JP4738831B2 - Hydrodynamic bearing device - Google Patents

Hydrodynamic bearing device Download PDF

Info

Publication number
JP4738831B2
JP4738831B2 JP2005034225A JP2005034225A JP4738831B2 JP 4738831 B2 JP4738831 B2 JP 4738831B2 JP 2005034225 A JP2005034225 A JP 2005034225A JP 2005034225 A JP2005034225 A JP 2005034225A JP 4738831 B2 JP4738831 B2 JP 4738831B2
Authority
JP
Japan
Prior art keywords
housing
bearing
communication groove
bearing sleeve
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005034225A
Other languages
Japanese (ja)
Other versions
JP2006220216A (en
Inventor
信好 山下
敏幸 水谷
英一 藤田
晃司 山形
雅人 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2005034225A priority Critical patent/JP4738831B2/en
Priority to CN2006800041560A priority patent/CN101128679B/en
Priority to US11/816,058 priority patent/US8746978B2/en
Priority to PCT/JP2006/300235 priority patent/WO2006085426A1/en
Publication of JP2006220216A publication Critical patent/JP2006220216A/en
Application granted granted Critical
Publication of JP4738831B2 publication Critical patent/JP4738831B2/en
Priority to US13/210,969 priority patent/US8499456B2/en
Priority to US13/927,818 priority patent/US8756816B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、流体軸受装置に関するものである。このハウジングを備えた流体軸受装置は、情報機器、例えばHDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、その他の小型モータ用として好適である。 The present invention relates to a hydrodynamic bearing device . The hydrodynamic bearing device including the housing is an information device, for example, a magnetic disk device such as an HDD, an optical disk device such as a CD-ROM, CD-R / RW, or DVD-ROM / RAM, or a magneto-optical disk device such as an MD or MO. It is suitable for a spindle motor such as a laser scanner, a polygon scanner motor of a laser beam printer (LBP), and other small motors.

上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化等が求められている。これらの要求性能を決定づける構成要素の1つに当該モータのスピンドルを支持する軸受があり、近年では、上記要求性能に優れた特性を有する流体軸受の使用が検討され、あるいは実際に使用されている。   In addition to high rotational accuracy, the various motors are required to have high speed, low cost, low noise, and the like. One of the components that determine the required performance is a bearing that supports the spindle of the motor. In recent years, the use of a fluid bearing having characteristics excellent in the required performance has been studied or actually used. .

この種の流体軸受は、軸受隙間内の流体(例えば潤滑油等)に動圧を発生させる動圧発生手段を備えた動圧軸受と、動圧発生手段を備えていない、いわゆる真円軸受(軸受面が真円形状である軸受)とに大別される。   This type of hydrodynamic bearing includes a hydrodynamic bearing provided with dynamic pressure generating means for generating dynamic pressure in a fluid (for example, lubricating oil) in a bearing gap, and a so-called circular bearing (not provided with dynamic pressure generating means). The bearing surface is roughly divided into a bearing having a perfect circular shape.

例えば、HDD等のディスク駆動装置のスピンドルモータに組み込まれる流体軸受装置では、回転部材をラジアル方向に支持するラジアル軸受部およびスラスト方向に支持するスラスト軸受部の双方を動圧軸受で構成する場合がある。この種の流体軸受装置(動圧軸受装置)におけるスラスト軸受部としては、例えば回転部材に設けられた軸部のフランジ部両端面と、これらに対向する面(軸受スリーブの端面や、ハウジング底部の上端面、あるいはハウジングに固定されるスラスト部材や蓋部材の端面等)の何れか一方に、動圧発生部としての動圧溝を形成すると共に、両面間にスラスト軸受隙間を形成するものが知られている(例えば、特許文献1を参照)。   For example, in a hydrodynamic bearing device incorporated in a spindle motor of a disk drive device such as an HDD, both a radial bearing portion that supports a rotating member in the radial direction and a thrust bearing portion that supports the thrust direction in the thrust direction may be configured by dynamic pressure bearings. is there. As a thrust bearing portion in this type of hydrodynamic bearing device (dynamic pressure bearing device), for example, both end surfaces of a flange portion of a shaft portion provided on a rotating member, and surfaces facing these (end surface of a bearing sleeve, bottom surface of a housing) It is known that a dynamic pressure groove as a dynamic pressure generating portion is formed on either one of the upper end surface or a thrust member fixed to the housing or an end surface of a lid member, and a thrust bearing gap is formed between both surfaces. (For example, see Patent Document 1).

また、シール空間等の大気開放側から離れた領域(例えばハウジングの反シール空間側内部に位置するスラスト軸受部など)における流体の圧力を適正に保つ(他所との圧力バランスを保つ)などの目的で、軸受スリーブの外周面に流体が流れる軸方向の溝(連通溝)を設けたものが知られている(例えば、特許文献2を参照)。
特開2003−239951号公報 特開2003−307212号公報
Also, for purposes such as maintaining the fluid pressure properly (maintaining the pressure balance with other locations) in areas away from the atmosphere opening side such as the seal space (for example, the thrust bearing located inside the anti-seal space side of the housing) Thus, there is known one in which an axial groove (communication groove) through which fluid flows is provided on the outer peripheral surface of the bearing sleeve (see, for example, Patent Document 2).
JP 2003-239951 A JP 2003-307212 A

この種の軸受装置は、ハウジング、軸受スリーブ、軸部材をはじめとする種々の部品で構成され、情報機器の益々の高性能化に伴って必要とされる高い軸受性能を確保すべく、各部品の加工精度や組立精度を高める努力がなされている。その一方で、情報機器の低価格化・小型化の傾向に伴い、この種の軸受装置に対する低コスト化・小型化の要求が高まっている。   This type of bearing device is composed of various parts including a housing, a bearing sleeve, and a shaft member. In order to ensure the high bearing performance required for the higher performance of information equipment, Efforts are being made to improve the processing accuracy and assembly accuracy. On the other hand, with the trend of lowering the price and downsizing of information equipment, there is an increasing demand for cost reduction and downsizing of this type of bearing device.

特に最近の情報機器の携帯化に伴う小型化の要求に応じるため、軸受装置の各構成部品の小サイズ化が検討されている。例えば円筒状をなす軸受スリーブの小サイズ化にあたり、薄肉化は必要不可欠となるが、これに伴って軸受スリーブの外周に連通溝を設けるとなると、下記の弊害を生じる可能性がある。   In particular, in order to meet the demands for downsizing due to the recent portability of information equipment, it has been studied to reduce the size of each component of the bearing device. For example, in order to reduce the size of a cylindrical bearing sleeve, it is indispensable to reduce the thickness. However, if a communication groove is provided on the outer periphery of the bearing sleeve, the following adverse effects may occur.

軸受スリーブは、通常、焼結金属で形成され、焼結後のサイジングによってその内周に動圧溝等の動圧発生部が形成される。サイジング後、ダイ等から脱型された軸受スリーブはスプリングバックを生じ、その外周が外径側に変位(膨張)するが、サイジング中、外周面の連通溝領域はダイ等と接触しておらず、内径側に圧迫されないため、そのスプリングバック量は他所に比べて小さくなる。連通溝の数を調整する(例えば3箇所)ことによって、ある程度スプリングバック量の偏りを小さくすることができるが、上述のように肉厚を薄くするにつれてスプリングバック量の偏りが顕著となる。これでは、サイジング後の軸受スリーブの内周面や外周面は、真円ではなく、連通溝付近を小径とする楕円あるいは略多角形断面形状となる。そのため、軸部材との間のラジアル軸受隙間の円周方向でのばらつきが大きくなり、安定した軸受剛性を得ることができない可能性がある。   The bearing sleeve is usually made of sintered metal, and a dynamic pressure generating portion such as a dynamic pressure groove is formed on the inner periphery by sizing after sintering. After sizing, the bearing sleeve removed from the die or the like generates a springback, and its outer periphery is displaced (expanded) to the outer diameter side. However, during sizing, the communication groove area on the outer peripheral surface is not in contact with the die or the like. Since it is not compressed to the inner diameter side, the amount of spring back is smaller than that of other places. By adjusting the number of communication grooves (for example, three locations), the bias of the springback amount can be reduced to some extent. However, as the thickness is reduced as described above, the bias of the springback amount becomes more significant. In this case, the inner peripheral surface and the outer peripheral surface of the bearing sleeve after sizing are not a perfect circle but an ellipse or a substantially polygonal cross-sectional shape having a small diameter near the communication groove. For this reason, there is a possibility that the radial bearing gap with the shaft member has a large variation in the circumferential direction, and stable bearing rigidity cannot be obtained.

本発明の課題は、高い軸受性能を安定的に発揮し得る流体軸受装置を低コストに提供することである。   The subject of this invention is providing the low-cost hydrodynamic bearing apparatus which can exhibit high bearing performance stably.

