JP2008111520A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device Download PDF

Info

Publication number
JP2008111520A
JP2008111520A JP2006296179A JP2006296179A JP2008111520A JP 2008111520 A JP2008111520 A JP 2008111520A JP 2006296179 A JP2006296179 A JP 2006296179A JP 2006296179 A JP2006296179 A JP 2006296179A JP 2008111520 A JP2008111520 A JP 2008111520A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
thrust
peripheral surface
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006296179A
Other languages
Japanese (ja)
Inventor
Masaaki Toda
正明 戸田
Tetsuya Kurimura
栗村  哲弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006296179A priority Critical patent/JP2008111520A/en
Publication of JP2008111520A publication Critical patent/JP2008111520A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic pressure bearing device including a dynamic pressure generating part, which keeps the moldability of the dynamic pressure generating part and its resistance against wear enhanced. <P>SOLUTION: A flange 8b installed in a bearing component 8 is furnished with a thrust dynamic pressure generating part through a die shaping process. This enhances the moldability of the dynamic pressure generating part owing to an easy pressurization in the axial direction, compared with the case where such a pressure generation part is formed at the open side end face of a housing 7 made of metal. If the bearing component 8 is formed from a porous material, a fluid as the lubricant impregnating the component 8 is fed bit by bit in the gaps in the bearing, which enhances the lubricating performance and allows a suppression of the wear of the dynamic pressure generating part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軸受隙間に生じる潤滑流体の動圧作用で、軸部材を回転可能に支持する動圧軸受装置に関する。   The present invention relates to a hydrodynamic bearing device that rotatably supports a shaft member by a hydrodynamic action of a lubricating fluid generated in a bearing gap.

動圧軸受装置は、その高回転精度および静粛性から、情報機器、例えばHDD等の磁気ディスク駆動装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク駆動装置、MD、MO等の光磁気ディスク駆動装置等のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイール、あるいは電気機器の冷却ファン等に使用されるファンモータなどの小型モータ用として好適に使用可能である。   Due to its high rotational accuracy and quietness, the hydrodynamic bearing device is an information device, for example, a magnetic disk drive device such as HDD, an optical disk drive device such as CD-ROM, CD-R / RW, DVD-ROM / RAM, MD, Suitable for spindle motors such as magneto-optical disk drive devices such as MOs, small motors such as fan motors used for laser beam printer (LBP) polygon scanner motors, projector color wheels, cooling fans for electrical equipment, etc. Can be used.

例えば、特許文献1に示されている動圧軸受装置は、金属材料のプレス加工で形成したコップ状のハウジングと、ハウジングの内周に保持した軸受スリーブと、軸受スリーブの内周に挿入した軸部材と、軸部材に固定し、ハウジングの開口部を覆うロータハブとを備える。軸受スリーブの内周面と軸部材の外周面との間にラジアル軸受隙間が形成され、ハウジングの開口側端面とロータハブの端面との間にスラスト軸受隙間が形成される。   For example, a hydrodynamic bearing device disclosed in Patent Document 1 includes a cup-shaped housing formed by pressing a metal material, a bearing sleeve held on the inner periphery of the housing, and a shaft inserted on the inner periphery of the bearing sleeve. A member, and a rotor hub fixed to the shaft member and covering an opening of the housing. A radial bearing gap is formed between the inner peripheral surface of the bearing sleeve and the outer peripheral surface of the shaft member, and a thrust bearing gap is formed between the opening side end surface of the housing and the end surface of the rotor hub.

特開2006−90390号公報JP 2006-90390 A

このようなハウジングの開口側端面はスラスト軸受隙間に面するため、この部分には高精度の加工が要求される。金属製ハウジングの端面の加工方法としては、例えば電解加工や型成形が考えられる。しかし、電解加工でハウジングの端面を加工する場合、設備が高額になると共に管理が煩雑になるため、コスト高や製造の長時間化を招く。一方、型成形でハウジングの端面を加工する場合、ハウジングの円筒状の側壁部分を軸方向に加圧する必要があるため、ハウジングが複雑な形状である場合、十分に加圧することが困難となるため、精度を高めることは難しい。   Since the opening-side end surface of such a housing faces the thrust bearing gap, high-precision processing is required for this portion. As a processing method of the end face of the metal housing, for example, electrolytic processing or mold forming can be considered. However, when the end face of the housing is processed by electrolytic processing, the equipment becomes expensive and the management becomes complicated, resulting in high cost and long manufacturing time. On the other hand, when processing the end face of the housing by molding, it is necessary to pressurize the cylindrical side wall portion of the housing in the axial direction. Therefore, when the housing has a complicated shape, it is difficult to sufficiently pressurize. It is difficult to improve accuracy.

また、一般に金属製ハウジングは、軸受内部に充填される潤滑流体が浸透するような内部空孔を有さず、内部に潤滑流体を保持することができない。従って、このハウジングがスラスト軸受隙間に面する場合、スラスト軸受隙間に十分な潤滑流体が供給されず、潤滑性が不足し、スラスト軸受隙間に面する部分が摩耗する恐れがある。   In general, the metal housing does not have an internal hole through which the lubricating fluid filled in the bearing permeates, and cannot hold the lubricating fluid inside. Therefore, when this housing faces the thrust bearing gap, sufficient lubricating fluid is not supplied to the thrust bearing gap, the lubricity is insufficient, and the portion facing the thrust bearing gap may be worn.

本発明の課題は、動圧軸受装置のスラスト軸受隙間に面する部分の成形性及び耐摩耗性を向上させるとともに、低コスト化を図ることにある。   An object of the present invention is to improve the formability and wear resistance of the portion of the hydrodynamic bearing device that faces the thrust bearing gap, and to reduce the cost.

