T1, T2, T11 Thrust bearing

Claims (9)

筒状の鍛造加工品であって、支持すべき回転部材との間にスラスト軸受隙間を形成するスラスト軸受面を備え、
内周面あるいは外周面を基準としたスラスト軸受面の直角度が20μm以下である動圧軸受装置用ハウジング。
A cylindrical forged product, comprising a thrust bearing surface that forms a thrust bearing gap between the rotating member to be supported,
A housing for a hydrodynamic bearing device, wherein a perpendicular angle of a thrust bearing surface with respect to an inner peripheral surface or an outer peripheral surface is 20 μm or less.
筒状の鍛造加工品であって、支持すべき回転部材との間にスラスト軸受隙間を形成するスラスト軸受面と、回転部材との間にシール空間を形成するシール面とを備え、
内周面あるいは外周面を基準としたシール面の同軸度が20μm以下である動圧軸受装置用ハウジング。
A cylindrical forged product, comprising a thrust bearing surface that forms a thrust bearing gap between the rotating member to be supported and a seal surface that forms a seal space between the rotating member,
A housing for a hydrodynamic bearing device, wherein the coaxiality of the seal surface with respect to the inner peripheral surface or the outer peripheral surface is 20 μm or less.
筒状の鍛造加工品であって、支持すべき回転部材との間にスラスト軸受隙間を形成するスラスト軸受面を備え、
内周面を基準とした外周面の同軸度が20μm以下である動圧軸受装置用ハウジング。
A cylindrical forged product, comprising a thrust bearing surface that forms a thrust bearing gap between the rotating member to be supported,
A housing for a hydrodynamic bearing device, wherein the coaxiality of the outer peripheral surface with respect to the inner peripheral surface is 20 μm or less.
スラスト軸受面に、動圧発生部が形成されている請求項1〜3何れか記載の動圧軸受装置用ハウジング。   The dynamic pressure bearing device housing according to claim 1, wherein a dynamic pressure generating portion is formed on a thrust bearing surface. 軸方向両端に開口し、一端側にスラスト軸受面を設けると共に、他端側を蓋部材で封口した請求項1〜3何れか記載の動圧軸受装置用ハウジング。   The housing for a hydrodynamic bearing device according to any one of claims 1 to 3, wherein the housing is opened at both ends in the axial direction, a thrust bearing surface is provided on one end side, and the other end side is sealed with a lid member. 請求項1〜5の何れかに記載の動圧軸受装置用ハウジングと、回転部材とを備えた動圧軸受装置。   A hydrodynamic bearing device comprising the hydrodynamic bearing device housing according to claim 1 and a rotating member. 請求項6に記載の動圧軸受装置を有するディスク装置のスピンドルモータ。   A spindle motor of a disk device having the hydrodynamic bearing device according to claim 6. 筒状をなし、支持すべき回転部材との間にスラスト軸受隙間を形成するスラスト軸受面と、回転部材との間にシール空間を形成するシール面とを備えた動圧軸受装置用ハウジングを製造するに際し、
ハウジングの外周面を鍛造成形した後、内周面を鍛造成形する工程を含む動圧軸受装置用ハウジングの製造方法。
Manufactures a housing for a hydrodynamic bearing device that has a cylindrical shape and includes a thrust bearing surface that forms a thrust bearing gap with a rotating member to be supported, and a seal surface that forms a seal space between the rotating member. When doing
A method for manufacturing a housing for a hydrodynamic bearing device, comprising a step of forging an inner peripheral surface after the outer peripheral surface of the housing is forged.
内周面の鍛造成形を、ハウジング素材を軸方向反スラスト軸受面側からスラスト軸受面側に向けて打ち抜くことで行う請求項8記載の動圧軸受装置用ハウジングの製造方法。   The method for manufacturing a housing for a hydrodynamic bearing device according to claim 8, wherein the forging of the inner peripheral surface is performed by punching the housing material from the axial direction anti-thrust bearing surface side toward the thrust bearing surface side.
JP2005046041A 2004-12-28 2005-02-22 Housing for dynamic pressure bearing device and manufacturing method therefor Pending JP2006207787A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005046041A JP2006207787A (en) 2004-12-28 2005-02-22 Housing for dynamic pressure bearing device and manufacturing method therefor
US11/816,058 US8746978B2 (en) 2005-02-10 2006-01-11 Fluid bearing apparatus
CN2006800041560A CN101128679B (en) 2005-02-10 2006-01-11 Fluid bearing device and method of manufacturing the same
PCT/JP2006/300235 WO2006085426A1 (en) 2005-02-10 2006-01-11 Housing for fluid bearing device, housing for dynamic pressure bearing device, and method of manufacturing the same
US13/210,969 US8499456B2 (en) 2005-02-10 2011-08-16 Method for producing a housing for a fluid bearing apparatus
US13/927,818 US8756816B2 (en) 2005-02-10 2013-06-26 Method for producing a housing for a fluid bearing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004381263 2004-12-28
JP2005046041A JP2006207787A (en) 2004-12-28 2005-02-22 Housing for dynamic pressure bearing device and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2006207787A true JP2006207787A (en) 2006-08-10