前記課題を解決するため、本発明は、焼結金属で形成された軸受スリーブと、筒状をなし、内周に軸受スリーブの外周面を固定する固定面が形成されたハウジングと、軸受スリーブの内周に挿入される軸部を有し、軸受スリーブおよびハウジングに対して回転する回転部材と、軸部の外周面と軸受スリーブの内周面との間のラジアル軸受隙間に生じる流体の潤滑膜で回転部材をラジアル方向に非接触支持するラジアル軸受部とを備えた流体軸受装置において、軸受スリーブの外周面は、連通溝を有しない平滑な円筒面で、かつその全面がサイジングで成形された面であり、ハウジングは軸方向一端を開口した形状をなし、ハウジングの内周に、軸受スリーブの両端面間を連通し、流体が流通可能な軸方向の連通溝が形成され、この連通溝のハウジング開口側の軸方向端部が、軸方向に向けて開口しており、固定面および連通溝が、共に鍛造成形により塑性加工された面で構成されていることを特徴とする流体軸受装置を提供する。 In order to solve the above-described problems, the present invention provides a bearing sleeve formed of sintered metal, a housing having a cylindrical shape and a fixing surface for fixing the outer peripheral surface of the bearing sleeve to the inner periphery, and a bearing sleeve. Rotating member having a shaft portion inserted in the inner periphery and rotating with respect to the bearing sleeve and the housing, and a lubricating film for fluid generated in a radial bearing gap between the outer peripheral surface of the shaft portion and the inner peripheral surface of the bearing sleeve In the hydrodynamic bearing device having the radial bearing portion that supports the rotating member in the radial direction in a non-contact manner, the outer peripheral surface of the bearing sleeve is a smooth cylindrical surface having no communication groove, and the entire surface is formed by sizing. The housing has a shape in which one end in the axial direction is opened, and an axial communication groove is formed on the inner periphery of the housing so as to communicate between both end surfaces of the bearing sleeve and allow fluid to flow . C Axial end of Managing opening side, is open in the axial direction, the fixed surface and communicating groove is, the fluid bearing apparatus characterized in that it is constituted by a plastically worked surface by both forged provide.

このように、軸受スリーブの軸方向両端面間を連通させるための軸方向の連通溝を、ハウジングの内周に設けることにより、軸受スリーブのサイジング後のスプリングバック量が全周に亘って均一化される。そのため、軸受スリーブの内周面あるいは外周面の真円度を高精度に保つことができ、例えば内周面と回転部材との間のラジアル軸受隙間を適正に管理することができる。また、軸受スリーブの外周面に軸方向の連通溝を設ける場合、連通溝の成形は、圧粉体の成形と同時に行われるため、圧粉成形金型のダイやパンチには、連通溝に対応したものが必要とされるが、本発明のように、ハウジングの側に設けることにより、当該金型を簡素化でき、かかるコストの低減化が可能となる。   In this way, by providing axial communication grooves on the inner periphery of the housing to communicate between both axial ends of the bearing sleeve, the amount of spring back after sizing the bearing sleeve is made uniform over the entire circumference. Is done. Therefore, the roundness of the inner peripheral surface or outer peripheral surface of the bearing sleeve can be maintained with high accuracy, and for example, the radial bearing gap between the inner peripheral surface and the rotating member can be properly managed. In addition, when an axial communication groove is provided on the outer peripheral surface of the bearing sleeve, the communication groove is formed at the same time as the molding of the green compact. Therefore, the die and punch of the compacting mold are compatible with the communication groove. However, by providing it on the housing side as in the present invention, the mold can be simplified and the cost can be reduced.

軸方向の連通溝をハウジングの内周に形成する方法として、例えば切削加工が考えられるが、これだと、ハウジング内周の固定面を形成するための加工(旋削加工)とは別の加工工程が必要となり、高コスト化を招く。また、切削加工では、切粉の発生が避けられず、これが流体中にコンタミとして混入するおそれがある。これを防止するためには、切削後に別途ハウジングの洗浄処理を複数回に分けて行うなど、複雑な洗浄工程が必要となり、コストの増加を招く。   As a method of forming the axial communication groove on the inner periphery of the housing, for example, cutting is conceivable, but this is a processing step different from the processing (turning) for forming the fixed surface of the housing inner periphery. Is required, leading to high costs. Further, in the cutting process, generation of chips is unavoidable, and this may be mixed in the fluid as contamination. In order to prevent this, a complicated cleaning process is required, for example, a separate cleaning process for the housing is performed after cutting, resulting in an increase in cost.

これに対し、本発明のように、連通溝と固定面を共に鍛造で形成すれば、連通溝と固定面とを同一の加工法で成形することができるので、両者の加工を別工程とする場合に比べて、コストの低減を図ることができる。また、鍛造加工は、切削等に比べて一般にサイクルタイムが短いため、生産能率(量産性)を向上させることができる。加えて、鍛造加工では、切削加工のように切粉が発生することもなく、またハウジングを樹脂で成形する場合と比べてバリの発生が抑えられる。従って、洗浄作業を簡素化でき、またバリ取りの手間を省いて、さらなる低コスト化を図ることができる。   On the other hand, if both the communication groove and the fixed surface are formed by forging as in the present invention, the communication groove and the fixed surface can be formed by the same processing method. Compared to the case, the cost can be reduced. In addition, since the forging process generally has a shorter cycle time than cutting or the like, the production efficiency (mass productivity) can be improved. In addition, in the forging process, chips are not generated unlike the cutting process, and the generation of burrs is suppressed as compared with the case where the housing is formed of resin. Therefore, the cleaning operation can be simplified, and the cost of deburring can be saved, thereby further reducing the cost.

また、前記課題を解決するため、本発明は、焼結金属で形成された軸受スリーブと、筒状をなし、内周に軸受スリーブの外周面を固定する固定面形成されたハウジングと、軸受スリーブの内周に挿入される軸部を有し、軸受スリーブおよびハウジングに対して回転する回転部材と、軸部の外周面と軸受スリーブの内周面との間のラジアル軸受隙間に生じる流体の潤滑膜で回転部材をラジアル方向に非接触支持するラジアル軸受部とを備え、軸受スリーブの外周面は、連通溝を有しない平滑な円筒面で、かつその全面がサイジングで成形された面であり、ハウジングの内周に、軸受スリーブの両端面間を連通し、流体が流通可能な軸方向の連通溝が形成された流体軸受装置に用いられるハウジングを鍛造で成形するに際し、鍛造用金型に、当該金型のストローク方向と平行に延びる溝成形部を設け、この溝成形部を設けた鍛造用金型を軸方向にストロークさせることで連通溝を鍛造成形することを特徴とする流体軸受装置用ハウジングの製造方法を提供する。 In order to solve the above problems, the present invention includes a bearing sleeve formed of a sintered metal, a tubular shape, fixing surface that fixes the outer peripheral surface of the bearing sleeve on the inner circumference is formed a housing, a bearing A shaft member inserted into the inner periphery of the sleeve, and a rotating member that rotates relative to the bearing sleeve and the housing, and a fluid generated in a radial bearing gap between the outer peripheral surface of the shaft portion and the inner peripheral surface of the bearing sleeve. A radial bearing portion for supporting the rotating member in the radial direction in a non-contact manner with a lubricating film, and the outer peripheral surface of the bearing sleeve is a smooth cylindrical surface having no communication groove, and the entire surface is a surface formed by sizing. , the inner periphery of the housing, upon between both end faces of the bearing sleeve and communicating the fluid molding in forging a housing for use in a fluid bearing device communicating groove is formed in the distribution can be axially, the forging mold This The groove forming portion extending parallel to the stroke direction of the mold is provided, the fluid bearing apparatus for a housing, which comprises forging the communication groove by causing stroke forging mold provided with the groove forming portion in the axial direction A manufacturing method is provided.

上述のように、金型のストローク方向と平行に延びる溝成形部を設けた鍛造用金型を軸方向にストロークさせることにより、ハウジングの内周面に連通溝を鍛造成形することで、ハウジングの内周に軸方向の連通溝が正確かつ容易に形成される。 As described above, by forging a communication groove on the inner peripheral surface of the housing by forging the die for forging provided with a groove forming portion extending parallel to the stroke direction of the die in the axial direction, An axial communication groove is accurately and easily formed on the inner periphery.

また、溝成形部を設けた鍛造用金型に、固定面を成形するための面成形部を設け、これら溝成形部と面成形部とで連通溝と同時に固定面を鍛造成形することで、一の鍛造プレス作業(1ストローク)で、ハウジングの固定面および連通溝が同時に形成される。これにより、サイクルタイムのより一層の短縮化が図られ、さらなる量産性の向上が可能となる。   In addition, a forging die provided with a groove forming portion is provided with a surface forming portion for forming a fixed surface, and the groove forming portion and the surface forming portion simultaneously forge the fixed surface with the communication groove, In one forging press operation (one stroke), the fixed surface of the housing and the communication groove are formed simultaneously. Thereby, the cycle time can be further shortened and further mass productivity can be improved.