前記課題を解決するために、本発明は、軸部を有する第1部材と、軸部を内周に挿入し、軸方向一端が開口し他端が閉口した第2部材とを備え、第2部材の開口側端面と第1部材との間のスラスト軸受隙間に生じる潤滑流体の動圧作用で、第1部材をスラスト方向で相対回転可能に支持する動圧軸受装置において、第2部材が、軸受部品と、軸受部品を内周に保持した金属製のハウジングとを有し、軸受部品が、円筒状のスリーブ部及びスリーブ部の一端から外径へ向けて延びたフランジ部を有し、該フランジ部が前記スラスト軸受隙間に面することを特徴とする。   In order to solve the above-mentioned problems, the present invention includes a first member having a shaft portion, and a second member having the shaft portion inserted into the inner periphery, having one end opened in the axial direction and the other end closed. In the hydrodynamic bearing device that supports the first member so as to be relatively rotatable in the thrust direction by the hydrodynamic action of the lubricating fluid generated in the thrust bearing gap between the opening-side end surface of the member and the first member, the second member includes: A bearing part and a metal housing holding the bearing part on the inner periphery, the bearing part having a cylindrical sleeve part and a flange part extending from one end of the sleeve part toward the outer diameter; The flange portion faces the thrust bearing gap.

このように、本発明の動圧軸受装置では、ハウジングと別途に形成した軸受部品のフランジ部がスラスト軸受隙間に面する構成とした。これにより、スラスト軸受隙間に面する部分の成形性を向上させることができる。例えば、フランジ部を型成形する場合、フランジ部の軸方向寸法を小さくし、かつ単純な形状に形成することで、軸方向に加圧しやすくなり、端面を高精度に加工することが可能となる。また、ハウジングの端面はスラスト軸受隙間に面さないため、ハウジングの加工精度を緩和することができ、低コスト化が図られる。   Thus, in the hydrodynamic bearing device of the present invention, the flange portion of the bearing component formed separately from the housing is configured to face the thrust bearing gap. Thereby, the moldability of the part which faces a thrust bearing gap can be improved. For example, when the flange portion is molded, by reducing the axial dimension of the flange portion and forming it in a simple shape, it becomes easier to press in the axial direction and the end face can be processed with high accuracy. . Further, since the end face of the housing does not face the thrust bearing gap, the processing accuracy of the housing can be relaxed, and the cost can be reduced.

この動圧軸受装置が、スラスト軸受隙間の潤滑流体に動圧作用を発生させる動圧発生部を備える場合、この動圧発生部をフランジ部の端面に型成形等で形成することで、動圧発生部の成形性を向上させることができる。   When the dynamic pressure bearing device includes a dynamic pressure generating portion that generates a dynamic pressure action on the lubricating fluid in the thrust bearing gap, the dynamic pressure generating portion is formed on the end surface of the flange portion by molding or the like. The moldability of the generating part can be improved.

また、軸受部品を多孔質材料で形成すると、軸受部品の内部に含浸された潤滑流体が軸受隙間に逐次供給されるため、スラスト軸受隙間における潤滑性が向上し、スラスト軸受隙間に面する部分の摩耗を抑えることができる。   Further, when the bearing part is formed of a porous material, the lubricating fluid impregnated inside the bearing part is sequentially supplied to the bearing gap, so that the lubricity in the thrust bearing gap is improved, and the portion of the portion facing the thrust bearing gap is improved. Wear can be suppressed.

また、この動圧軸受装置において、軸受部品のスリーブ部の外周面及びハウジングの内周面の一方又は双方に形成した軸方向溝で、前記外周面及び内周面の界面の両端を連通する軸方向孔を形成すると共に、軸受部品に、一端が軸受部品の上側端面に開口し、他端が前記軸方向孔と連通した貫通孔を形成すると、この軸方向孔及び貫通孔により、軸受装置内部に満たされた潤滑流体の圧力バランスを適正に保つことができる。   Further, in this hydrodynamic bearing device, an axial groove formed in one or both of the outer peripheral surface of the sleeve portion of the bearing component and the inner peripheral surface of the housing, and a shaft communicating with both ends of the interface between the outer peripheral surface and the inner peripheral surface In addition to forming a directional hole and forming a through hole in the bearing component having one end opened on the upper end surface of the bearing component and the other end communicating with the axial hole, the axial hole and the through hole allow Thus, the pressure balance of the lubricating fluid filled with the above can be maintained appropriately.

以上のように、本発明の動圧軸受装置では、スラスト軸受隙間に面する部分の成形性を向上させることができるため、スラスト軸受隙間の幅精度が高められ、スラスト方向の支持力が高められる。また、ハウジングの精度緩和により低コスト化が図られる。さらに、軸受部品の多孔質化による潤滑性の向上により、耐摩耗性の向上が図られる。   As described above, in the hydrodynamic bearing device of the present invention, the formability of the portion facing the thrust bearing gap can be improved, so that the width accuracy of the thrust bearing gap is increased and the supporting force in the thrust direction is increased. . Further, the cost can be reduced by reducing the accuracy of the housing. Furthermore, the wear resistance is improved by improving the lubricity by making the bearing parts porous.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施形態に係る動圧軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。この情報機器用スピンドルモータは、HDD等のディスク駆動装置に用いられるもので、動圧軸受装置1と、例えば、半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はブラケット6の外周側内周面6aに取り付けられ、ロータマグネット5は、動圧軸受装置1に設けられたディスクハブ10の外周に取り付けられている。ディスクハブ10には、磁気ディスク等のディスク状情報記録媒体(図示省略)が一枚または複数枚保持される。ブラケット6の内周には動圧軸受装置1のハウジング7が装着されている。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する励磁力でロータマグネット5が回転し、それに伴って、ディスクハブ10及びディスクが回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 according to a first embodiment of the present invention. This spindle motor for information equipment is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 and, for example, a stator coil 4 and a rotor magnet 5 that are opposed to each other with a gap in the radial direction. Yes. The stator coil 4 is attached to the outer peripheral side inner peripheral surface 6 a of the bracket 6, and the rotor magnet 5 is attached to the outer periphery of the disk hub 10 provided in the fluid dynamic bearing device 1. The disk hub 10 holds one or more disk-shaped information recording media (not shown) such as magnetic disks. A housing 7 of the hydrodynamic bearing device 1 is mounted on the inner periphery of the bracket 6. When the stator coil 4 is energized, the rotor magnet 5 is rotated by an exciting force generated between the stator coil 4 and the rotor magnet 5, and the disk hub 10 and the disk are rotated accordingly.