Family

ID=36964872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005046041A Pending JP2006207787A (en) 2004-12-28 2005-02-22 Housing for dynamic pressure bearing device and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2006207787A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025739A (en) * 2006-07-21 2008-02-07 Ntn Corp Manufacturing method of dynamic pressure bearing device
JP2008256087A (en) * 2007-04-04 2008-10-23 Ntn Corp Manufacturing method of fluid bearing device
KR200457589Y1 (en) 2009-02-03 2011-12-26 주식회사 모아텍 Structure for bearing housing of motor rotator
CN118045951A (en) * 2024-02-18 2024-05-17 江阴市恒润重工股份有限公司 Tool for forging wind power bearing seat blank steel and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000240642A (en) * 1999-02-22 2000-09-05 Nippon Densan Corp Bearing device and its related technique
JP2003172336A (en) * 2001-12-05 2003-06-20 Nippon Densan Corp Bearing device and motor provided with the bearing device
JP2003278759A (en) * 2002-03-26 2003-10-02 Soode Nagano Co Ltd Manufacturing method of thrust plate, manufacturing method of shaft for dynamic pressure bearing, dynamic pressure bearing, spindle motor and recording disc drive device
JP2004316924A (en) * 2004-07-27 2004-11-11 Ntn Corp Dynamic pressure-type oil-impregnated sintered bearing unit
JP2004360921A (en) * 2004-07-27 2004-12-24 Ntn Corp Dynamic pressure type sintered oil retaining bearing unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000240642A (en) * 1999-02-22 2000-09-05 Nippon Densan Corp Bearing device and its related technique
JP2003172336A (en) * 2001-12-05 2003-06-20 Nippon Densan Corp Bearing device and motor provided with the bearing device
JP2003278759A (en) * 2002-03-26 2003-10-02 Soode Nagano Co Ltd Manufacturing method of thrust plate, manufacturing method of shaft for dynamic pressure bearing, dynamic pressure bearing, spindle motor and recording disc drive device
JP2004316924A (en) * 2004-07-27 2004-11-11 Ntn Corp Dynamic pressure-type oil-impregnated sintered bearing unit
JP2004360921A (en) * 2004-07-27 2004-12-24 Ntn Corp Dynamic pressure type sintered oil retaining bearing unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025739A (en) * 2006-07-21 2008-02-07 Ntn Corp Manufacturing method of dynamic pressure bearing device
JP4732262B2 (en) * 2006-07-21 2011-07-27 Ntn株式会社 Method for manufacturing hydrodynamic bearing device
JP2008256087A (en) * 2007-04-04 2008-10-23 Ntn Corp Manufacturing method of fluid bearing device
KR200457589Y1 (en) 2009-02-03 2011-12-26 주식회사 모아텍 Structure for bearing housing of motor rotator
CN118045951A (en) * 2024-02-18 2024-05-17 江阴市恒润重工股份有限公司 Tool for forging wind power bearing seat blank steel and production method thereof

Similar Documents

Publication Publication Date Title
US6921208B2 (en) Dynamic bearing device and method for making same
US8113715B2 (en) Fluid dynamic bearing device
US8356938B2 (en) Fluid dynamic bearing apparatus
US8756816B2 (en) Method for producing a housing for a fluid bearing apparatus
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP5312895B2 (en) Hydrodynamic bearing device
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP2009168147A (en) Dynamic pressure bearing device and its manufacturing method
JP2008144847A (en) Dynamic pressure bearing device
US20070292059A1 (en) Fluid Dynamic Bearing Apparatus
JP2007064408A (en) Fluid bearing unit
JP4738831B2 (en) Hydrodynamic bearing device
JP4498932B2 (en) Hydrodynamic bearing device
JP2005265180A (en) Dynamic pressure bearing device
JP2013053692A (en) Fluid dynamic pressure bearing device and method of manufacturing the same
JP2008111520A (en) Dynamic pressure bearing device
JP4554324B2 (en) Hydrodynamic bearing device
JP2006214542A (en) Fluid bearing device
JP2012197931A (en) Fluid dynamic pressure bearing device and method for manufacturing thereof
JP2007016849A (en) Dynamic pressure bearing device
JP2007113778A (en) Fluid bearing device and motor equipped with the same
JP2007218397A (en) Fluid bearing device
JP2013036475A (en) Fluid dynamic bearing device and motor having the same
JP2006105331A (en) Bearing sleeve and its manufacturing method
JP2005273815A (en) Dynamic pressure bearing device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110316

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202