上記構成のハウジングは、例えばこのハウジングと、ハウジングの固定面に固定された軸受スリーブと、軸受スリーブおよびハウジングに対して回転する回転部材と、回転部材と軸受スリーブとの間のラジアル軸受隙間に生じる流体の潤滑膜で回転部材をラジアル方向に非接触支持するラジアル軸受部と、ハウジングの一端開口側に設けられ、大気側に開放されるシール空間とを備えた流体軸受装置として提供可能である。   The housing configured as described above is generated in, for example, the housing, a bearing sleeve fixed to the fixed surface of the housing, a rotating member that rotates with respect to the bearing sleeve and the housing, and a radial bearing gap between the rotating member and the bearing sleeve. The present invention can be provided as a hydrodynamic bearing device including a radial bearing portion that supports a rotating member in a radial direction in a non-contact manner with a fluid lubricant film, and a seal space that is provided on one end opening side of the housing and is open to the atmosphere side.

上記構成の流体軸受装置は、例えばハウジングの他端内部とシール空間との間で流体の流通を行う構成とすることができ、これによれば、軸受内部における流体の圧力バランスが適正に保たれ、安定した軸受性能が長期に亘って発揮される。   The hydrodynamic bearing device having the above-described configuration can be configured, for example, to perform fluid flow between the inside of the other end of the housing and the seal space. According to this, the pressure balance of the fluid inside the bearing is properly maintained. Stable bearing performance is exhibited over a long period of time.

上記構成の流体軸受装置は、この流体軸受装置を有するディスク装置のスピンドルモータとして提供することもできる。   The hydrodynamic bearing device having the above configuration can also be provided as a spindle motor of a disk device having the hydrodynamic bearing device.

このように、本発明によれば、高い軸受性能を安定的に発揮し得る流体軸受装置を低コストに提供することができる。   Thus, according to the present invention, a hydrodynamic bearing device that can stably exhibit high bearing performance can be provided at low cost.

以下、本発明の第1実施形態を図1〜図6に基づいて説明する。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の第1実施形態に係る流体軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部2を備えた回転部材3を回転自在に非接触支持する流体軸受装置1と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、モータブラケット6とを備えている。ステータコイル4はモータブラケット6の外周に取付けられ、ロータマグネット5は回転部材3の外周に取付けられている。流体軸受装置1のハウジング7は、モータブラケット6の内周に固定される。回転部材3には、図示は省略するが、磁気ディスク等のディスク状情報記録媒体(以下、単にディスクという。)が一又は複数枚保持される。このように構成されたスピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する電磁力でロータマグネット5が回転し、これに伴って、回転部材3および回転部材3に保持されたディスクが軸部2と一体に回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a hydrodynamic bearing device 1 according to a first embodiment of the present invention. This spindle motor is used in a disk drive device such as an HDD, and is opposed to a hydrodynamic bearing device 1 that rotatably supports a rotating member 3 having a shaft portion 2 through a gap in the radial direction, for example. The stator coil 4 and the rotor magnet 5 and the motor bracket 6 are provided. The stator coil 4 is attached to the outer periphery of the motor bracket 6, and the rotor magnet 5 is attached to the outer periphery of the rotating member 3. The housing 7 of the hydrodynamic bearing device 1 is fixed to the inner periphery of the motor bracket 6. Although not shown, the rotating member 3 holds one or more disk-shaped information recording media (hereinafter simply referred to as disks) such as magnetic disks. In the spindle motor configured as described above, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force generated between the stator coil 4 and the rotor magnet 5. The disk held by the member 3 rotates integrally with the shaft portion 2.

図2は、流体軸受装置1を示している。この流体軸受装置1は、ハウジング7と、ハウジング7に固定された軸受スリーブ8と、ハウジング7および軸受スリーブ8に対して相対回転する回転部材3とを主な構成要素として構成される。なお、説明の便宜上、軸方向両端に形成されるハウジング7開口部のうち、蓋部材11で封口される側を下側、封口側と反対の側を上側として以下説明する。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a housing 7, a bearing sleeve 8 fixed to the housing 7, and a rotating member 3 that rotates relative to the housing 7 and the bearing sleeve 8 as main components. For convenience of explanation, in the housing 7 openings formed at both ends in the axial direction, the side sealed by the lid member 11 is the lower side, and the side opposite to the sealing side is the upper side.

回転部材3は、例えばハウジング7の開口側に配置されるハブ部9と、軸受スリーブ8の内周に挿入される軸部2とで構成される。   The rotating member 3 includes, for example, a hub portion 9 disposed on the opening side of the housing 7 and a shaft portion 2 that is inserted into the inner periphery of the bearing sleeve 8.

ハブ部9は、ハウジング7の開口側(上側)を覆う円盤部9aと、円盤部9aの外周部から軸方向下方に延びた筒状部9bと、筒状部9bの外周に設けられたディスク搭載面9cおよび鍔部9dとを備えている。図示されていないディスクは、円盤部9aの外周に外嵌され、ディスク搭載面9cに載置される。そして、図示しない適当な保持手段(クランパなど)によってディスクがハブ部9に保持される。   The hub portion 9 includes a disc portion 9a that covers the opening side (upper side) of the housing 7, a cylindrical portion 9b that extends axially downward from the outer peripheral portion of the disc portion 9a, and a disk that is provided on the outer periphery of the cylindrical portion 9b. A mounting surface 9c and a flange 9d are provided. A disc (not shown) is fitted on the outer periphery of the disk portion 9a and placed on the disc mounting surface 9c. Then, the disc is held on the hub portion 9 by appropriate holding means (such as a clamper) not shown.

軸部2は、樹脂あるいは金属でハブ部9と一体に形成され、その下端に抜止めとしてフランジ部10を別体に備えている。フランジ部10は、金属製で、例えばねじ結合等の手段により軸部2に固定される。なお、軸部2は、ハブ部9と別体に形成することもでき、その際、軸部2を金属製、ハブ部9を樹脂製、あるいは逆の組合わせとすることもできる。   The shaft portion 2 is formed integrally with the hub portion 9 from resin or metal, and includes a flange portion 10 as a separate member at the lower end thereof. The flange portion 10 is made of metal and is fixed to the shaft portion 2 by means such as screw connection. The shaft portion 2 can also be formed separately from the hub portion 9. At this time, the shaft portion 2 can be made of metal and the hub portion 9 can be made of resin, or the reverse combination.

軸受スリーブ8は、例えば金属製の非孔質体あるいは焼結金属からなる多孔質体で円筒状に形成される。この実施形態では、銅を主成分とする焼結金属の多孔質体で円筒状に形成される。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body made of, for example, a metal non-porous body or sintered metal. In this embodiment, a sintered metal porous body mainly composed of copper is formed in a cylindrical shape.

軸受スリーブ8の内周面8aの全面又は一部円筒領域には、ラジアル動圧発生部としての動圧溝が形成される。この実施形態では、例えば図3に示すように、複数の動圧溝8a1、8a2をヘリングボーン形状に配列した領域が軸方向に離隔して2箇所形成される。上側の動圧溝8a1の形成領域では、動圧溝8a1が、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。   A dynamic pressure groove as a radial dynamic pressure generating portion is formed on the entire inner surface 8a of the bearing sleeve 8 or a partial cylindrical region. In this embodiment, for example, as shown in FIG. 3, two regions where a plurality of dynamic pressure grooves 8a1 and 8a2 are arranged in a herringbone shape are formed apart from each other in the axial direction. In the formation region of the upper dynamic pressure groove 8a1, the dynamic pressure groove 8a1 is formed to be axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions). The axial dimension X1 of the upper region is larger than the axial dimension X2 of the lower region.

軸受スリーブ8の下端面8cの全面または一部環状領域には、スラスト動圧発生部として、例えば図示は省略するが、複数の動圧溝をスパイラル形状に配列した領域が形成される。この動圧溝形成領域はスラスト軸受面として、フランジ部10の上端面10aと対向し、軸部2(回転部材3)の回転時には、上端面10aとの間に後述する第二スラスト軸受部T2のスラスト軸受隙間を形成する(図2を参照)。   For example, although not shown in the drawing, a region in which a plurality of dynamic pressure grooves are arranged in a spiral shape is formed on the entire lower surface 8c of the bearing sleeve 8 or a partial annular region. This dynamic pressure groove forming region is opposed to the upper end surface 10a of the flange portion 10 as a thrust bearing surface, and a second thrust bearing portion T2 described later between the shaft portion 2 (rotating member 3) and the upper end surface 10a when rotating. (See FIG. 2).