図2に、動圧軸受装置1を示す。動圧軸受装置1は、第2部材としての固定側部材2と、第1部材としての回転側部材3とで構成される。回転側部材3は、軸部材9と、軸部材9から外径へ突出して設けられたディスクハブ10とを備える。固定側部材2は、軸部材9を内周に挿入した軸受部品8と、軸受部品8を内周に保持するハウジング7とを備え、軸方向一端に開口し、他端に閉口している。なお、説明の便宜上、固定側部材2の開口側を上側、閉口側を下側として、以下の説明を行う。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a stationary member 2 as a second member and a rotating member 3 as a first member. The rotation side member 3 includes a shaft member 9 and a disk hub 10 provided so as to protrude from the shaft member 9 to the outer diameter. The fixed-side member 2 includes a bearing part 8 in which a shaft member 9 is inserted on the inner periphery, and a housing 7 that holds the bearing part 8 on the inner periphery, and is open at one end in the axial direction and closed at the other end. For convenience of explanation, the following explanation will be given with the opening side of the fixed member 2 being the upper side and the closing side being the lower side.

この動圧軸受装置1では、詳細は後述するが、軸部材9の外周面と軸受部品8のスリーブ部8aの内周面8a1との間に、回転側部材3をラジアル方向に支持するラジアル軸受部R1、R2が形成されると共に、ディスクハブ10の基部10aの下側端面10a1と軸受部品8のフランジ部8bの上側端面8b1との間に、回転側部材3をスラスト方向に支持するスラスト軸受部Tが形成される。   As will be described in detail later, in this hydrodynamic bearing device 1, a radial bearing that supports the rotary member 3 in the radial direction between the outer peripheral surface of the shaft member 9 and the inner peripheral surface 8 a 1 of the sleeve portion 8 a of the bearing component 8. Thrust bearings that are formed with portions R1 and R2 and that support the rotary member 3 in the thrust direction between the lower end surface 10a1 of the base portion 10a of the disk hub 10 and the upper end surface 8b1 of the flange portion 8b of the bearing component 8. Part T is formed.

軸部材9は、例えばステンレス鋼等の金属材料を切削加工もしくは鍛造加工することにより、円筒状に形成される。軸部材9の外周面9aは、ラジアル軸受部R1、R2のラジアル軸受隙間に面する。   The shaft member 9 is formed in a cylindrical shape by cutting or forging a metal material such as stainless steel. The outer peripheral surface 9a of the shaft member 9 faces the radial bearing gap of the radial bearing portions R1 and R2.

ディスクハブ10は、例えば金属材料で形成され、軸部材9の上端に、接着、圧入、接着剤介在下での圧入(以下、圧入接着)等の手段により固定される。ディスクハブ10は、略円板形状を成す基部10aと、基部10aの外周部から軸方向下方に延在した周壁部10bと、周壁部10bの外周に設けられた鍔部10cおよびディスク搭載面10dを備えている。周壁部10bの外周面10b1には、ロータマグネット5が取り付けられる。周壁部10bの内周には抜け止め部材11が設けられる。抜け止め部材11は、例えば、金属材料、例えば真ちゅう等の軟質金属のプレス成形で断面略L字型のリング状に形成され、周壁部10bの内周面上端部に設けられた段部10eに、接着、溶接等の適宜の手段で固定される。この抜け止め部材11が、ハウジング7の上方部外周に設けられた肩面7dと軸方向で係合することにより、回転側部材3の固定側部材2からの抜けを規制している。   The disk hub 10 is formed of, for example, a metal material, and is fixed to the upper end of the shaft member 9 by means such as bonding, press-fitting, or press-fitting (hereinafter referred to as press-fitting adhesion) with an adhesive. The disc hub 10 includes a base portion 10a having a substantially disk shape, a peripheral wall portion 10b extending axially downward from the outer peripheral portion of the base portion 10a, a flange portion 10c provided on the outer periphery of the peripheral wall portion 10b, and a disc mounting surface 10d. It has. The rotor magnet 5 is attached to the outer peripheral surface 10b1 of the peripheral wall 10b. A retaining member 11 is provided on the inner periphery of the peripheral wall portion 10b. The retaining member 11 is formed in a ring shape having a substantially L-shaped cross section by press molding of a metal material, for example, a soft metal such as brass, and is provided on a step portion 10e provided at the upper end portion of the inner peripheral surface of the peripheral wall portion 10b. It is fixed by appropriate means such as adhesion and welding. The retaining member 11 is engaged with a shoulder surface 7 d provided on the outer periphery of the upper portion of the housing 7 in the axial direction, thereby restricting the rotational side member 3 from being detached from the fixed side member 2.

ハウジング7は、略円筒状の側部7aと、側部7aの下端開口部を閉口する底部7bとを有し、金属材料の切削加工や塑性加工(例えば真ちゅうの鍛造加工など)により一体に形成される。側部7aの外周には、上方部に径方向に設けられた肩面7dと、肩面7dの内径端から下方へ向けて漸次縮径したテーパ面7fと、テーパ面7fの下方に設けられた円筒面7gとが形成される。このテーパ面7fは、ディスクハブ10に固定された抜け止め部材11の内周面11aとの間に、上方に向けて径方向寸法が漸次縮小した環状のシール空間Sを形成する。このシール空間Sは、後述するスラスト軸受部Tのスラスト軸受隙間の外径側と連通している。円筒面7gには、ブラケット6が接着等により固定される。尚、本実施形態では、側部7a及び底部7bが一体に形成されているが、これらを別体に形成してもよい。   The housing 7 has a substantially cylindrical side portion 7a and a bottom portion 7b that closes the lower end opening of the side portion 7a, and is integrally formed by cutting or plastic working of a metal material (for example, brass forging). Is done. On the outer periphery of the side portion 7a, there are provided a shoulder surface 7d provided in the upper portion in the radial direction, a tapered surface 7f gradually reduced in diameter from the inner diameter end of the shoulder surface 7d, and a lower portion of the tapered surface 7f. A cylindrical surface 7g is formed. The tapered surface 7f forms an annular seal space S whose radial dimension is gradually reduced upward with the inner peripheral surface 11a of the retaining member 11 fixed to the disk hub 10. The seal space S communicates with an outer diameter side of a thrust bearing gap of a thrust bearing portion T described later. The bracket 6 is fixed to the cylindrical surface 7g by adhesion or the like. In the present embodiment, the side portion 7a and the bottom portion 7b are integrally formed, but they may be formed separately.