ハウジング7は、例えばステンレス鋼等の金属材料で円筒状に形成される。このハウジング7は、その軸方向両端を開口した形状をなし、その一端側(下端側)を蓋部材11で封口している。開口側の端面(上側端面)の全面または一部環状領域には、スラスト軸受面7aが設けられる。この実施形態では、スラスト軸受面7aに、スラスト動圧発生部として、例えば図4に示すように複数の動圧溝7a1をスパイラル形状に配列した領域が形成される。このスラスト軸受面7a(動圧溝7a1形成領域)は、ハブ部9の円盤部9aの下端面9a1と対向し、回転部材3の回転時には、下端面9a1との間に後述する第一スラスト軸受部T1のスラスト軸受隙間を形成する(図2を参照)。   The housing 7 is formed in a cylindrical shape with a metal material such as stainless steel. The housing 7 has a shape in which both ends in the axial direction are opened, and one end side (lower end side) thereof is sealed with a lid member 11. A thrust bearing surface 7a is provided on the entire end surface (upper end surface) or a partial annular region on the opening side. In this embodiment, a region in which a plurality of dynamic pressure grooves 7a1 are arranged in a spiral shape is formed on the thrust bearing surface 7a as a thrust dynamic pressure generating portion, for example, as shown in FIG. The thrust bearing surface 7a (dynamic pressure groove 7a1 formation region) faces the lower end surface 9a1 of the disk portion 9a of the hub portion 9, and the first thrust bearing described later is formed between the thrust member surface 7a and the lower end surface 9a1 when the rotating member 3 rotates. A thrust bearing gap of the portion T1 is formed (see FIG. 2).

ハウジング7の下端側を封口する蓋部材11は、金属材料あるいは樹脂材料で形成され、ハウジング7の下端内周側に設けられた段部7bに固定される。ここで、固定手段は特に限定されず、例えば接着(ルーズ接着、圧入接着を含む)、圧入、溶着(例えば超音波溶着)、溶接(例えばレーザ溶接)などの手段を、材料の組合わせや要求される組付け強度、密封性などに合わせて適宜選択することができる。   The lid member 11 that seals the lower end side of the housing 7 is formed of a metal material or a resin material, and is fixed to a stepped portion 7 b provided on the inner peripheral side of the lower end of the housing 7. Here, the fixing means is not particularly limited, and for example, means such as adhesion (including loose adhesion, press-fit adhesion), press-fit, welding (for example, ultrasonic welding), welding (for example, laser welding), combinations of materials and requirements. It can be appropriately selected according to the assembly strength and sealing performance.

ハウジング7の内周には、軸受スリーブ8の外周面8bを固定するための固定面7cが形成される。この固定面7cには、軸受スリーブ8の外周面8bが、例えば接着(ルーズ接着や圧入接着を含む)、圧入、溶着等の適宜の手段で固定される。   A fixing surface 7 c for fixing the outer peripheral surface 8 b of the bearing sleeve 8 is formed on the inner periphery of the housing 7. The outer peripheral surface 8b of the bearing sleeve 8 is fixed to the fixing surface 7c by an appropriate means such as bonding (including loose bonding or press-fitting bonding), press-fitting, or welding.

また、ハウジング7の内周には、固定面7cに加えて、軸方向に延びる連通溝7dが形成される。この実施形態では、連通溝7dは、図4に示すように、円周方向等間隔に3箇所設けられ、固定面7cに軸受スリーブ8を固定した状態では、その下端が軸受スリーブ8の下端面8cと連通し、かつその上端が軸受スリーブ8の上端面8dと連通する。さらには、連通溝7dの上端は、第一スラスト軸受部T1のスラスト軸受隙間とも連通している(何れも図2を参照)。   In addition to the fixed surface 7c, a communication groove 7d extending in the axial direction is formed on the inner periphery of the housing 7. In this embodiment, as shown in FIG. 4, the communication grooves 7 d are provided at three locations at equal intervals in the circumferential direction, and when the bearing sleeve 8 is fixed to the fixed surface 7 c, the lower end is the lower end surface of the bearing sleeve 8. The upper end of the bearing sleeve 8 communicates with the upper end surface 8 d of the bearing sleeve 8. Furthermore, the upper end of the communication groove 7d communicates with the thrust bearing gap of the first thrust bearing portion T1 (see FIG. 2 for both).

ハウジング7の外周には、上方に向かって漸次拡径するテーパ面7eが形成されている。このテーパ面7eは、筒状部9bの内周面9b1との間に、ハウジング7の封口側から上方に向けて半径方向寸法を漸次縮小させた環状のシール空間Sを形成する。このシール空間Sは、軸部2およびハブ部9の回転時、第一スラスト軸受部T1のスラスト軸受隙間の外径側と連通している。   On the outer periphery of the housing 7, a tapered surface 7e that gradually increases in diameter upward is formed. This tapered surface 7e forms an annular seal space S with the radial dimension gradually reduced upward from the sealing side of the housing 7 between the inner peripheral surface 9b1 of the cylindrical portion 9b. The seal space S communicates with the outer diameter side of the thrust bearing gap of the first thrust bearing portion T1 when the shaft portion 2 and the hub portion 9 are rotated.

また、ハウジング7外周の下端には、径一定の円筒外周面7fが形成される。この円筒外周面7fは、モータブラケット6の内周面6aに接着、圧入等の手段で固定され、これにより、流体軸受装置1がモータに組み込まれる。   A cylindrical outer peripheral surface 7f having a constant diameter is formed at the lower end of the outer periphery of the housing 7. The cylindrical outer peripheral surface 7f is fixed to the inner peripheral surface 6a of the motor bracket 6 by means such as adhesion or press fitting, whereby the hydrodynamic bearing device 1 is incorporated into the motor.

以下、流体軸受装置1を構成するハウジング7の製造方法の一例を、図5および図6に基づいて説明する。   Hereinafter, an example of the manufacturing method of the housing 7 which comprises the hydrodynamic bearing apparatus 1 is demonstrated based on FIG. 5 and FIG.

ハウジング7は、この実施形態では、外周面成形工程(A)と、内周面成形工程(B)、およびスラスト軸受面成形工程(C)の3工程を経て製造される。   In this embodiment, the housing 7 is manufactured through three steps: an outer peripheral surface forming step (A), an inner peripheral surface forming step (B), and a thrust bearing surface forming step (C).

(A)外周面成形工程
まず、ワイヤを直線状にした後、適寸に裁断した円柱状のブランク材を、図示しない一対の金型内で冷間鍛造(圧縮)して、ハウジング7の外周面(テーパ面7eおよび円筒外周面7f)を成形する。なお、冷間鍛造方法としては、上記据込みに限らず、例えば前方押出し、あるいは前方押出しと据込みとの組合わせ等、種々の成形方法を使用することができる。
(A) Outer peripheral surface forming step First, after the wire is linearized, a cylindrical blank material cut to an appropriate size is cold forged (compressed) in a pair of molds (not shown), and the outer periphery of the housing 7 Surfaces (tapered surface 7e and cylindrical outer peripheral surface 7f) are formed. Note that the cold forging method is not limited to the above upsetting, and various forming methods such as forward extrusion or a combination of forward extrusion and upsetting can be used.

(B)内周面成形工程
次に、ハウジング素材7’の冷間鍛造により、成形すべきハウジング7の内周面(固定面7cおよび連通溝7d)を成形する。使用する金型は、例えば図5に示すように、ハウジング素材7’の外周面を拘束するダイ16と、成形すべきスラスト軸受面7aの側からハウジング素材7’を軸方向に拘束する上パンチ19と、成形すべきハウジング7の内周面に対応する成形面18aを外周に設けた下パンチ(ロッド)18とで構成される。ここで、下パンチをなすロッド18の成形面18aは、図6に示すように、固定面7cに対応する面成形部18a1と、連通溝7dに対応する凸状の溝成形部18a2とをそれぞれ複数箇所(この図示例では円周方向等間隔に三箇所ずつ)備えている。溝成形部18a2は、ロッド18のストローク方向(図5では上下方向)に平行に延びる形で設けられている。
(B) Inner peripheral surface forming step Next, the inner peripheral surface (fixed surface 7c and communication groove 7d) of the housing 7 to be formed is formed by cold forging of the housing material 7 '. For example, as shown in FIG. 5, the die used is a die 16 that restrains the outer peripheral surface of the housing material 7 ′ and an upper punch that restrains the housing material 7 ′ in the axial direction from the thrust bearing surface 7a to be molded. 19 and a lower punch (rod) 18 having a molding surface 18a corresponding to the inner circumferential surface of the housing 7 to be molded. Here, as shown in FIG. 6, the molding surface 18a of the rod 18 forming the lower punch has a surface molding portion 18a1 corresponding to the fixed surface 7c and a convex groove molding portion 18a2 corresponding to the communication groove 7d. A plurality of locations (three locations at equal intervals in the circumferential direction in this example) are provided. The groove forming portion 18a2 is provided so as to extend in parallel with the stroke direction of the rod 18 (the vertical direction in FIG. 5).

図5のように、ハウジング素材7’を径方向および軸方向に拘束した状態で、ロッド18を上昇させ(図中矢印の方向)、ハウジング素材7’の内周部を、下端側から上端側に向けて打ち抜く。これにより、ハウジング素材7’が軸方向両端に開口し、その内周が成形面18aの面成形部18a1および溝成形部18a2(完成品の固定面7cおよび連通溝7d)に倣った形状に成形される。この実施形態では、成形面18aに加えて段部7bに対応した段成形部18bを有するロッド18を用いることで、完成品の固定面7cと連通溝7d、および段部7bとが同時に成形される。なお、この実施形態では、ハウジング素材7’の内周部を、下方(スラスト軸受面7aの側とは反対の側)から上方(スラスト軸受面7a側)に向けて打ち抜く場合を説明したが、例えば段部7bなど特に打ち抜き方向を特定する部位が無ければ、上方から下方に向けて打ち抜いてもよい。
As shown in FIG. 5, in a state where the housing material 7 ′ is constrained in the radial direction and the axial direction, the rod 18 is raised (in the direction of the arrow in the figure), and the inner peripheral portion of the housing material 7 ′ is moved from the lower end side to the upper end side. Punching toward. As a result, the housing material 7 ′ is opened at both axial ends, and the inner periphery thereof is formed into a shape that follows the surface forming portion 18 a 1 and the groove forming portion 18 a 2 (finished fixed surface 7 c and communication groove 7 d) of the forming surface 18 a. Is done. In this embodiment, by using the rod 18 having the step forming portion 18b corresponding to the step portion 7b in addition to the forming surface 18a, the fixed surface 7c of the finished product, the communication groove 7d, and the step portion 7b are simultaneously formed. The In this embodiment, the case has been described in which the inner peripheral portion of the housing material 7 ′ is punched from the lower side ( the side opposite to the thrust bearing surface 7a side) to the upper side (the thrust bearing surface 7a side). For example, if there is no part that specifies the punching direction, such as the stepped portion 7b, the punching may be performed from the top to the bottom.

(C)スラスト軸受面成形工程
上記(A)、(B)の工程を経た後、ハウジング素材7’の冷間鍛造により、成形すべきハウジング7のスラスト軸受面7aを成形する。この成形工程において使用する金型は、例えば図5に示すダイ16およびロッド18と、上パンチ19の下端面を、図示は省略するが、成形すべきハウジング7のスラスト軸受面7aに対応する成形面としたものとで構成される。ダイ16およびロッド18によりハウジング素材7’を径方向に拘束した状態で、上パンチ19を下降させ、上パンチ19の成形面(図示は省略)をハウジング素材7’の上端に所定の加圧力を以って押し付ける。これにより、ハウジング素材7’の上端面が成形面(完成品のスラスト軸受面7a)に倣った形状に成形される。また、この実施形態では、同じく図示は省略するが、上パンチ19の成形面に動圧発生部としての動圧溝7a1に対応した溝型を予め形成したものを用いることにより、ハウジング素材7’にスラスト軸受面7aが成形されると同時に、動圧溝7a1形状が成形される。
(C) Thrust bearing surface forming step After the above steps (A) and (B), the thrust bearing surface 7a of the housing 7 to be formed is formed by cold forging of the housing material 7 '. For example, the die 16 and rod 18 shown in FIG. 5 and the lower end surface of the upper punch 19 shown in FIG. 5 are omitted in the mold used in this molding process, but the molding corresponding to the thrust bearing surface 7a of the housing 7 to be molded is omitted. It is composed of the surface. The upper punch 19 is lowered while the housing material 7 ′ is constrained in the radial direction by the die 16 and the rod 18, and a predetermined pressing force is applied to the upper end of the housing material 7 ′ with the molding surface of the upper punch 19 (not shown). Press. As a result, the upper end surface of the housing material 7 'is molded into a shape that follows the molding surface (the thrust bearing surface 7a of the finished product). Further, in this embodiment, although not shown in the figure, the housing material 7 ′ is obtained by using a groove die corresponding to the dynamic pressure groove 7a1 as the dynamic pressure generating portion formed in advance on the molding surface of the upper punch 19. At the same time as the thrust bearing surface 7a is formed, the shape of the dynamic pressure groove 7a1 is formed.

以上の(A)〜(C)工程を経て、完成品としてのハウジング7(図2を参照)が形成される。   The housing 7 (see FIG. 2) as a finished product is formed through the above steps (A) to (C).

流体軸受装置1の内部には、軸受スリーブ8の内部気孔(多孔質体組織の気孔)を含め、潤滑油が充填される(図2中の散点領域)。潤滑油の油面は常にシール空間S内に維持される。   The hydrodynamic bearing device 1 is filled with lubricating oil including the internal pores of the bearing sleeve 8 (pores of the porous body tissue) (scattered region in FIG. 2). The oil level of the lubricating oil is always maintained in the seal space S.

軸部2(回転部材3)の回転時、軸受スリーブ8の内周面8aのラジアル軸受面となる領域(上下2箇所の動圧溝8a1、8a2形成領域)は、軸部2の外周面2aとラジアル軸受隙間を介して対向する。そして、軸部2の回転に伴い、上記ラジアル軸受隙間の潤滑油が動圧溝8a1、8a2の軸方向中心m側に押し込まれ、その圧力が上昇する。このような動圧溝の動圧作用によって、軸部2を非接触支持する第一ラジアル軸受部R1と第二ラジアル軸受部R2がそれぞれ構成される。   When the shaft portion 2 (rotating member 3) rotates, a region (a region where two dynamic pressure grooves 8a1 and 8a2 are formed) on the inner peripheral surface 8a of the bearing sleeve 8 is formed on the outer peripheral surface 2a of the shaft portion 2. And through a radial bearing gap. As the shaft portion 2 rotates, the lubricating oil in the radial bearing gap is pushed into the axial center m of the dynamic pressure grooves 8a1 and 8a2, and the pressure rises. The first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft portion 2 in a non-contact manner are configured by the dynamic pressure action of the dynamic pressure groove.

これと同時に、ハウジング7のスラスト軸受面7a(動圧溝7a1形成領域)とこれに対向するハブ部9(円盤部9a)の下端面9a1との間のスラスト軸受隙間、および軸受スリーブ8の下端面8c(動圧溝形成領域)とこれに対向するフランジ部10の上端面10aとの間のスラスト軸受隙間に、動圧溝の動圧作用により潤滑油の油膜がそれぞれ形成される。そして、これら油膜の圧力によって、回転部材3をスラスト方向に非接触支持する第一スラスト軸受部T1と、第二スラスト軸受部T2が構成される。   At the same time, the thrust bearing clearance between the thrust bearing surface 7a (dynamic pressure groove 7a1 formation region) of the housing 7 and the lower end surface 9a1 of the hub portion 9 (disk portion 9a) opposite to the thrust bearing surface 7a and under the bearing sleeve 8 An oil film of lubricating oil is formed in the thrust bearing gap between the end surface 8c (dynamic pressure groove forming region) and the upper end surface 10a of the flange portion 10 facing the end surface 8c by the dynamic pressure action of the dynamic pressure groove. The pressure of these oil films forms a first thrust bearing portion T1 and a second thrust bearing portion T2 that support the rotating member 3 in a non-contact manner in the thrust direction.

上述のように、ハウジング7の内周に軸方向の連通溝7dを設けることで、この連通溝7dを介して、ハウジング7の下端内部に位置する第2スラスト軸受部T2のスラスト軸受隙間とハウジング7の開口側に形成されるシール空間Sとの間が連通状態となる。これによれば、例えば何らかの理由で第2スラスト軸受部T2の側の流体(潤滑油)圧力が過度に高まり、あるいは低下するといった事態を避けて、回転部材3をスラスト方向に安定して非接触支持することが可能となる。   As described above, by providing the axial communication groove 7d on the inner periphery of the housing 7, the thrust bearing gap of the second thrust bearing portion T2 located inside the lower end of the housing 7 and the housing via the communication groove 7d. 7 is in communication with the seal space S formed on the opening side. According to this, for example, the fluid (lubricating oil) pressure on the second thrust bearing portion T2 side is excessively increased or decreased for some reason, and the rotating member 3 is stably contactless in the thrust direction. It becomes possible to support.