軸受部品8は、スリーブ部8aと、スリーブ部8aの上端部から外径へ向けて延びたフランジ部8bとを一体に備える。軸受部品8は、ハウジング7の内周面7eに、接着、圧入、圧入接着、溶着等の適宜の手段により固定され、フランジ部8bの下側端面8b2をハウジング7の内周に形成された肩面7cと当接させることにより、ハウジング7に対して軸方向で位置決めされる。尚、軸受部品8を形成する多孔質材料は焼結金属に限らず、例えば多孔質樹脂を使用することもできる。   The bearing component 8 integrally includes a sleeve portion 8a and a flange portion 8b extending from the upper end portion of the sleeve portion 8a toward the outer diameter. The bearing part 8 is fixed to the inner peripheral surface 7e of the housing 7 by appropriate means such as adhesion, press-fitting, press-fitting adhesion, welding, etc., and the lower end surface 8b2 of the flange portion 8b is formed on the inner periphery of the housing 7 By making contact with the surface 7c, the housing 7 is positioned in the axial direction. The porous material forming the bearing component 8 is not limited to a sintered metal, and for example, a porous resin can be used.

このように、円筒状のスリーブ部8aにフランジ部8bを一体に設けることにより、軸受部品8の径方向での剛性が高まり、ハウジング7への組み込み時等に横断面形状が変形することを防止できる。特にスリーブ部8aを薄肉化した場合、フランジ部8bによる剛性の向上が有効となる。   Thus, by providing the flange portion 8b integrally with the cylindrical sleeve portion 8a, the rigidity in the radial direction of the bearing component 8 is increased, and the cross-sectional shape is prevented from being deformed when incorporated in the housing 7 or the like. it can. In particular, when the sleeve portion 8a is thinned, the rigidity improvement by the flange portion 8b is effective.

スリーブ部8aの内周面8a1には、図3に示すように、軸方向に離隔した2箇所の領域に、ラジアル動圧発生部として、ヘリングボーン形状に配列した動圧溝8a11、8a12が形成される。また、フランジ部8bの上側端面8b1には、図4に示すように、スラスト動圧発生部として、スパイラル形状に配列した動圧溝8b11が形成される。   On the inner peripheral surface 8a1 of the sleeve portion 8a, as shown in FIG. 3, dynamic pressure grooves 8a11 and 8a12 arranged in a herringbone shape are formed as radial dynamic pressure generating portions in two regions separated in the axial direction. Is done. Further, as shown in FIG. 4, dynamic pressure grooves 8b11 arranged in a spiral shape are formed on the upper end surface 8b1 of the flange portion 8b as a thrust dynamic pressure generating portion.

スリーブ部8aの外周面8a2には、軸方向溝8a21が1又は複数本形成される。この軸方向溝8a21は、軸受部品8をハウジング7の内周に固定した際、ハウジング7の内周面7eとの間に、スリーブ部8aの外周面8a2及びハウジング7の内周面7eとの界面の軸方向両端を連通する軸方向孔12aを形成する。また、この軸方向孔12aの軸方向延長上の軸受部品8(フランジ部8bの内径端部)には、一端が軸受部品8の上側端面に開口し、他端が軸方向孔12aと連通した貫通孔8b3が形成される。この軸方向孔12aと貫通孔12bとで、軸受部品8の上側端面が面する空間と下側端面8a3が面する空間とを連通する連通孔12が形成される。尚、前記軸方向孔12aを形成する軸方向溝は、ハウジング7の内周面7eに形成してもよい。あるいは、スリーブ部8aの外周面8a2及びハウジング7の内周面7eの双方に軸方向溝を形成してもよい。   One or a plurality of axial grooves 8a21 are formed on the outer peripheral surface 8a2 of the sleeve portion 8a. The axial groove 8a21 is formed between the outer peripheral surface 8a2 of the sleeve portion 8a and the inner peripheral surface 7e of the housing 7 between the inner peripheral surface 7e of the housing 7 when the bearing component 8 is fixed to the inner periphery of the housing 7. An axial hole 12a is formed that communicates both axial ends of the interface. In addition, one end of the bearing part 8 (the inner diameter end of the flange portion 8b) on the axial extension of the axial hole 12a is open to the upper end surface of the bearing part 8, and the other end communicates with the axial hole 12a. A through hole 8b3 is formed. The axial hole 12a and the through hole 12b form a communication hole 12 that communicates the space that the upper end surface of the bearing component 8 faces with the space that the lower end surface 8a3 faces. The axial groove that forms the axial hole 12 a may be formed on the inner peripheral surface 7 e of the housing 7. Alternatively, axial grooves may be formed on both the outer peripheral surface 8a2 of the sleeve portion 8a and the inner peripheral surface 7e of the housing 7.

この軸受部品8は、本実施形態では、多孔質材料(例えば銅を主成分とした焼結金属)で型成形され、具体的には、金属粉末を圧粉成形し、熱処理(焼結)した後、金型によるサイジング(整形)で寸法精度を高めることにより形成される。フランジ部8bは、ハウジング7と比べて軸方向寸法が小さく、且つ単純な形状をしているため、軸方向の加圧がしやすい。このため、上記のような型成形(サイジング)により端面を精度良く加工することができる。従って、スラスト軸受隙間に面するフランジ部の上側端面8b1の成形性を向上させることができるため、スラスト軸受隙間の隙間幅が高精度に設定され、スラスト方向の支持力が高められる。   In the present embodiment, the bearing component 8 is molded with a porous material (for example, a sintered metal containing copper as a main component). Specifically, the metal powder is compacted and heat-treated (sintered). Thereafter, the dimensional accuracy is increased by sizing (shaping) using a mold. The flange portion 8b is smaller in axial dimension than the housing 7 and has a simple shape, so that it is easy to pressurize in the axial direction. For this reason, an end surface can be processed with high precision by the above-mentioned mold forming (sizing). Therefore, since the moldability of the upper end face 8b1 of the flange portion facing the thrust bearing gap can be improved, the gap width of the thrust bearing gap is set with high accuracy and the supporting force in the thrust direction is increased.

また、この軸受部品8のサイジングと同時に、上記の動圧溝8a11、8a12、及び8b11が形成することができる。具体的には、このサイジングで使用する金型に、動圧溝8a11、8a12、及び8b11に形成するための成形型を形成し、サイジングと同時にこの成形型をフランジ部8bの上側端面8b1に押し付ける。これにより、成形型の形状が軸受部品8に転写され、動圧溝8a11、8a12、及び8b11が成形される。上記のように、フランジ部8bは軸方向の加圧がしやすいため、動圧溝8b11を精度良く型成形することができる。また、軸受部品8の成形と同時にラジアル動圧発生部及びスラスト動圧発生部を形成できるため、工程数が削減され、低コスト化及び生産性の向上が図られる。   In addition, the dynamic pressure grooves 8a11, 8a12, and 8b11 can be formed simultaneously with the sizing of the bearing component 8. Specifically, a mold for forming the dynamic pressure grooves 8a11, 8a12, and 8b11 is formed on the mold used for the sizing, and the mold is pressed against the upper end surface 8b1 of the flange portion 8b simultaneously with the sizing. . Thereby, the shape of the molding die is transferred to the bearing component 8, and the dynamic pressure grooves 8a11, 8a12, and 8b11 are molded. As described above, since the flange portion 8b is easily pressurized in the axial direction, the dynamic pressure groove 8b11 can be molded with high accuracy. Further, since the radial dynamic pressure generating portion and the thrust dynamic pressure generating portion can be formed simultaneously with the molding of the bearing component 8, the number of processes is reduced, and the cost is reduced and the productivity is improved.

上記の構成の動圧軸受装置1の内部空間に、潤滑流体として、例えば潤滑油を充満させることにより、動圧軸受装置1が完成する。この状態で、シール空間Sよりも軸受内部側の空間は潤滑油で満たされ、油面は常にシール空間S内に保持される。   The fluid dynamic bearing device 1 is completed by filling the internal space of the fluid dynamic bearing device 1 having the above configuration with, for example, lubricating oil as a lubricating fluid. In this state, the space inside the bearing relative to the seal space S is filled with lubricating oil, and the oil level is always held in the seal space S.

軸部材9が回転すると、軸受部品8の内周面8a1に形成された動圧溝8a11、8a12が、ラジアル軸受隙間の潤滑油に動圧作用を発生させることにより、軸部材9をラジアル方向で回転自在に支持するラジアル軸受部R1、R2が形成される。これと同時に、軸受部品8の上側端面8b1に形成された動圧溝8b11が、スラスト軸受隙間の潤滑油に動圧作用を発生させることにより、軸部材9をスラスト方向で回転自在に支持するスラスト軸受部Tが形成される。   When the shaft member 9 rotates, the dynamic pressure grooves 8a11 and 8a12 formed on the inner peripheral surface 8a1 of the bearing component 8 generate a dynamic pressure action on the lubricating oil in the radial bearing gap, thereby causing the shaft member 9 to move in the radial direction. Radial bearing portions R1 and R2 that are rotatably supported are formed. At the same time, the dynamic pressure groove 8b11 formed on the upper end surface 8b1 of the bearing component 8 generates a dynamic pressure action on the lubricating oil in the thrust bearing gap, thereby supporting the shaft member 9 rotatably in the thrust direction. A bearing portion T is formed.

このとき、多孔質材料で形成された軸受部品8から滲み出た潤滑油が、ラジアル軸受隙間及びスラスト軸受隙間に逐次供給されることにより、各軸受隙間を介して対向する部材間の潤滑性が向上する。軸受装置の起動、停止時等の低速回転時には、ラジアル軸受部R1、R2及びスラスト軸受部Tの動圧作用が十分に発現されず、ラジアル動圧発生部及びスラスト動圧発生部が各軸受隙間を介して対向する部材と接触することがあるが、上記のようにこれらの部材間の潤滑性が向上することにより、各動圧発生部の摩耗を抑えることができる。   At this time, the lubricating oil that has oozed from the bearing component 8 formed of the porous material is sequentially supplied to the radial bearing gap and the thrust bearing gap, so that the lubricity between the members facing each other through each bearing gap is improved. improves. At the time of low speed rotation such as when the bearing device is started or stopped, the dynamic pressure action of the radial bearing portions R1, R2 and the thrust bearing portion T is not sufficiently expressed, and the radial dynamic pressure generating portion and the thrust dynamic pressure generating portion are not However, since the lubricity between these members is improved as described above, the wear of each dynamic pressure generating portion can be suppressed.

また、本実施形態では、図2に示すように、軸受部品8の上側端面8b1及び下側端面8a3とを連通する連通孔12により、軸受部品8の下側端面8a3とハウジング7の内底面7b1との間の隙間(以下、第1隙間)と、軸受部品8の上側端面とディスクハブ10の基部10aの下側端面10a1との間の隙間(以下、第2隙間)とを連通することができるため、内部空間での圧力バランスを適正に保つことができる。さらに、図3に示すように、軸受部品8の内周面8a1の動圧溝8a11を、軸方向中央部mに対して軸方向非対称、具体的には、軸方向中央部mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっているため、軸部材9の回転時、動圧溝8a11による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。この引き込み力の差圧によって、第1ラジアル軸受部R1のラジアル軸受隙間に満たされた潤滑油が下方に流動し、第1隙間→連通孔12→第2隙間を流動して、再びラジアル軸受隙間に戻る。このように、ラジアル軸受隙間の潤滑油を強制的に循環させることにより、軸受装置の内部空間での局所的な負圧の発生をより効果的に防止できる。なお、このようにラジアル軸受隙間で潤滑油を強制的に流動させる必要がないときは、動圧溝8a11の形状を軸方向中央部mに対して軸方向対称に形成してもよい。   Further, in the present embodiment, as shown in FIG. 2, the lower end surface 8a3 of the bearing component 8 and the inner bottom surface 7b1 of the housing 7 are formed by the communication hole 12 that communicates the upper end surface 8b1 and the lower end surface 8a3 of the bearing component 8. And a gap between the upper end surface of the bearing component 8 and the lower end surface 10a1 of the base portion 10a of the disk hub 10 (hereinafter referred to as a second gap). Therefore, the pressure balance in the internal space can be properly maintained. Further, as shown in FIG. 3, the dynamic pressure groove 8a11 of the inner peripheral surface 8a1 of the bearing component 8 is axially asymmetric with respect to the axial central portion m, specifically, in the region above the axial central portion m. Since the axial dimension X1 is larger than the axial dimension X2 of the lower region, when the shaft member 9 rotates, the pulling force (pumping force) of the lubricating oil by the dynamic pressure groove 8a11 is higher in the lower region. It becomes relatively large compared. Due to the differential pressure of the pulling force, the lubricating oil filled in the radial bearing gap of the first radial bearing portion R1 flows downward, flows through the first gap → the communication hole 12 → the second gap, and again the radial bearing gap. Return to. Thus, by forcibly circulating the lubricating oil in the radial bearing gap, it is possible to more effectively prevent the generation of a local negative pressure in the internal space of the bearing device. In addition, when it is not necessary to force the lubricating oil to flow through the radial bearing gap, the shape of the dynamic pressure groove 8a11 may be formed symmetrically with respect to the axial center part m.

本発明は、上記の実施形態に限られない。以下、本発明の他の実施形態を説明する。尚、以下の説明において、上記の実施形態と同一の構成、機能を有する箇所には、同一符合を付し、説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, other embodiments of the present invention will be described. In the following description, parts having the same configuration and function as those of the above embodiment are given the same reference numerals, and the description thereof is omitted.

図5に、本発明の第2の実施形態に係る動圧軸受装置21を示す。この動圧軸受装置21は、軸部材9の下端に円盤状の抜け止め部材13が固定されている点で、上記実施形態と異なる。抜け止め部材13の上側端面13aは、スラスト軸受隙間を介して軸受部品8の下側端面8a3と対向する。軸部材9の回転時には、軸受部品8の上側端面8b1とディスクハブ10の基部10aの下側端面10a1との間に第1のスラスト軸受部T1が形成されると共に、軸受部品8の下側端面8a3に形成された動圧発生部がスラスト軸受隙間の潤滑流体に動圧作用を発生させ、軸部材9をスラスト方向に回転自在に支持する第2のスラスト軸受部T2が形成される。このように、軸方向に離隔した2箇所にスラスト軸受部T1、T2が形成されることにより、軸受剛性、特にモーメント剛性が高められる。   FIG. 5 shows a hydrodynamic bearing device 21 according to a second embodiment of the present invention. This hydrodynamic bearing device 21 is different from the above embodiment in that a disc-shaped retaining member 13 is fixed to the lower end of the shaft member 9. The upper end surface 13a of the retaining member 13 is opposed to the lower end surface 8a3 of the bearing component 8 through the thrust bearing gap. When the shaft member 9 rotates, a first thrust bearing portion T1 is formed between the upper end surface 8b1 of the bearing component 8 and the lower end surface 10a1 of the base portion 10a of the disk hub 10, and the lower end surface of the bearing component 8 The dynamic pressure generating portion formed in 8a3 generates a dynamic pressure action on the lubricating fluid in the thrust bearing gap, thereby forming a second thrust bearing portion T2 that supports the shaft member 9 rotatably in the thrust direction. As described above, the thrust bearing portions T1 and T2 are formed at two locations separated in the axial direction, so that the bearing rigidity, particularly the moment rigidity is enhanced.

以上の実施形態では、軸部材9に別体に形成されたディスクハブ10が固定されているが、これに限らず、例えば軸部材9をインサート部品としてディスクハブ10を射出成形することにより、軸部材9とディスクハブ10とを一体に形成してもよい。あるいは、軸部材9及びディスクハブ10を同一材料で一体に射出成形してもよい。   In the above embodiment, the disc hub 10 formed separately from the shaft member 9 is fixed. However, the present invention is not limited to this. For example, the disc hub 10 is formed by injection molding using the shaft member 9 as an insert part. The member 9 and the disk hub 10 may be integrally formed. Alternatively, the shaft member 9 and the disk hub 10 may be integrally injection-molded with the same material.

また、以上の実施形態では、軸受部品8を構成するスリーブ部8a及びフランジ部8bが一体に形成されているが、これに限らず、例えば別体に形成したスリーブ部8a及びフランジ部8bを密着させて固定してもよい。また、以上の実施形態では、軸受部品8を多孔質材料で形成する場合を示したが、これに限らず、例えばその他の金属材料で形成してもよい。この場合、ハウジング7よりも硬度の高い金属材料で軸受部品8を形成すれば、スラスト軸受隙間に面する部分の硬度が高められ、耐摩耗性の向上を図ることができる。この場合、スラスト動圧発生部としての動圧溝8b11は、必ずしも軸受部品8の形成と同時に型成形する必要はなく、例えば軸受部品8を形成した後、プレス加工や機械加工等により形成してもよい。   Moreover, in the above embodiment, the sleeve part 8a and the flange part 8b which comprise the bearing component 8 are integrally formed, However, it is not restricted to this, For example, the sleeve part 8a and the flange part 8b which were formed separately are closely_contact | adhered. It may be fixed. Moreover, in the above embodiment, although the case where the bearing component 8 was formed with a porous material was shown, you may form not only this but other metal materials, for example. In this case, if the bearing component 8 is formed of a metal material having a hardness higher than that of the housing 7, the hardness of the portion facing the thrust bearing gap can be increased and the wear resistance can be improved. In this case, the dynamic pressure groove 8b11 as the thrust dynamic pressure generating portion does not necessarily have to be molded simultaneously with the formation of the bearing component 8. For example, after the formation of the bearing component 8, the dynamic pressure groove 8b11 is formed by pressing or machining. Also good.

また、以上の実施形態では、ハウジング7の材料として真ちゅうが使用されているが、これに限らず、その他の金属材料、例えばステンレス鋼を使用することもできる。また、ハウジング7が鍛造加工で形成される場合を示したが、これに限らず、例えばプレス加工など任意の方法で形成することもできる。   In the above embodiment, brass is used as the material of the housing 7, but the present invention is not limited to this, and other metal materials such as stainless steel can also be used. Moreover, although the case where the housing 7 was formed by a forging process was shown, it is not restricted to this, For example, it can also form by arbitrary methods, such as a press work.

また、以上の実施形態では、スリーブ部8aの外周面8a2に形成した軸方向溝8a21と、フランジ部8bに形成した貫通孔12bとで、連通孔12を構成しているが、これに限らない。例えば、図示は省略するが、スリーブ部8の外周面8a2に軸方向溝8a21を形成すると共に、フランジ部8bの下側端面8b2に径方向溝を、さらにフランジ部8bの外周面に軸方向溝を形成し、これらの溝とハウジング7とで形成される孔を連通させることにより、連通孔を構成することもできる。この連通孔により、スラスト軸受部Tのスラスト軸受隙間の外径端と、スリーブ部8aの下側端面8a3が面する空間とが連通する。また、上記の軸方向溝及び径方向溝は、スリーブ部8a側ではなく、ハウジング7側に形成することもできる。   In the above embodiment, the communication hole 12 is configured by the axial groove 8a21 formed in the outer peripheral surface 8a2 of the sleeve portion 8a and the through hole 12b formed in the flange portion 8b. However, the present invention is not limited to this. . For example, although not shown, an axial groove 8a21 is formed on the outer peripheral surface 8a2 of the sleeve portion 8, a radial groove is formed on the lower end surface 8b2 of the flange portion 8b, and an axial groove is formed on the outer peripheral surface of the flange portion 8b. The hole formed by these grooves and the housing 7 can be communicated to form a communication hole. Through this communication hole, the outer diameter end of the thrust bearing gap of the thrust bearing portion T communicates with the space facing the lower end surface 8a3 of the sleeve portion 8a. Further, the axial grooves and the radial grooves can be formed not on the sleeve portion 8a side but on the housing 7 side.

また、以上では、ラジアル動圧発生部としてヘリングボーン形状の動圧溝が、スラスト動圧発生部としてスパイラル形状の動圧溝が形成されているが、これに限らない。例えば、ラジアル動圧発生部として、スパイラル形状の動圧溝や、多円弧軸受、あるいはステップ軸受を形成してもよい。また、スラスト動圧発生部として、へリングベーン形状の動圧溝や、ステップ軸受、あるいは波型軸受(ステップ軸受が波型形状になったもの)を形成してもよい。   In the above, the herringbone-shaped dynamic pressure groove is formed as the radial dynamic pressure generating portion and the spiral-shaped dynamic pressure groove is formed as the thrust dynamic pressure generating portion, but this is not restrictive. For example, a spiral dynamic pressure groove, a multi-arc bearing, or a step bearing may be formed as the radial dynamic pressure generating portion. Further, as the thrust dynamic pressure generating portion, a herring vane-shaped dynamic pressure groove, a step bearing, or a wave bearing (a step bearing having a wave shape) may be formed.

また、以上では、ラジアル軸受部R1、R2が軸方向に離隔して設けられているが、これに限らず、例えばこれらを軸方向で連続的に形成してもよい。あるいは、ラジアル軸受部R1、R2の何れか一方のみを設けても良い。   In the above description, the radial bearing portions R1 and R2 are spaced apart in the axial direction. However, the present invention is not limited thereto, and for example, they may be continuously formed in the axial direction. Alternatively, only one of the radial bearing portions R1 and R2 may be provided.

また、以上では、軸部を有する第1部材が回転側となり、軸受部品を有する第2部材が固定側となる場合を示しているが、これとは逆に、第1部材が固定側、第2部材が回転側となる構成であってもよい。   In the above description, the first member having the shaft portion is the rotation side, and the second member having the bearing part is the fixed side. On the contrary, the first member is the fixed side, The structure by which two members become a rotation side may be sufficient.

また、以上では、潤滑流体として潤滑油が使用されているが、これ以外にも各軸受隙間に動圧作用を発生可能な流体、例えば空気等の気体や、磁性流体、あるいは潤滑グリース等を使用することもできる。   In the above, lubricating oil is used as the lubricating fluid, but other fluids that can generate a dynamic pressure action in each bearing gap, for example, gas such as air, magnetic fluid, or lubricating grease are used. You can also

また、本発明の動圧軸受装置は、上記のようにHDD等のディスク駆動装置に用いられるスピンドルモータに限らず、光ディスクの光磁気ディスク駆動用のスピンドルモータ等、高速回転下で使用される情報機器用の小型モータ、レーザビームプリンタのポリゴンスキャナモータ等における回転軸支持用、あるいは電気機器の冷却ファン用のファンモータとしても好適に使用することができる。   Further, the hydrodynamic bearing device of the present invention is not limited to the spindle motor used in the disk drive device such as the HDD as described above, but is used for information used under high-speed rotation, such as a spindle motor for driving a magneto-optical disk of an optical disk. It can also be suitably used as a fan motor for rotating shaft support in a small motor for equipment, a polygon scanner motor of a laser beam printer, or a cooling fan for electrical equipment.

動圧軸受装置1を組み込んだスピンドルモータを示す断面図である。It is sectional drawing which shows the spindle motor incorporating the dynamic pressure bearing apparatus. 本発明に係る動圧軸受装置1を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus 1 which concerns on this invention. 軸受部品8の軸方向断面図である。3 is an axial sectional view of a bearing component 8. FIG. 軸受部品8の上面図である。FIG. 6 is a top view of the bearing component 8. 本発明の第2の実施形態に係る動圧軸受装置21の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus 21 which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 動圧軸受装置
2 固定側部材(第2部材)
3 回転側部材(第1部材)
4 ステータコイル
5 ロータマグネット
6 ブラケット
7 ハウジング
8 軸受部品
8a スリーブ部
8a21 軸方向溝
8b フランジ部
9 軸部材
10 ディスクハブ
12 連通孔
12a 軸方向孔
12b 貫通孔
R1、R2 ラジアル軸受部
T スラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Fixed side member (2nd member)
3 Rotating side member (first member)
4 Stator coil 5 Rotor magnet 6 Bracket 7 Housing 8 Bearing part 8a Sleeve part 8a21 Axial groove 8b Flange part 9 Shaft member 10 Disk hub 12 Communication hole 12a Axial hole 12b Through hole R1, R2 Radial bearing part T Thrust bearing part S Seal space

Claims (4)

軸部を有する第1部材と、軸部を内周に挿入し、軸方向一端が開口し他端が閉口した第2部材とを備え、第2部材の開口側端面と第1部材との間のスラスト軸受隙間に生じる潤滑流体の動圧作用で、第1部材をスラスト方向で相対回転可能に支持する動圧軸受装置において、
第2部材が、軸受部品と、軸受部品を内周に保持した金属製のハウジングとを有し、軸受部品が、円筒状のスリーブ部及びスリーブ部の一端から外径へ向けて延びたフランジ部を有し、該フランジ部が前記スラスト軸受隙間に面することを特徴とする動圧軸受装置。
A first member having a shaft portion; and a second member having the shaft portion inserted into the inner periphery and having one end opened in the axial direction and the other end closed, and is between the opening-side end surface of the second member and the first member In the hydrodynamic bearing device that supports the first member so as to be relatively rotatable in the thrust direction by the hydrodynamic action of the lubricating fluid generated in the thrust bearing gap of
The second member has a bearing part and a metal housing holding the bearing part on the inner periphery, and the bearing part extends from the one end of the sleeve part toward the outer diameter from the sleeve part. And the flange portion faces the thrust bearing gap.
前記フランジ部の端面に、前記スラスト軸受隙間の潤滑流体に動圧作用を発生させる動圧発生部を形成した請求項1記載の動圧軸受装置。   The dynamic pressure bearing device according to claim 1, wherein a dynamic pressure generating portion that generates a dynamic pressure action on the lubricating fluid in the thrust bearing gap is formed on an end surface of the flange portion. 軸受部品を多孔質材料で形成した請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the bearing part is formed of a porous material. 軸受部品のスリーブ部の外周面及びハウジングの内周面の一方又は双方に形成した軸方向溝で、前記外周面及び内周面の界面の両端を連通する軸方向孔を形成すると共に、軸受部品に、一端が軸受部品の上側端面に開口し、他端が前記軸方向孔と連通した貫通孔を形成した請求項1記載の動圧軸受装置。   An axial groove formed on one or both of the outer peripheral surface of the sleeve portion of the bearing component and the inner peripheral surface of the housing forms an axial hole that communicates both ends of the interface between the outer peripheral surface and the inner peripheral surface. The hydrodynamic bearing device according to claim 1, wherein one end is opened in an upper end surface of the bearing component, and the other end is formed with a through hole communicating with the axial hole.
JP2006296179A 2006-10-31 2006-10-31 Dynamic pressure bearing device Withdrawn JP2008111520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006296179A JP2008111520A (en) 2006-10-31 2006-10-31 Dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296179A JP2008111520A (en) 2006-10-31 2006-10-31 Dynamic pressure bearing device

Publications (1)

Publication Number Publication Date
JP2008111520A true JP2008111520A (en) 2008-05-15

Family

ID=39444134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296179A Withdrawn JP2008111520A (en) 2006-10-31 2006-10-31 Dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JP2008111520A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101101681B1 (en) 2010-06-15 2011-12-30 삼성전기주식회사 Motor and driving device of recording disc
WO2015087809A1 (en) * 2013-12-11 2015-06-18 Ntn株式会社 Fluid dynamic bearing device and motor provided therewith

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101101681B1 (en) 2010-06-15 2011-12-30 삼성전기주식회사 Motor and driving device of recording disc
WO2015087809A1 (en) * 2013-12-11 2015-06-18 Ntn株式会社 Fluid dynamic bearing device and motor provided therewith
JP2015132380A (en) * 2013-12-11 2015-07-23 Ntn株式会社 Fluid dynamic pressure bearing device and motor having the same
CN105992879A (en) * 2013-12-11 2016-10-05 Ntn株式会社 Fluid dynamic bearing device and motor provided therewith
EP3096026A4 (en) * 2013-12-11 2017-09-27 NTN Corporation Fluid dynamic bearing device and motor provided therewith
US10145412B2 (en) 2013-12-11 2018-12-04 Ntn Corporation Fluid dynamic bearing device and motor provided therewith

Similar Documents

Publication Publication Date Title
JP2006194400A (en) Spindle motor and rotating device
US20100232733A1 (en) Fluid dynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2014001781A (en) Fluid dynamic pressure bearing device and motor including the same
JP3774080B2 (en) Hydrodynamic bearing unit
JP4559336B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2005337490A (en) Dynamic pressure bearing device
JP2008111520A (en) Dynamic pressure bearing device
JP2009168147A (en) Dynamic pressure bearing device and its manufacturing method
JP2009103280A (en) Dynamic pressure bearing device and its manufacturing method
US7789565B2 (en) Fluid dynamic bearing apparatus
JP5726687B2 (en) Fluid dynamic bearing device
JP2011074951A (en) Fluid dynamic bearing device
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP2008144847A (en) Dynamic pressure bearing device
JP2007082339A (en) Fluid bearing device and manufacturing method therefor
JP4738831B2 (en) Hydrodynamic bearing device
JP4588561B2 (en) Hydrodynamic bearing device
JP5064083B2 (en) Method for manufacturing hydrodynamic bearing device
JP4233771B2 (en) Hydrodynamic bearing unit
JP2008020058A (en) Fluid bearing device
JP2001173645A (en) Dynamic pressure bearing unit
JP4030517B2 (en) Hydrodynamic bearing device
JP4498932B2 (en) Hydrodynamic bearing device
JP4738835B2 (en) Hydrodynamic bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100105