また、この実施形態では、第1ラジアル軸受部R1の動圧溝8a1は、軸方向中心mに対して軸方向非対称(X1>X2)に形成されているため(図3参照)、軸部2の回転時、動圧溝8a1による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。そして、この引き込み力の差圧によって、軸受スリーブ8の内周面8aと軸部2の外周面2aとの間の隙間に満たされた潤滑油が下方に流動し、第2スラスト軸受部T2のスラスト軸受隙間→連通溝7d→上端面8dと下端面9a1との間の軸方向隙間、という経路を循環して、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。このように、ハウジング7の内周に軸方向の連通溝7dを設け、潤滑油がハウジング7の内部空間を流動循環するように構成することで、各軸受隙間をはじめとする軸受内部の圧力バランスが適正に保たれる。また、軸受内部空間の潤滑油の好ましくない流れ、例えば潤滑油の圧力が局部的に負圧になる現象を防止して、負圧発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。   In this embodiment, the dynamic pressure groove 8a1 of the first radial bearing portion R1 is formed to be axially asymmetric (X1> X2) with respect to the axial center m (see FIG. 3). At the time of rotation, the lubricating oil pulling force (pumping force) by the dynamic pressure groove 8a1 is relatively larger in the upper region than in the lower region. Then, due to the differential pressure of the pulling force, the lubricating oil filled in the gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a of the shaft portion 2 flows downward, and the second thrust bearing portion T2 It circulates through a path of thrust bearing clearance → communication groove 7d → axial clearance between the upper end surface 8d and the lower end surface 9a1, and is drawn again into the radial bearing clearance of the first radial bearing portion R1. Thus, by providing the axial communication groove 7d on the inner periphery of the housing 7 so that the lubricating oil flows and circulates in the inner space of the housing 7, the pressure balance inside the bearings including the bearing gaps is obtained. Is maintained properly. Also, an undesirable flow of the lubricating oil in the bearing internal space, for example, a phenomenon in which the pressure of the lubricating oil becomes a negative pressure locally is prevented, and bubbles are generated due to the generation of the negative pressure. Problems such as leakage and vibration can be solved.

以上、本発明の第1実施形態を説明したが、本発明は、この実施形態に限定されず、他の構成にも適用することができる。   The first embodiment of the present invention has been described above, but the present invention is not limited to this embodiment and can be applied to other configurations.

図7は、第2実施形態に係る流体軸受装置1’を示している。同図における流体軸受装置1’は、軸部2を径一定の軸形状とした点、およびハウジング7を有底円筒状とした点で第1実施形態における流体軸受装置1と構成を異にする。これにより、スラスト軸受隙間は、ハウジング7の側部7gに設けられたスラスト軸受面7aとこれに対向するハブ部9の下端面9a1との間にのみ形成される。なお、第1実施形態と構成および作用を同一とする部位・部材については、以下、同じ参照番号を付してかかる説明を省略する。   FIG. 7 shows a hydrodynamic bearing device 1 ′ according to the second embodiment. The hydrodynamic bearing device 1 ′ in the figure differs from the hydrodynamic bearing device 1 in the first embodiment in that the shaft portion 2 has a constant diameter shaft shape and the housing 7 has a bottomed cylindrical shape. . Thereby, the thrust bearing gap is formed only between the thrust bearing surface 7a provided on the side portion 7g of the housing 7 and the lower end surface 9a1 of the hub portion 9 facing the thrust bearing surface 7a. In addition, about the site | part and member which make the structure and operation | movement same as 1st Embodiment, the same reference number is attached | subjected below and this description is abbreviate | omitted.

上記流体軸受装置1’を構成するハウジング7は、上端にスラスト軸受面7aを設けた円筒状の側部7gと、側部7gの下端に設けられた底部7hとを備え、側部7gと底部7hとが一体に鍛造成形される。   The housing 7 constituting the hydrodynamic bearing device 1 'includes a cylindrical side portion 7g provided with a thrust bearing surface 7a at the upper end, and a bottom portion 7h provided at the lower end of the side portion 7g, and the side portion 7g and the bottom portion. 7h is integrally forged.

この実施形態においても、ハウジング7の内周に設けられた軸方向の連通溝7dを介して、潤滑油がハウジング7の内部空間を流動循環する。すなわち軸受スリーブ8の内周面8aと軸部2の外周面2aとの間の潤滑油が下方に流動し、軸受スリーブ8の下端面8cと底部7hの上端面7h1との軸方向隙間→連通溝7d→上端面8dと下端面9a1との間の軸方向隙間、という経路を循環して、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。これにより、各軸受隙間をはじめとする軸受内部の圧力バランスが適正に保たれる。   Also in this embodiment, the lubricating oil flows and circulates in the internal space of the housing 7 through the axial communication groove 7 d provided on the inner periphery of the housing 7. That is, the lubricating oil between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a of the shaft portion 2 flows downward, and the axial clearance between the lower end surface 8c of the bearing sleeve 8 and the upper end surface 7h1 of the bottom portion 7h → communication. It circulates through the path of the groove 7d → the axial clearance between the upper end surface 8d and the lower end surface 9a1, and is drawn again into the radial bearing clearance of the first radial bearing portion R1. Thereby, the pressure balance inside a bearing including each bearing clearance is maintained appropriately.

図8は、第3実施形態に係る流体軸受装置21を示している。この実施形態において、回転部材22は、軸部22aと、軸部22aの下端に一体または別体に設けられたフランジ部22bを備えている。ハウジング27の上端部内周には、略円筒状をなすシール部材29が固定される。このシール部材29は、その内周面29aとこれに対向する軸部22aの外周面22a1との間に上方に向けて径方向寸法を漸次拡大させたシール空間S’を形成する。   FIG. 8 shows a hydrodynamic bearing device 21 according to the third embodiment. In this embodiment, the rotating member 22 includes a shaft portion 22a and a flange portion 22b provided integrally or separately at the lower end of the shaft portion 22a. A substantially cylindrical seal member 29 is fixed to the inner periphery of the upper end portion of the housing 27. The seal member 29 forms a seal space S 'whose radial dimension is gradually enlarged upward between the inner peripheral surface 29a and the outer peripheral surface 22a1 of the shaft portion 22a opposite to the inner peripheral surface 29a.

ハウジング27は、金属の鍛造成形品で、円筒状の側部27aと、側部27aと一体構造をなし、側部27aの下端部に位置する底部27bとを備えている。ハウジング27の底部27bの上端面27b1には、スラスト軸受面として、図示は省略するが、例えばスパイラル形状の動圧溝が形成される。また、軸受スリーブ8の上端面8dには、上端面8dを径方向に区画する周方向溝8d1が全周に亘って形成され、この周方向溝8d1から内周側に向けて複数本の径方向溝8d2が形成される。 The housing 27 is a forged metal product, and includes a cylindrical side portion 27a and a bottom portion 27b that is integrated with the side portion 27a and is positioned at the lower end of the side portion 27a. On the upper end surface 27b1 of the bottom 27b of the housing 27, for example, a spiral dynamic pressure groove is formed as a thrust bearing surface, although not shown. The upper end surface 8d of the bearing sleeve 8 is formed with a circumferential groove 8d1 that divides the upper end surface 8d in the radial direction over the entire circumference, and a plurality of diameters are formed from the circumferential groove 8d1 toward the inner peripheral side. A direction groove 8d2 is formed.

回転部材22の回転時、軸受スリーブ8の下端面8cとフランジ部22bの上端面22b1との間にスラスト軸受部T11のスラスト軸受隙間が形成され、ハウジング27の底部27bの上端面22b1とフランジ部22bの下端面22b2との間にスラスト軸受部T12のスラスト軸受隙間が形成される。   When the rotating member 22 rotates, a thrust bearing gap of the thrust bearing portion T11 is formed between the lower end surface 8c of the bearing sleeve 8 and the upper end surface 22b1 of the flange portion 22b, and the upper end surface 22b1 of the bottom portion 27b of the housing 27 and the flange portion. A thrust bearing gap of the thrust bearing portion T12 is formed between the lower end surface 22b2 of 22b.

この実施形態においても、ハウジング27の内周に設けられた連通溝27dを介して、潤滑油がハウジング27の内部空間を流動循環する。すなわち軸受スリーブ8の内周面8aと軸部22aの外周面22a1との間の潤滑油が下方に流動し、軸受スリーブ8の下端面8cと底部27bの上端面27b1との軸方向隙間→軸受スリーブ8の下端面8cの動圧溝→連通溝27d→軸受スリーブ8の上端面8dの周方向溝8d1および径方向溝8d2、という経路を循環して、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。これにより、各軸受隙間をはじめとする軸受内部の圧力バランスが適正に保たれる。   Also in this embodiment, the lubricating oil flows and circulates in the internal space of the housing 27 through the communication groove 27 d provided on the inner periphery of the housing 27. That is, the lubricating oil between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 22a1 of the shaft portion 22a flows downward, and the axial clearance between the lower end surface 8c of the bearing sleeve 8 and the upper end surface 27b1 of the bottom portion 27b → the bearing. The radial bearing gap of the first radial bearing portion R1 is circulated through the path of the dynamic pressure groove on the lower end surface 8c of the sleeve 8 → the communication groove 27d → the circumferential groove 8d1 and the radial groove 8d2 on the upper end surface 8d of the bearing sleeve 8. Will be drawn again. Thereby, the pressure balance inside a bearing including each bearing clearance is maintained appropriately.

図9は、第4実施形態に係る流体軸受装置21’を示している。同図における流体軸受装置21’は、シール部材29をハウジング27の側部27aと一体に形成した点、およびハウジング27の底部27bを側部27aと別体とし、これを側部27aの下端内周面27c1に固定した点で第3実施形態に係る流体軸受装置1と構成を異にする。なお、第3実施形態と形状および作用を同一とする部位・部材については、同じ符号を付してかかる説明を省略する。   FIG. 9 shows a hydrodynamic bearing device 21 ′ according to the fourth embodiment. The hydrodynamic bearing device 21 ′ in the figure has a point that the seal member 29 is formed integrally with the side portion 27 a of the housing 27, and the bottom portion 27 b of the housing 27 is separated from the side portion 27 a, and this is inside the lower end of the side portion 27 a. The configuration is different from that of the hydrodynamic bearing device 1 according to the third embodiment in that it is fixed to the peripheral surface 27c1. In addition, about the site | part and member which has the same shape and effect | action as 3rd Embodiment, the same code | symbol is attached | subjected and this description is abbreviate | omitted.

この実施形態においても、ハウジング27の内周に設けられた連通溝27dを介して、潤滑油がハウジング27の内部空間を流動循環する。従って、各軸受隙間をはじめとする軸受内部の圧力バランスが適正に保たれる。   Also in this embodiment, the lubricating oil flows and circulates in the internal space of the housing 27 through the communication groove 27 d provided on the inner periphery of the housing 27. Therefore, the pressure balance inside the bearings including the bearing gaps can be maintained appropriately.

また、図示は省略するが、ハウジング27を両端開口型とすると共に、シール部材29および底部27bを別体で形成し、それぞれハウジング27の上端内周と下端内周に固定した構成についても、本発明を適用することができる。   Although not shown, the housing 27 is of a double-end open type, and the sealing member 29 and the bottom 27b are formed separately and fixed to the inner periphery of the upper end and the inner periphery of the lower end of the housing 27, respectively. The invention can be applied.

以上の実施形態(第1〜第4実施形態)では、ハウジング7(27)を例えばステンレス鋼などの比較的硬質な金属で鍛造成形した場合を例示したが、これ以外に、例えば真ちゅうなど比較的軟質な金属で鍛造成形した場合についても本発明を同様に適用することができる。   In the above embodiments (first to fourth embodiments), the case where the housing 7 (27) is forged with a relatively hard metal such as stainless steel has been exemplified. The present invention can be similarly applied to the case of forging with a soft metal.

また、以上の実施形態では、ハウジング7(27)の内周に形成される軸方向の連通溝7d(27d)を、断面三角形状としたものを例示したが、もちろんこれ以外の溝形状(溝断面形状)とすることも可能である。これは、鍛造により成形された連通溝7d(27d)の内周は塑性加工面となり、その面粗度が良好であるため、断面形状の違いにより潤滑油の流れ易さに多少の差が生じたとしても、連通溝7d(27d)内での流体のスムーズな流通を確保することができることによる。また、連通溝7d(27d)の本数についても、同様の理由で、図示のように3本に限ることなく、2本あるいは4本以上設けることも可能である。   In the above embodiment, the axial communication groove 7d (27d) formed on the inner periphery of the housing 7 (27) is exemplified as having a triangular cross section. Of course, other groove shapes (grooves) (Cross-sectional shape). This is because the inner periphery of the communication groove 7d (27d) formed by forging is a plastic working surface, and its surface roughness is good, so that there is a slight difference in the flowability of the lubricating oil due to the difference in cross-sectional shape. Even so, it is possible to ensure a smooth flow of the fluid in the communication groove 7d (27d). Further, the number of communication grooves 7d (27d) is not limited to three as shown in the figure, but may be two or four or more for the same reason.

また、以上の実施形態では、各軸受隙間に流体の動圧作用を生じるための動圧発生部(例えば動圧溝8a1、8a2)を、各軸受隙間において回転部材3と対向する部材側に設けていたが、回転部材3の側に設けることも可能である。例えば、軸受スリーブ8の内周面8aに設けられた動圧溝8a1、8a2形成領域や、下端面8cに設けられた動圧溝形成領域を、対向する軸部2(22a)の外周面2aやフランジ部10(22b)の上端面10aに設けることもできる。これによれば、軸受スリーブ8の表面を全て平滑な面とすることができるので、成形金型に、連通溝7dや、動圧溝8a1等に対応する成形部位を設けずに済み、金型のより一層の簡素化および低コスト化が可能となる。   In the above embodiment, a dynamic pressure generating portion (for example, dynamic pressure grooves 8a1 and 8a2) for generating a fluid dynamic pressure action in each bearing gap is provided on the member side facing the rotating member 3 in each bearing gap. However, it can be provided on the rotating member 3 side. For example, the dynamic pressure groove 8a1, 8a2 formation region provided on the inner peripheral surface 8a of the bearing sleeve 8 and the dynamic pressure groove formation region provided on the lower end surface 8c are arranged on the outer peripheral surface 2a of the opposed shaft portion 2 (22a). It can also be provided on the upper end surface 10a of the flange portion 10 (22b). According to this, since the entire surface of the bearing sleeve 8 can be made smooth, it is not necessary to provide a molding site corresponding to the communication groove 7d, the dynamic pressure groove 8a1, etc. in the molding die. Further simplification and cost reduction can be achieved.

また、以上の実施形態では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2を構成する動圧軸受として、例えばへリングボーン形状やスパイラル形状の動圧溝からなる動圧発生部を用いた軸受を例示しているが、動圧発生部の構成はこれに限定されるものではない。ラジアル軸受部R1、R2として、例えば多円弧軸受、ステップ軸受、テーパ軸受、テーパ・フラット軸受等を使用することもできる。   Further, in the above embodiment, as the dynamic pressure bearings constituting the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2, for example, a dynamic pressure generating portion including a herringbone shape or a spiral shape dynamic pressure groove is used. Although the bearing is illustrated, the configuration of the dynamic pressure generating unit is not limited to this. As the radial bearing portions R1 and R2, for example, multi-arc bearings, step bearings, taper bearings, taper / flat bearings, and the like can be used.

また、スラスト軸受部T1、T2の一方又は双方は、例えば図示は省略するが、スラスト軸受面となる領域に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、いわゆる波型軸受(ステップ型が波型になったもの)等で構成することもできる。   One or both of the thrust bearing portions T1 and T2, for example, are not shown in the figure, but a plurality of radial groove-shaped dynamic pressure grooves are provided at predetermined intervals in the circumferential direction in a region serving as a thrust bearing surface. It can also be constituted by a step bearing, a so-called corrugated bearing (the corrugated step mold) or the like.

また、以上の実施形態では、ラジアル軸受部R1、R2やスラスト軸受部T1、T2を動圧軸受で構成した場合を説明したが、これ以外の軸受で構成することもできる。例えば、ラジアル軸受面となる軸受スリーブ8の内周面8aを、動圧溝8a1、8a2等の動圧発生部を設けない真円内周面とし、この内周面と対向する軸部2の真円状外周面2aとで、いわゆる真円軸受を構成することができる。あるいは、スラスト軸受部T1、T2をピボット軸受で構成することもできる。もちろん、以上のスラスト軸受部T1、T2に係る構成は、スラスト軸受部T11、T12についても同様に適用することができる。   Moreover, although the radial bearing part R1 and R2 and the thrust bearing part T1 and T2 were comprised by the dynamic pressure bearing in the above embodiment, it can also comprise by bearings other than this. For example, the inner peripheral surface 8a of the bearing sleeve 8 serving as a radial bearing surface is a perfect circular inner peripheral surface not provided with dynamic pressure generating portions such as the dynamic pressure grooves 8a1 and 8a2, and the shaft portion 2 facing the inner peripheral surface is formed. A so-called perfect circle bearing can be constituted by the perfect circular outer peripheral surface 2a. Alternatively, the thrust bearing portions T1 and T2 can be constituted by pivot bearings. Of course, the structure concerning the above thrust bearing portions T1 and T2 can be similarly applied to the thrust bearing portions T11 and T12.

また、以上の実施形態では、流体軸受装置1(21)の内部に充満し、軸受スリーブ8と軸部2との間のラジアル軸受隙間や、軸受スリーブ8と軸部2との間、あるいはハウジング7と回転部材3(ハブ部9)との間のスラスト軸受隙間に潤滑膜を形成する流体として、潤滑油を例示したが、それ以外にも各軸受隙間に潤滑膜を形成可能な流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤あるいは潤滑グリース等を使用することもできる。   In the above embodiment, the fluid bearing device 1 (21) is filled, and the radial bearing gap between the bearing sleeve 8 and the shaft portion 2, the bearing sleeve 8 and the shaft portion 2, or the housing is filled. As the fluid that forms the lubricating film in the thrust bearing gap between the rotary member 3 and the rotating member 3 (hub portion 9), the lubricating oil is exemplified, but other fluids that can form the lubricating film in the bearing gaps other than that, for example, It is also possible to use a fluid lubricant such as a gas such as air or a fluid such as a magnetic fluid, or lubricating grease.

本発明の第1実施形態に係る流体軸受装置を組込んだ情報機器用スピンドルモータの断面図である。It is sectional drawing of the spindle motor for information devices incorporating the hydrodynamic bearing apparatus which concerns on 1st Embodiment of this invention. 流体軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus. 軸受スリーブの縦断面図である。It is a longitudinal cross-sectional view of a bearing sleeve. ハウジングの上側端面を示す図である。It is a figure which shows the upper end surface of a housing. ハウジングの製造工程の一例を示す概略図である。It is the schematic which shows an example of the manufacturing process of a housing. 鍛造用金型のA−A断面図である。It is AA sectional drawing of the metal mold | die for forging. 本発明の第2実施形態に係る流体軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る流体軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る流体軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus which concerns on 4th Embodiment of this invention.

符号の説明Explanation of symbols

1、1’ 流体軸受装置
2 軸部
3 回転部材
4 ステータコイル
5 ロータマグネット
6 モータブラケット
7 ハウジング
7’ ハウジング素材
7a スラスト軸受面
7a1 動圧溝
7c 固定面
7d 連通溝
8 軸受スリーブ
8a1 動圧溝
8d1 周方向溝
8d2 径方向溝
9 ハブ部
10 フランジ部
18a1 面成形部
18a2 溝成形部
21、21’ 流体軸受装置
22 回転部材
22b フランジ部
27 ハウジング
27a 側部
27b 底部
27d 軸方向溝
29 シール部材
S、S’ シール空間
R1、R2 ラジアル軸受部
T1、T2、T11、T12 スラスト軸受部
DESCRIPTION OF SYMBOLS 1, 1 'Fluid bearing apparatus 2 Shaft part 3 Rotating member 4 Stator coil 5 Rotor magnet 6 Motor bracket 7 Housing 7' Housing material 7a Thrust bearing surface 7a1 Dynamic pressure groove 7c Fixed surface 7d Communication groove 8 Bearing sleeve 8a1 Dynamic pressure groove 8d1 Circumferential groove 8d2 Radial groove 9 Hub portion 10 Flange portion 18a1 Surface forming portion 18a2 Groove forming portion 21, 21 ′ Fluid bearing device 22 Rotating member 22b Flange portion 27 Housing 27a Side portion 27b Bottom portion 27d Axial groove 29 Seal member S, S 'seal space R1, R2 radial bearing part T1, T2, T11, T12 thrust bearing part

Claims (5)

焼結金属で形成された軸受スリーブと、筒状をなし、内周に軸受スリーブの外周面を固定する固定面が形成されたハウジングと、軸受スリーブの内周に挿入される軸部を有し、軸受スリーブおよびハウジングに対して回転する回転部材と、軸部の外周面と軸受スリーブの内周面との間のラジアル軸受隙間に生じる流体の潤滑膜で回転部材をラジアル方向に非接触支持するラジアル軸受部とを備えた流体軸受装置において、
軸受スリーブの外周面は、連通溝を有しない平滑な円筒面で、かつその全面がサイジングで成形された面であり、
ハウジングは軸方向一端を開口した形状をなし、
ハウジングの内周に、軸受スリーブの両端面間を連通し、前記流体が流通可能な軸方向の連通溝が形成され、この連通溝のハウジング開口側の軸方向端部が、軸方向に向けて開口しており、固定面および連通溝が、共に鍛造成形により塑性加工された面で構成されていることを特徴とする流体軸受装置。
It has a bearing sleeve made of sintered metal, a housing having a cylindrical shape and a fixed surface for fixing the outer peripheral surface of the bearing sleeve on the inner periphery, and a shaft portion inserted into the inner periphery of the bearing sleeve. The rotating member that rotates relative to the bearing sleeve and the housing, and the lubricating film of fluid generated in the radial bearing gap between the outer peripheral surface of the shaft portion and the inner peripheral surface of the bearing sleeve support the rotating member in the radial direction in a non-contact manner. In a hydrodynamic bearing device including a radial bearing portion,
The outer peripheral surface of the bearing sleeve is a smooth cylindrical surface having no communication groove, and the entire surface is formed by sizing,
The housing has a shape with one axial end open,
An axial communication groove is formed in the inner periphery of the housing so as to communicate between both end faces of the bearing sleeve and allow the fluid to flow therethrough, and an axial end portion of the communication groove on the housing opening side faces in the axial direction. A hydrodynamic bearing device, characterized in that it is open and the fixed surface and the communication groove are both plastically processed by forging.
前記ハウジングが、前記連通溝の前記軸方向端部よりもハウジング開口側に、前記連通溝の前記軸方向端部を閉鎖する部分を有しない請求項1に記載の流体軸受装置。2. The hydrodynamic bearing device according to claim 1, wherein the housing does not have a portion that closes the axial end of the communication groove closer to the housing opening side than the axial end of the communication groove. 前記連通溝は断面三角形状をなす請求項1に記載の流体軸受装置。The hydrodynamic bearing device according to claim 1, wherein the communication groove has a triangular cross section. ハウジングの一端開口側に設けられ、大気側に開放されるシール空間をさらに備え、連通溝を介して、ハウジングの他端内部とシール空間との間で流体の流通を行う請求項1記載の流体軸受装置。   The fluid according to claim 1, further comprising a seal space provided on one end opening side of the housing and opened to the atmosphere side, wherein fluid is circulated between the inside of the other end of the housing and the seal space via the communication groove. Bearing device. 請求項1〜4の何れかに記載の流体軸受装置を有するディスク装置のスピンドルモータ。 A spindle motor of a disk device having the hydrodynamic bearing device according to any one of claims 1 to 4 .
JP2005034225A 2005-02-10 2005-02-10 Hydrodynamic bearing device Expired - Fee Related JP4738831B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005034225A JP4738831B2 (en) 2005-02-10 2005-02-10 Hydrodynamic bearing device
CN2006800041560A CN101128679B (en) 2005-02-10 2006-01-11 Fluid bearing device and method of manufacturing the same
US11/816,058 US8746978B2 (en) 2005-02-10 2006-01-11 Fluid bearing apparatus
PCT/JP2006/300235 WO2006085426A1 (en) 2005-02-10 2006-01-11 Housing for fluid bearing device, housing for dynamic pressure bearing device, and method of manufacturing the same
US13/210,969 US8499456B2 (en) 2005-02-10 2011-08-16 Method for producing a housing for a fluid bearing apparatus
US13/927,818 US8756816B2 (en) 2005-02-10 2013-06-26 Method for producing a housing for a fluid bearing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005034225A JP4738831B2 (en) 2005-02-10 2005-02-10 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2006220216A JP2006220216A (en) 2006-08-24
JP4738831B2 true JP4738831B2 (en) 2011-08-03

Family

ID=36982676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034225A Expired - Fee Related JP4738831B2 (en) 2005-02-10 2005-02-10 Hydrodynamic bearing device

Country Status (2)

Country Link
JP (1) JP4738831B2 (en)
CN (1) CN101128679B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5729789B2 (en) * 2014-01-07 2015-06-03 サムスン電機ジャパンアドバンスドテクノロジー株式会社 Fluid dynamic bearing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316929A (en) * 2001-11-13 2004-11-11 Ntn Corp Fluid bearing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316929A (en) * 2001-11-13 2004-11-11 Ntn Corp Fluid bearing device

Also Published As

Publication number Publication date
CN101128679A (en) 2008-02-20
CN101128679B (en) 2012-02-29
JP2006220216A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
US8756816B2 (en) Method for producing a housing for a fluid bearing apparatus
JP2007263228A (en) Dynamic pressure bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP4738831B2 (en) Hydrodynamic bearing device
JP2011047005A (en) Method of manufacturing bearing sleeve and fluid dynamic bearing device
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
US7789565B2 (en) Fluid dynamic bearing apparatus
JP4420339B2 (en) Manufacturing method of hydrodynamic bearing
JP5172576B2 (en) Fluid dynamic bearing device and manufacturing method thereof
JP2006329391A (en) Dynamic pressure bearing arrangement
JP5901979B2 (en) Method for manufacturing fluid dynamic bearing device
JP4642416B2 (en) Manufacturing method of shaft member for hydrodynamic bearing device
JP2008111520A (en) Dynamic pressure bearing device
JP2005265180A (en) Dynamic pressure bearing device
JP4498932B2 (en) Hydrodynamic bearing device
JP5064083B2 (en) Method for manufacturing hydrodynamic bearing device
WO2013038913A1 (en) Fluid dynamic bearing device and motor equipped with same
JP2016180496A (en) Bearing member and manufacturing method thereof
JP5274902B2 (en) Hydrodynamic bearing device
JP2000192945A (en) Bearing device and its manufacture
JP2006105331A (en) Bearing sleeve and its manufacturing method
JP2001173645A (en) Dynamic pressure bearing unit
JP2007100803A (en) Method for manufacturing oil impregnated sintered bearing, and sizing pin to be used for the method
JP2007285414A (en) Dynamic pressure bearing device
JP2006177563A (en) Dynamic pressure type bearing unit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110310

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

R150 Certificate of patent or registration of utility model

Ref document number: 4738831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees