JP4420339B2 - Manufacturing method of hydrodynamic bearing - Google Patents

Manufacturing method of hydrodynamic bearing Download PDF

Info

Publication number
JP4420339B2
JP4420339B2 JP2004312347A JP2004312347A JP4420339B2 JP 4420339 B2 JP4420339 B2 JP 4420339B2 JP 2004312347 A JP2004312347 A JP 2004312347A JP 2004312347 A JP2004312347 A JP 2004312347A JP 4420339 B2 JP4420339 B2 JP 4420339B2
Authority
JP
Japan
Prior art keywords
dynamic pressure
bearing
sintered
thrust
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004312347A
Other languages
Japanese (ja)
Other versions
JP2006125461A (en
Inventor
秀和 徳島
隆志 松村
近藤  誠
勝敏 新居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2004312347A priority Critical patent/JP4420339B2/en
Priority to CNB200510118510XA priority patent/CN100404893C/en
Publication of JP2006125461A publication Critical patent/JP2006125461A/en
Application granted granted Critical
Publication of JP4420339B2 publication Critical patent/JP4420339B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、潤滑油等の潤滑用流体に動圧を発生させて高い軸受剛性を得ることのできる動圧軸受の製造方法に係り、特に、焼結軸受であって、高い寸法精度を有し、かつ、スラスト動圧凹所とラジアル動圧凹所の双方を、所望の形状通りに高い精度で形成するための製造方法に関する。本発明で得られる動圧軸受は、記録ディスク駆動装置等に備えられるスピンドルモータの軸受として好適である。   The present invention relates to a method for manufacturing a dynamic pressure bearing capable of obtaining high bearing rigidity by generating dynamic pressure in a lubricating fluid such as lubricating oil, and more particularly, a sintered bearing having high dimensional accuracy. In addition, the present invention relates to a manufacturing method for forming both the thrust dynamic pressure recess and the radial dynamic pressure recess according to a desired shape with high accuracy. The dynamic pressure bearing obtained by the present invention is suitable as a bearing for a spindle motor provided in a recording disk drive device or the like.

上記スピンドルモータは、磁気ディスクあるいはCD−ROM、DVD−ROM等の光ディスクを駆動してこれらディスクに情報の読み書きを行うディスク駆動装置や、レーザビームプリンタ等の各種情報機器に、駆動源として広く用いられている。この種のスピンドルモータの軸受としてはボールベアリングが多用されていたが、回転精度、高速性、静音性といった面で限界があり、これらの特性に優れた軸受として、非接触タイプの動圧軸受が用いられるようになってきた。   The spindle motor is widely used as a drive source in various information devices such as a disk drive device and a laser beam printer for driving a magnetic disk or an optical disk such as a CD-ROM or DVD-ROM and reading / writing information on these disks. It has been. Ball bearings are often used as bearings for this type of spindle motor, but there are limitations in terms of rotational accuracy, high speed, and quietness. Non-contact type hydrodynamic bearings are superior in these characteristics. It has come to be used.

動圧軸受とは、軸と軸受との間の微小隙間に潤滑油による油膜を形成し、その油膜を、軸が回転することにより高圧化させて軸を高い剛性をもって支持する軸受であり、その動圧は、軸または軸受のいずれか一方に形成される主に溝からなる凹所によって効果的に発生する。スピンドルモータ用の軸受は、スラストおよびラジアル双方の荷重を受ける構造となっており、動圧発生用の上記凹所を軸受に形成する場合には、スラスト荷重を受ける軸受の端面(スラスト面)と、ラジアル荷重を受ける軸受の内周面(ラジアル面)とに、それぞれ形成される。そして、このような動圧軸受としては、潤滑油を含有して自己補給することができるとともに、動圧発生用の上記凹所を形成し易く、しかも、量産性に優れることなどの理由から、焼結軸受が好ましく用いられる。   A hydrodynamic bearing is a bearing that supports a shaft with high rigidity by forming an oil film with lubricating oil in a minute gap between the shaft and increasing the pressure of the oil film by rotating the shaft. The dynamic pressure is effectively generated by a recess formed mainly in a groove formed in either the shaft or the bearing. Bearings for spindle motors are structured to receive both thrust and radial loads. When the above-mentioned recess for generating dynamic pressure is formed in the bearing, the bearing end surface (thrust surface) that receives the thrust load And formed on the inner peripheral surface (radial surface) of the bearing that receives a radial load. And as such a dynamic pressure bearing, it can be self-replenished containing lubricating oil, and it is easy to form the recess for generating dynamic pressure, and because it is excellent in mass productivity, etc. Sintered bearings are preferably used.

焼結軸受は、金属粉末を圧縮成形した圧粉体を加熱して得られるものであるため、気孔が分散したポーラス体であり、気孔に潤滑油を充填した含油状態で使用される。潤滑油は、焼結軸受からしみ出して、上記のように軸との間の微小隙間に油膜を形成し、動圧凹所内に流入する潤滑油が、軸の回転に応じて高圧化し、高い軸受剛性をもって軸を支持するようになされている。このような動圧凹所は、焼結軸受素材に対する塑性加工によって形成されている。   Since the sintered bearing is obtained by heating a green compact obtained by compression-molding metal powder, the sintered bearing is a porous body having pores dispersed therein, and is used in an oil-impregnated state in which pores are filled with lubricating oil. The lubricating oil oozes out from the sintered bearing, forms an oil film in the minute gap between the shaft as described above, and the lubricating oil flowing into the dynamic pressure recess increases in pressure according to the rotation of the shaft and is high. The shaft is supported with bearing rigidity. Such a dynamic pressure recess is formed by plastic working on a sintered bearing material.

ところで、スピンドルモータの軸受にあっては、ラジアル面よりもスラスト面側の動圧を大きく設定する場合がある。スラスト面の動圧を大きくするには、その面の気孔を潰して緻密化させ、潤滑油の漏出、すなわち動圧のリークを防止して油圧が確保されようにすればよく、この構造は、摩擦抵抗の低減や耐久性の向上にも寄与するので好ましい。スラスト面の封孔処理手段としては、超音波加工を施してスラスト面を封孔処理することが、特許文献1,2等により知られており、この方法では、短時間で効果的に封孔処理を施すことが可能であるとされている。 Incidentally, in the bearing of the spindle motor, there is a case to set a large dynamic pressure of the thrust surface than La dialkyl surface. In order to increase the dynamic pressure on the thrust surface, the pores on that surface should be crushed and densified to prevent leakage of lubricating oil, that is, to prevent hydraulic pressure leakage and ensure hydraulic pressure. This is preferable because it contributes to reduction of frictional resistance and improvement of durability. As the sealing treatment means for the thrust surface, it is known from Patent Documents 1 and 2 that the ultrasonic treatment is performed to seal the thrust surface. In this method, the sealing is effectively performed in a short time. It is said that it can be processed.

特開平8−33260号公報JP-A-8-33260 特開平11−51055号公報JP-A-11-51055

上記の超音波加工は、例えば、一端面がスラスト面とされる焼結軸受の場合、その反対側の端面を硬質な台に当てて載せ、上方から一端面に超音波振動体を押し当てながら超音波振動を与えるといった方法が採られる。ところがこの方法では、軸方向に応力を受けることから、焼結軸受素材の内周面の両端部が内側に僅かではあるがせり出してしまう変形が生じ、このため、寸法精度の高い動圧軸受を得にくいといった不具合が起こる。このような不具合は、焼結軸受素材の密度を上げて硬さを高く設定することで解消できると考えられるが、その場合には、ラジアル面へのラジアル動圧凹所の形成を塑性加工により形成し難くなるといった新たな問題が生じる。   For example, in the case of a sintered bearing in which one end surface is a thrust surface, the above ultrasonic processing is performed by placing the opposite end surface on a hard base and pressing the ultrasonic vibrator on one end surface from above. A method of applying ultrasonic vibration is employed. However, in this method, since the stress is applied in the axial direction, both end portions of the inner peripheral surface of the sintered bearing material are slightly deformed to the inside, and therefore, a hydrodynamic bearing with high dimensional accuracy is produced. The trouble that it is difficult to get occurs. It is considered that such a problem can be solved by increasing the density of the sintered bearing material and setting the hardness high, but in that case, the formation of the radial dynamic pressure recess on the radial surface is made by plastic working. A new problem arises that it is difficult to form.

焼結軸受素材の密度は、6.5Mg/m程度が一般的であり、この密度では、上記のように、ラジアル動圧凹所は形成し易い反面、スラスト動圧凹所は硬さが不足気味なためシャープに形成し難い傾向にあり、また、超音波加工後にスラスト動圧凹所を形成するには、超音波加工によって軸孔両端部の径が僅かに収縮する変形が起こる。そして、密度を高くし過ぎると、超音波加工による影響は少なくなって変形は抑えられるが、逆にラジアル動圧凹所は硬いことにより形成し難いわけである。 The density of the sintered bearing material is generally about 6.5 Mg / m 3. At this density, the radial dynamic pressure recess is easy to form as described above, but the thrust dynamic pressure recess is hard. In short, it tends to be difficult to form sharply, and in order to form a thrust dynamic pressure recess after ultrasonic processing, the ultrasonic processing causes a deformation in which the diameters of both ends of the shaft hole are slightly contracted. If the density is increased too much, the influence of ultrasonic machining is reduced and deformation is suppressed, but conversely, the radial dynamic pressure recess is hard to form.

よって本発明は、スラスト面の超音波加工による焼結軸受素材の変形が抑えられるとともに、スラスト側およびラジアル側の双方の動圧凹所を所望の形状通りに形成することができる動圧軸受の製造方法を提供することを目的としている。   Therefore, the present invention provides a hydrodynamic bearing that can suppress deformation of a sintered bearing material due to ultrasonic machining of a thrust surface and can form both thrust and radial dynamic pressure recesses in a desired shape. The object is to provide a manufacturing method.

本発明は、密度を6.6〜7.4Mg/mに調整した円筒状の焼結軸受素材に対して、スラスト動圧凹所を形成する端面に、超音波加工を施して該端面を前記密度よりも緻密化させる工程と、この端面にスラスト動圧凹所を形成する工程と、凸条を形成したピンを用いてピン通しする、または凸条を形成したコアを用いて再圧して転写することにより、焼結軸受素材の軸孔内周面に、ラジアル動圧凹所を形成する工程を、この順で行うことを特徴としている。 In the present invention, a cylindrical sintered bearing material whose density is adjusted to 6.6 to 7.4 Mg / m 3 is subjected to ultrasonic processing on an end surface forming a thrust dynamic pressure recess, and the end surface is formed. a step of Ru densified than the density, forming a thrust dynamic pressure recess on the end face, to the pin through with a pin to form a ridge, or re-pressed with a core forming a ridge by transferring Te, the shaft hole inner peripheral surface of the sintered bearing material, a step of forming a radial dynamic pressure recess, is characterized by performing in that order.

本発明で用いる焼結軸受素材は、密度が通常よりも高い6.6〜7.4Mg/mに調整されているため、通常のものよりも硬さや剛性が高められている。このため、スラスト動圧を発生させる端面(スラスト面)に、軸方向に応力を負荷しながら超音波加工を施しても、両端の内周面が内側にせり出す変形を抑えることができ、その結果、寸法精度の高い動圧軸受を得ることができる。超音波加工によってスラスト面は封孔処理が施されることにより、大きなスラスト荷重を受けるスピンドルモータ用の動圧軸受として好適となり、また、緻密化されたスラスト面に形成されるスラスト動圧凹所は、シャープに形成されて所望通りの形状を得ることができる。 Since the sintered bearing material used in the present invention has a density adjusted to 6.6 to 7.4 Mg / m 3 which is higher than usual, the hardness and rigidity are higher than usual. For this reason, even if ultrasonic processing is applied to the end surface (thrust surface) that generates thrust dynamic pressure while applying stress in the axial direction, it is possible to suppress the deformation of the inner peripheral surfaces of both ends projecting inward. A hydrodynamic bearing with high dimensional accuracy can be obtained. The thrust surface is sealed by ultrasonic processing, making it suitable as a dynamic pressure bearing for a spindle motor that receives a large thrust load, and a thrust dynamic pressure recess formed on a dense thrust surface Can be formed sharply to obtain a desired shape.

上記スラスト動圧凹所を形成した後に、焼結軸受素材の内周面にラジアル動圧凹所を形成するが、本発明では、焼結軸受素材の密度は通常よりも高く調整されてはいるものの、塑性加工が困難であるレベルまで高過ぎるものではない。このため、ラジアル動圧凹所を、凸条を形成したピンを用いてピン通しする、または凸条を形成したコアを用いて再圧して転写する等の手段で、所望通りの形状に形成することができる。また、このような手段でラジアル動圧凹所を形成するとラジアル動圧部の気孔率を低いものとすることができるので、油圧が確保されやすく、高いラジアル動圧を得やすい。   After forming the thrust dynamic pressure recess, a radial dynamic pressure recess is formed on the inner peripheral surface of the sintered bearing material. In the present invention, the density of the sintered bearing material is adjusted to be higher than usual. However, it is not too high to the level where plastic working is difficult. For this reason, the radial dynamic pressure recess is formed into a desired shape by means such as passing through a pin using a pin having a ridge or re-pressing and transferring using a core having a ridge. be able to. Further, when the radial dynamic pressure recess is formed by such means, the porosity of the radial dynamic pressure portion can be made low, so that the hydraulic pressure is easily secured and a high radial dynamic pressure is easily obtained.

本発明のスラスト動圧凹所は、スラスト動圧が効果的に得られる形状が望ましく、例えば、端面の一周方向に向かうにしたがってその内周側に湾曲しながら延びる複数のスパイラル溝、または、V字状で頂点に収束する方向が前記端面の一周方向に沿って配列された複数のヘリングボーン溝が挙げられる。   The thrust dynamic pressure recess of the present invention preferably has a shape capable of effectively obtaining the thrust dynamic pressure, for example, a plurality of spiral grooves extending while curving toward the inner circumferential side as it goes in the circumferential direction of the end surface, or V A plurality of herringbone grooves in which the direction of convergence to the apex in a letter shape is arranged along the circumferential direction of the end face can be mentioned.

また、本発明のラジアル動圧凹所は、ラジアル動圧が効果的に得られる形状が望ましく、例えば、焼結軸受素材の外径と非同心で、かつ、焼結軸受素材の一周方向に向かうにしたがって内周側に縮径していく複数の円弧面が挙げられる。   In addition, the radial dynamic pressure recess of the present invention preferably has a shape that can effectively obtain the radial dynamic pressure. For example, the radial dynamic pressure recess is non-concentric with the outer diameter of the sintered bearing material and goes around the circumference of the sintered bearing material. A plurality of circular arc surfaces that are reduced in diameter toward the inner peripheral side according to the above.

本発明の焼結軸受素材は、上記各動圧凹所を加工し易く、また、加工精度と強度の両立が図られることから、鉄:40〜60wt%、銅:40〜60wt%、錫:1〜5wt%を含有するものが好適な成分とされる。   Since the sintered bearing material of the present invention is easy to process each of the above-mentioned dynamic pressure recesses and can achieve both processing accuracy and strength, iron: 40-60 wt%, copper: 40-60 wt%, tin: What contains 1-5 wt% is considered as a suitable component.

本発明の動圧軸受によれば、スラストおよびラジアルの動圧凹所を形成する焼結軸受素材の密度を6.6〜7.4Mg/mに規定し、スラスト面を超音波加工して緻密化させてからスラスト動圧凹所を形成し、この後、焼結軸受素材の内周面にラジアル動圧凹所を形成するため、スラスト面の超音波加工による焼結軸受素材の変形が抑えられて高い寸法精度を得ることができるとともに、スラスト側およびラジアル側の双方の動圧凹所を所望の形状通りに形成することができるといった効果を奏する。 According to the dynamic pressure bearing of the present invention, the density of the sintered bearing material forming the thrust and radial dynamic pressure recesses is defined as 6.6 to 7.4 Mg / m 3 , and the thrust surface is subjected to ultrasonic machining. After the densification, a thrust dynamic pressure recess is formed, and then a radial dynamic pressure recess is formed on the inner peripheral surface of the sintered bearing material. In addition to being suppressed, it is possible to obtain a high dimensional accuracy, and it is possible to form both the thrust-side and radial-side dynamic pressure recesses in a desired shape.

以下、図面を参照して本発明の一実施形態を説明する。
図1は、一実施形態の製造方法によって製造された円筒状の動圧軸受1を示しており、図2はその上面図、図3は図1のIII−III線矢視断面図である。これら図1および図3における符号2は、動圧軸受1によって回転自在に支持される軸である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a cylindrical dynamic pressure bearing 1 manufactured by the manufacturing method of one embodiment, FIG. 2 is a top view thereof, and FIG. 3 is a cross-sectional view taken along line III-III in FIG. 1 and 3 denotes a shaft that is rotatably supported by the hydrodynamic bearing 1.

動圧軸受1の一端面(図1で上端面)11には、図2に示すように、軸2の回転方向Rに向かうにしたがって内周側に湾曲しながら延びる複数(この場合12本)のスパイラル溝12が、周方向に等間隔をおいて形成されている。これらスパイラル溝12の外周側の端部は外周面に開口しているが、内周側の端部は軸孔13の内周面14に開口しておらず閉塞している。動圧軸受1の上端面11は、軸2からスラスト荷重を受けるスラスト面であり、スパイラル溝12は、スラスト動圧発生用のスラスト動圧凹所である。   As shown in FIG. 2, a plurality of (in this case, twelve) extending on one end surface (upper end surface in FIG. 1) of the hydrodynamic bearing 1 while curving inward toward the rotation direction R of the shaft 2. Spiral grooves 12 are formed at equal intervals in the circumferential direction. The end portions on the outer peripheral side of these spiral grooves 12 are open on the outer peripheral surface, but the end portions on the inner peripheral side are not opened on the inner peripheral surface 14 of the shaft hole 13 and are closed. The upper end surface 11 of the hydrodynamic bearing 1 is a thrust surface that receives a thrust load from the shaft 2, and the spiral groove 12 is a thrust dynamic pressure recess for generating a thrust dynamic pressure.

一方、動圧軸受1の内周面14には、図3に示すように、断面が半円弧状で、両端面間にわたり軸方向に沿って真っ直ぐに延びる複数(この場合5つ)の分離溝15が、周方向に等間隔をおいて形成されている。そして、内周面14の各分離溝15の間には、動圧軸受1の外径の軸心Pに対して偏心し、軸2の回転方向Rに向かうにしたがって内周側に縮径していく形状の円弧面16が形成されている。動圧軸受1の内周面14は、軸2からラジアル荷重を受けるラジアル面であり、円弧面16は、ラジアル動圧発生用のラジアル動圧凹所である。   On the other hand, on the inner peripheral surface 14 of the hydrodynamic bearing 1, as shown in FIG. 3, a plurality of (in this case, five) separation grooves having a semicircular cross section and extending straight along the axial direction between both end surfaces. 15 are formed at equal intervals in the circumferential direction. And between each separation groove 15 of the inner peripheral surface 14, it is decentered with respect to the shaft center P of the outer diameter of the hydrodynamic bearing 1, and the diameter is reduced to the inner periphery side in the rotational direction R of the shaft 2. A circular arc surface 16 is formed. The inner peripheral surface 14 of the hydrodynamic bearing 1 is a radial surface that receives a radial load from the shaft 2, and the circular arc surface 16 is a radial dynamic pressure recess for generating radial dynamic pressure.

上記各円弧面16は動圧軸受1の外径と非同心であり、各円弧面16の中心は、軸心Pの周囲に、この軸心Pと同心的で周方向に等間隔をおいて存在する。このような円弧面16の形状により、円弧面16と軸2の外周面との間の微小隙間は、軸2の回転方向に向かうにしたがってしだいに狭小となる断面クサビ状に形成される。   Each arc surface 16 is non-concentric with the outer diameter of the hydrodynamic bearing 1, and the center of each arc surface 16 is concentric with the axis P and equidistantly spaced in the circumferential direction around the axis P. Exists. Due to the shape of the circular arc surface 16, a minute gap between the circular arc surface 16 and the outer peripheral surface of the shaft 2 is formed in a cross-sectional wedge shape that gradually narrows toward the rotation direction of the shaft 2.

動圧軸受1は、原料粉末を圧縮成形した成形体を焼結した焼結軸受であり、以下にその製造方法を説明する。   The hydrodynamic bearing 1 is a sintered bearing obtained by sintering a molded body obtained by compression-molding raw material powder, and the manufacturing method thereof will be described below.

(1)原料粉末の成形〜焼結
例えば、適宜な組成の鉄−銅系の合金粉末か、もしくは鉄粉と銅粉を適宜な組成で混合した混合粉末を、粉末成形用の金型内に充填して圧縮成形し、製造する動圧軸受1に近似した形状の圧粉体を得る。なお、用いる原料粉末としては、鉄:40〜60wt%、銅:40〜60wt%、錫:1〜5wt%といった組成のように、鉄粉と銅粉がほぼ同量であって、他に数wt%の錫粉を含有するものが、次の理由で好ましく用いられる。
(1) Molding to sintering of raw material powder For example, an iron-copper alloy powder having an appropriate composition or a mixed powder obtained by mixing iron powder and copper powder with an appropriate composition is placed in a powder molding die. Filled and compression molded to obtain a green compact having a shape similar to that of the hydrodynamic bearing 1 to be manufactured. In addition, as raw material powder to be used, iron powder and copper powder are almost the same amount, such as a composition of iron: 40 to 60 wt%, copper: 40 to 60 wt%, tin: 1 to 5 wt%, and there are several others. Those containing wt% tin powder are preferably used for the following reasons.

すなわち、加工性の良好な銅を主成分とする焼結材の特性に加えて、鉄量を多く含有することにより強度が向上し、さらに、錫を含有することにより、軸2に対するなじみ性と塑性加工性がより向上する。このため、塑性加工によって分離溝15、円弧面16およびスパイラル溝12を形成することが容易となり、しかも、摩擦係数が低減して耐摩耗性が向上する。   That is, in addition to the properties of a sintered material whose main component is copper, which has good workability, the strength is improved by containing a large amount of iron, and the compatibility with the shaft 2 is improved by containing tin. Plastic workability is further improved. For this reason, it becomes easy to form the separation groove 15, the circular arc surface 16 and the spiral groove 12 by plastic working, and the friction coefficient is reduced to improve the wear resistance.

次に、圧粉体を、原料粉末に応じた温度および時間で加熱して焼結し、円筒状の焼結軸受素材を得る。焼結軸受素材は、本実施形態では密度を6.6〜7.4Mg/mに調整し、そのために、原料粉末の圧縮成形時の圧力および焼結時の温度等を制御する。 Next, the green compact is heated and sintered at a temperature and time according to the raw material powder to obtain a cylindrical sintered bearing material. In the present embodiment, the sintered bearing material is adjusted to a density of 6.6 to 7.4 Mg / m 3 , and for that purpose, the pressure during compression molding of the raw material powder, the temperature during sintering, and the like are controlled.

(2)焼結軸受素材の加工
a.上端面(スラスト面)の超音波加工
図4に示す超音波加工装置4を用いて、焼結軸受素材1Aのスラスト面である上記上端面11に超音波加工を施し、その面を封孔処理する。超音波加工装置4は、基台となる超鋼製のダイス41、図示せぬ昇降装置によって昇降自在に支持された超音波を発する振動子42、円錐状で、軸方向が鉛直方向に一致し、かつ、大径側が上側に配され、その大径側の端面が振動子42に取り付けられたホーン43と、ホーン43の下端面に固定された円盤状の工具44とから構成されている。
(2) Processing of sintered bearing material a. Ultrasonic processing of the upper end surface (thrust surface) Using the ultrasonic processing apparatus 4 shown in FIG. 4, the upper end surface 11 which is the thrust surface of the sintered bearing material 1A is subjected to ultrasonic processing, and the surface is sealed. To do. The ultrasonic processing device 4 is a super steel die 41 as a base, a vibrator 42 that emits ultrasonic waves supported by a lifting device (not shown), and a conical shape. The axial direction coincides with the vertical direction. In addition, the large-diameter side is arranged on the upper side, and the end surface on the large-diameter side is composed of a horn 43 attached to the vibrator 42 and a disk-shaped tool 44 fixed to the lower end surface of the horn 43.

この装置4を用い、まず、工具44の直下に当たるダイス41の表面に、軸方向を上下方向とした焼結軸受素材1Aを載置する。次いで、振動子42を下降させて、工具44を焼結軸受素材1Aの上端面11に当接させ、さらに押圧する状態とし、続いて、振動子42を稼働させる。すると、ホーン43が軸方向に高周波振動する超音波を発し、この超音波が、工具44から焼結軸受素材1Aに伝わる。これにより工具44が当接する焼結軸受素材1Aの上端面11に繰り返し衝撃が与えられ、その上端面11は、高速かつ短振幅の繰り返しの振動で小刻みな加工が加えられ、肉の塑性流動が生じ、表面に露出する気孔が封孔される。   Using this apparatus 4, first, the sintered bearing material 1 </ b> A having the axial direction as the vertical direction is placed on the surface of the die 41 that is directly below the tool 44. Next, the vibrator 42 is lowered, the tool 44 is brought into contact with the upper end surface 11 of the sintered bearing material 1A, further pressed, and then the vibrator 42 is operated. Then, the horn 43 emits an ultrasonic wave that vibrates at a high frequency in the axial direction, and this ultrasonic wave is transmitted from the tool 44 to the sintered bearing material 1A. As a result, impact is repeatedly applied to the upper end surface 11 of the sintered bearing material 1A with which the tool 44 abuts, and the upper end surface 11 is subjected to minute machining with repeated high-speed and short-amplitude vibrations, and the plastic flow of the meat is caused. The resulting pores exposed on the surface are sealed.

この超音波加工において、焼結軸受素材1Aを工具44で押圧する押圧力、高周波振動の出力および周波数は、適切な封孔処理がなされる範囲で適宜に選択される。例えば、押圧力は70〜700kPa、高周波振動の出力および周波数は、それぞれ50〜2000W、10〜50kHzで行われ、これらの条件により、1〜5秒程度の処理時間で封孔は十分になされ、鏡面仕上げが施された状態にすることも可能である。   In this ultrasonic processing, the pressing force for pressing the sintered bearing material 1A with the tool 44, the output of the high frequency vibration, and the frequency are appropriately selected within a range where an appropriate sealing process is performed. For example, the pressing force is 70 to 700 kPa, the output and frequency of the high-frequency vibration are 50 to 2000 W and 10 to 50 kHz, respectively. Under these conditions, the sealing is sufficiently performed in a processing time of about 1 to 5 seconds, It is also possible to have a mirror finish.

b.上端面(スラスト面)へのスパイラル溝の形成
図5に示すように、ダイス51、上下のパンチ52,53およびコアロッド54を備えたサイジングまたはコイニング用の再圧金型5に、上記aの工程を経た焼結軸受素材1Aを図示するようにセットし、上下のパンチ52,53で焼結軸受素材1Aを軸方向に再圧し、その再圧と同時に、封孔処理した上端面11に、スパイラル溝12を形成する。この場合、上パンチ52のパンチ面に、スパイラル溝12を形成し得る複数の凸部52aが形成されており、この雄型のパンチ面を焼結軸受素材1Aの上端面11に打撃して凸部52aを刻印することにより、スパイラル溝12が形成される。
b. Formation of Spiral Groove on Upper End Surface (Thrust Surface) As shown in FIG. 5, the above-described step a is applied to a sizing or coining repressing die 5 having a die 51, upper and lower punches 52, 53 and a core rod 54. The sintered bearing material 1A after passing through is set as shown in the figure, and the sintered bearing material 1A is re-pressed in the axial direction by the upper and lower punches 52 and 53. A groove 12 is formed. In this case, a plurality of convex portions 52a capable of forming the spiral groove 12 are formed on the punch surface of the upper punch 52, and this male punch surface is struck on the upper end surface 11 of the sintered bearing material 1A. The spiral groove 12 is formed by marking the portion 52a.

c.内周面(ラジアル面)への分離溝および円弧面の形成
図6は、上下のダイス61,62、雄型ピン63を備えた内周面加工装置6を示しており、この装置6により、固定状態の下ダイス62上に上ダイス61を載置し、上ダイス61内に、上記bの工程を経た焼結軸受素材1Aを嵌入してセットする。そして、焼結軸受素材1Aの軸孔13に、分離溝15および円弧面16を形成し得る雄型ピン63を上から圧入することによって、内周面14に分離溝15および円弧面16を形成する。
c. Formation of Separation Groove and Arc Surface on Inner Peripheral Surface (Radial Surface) FIG. 6 shows an inner peripheral surface processing device 6 provided with upper and lower dies 61 and 62 and a male pin 63. The upper die 61 is placed on the lower die 62 in a fixed state, and the sintered bearing material 1A having undergone the process b is inserted and set in the upper die 61. Then, the separation groove 15 and the arc surface 16 are formed on the inner peripheral surface 14 by press-fitting a male pin 63 capable of forming the separation groove 15 and the arc surface 16 into the shaft hole 13 of the sintered bearing material 1A from above. To do.

この後、焼結軸受素材1Aから雄型ピン63を抜き、上ダイス61から焼結軸受素材1Aを抜いて、上端面11にスパイラル溝12が形成され、内周面14に分離溝15および円弧面16が形成された動圧軸受1を得る。   Thereafter, the male pin 63 is removed from the sintered bearing material 1A, the sintered bearing material 1A is removed from the upper die 61, the spiral groove 12 is formed on the upper end surface 11, and the separation groove 15 and the circular arc are formed on the inner peripheral surface 14. The hydrodynamic bearing 1 having the surface 16 is obtained.

以上のようにして得られた動圧軸受1は、例えば、図7に示すハードディスク駆動装置用のスピンドルモータに用いられる動圧軸受ユニット3の軸受として用いられる。この動圧軸受ユニット3は、軸2を回転自在に支持するものであって、図中上方に開口する有底円筒状のハウジング31内に、スパイラル溝12が形成された面(上端面11)を上側に配して収容される。   The dynamic pressure bearing 1 obtained as described above is used, for example, as a bearing of a dynamic pressure bearing unit 3 used in a spindle motor for a hard disk drive device shown in FIG. The dynamic pressure bearing unit 3 rotatably supports the shaft 2 and has a surface (upper end surface 11) in which a spiral groove 12 is formed in a bottomed cylindrical housing 31 that opens upward in the figure. Is placed on the upper side.

ハウジング31は、円筒体32と、この円筒体32の下側の開口内周縁に、かしめ、あるいは溶接、接着等の手段で固着されてこの開口を塞ぐ円盤状のプレート33とから構成されている。動圧軸受1は、円筒体32内に圧入するか、もしくは嵌め込んだ状態を溶接、接着等の手段によって、ハウジング31内に固着される。   The housing 31 includes a cylindrical body 32 and a disk-like plate 33 that is fixed to the inner peripheral edge of the opening on the lower side of the cylindrical body 32 by means of caulking, welding, adhesion, or the like and closes the opening. . The dynamic pressure bearing 1 is fixed in the housing 31 by means such as welding, bonding or the like in which the dynamic pressure bearing 1 is press-fitted into the cylindrical body 32 or fitted.

軸2は、軸本体21にスラストワッシャ22が嵌合、固着されたもので、軸本体21が動圧軸受1の軸孔13に図中上から挿入され、スラストワッシャ22が、動圧軸受1の、スパイラル溝12が形成されている上端面11に対向して配置される。軸2のラジアル荷重は動圧軸受1の内周面14で受けられ、軸2のスラスト荷重は動圧軸受1の上端面11で受けられる。動圧軸受1の内周面14と軸本体21との間と、動圧軸受1の上端面11とスラストワッシャ22との間には、潤滑油が供給される微小隙間が形成される。この動圧軸受ユニット3にあっては、軸本体21のスラストワッシャ22よりも上方部分に、ロータハブを介して記録磁気ディスクが搭載される。   The shaft 2 has a thrust washer 22 fitted and fixed to the shaft main body 21. The shaft main body 21 is inserted into the shaft hole 13 of the dynamic pressure bearing 1 from above in the figure, and the thrust washer 22 is connected to the dynamic pressure bearing 1. The spiral groove 12 is disposed so as to face the upper end surface 11. The radial load of the shaft 2 is received by the inner peripheral surface 14 of the fluid dynamic bearing 1, and the thrust load of the shaft 2 is received by the upper end surface 11 of the fluid dynamic bearing 1. Between the inner peripheral surface 14 of the fluid dynamic bearing 1 and the shaft main body 21 and between the upper end surface 11 of the fluid dynamic bearing 1 and the thrust washer 22, a minute gap for supplying lubricating oil is formed. In the dynamic pressure bearing unit 3, a recording magnetic disk is mounted on a portion of the shaft body 21 above the thrust washer 22 via a rotor hub.

ハウジング31の開口端部には、環状の板材からなるカバー部材34が固着されている。このカバー部材34によって、上記潤滑油の飛散が抑えられるともに、浮上する軸2のスラストワッシャ22がカバー部材34に当接して軸2の抜け止めがなされる。   A cover member 34 made of an annular plate material is fixed to the opening end of the housing 31. The cover member 34 suppresses the scattering of the lubricating oil, and the thrust washer 22 of the shaft 2 that floats contacts the cover member 34 to prevent the shaft 2 from coming off.

上記動圧軸受ユニット3によれば、動圧軸受1に潤滑油が含浸されて含油軸受とされる。そして、軸孔13に挿入された軸2が、図2および図3に示す矢印R方向に回転すると、内周面14の各分離溝15にしみ出して貯留する潤滑油が、効率よく軸2に巻き込まれて円弧面16と軸2との間のクサビ状の微小隙間に侵入し、油膜を形成する。この微小隙間に入っていく潤滑油は、微小隙間の狭小側に流動することにより、クサビ効果が生じて高圧となり、高いラジアル動圧が発生する。このように油膜が高圧化する部分は、円弧面16に応じて周方向に等間隔をおいて発生し、これによって軸2のラジアル荷重は、バランスよく、かつ高い剛性をもって支持される。   According to the hydrodynamic bearing unit 3, the hydrodynamic bearing 1 is impregnated with lubricating oil to form an oil-impregnated bearing. When the shaft 2 inserted into the shaft hole 13 rotates in the direction of the arrow R shown in FIGS. 2 and 3, the lubricating oil that oozes out and accumulates in each separation groove 15 of the inner peripheral surface 14 is efficiently stored in the shaft 2. Is wound into the wedge-shaped minute gap between the arc surface 16 and the shaft 2 to form an oil film. The lubricating oil entering the minute gap flows toward the narrow side of the minute gap, thereby generating a wedge effect and a high pressure, and a high radial dynamic pressure is generated. The portions where the oil film is increased in pressure are generated at equal intervals in the circumferential direction according to the circular arc surface 16, whereby the radial load of the shaft 2 is supported with good balance and high rigidity.

一方、潤滑油は、動圧軸受1の上端面11に形成されたスパイラル溝12内にもしみ出して貯留され、この潤滑油の一部は、軸2の回転によってスパイラル溝12内から出て、上端面11とスラストワッシャ22との間に油膜を形成する。また、スパイラル溝12内に保持される潤滑油は、スパイラル溝12内の外周側から内周側に向かって流動し、内周側の端部で最も高圧化するスラスト動圧が発生する。そして、そのスラスト動圧をスラストワッシャ22が受けることにより、軸2が僅かに浮上した状態となり、これによってスラスト荷重がバランスよく、かつ高い剛性をもって支持される。   On the other hand, the lubricating oil oozes out and is stored in the spiral groove 12 formed in the upper end surface 11 of the hydrodynamic bearing 1, and a part of this lubricating oil comes out of the spiral groove 12 by the rotation of the shaft 2. An oil film is formed between the upper end surface 11 and the thrust washer 22. Further, the lubricating oil held in the spiral groove 12 flows from the outer peripheral side to the inner peripheral side in the spiral groove 12, and a thrust dynamic pressure is generated at the highest pressure at the end on the inner peripheral side. Then, the thrust washer 22 receives the thrust dynamic pressure, so that the shaft 2 is slightly lifted, whereby the thrust load is supported with a good balance and high rigidity.

さて、上記の動圧軸受1の製造方法によれば、加工前の焼結軸受素材1Aの密度が通常よりも高い6.6〜7.4Mg/mに調整されているため、その焼結軸受素材1Aは、通常のものよりも硬さや剛性が高められている。このため、スラスト動圧を発生させる上端面11に、軸方向に応力を負荷しながら超音波加工を施しても、内周面14の両端部が内側にせり出す変形を抑えることができ、その結果、動圧軸受1は寸法精度の高いものとなる。 Now, according to the manufacturing method of the hydrodynamic bearing 1 described above, since the density of the sintered bearing material 1A before processing is adjusted to 6.6 to 7.4 Mg / m 3 which is higher than usual, the sintering is performed. The bearing material 1A has higher hardness and rigidity than a normal one. For this reason, even if ultrasonic processing is applied to the upper end surface 11 that generates the thrust dynamic pressure while applying stress in the axial direction, it is possible to suppress the deformation that the both end portions of the inner peripheral surface 14 protrude to the inside. The hydrodynamic bearing 1 has high dimensional accuracy.

また、超音波加工によって上端面11が封孔処理が施されることにより、大きなスラスト荷重を受けるスピンドルモータ用の軸受として好適となり、また、緻密化された上端面11に形成されるスパイラル溝12は、シャープに形成されて所望通りの形状を得ることができる。   Further, since the upper end surface 11 is subjected to a sealing process by ultrasonic processing, it is suitable as a bearing for a spindle motor that receives a large thrust load, and the spiral groove 12 formed in the densified upper end surface 11. Can be formed sharply to obtain a desired shape.

次に、スパイラル溝12を形成した後に、焼結軸受素材1Aの内周面14に分離溝15および円弧面16を形成するが、焼結軸受素材1Aの密度は通常よりも高く調整されてはいるものの、塑性加工が困難であるレベルまで高過ぎるものではないため、分離溝15および円弧面16を、所望通りの形状に形成することができる。また、内周面14は、密度が通常よりも高いことから比較的硬いので、分離溝15および円弧面16もシャープに形成することができるとともに、比較的気孔率が低いので、油圧が確保されやすく、高いラジアル動圧を得やすい。   Next, after forming the spiral groove 12, the separation groove 15 and the arc surface 16 are formed on the inner peripheral surface 14 of the sintered bearing material 1A. The density of the sintered bearing material 1A is adjusted to be higher than usual. However, the separation groove 15 and the circular arc surface 16 can be formed in a desired shape because it is not too high to a level at which plastic working is difficult. Further, since the inner peripheral surface 14 is relatively hard because the density is higher than usual, the separation groove 15 and the circular arc surface 16 can also be formed sharply, and since the porosity is relatively low, the hydraulic pressure is ensured. Easy to obtain high radial dynamic pressure.

なお、スラスト動圧凹所としては、図2に示したスパイラル溝12の他に、図8に示す複数のヘリングボーン溝17も好適に採用される。このヘリングボーン溝17は、V字状であって、その頂点に収束する方向が、軸2の回転方向Rに沿って形成されており、周方向に等間隔をおいて配列されている。個々のヘリングボーン溝17は、全体形状が、軸2の回転方向Rに向かうにしたがって内周側に湾曲した形状とされており、上記スパイラル溝12と同様に、外周側の端部は外周面に開口しているが、内周側の端部は軸孔13の内周面14に開口している。   In addition to the spiral groove 12 shown in FIG. 2, a plurality of herringbone grooves 17 shown in FIG. 8 are also preferably employed as the thrust dynamic pressure recess. The herringbone groove 17 is V-shaped, and the direction of convergence at the apex is formed along the rotation direction R of the shaft 2 and is arranged at equal intervals in the circumferential direction. Each herringbone groove 17 has an overall shape that is curved toward the inner peripheral side as it goes in the rotation direction R of the shaft 2, and the end on the outer peripheral side is the outer peripheral surface as in the spiral groove 12. The end on the inner peripheral side opens on the inner peripheral surface 14 of the shaft hole 13.

次に、本発明の実施例を説明し、本発明の効果を明らかにする。
原料粉末として、銅粉:49質量%、鉄粉:49質量%および錫粉:2質量%の混合粉末を用いて、成形圧力を変えて圧縮成形を行い、得られた圧粉体を焼結して密度が6.5〜7.6Mg/mの焼結軸受素材を8種作製した。そして、これら焼結軸受素材に対し、上記実施形態に記載の方法によって、比較のための1種を除き一端面を超音波加工によって封孔処理し、次いで、この一端面に図2に示したものと同様のスパイラル溝を12本形成し、さらに、内周面に図2に示したものと同様の分離溝および円弧面をそれぞれ5つ形成して、表1に示す試料番号1〜8の動圧軸受を得た。この場合、試料番号5が超音波加工を施さない試料である。
Next, examples of the present invention will be described to clarify the effects of the present invention.
Using the mixed powder of copper powder: 49% by mass, iron powder: 49% by mass and tin powder: 2% by mass as the raw material powder, compression molding is performed by changing the molding pressure, and the obtained green compact is sintered. Thus, eight kinds of sintered bearing materials having a density of 6.5 to 7.6 Mg / m 3 were produced. Then, one end surface of these sintered bearing materials is sealed by ultrasonic processing except for one type for comparison by the method described in the above embodiment, and then this one end surface is shown in FIG. 12 spiral grooves similar to the above are formed, and furthermore, five separation grooves and arc surfaces similar to those shown in FIG. 2 are formed on the inner peripheral surface, and sample numbers 1 to 8 shown in Table 1 are formed. A hydrodynamic bearing was obtained. In this case, sample number 5 is a sample not subjected to ultrasonic processing.

Figure 0004420339
Figure 0004420339

ところで、再圧後の軸受の内径寸法は、上端部で大きく下端部で小さくなる傾向があり、この差が大きいと、ラジアル動圧が下端部で大きく、上端部で小さくなって、軸の振れが増加することとなる。そこで、試料番号1〜8の動圧軸受について、軸受上端部、中央部、下端部の内径寸法を測定し、これらの寸法の最大値と最小値の差を円筒度として評価した。すなわち、円筒度が小さいものほど上下端面の寸法差が小さく、ラジアル動圧が均一となって軸の振れが抑えられることとなる。この円筒度を、表1に併記した。   By the way, the inner diameter of the bearing after re-pressing tends to be larger at the upper end and smaller at the lower end. When this difference is large, the radial dynamic pressure is larger at the lower end and smaller at the upper end. Will increase. Therefore, for the dynamic pressure bearings of Sample Nos. 1 to 8, the inner diameter dimensions of the upper end portion, the central portion, and the lower end portion of the bearing were measured, and the difference between the maximum value and the minimum value of these dimensions was evaluated as cylindricity. In other words, the smaller the cylindricity, the smaller the dimensional difference between the upper and lower end surfaces, and the radial dynamic pressure becomes uniform, and the shaft runout is suppressed. This cylindricity is also shown in Table 1.

表1より、焼結軸受素材の密度が高くなるにつれて内径の円筒度は徐々に大きくなり、焼結軸受素材の密度が7.4Mg/mを超えると急激に増大していることが判る。よって円筒度の点から、焼結軸受素材の密度は7.4Mg/m以下、好ましくは7.0Mg/m以下とする必要があること判った。 From Table 1, it can be seen that the cylindricity of the inner diameter gradually increases as the density of the sintered bearing material increases, and increases rapidly when the density of the sintered bearing material exceeds 7.4 Mg / m 3 . Therefore, from the point of cylindricity, it has been found that the density of the sintered bearing material needs to be 7.4 Mg / m 3 or less, preferably 7.0 Mg / m 3 or less.

さらに、表1の試料番号1,2,4,5,7の試料について、スパイラル溝の形成面の面粗さを周方向に沿って測定した。その結果を図9に示す。図9より、同じ焼結軸受素材密度であって、超音波加工の有無が異なる試料番号4(図9(c))と試料番号5(図9(d))の動圧軸受を比較すると、超音波加工を施した試料番号4の動圧軸受は、超音波加工により端面の気孔が目潰しされて面粗さが小さくなっていることから、動圧の漏れ防止に有効であることが判る。また、スパイラル溝のエッジがはっきりしており、所望の動圧が得られることが判る。   Further, the surface roughness of the spiral groove forming surface was measured in the circumferential direction for samples Nos. 1, 2, 4, 5, and 7 in Table 1. The result is shown in FIG. From FIG. 9, when comparing the hydrodynamic bearings of Sample No. 4 (FIG. 9 (c)) and Sample No. 5 (FIG. 9 (d)) with the same sintered bearing material density and different ultrasonic processing, It can be understood that the hydrodynamic bearing of sample number 4 subjected to ultrasonic machining is effective in preventing leakage of dynamic pressure because the pores at the end face are clogged by ultrasonic machining and the surface roughness is reduced. Further, it can be seen that the edge of the spiral groove is clear and a desired dynamic pressure can be obtained.

一方、超音波加工を施さない試料番号5の動圧軸受では、面粗さが局所的に大きい箇所が多数存在する、すなわち気孔が残留していることから、動圧の漏れが発生するものであることが判る。また、スパイラル溝のエッジが不明瞭となっており、発生する動圧効果も小さいことが判る。以上より、軸受端面にスパイラル溝を形成する前に超音波加工を施して端面の封孔処理を行うことの効果が確認された。   On the other hand, in the dynamic pressure bearing of Sample No. 5 that is not subjected to ultrasonic processing, there are many places where the surface roughness is locally large, that is, pores remain, and therefore dynamic pressure leakage occurs. I know that there is. Further, it can be seen that the edge of the spiral groove is unclear and the generated dynamic pressure effect is small. From the above, it was confirmed that the end face is sealed by applying ultrasonic processing before forming the spiral groove on the bearing end face.

図9より、焼結素材の密度が6.6Mg/mに満たない試料番号1の試料(図9(a))の動圧軸受は、超音波加工を施したにもかかわらず、面粗さが局所的に大きい箇所が多数存在し、したがって、気孔が残留していること、およびスパイラル溝のエッジが不明瞭となっていることが判る。これは焼結素材の密度が低い、すなわち焼結軸受素材の気孔量が多過ぎるため、超音波加工を施しても気孔の目潰しが十分ではなかったためと考えられる。 From FIG. 9, the dynamic pressure bearing of the sample No. 1 (FIG. 9 (a)) whose density of the sintered material is less than 6.6 Mg / m 3 is rough despite the ultrasonic processing. It can be seen that there are many locally large portions, and therefore pores remain and the edges of the spiral grooves are unclear. This is probably because the density of the sintered material is low, that is, the amount of pores in the sintered bearing material is too large, so that pores were not sufficiently crushed even when ultrasonic processing was performed.

一方、焼結素材の密度が6.6Mg/m以上の試料番号2(図9(b))、試料番号4(図9(c))、試料番号7(図9(e))では、面粗さが小さく、すなわち気孔が目潰しされており、スパイラル溝のエッジがはっきりしていることが判る。よって、焼結軸受素材の密度は6.6Mg/m以上とする必要があることが判った。 On the other hand, in sample number 2 (FIG. 9 (b)), sample number 4 (FIG. 9 (c)), and sample number 7 (FIG. 9 (e)) in which the density of the sintered material is 6.6 Mg / m 3 or more, It can be seen that the surface roughness is small, that is, the pores are crushed and the edges of the spiral grooves are clear. Therefore, it has been found that the density of the sintered bearing material needs to be 6.6 Mg / m 3 or more.

以上より、焼結軸受素材の端面にスラスト動圧凹所を形成する前に、焼結軸受素材の端面に超音波加工を施すことの効果および、その場合において、焼結軸受素材の密度は、6.6〜7.4Mg/m、好ましくは6.6〜7.0Mg/mがよいことが確認された。 From the above, before forming the thrust dynamic pressure recess on the end surface of the sintered bearing material, the effect of applying ultrasonic processing to the end surface of the sintered bearing material, and in that case, the density of the sintered bearing material is It was confirmed that 6.6 to 7.4 Mg / m 3 , preferably 6.6 to 7.0 Mg / m 3 was good.

本発明の一実施形態の動圧軸受の縦断面図である。It is a longitudinal cross-sectional view of the dynamic pressure bearing of one Embodiment of this invention. 一実施形態の動圧軸受の上面図である。It is a top view of the dynamic pressure bearing of one embodiment. 図1のIII−III線矢視断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 1. 超音波加工装置によって焼結軸受素材の上端面に超音波加工を施している状態を示す側面図である。It is a side view which shows the state which has given ultrasonic processing to the upper end surface of a sintered bearing raw material with an ultrasonic processing apparatus. 再圧用金型によって焼結軸受素材の上端面にスパイラル溝を形成している状態を示す側面図である。It is a side view which shows the state in which the spiral groove | channel is formed in the upper end surface of a sintered bearing raw material with the metal mold | die for recompression. 内周面加工装置により焼結軸受素材の内周面に分離溝および円弧面を形成している状態を示す側面図である。It is a side view which shows the state which has formed the isolation | separation groove | channel and the circular arc surface in the internal peripheral surface of the sintered bearing raw material with the internal peripheral surface processing apparatus. 一実施形態の動圧軸受を用いた軸受ユニットの縦断面図である。It is a longitudinal cross-sectional view of the bearing unit using the dynamic pressure bearing of one Embodiment. スラスト動圧凹所の別形態(ヘリングボーン溝)を示す動圧軸受の上面図である。It is a top view of the dynamic pressure bearing which shows another form (herringbone groove) of a thrust dynamic pressure recess. 実施例で行ったスパイラル溝の形成面の面粗さを周方向に沿って測定した結果を示す図である。It is a figure which shows the result of having measured the surface roughness of the formation surface of the spiral groove performed in the Example along the circumferential direction.

符号の説明Explanation of symbols

1…動圧軸受、1A…焼結軸受素材、12…スパイラル溝(スラスト動圧凹所)、
11…上端面、13…軸孔、14…内周面、16…円弧面(ラジアル動圧凹所)。
DESCRIPTION OF SYMBOLS 1 ... Dynamic pressure bearing, 1A ... Sintered bearing material, 12 ... Spiral groove (thrust dynamic pressure recess),
DESCRIPTION OF SYMBOLS 11 ... Upper end surface, 13 ... Shaft hole, 14 ... Inner peripheral surface, 16 ... Circular arc surface (radial dynamic pressure recess).

Claims (4)

密度を6.6〜7.4Mg/mに調整した円筒状の焼結軸受素材に対して、スラスト動圧凹所を形成する端面に、超音波加工を施して該端面を前記密度よりも緻密化させる工程と、この端面にスラスト動圧凹所を形成する工程と、凸条を形成したピンを用いてピン通しする、または凸条を形成したコアを用いて再圧して転写することにより、焼結軸受素材の軸孔内周面に、ラジアル動圧凹所を形成する工程を、この順で行うことを特徴とする動圧軸受の製造方法。 A cylindrical sintered bearing material whose density is adjusted to 6.6 to 7.4 Mg / m 3 is subjected to ultrasonic processing on the end surface forming the thrust dynamic pressure recess, and the end surface is made to exceed the density. and Ru densified step, forming a thrust dynamic pressure recess on the end face, to the pin through with pins forming the ridges, or be transferred by applying again using the core to form a ridge Accordingly, the shaft hole inner peripheral surface of the sintered bearing material, a step of forming a radial dynamic pressure recess, a manufacturing method of a dynamic pressure bearing, which comprises carrying out in this order. 前記スラスト動圧凹所は、前記端面の一周方向に向かうにしたがってその内周側に湾曲しながら延びる複数のスパイラル溝、または、V字状で頂点に収束する方向が前記端面の一周方向に沿って配列された複数のヘリングボーン溝であることを特徴とする請求項1に記載の動圧軸受の製造方法。   The thrust dynamic depression is a plurality of spiral grooves extending while curving toward the inner circumferential side as it goes in the circumferential direction of the end surface, or a V-shaped converging direction along the circumferential direction of the end surface. 2. The method of manufacturing a hydrodynamic bearing according to claim 1, wherein the herringbone grooves are arranged in a row. 前記ラジアル動圧凹所は、前記焼結軸受素材の外径と非同心で、かつ、前記一周方向に向かうにしたがって内周側に縮径していく複数の円弧面であることを特徴とする請求項1に記載の動圧軸受の製造方法。   The radial dynamic pressure recess is a plurality of arcuate surfaces that are non-concentric with the outer diameter of the sintered bearing material and reduce in diameter toward the inner circumference as it goes in the circumferential direction. The manufacturing method of the hydrodynamic bearing of Claim 1. 前記焼結軸受素材は、鉄:40〜60wt%、銅:40〜60wt%、錫:1〜5wt%を含有する焼結合金であることを特徴とする請求項1〜3のいずれかに記載の動圧軸受の製造方法。   The sintered bearing material is a sintered alloy containing iron: 40 to 60 wt%, copper: 40 to 60 wt%, and tin: 1 to 5 wt%. Manufacturing method of the hydrodynamic bearing.
JP2004312347A 2004-10-27 2004-10-27 Manufacturing method of hydrodynamic bearing Expired - Fee Related JP4420339B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004312347A JP4420339B2 (en) 2004-10-27 2004-10-27 Manufacturing method of hydrodynamic bearing
CNB200510118510XA CN100404893C (en) 2004-10-27 2005-10-27 Dynamic pressure bearing production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312347A JP4420339B2 (en) 2004-10-27 2004-10-27 Manufacturing method of hydrodynamic bearing

Publications (2)

Publication Number Publication Date
JP2006125461A JP2006125461A (en) 2006-05-18
JP4420339B2 true JP4420339B2 (en) 2010-02-24

Family

ID=36720398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312347A Expired - Fee Related JP4420339B2 (en) 2004-10-27 2004-10-27 Manufacturing method of hydrodynamic bearing

Country Status (2)

Country Link
JP (1) JP4420339B2 (en)
CN (1) CN100404893C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4811186B2 (en) * 2006-08-07 2011-11-09 日本電産株式会社 Hydrodynamic bearing device
KR100863938B1 (en) 2007-01-31 2008-10-16 에이테크솔루션(주) Spindle motor for hard disk drive
CN110594287A (en) * 2019-09-17 2019-12-20 福建福清核电有限公司 Main pump integrated three-liquid-tank radial water guide bearing bush
JP2022139908A (en) * 2021-03-12 2022-09-26 Ntn株式会社 Oil-impregnated sintered bearing and fluid dynamic pressure bearing device with the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3782889B2 (en) * 1998-05-28 2006-06-07 Ntn株式会社 Hydrodynamic sintered oil-impregnated bearing
JP2003039248A (en) * 2001-07-27 2003-02-12 Sankyo Seiki Mfg Co Ltd Method of electro-chemical machining, and method for manufacturing hydrodynamic bearing apparatus, and hydrodynamic bearing apparatus manufactured by the manufacturing method
DE10300966B4 (en) * 2003-01-14 2007-05-03 Daimlerchrysler Ag Slip layer, its use and process for its preparation
JP4213714B2 (en) * 2003-02-14 2009-01-21 日立粉末冶金株式会社 Sintered oil-impregnated bearing

Also Published As

Publication number Publication date
CN100404893C (en) 2008-07-23
JP2006125461A (en) 2006-05-18
CN1766357A (en) 2006-05-03

Similar Documents

Publication Publication Date Title
KR19980079973A (en) Dynamic pressure bearing containing porous oil and its manufacturing method
US20090297077A1 (en) Fluid dynamic pressure bearing and production method for the same
US8756816B2 (en) Method for producing a housing for a fluid bearing apparatus
JP2010053914A (en) Hydrodynamic bearing device, spindle motor, and information device
JP4245897B2 (en) Method for manufacturing hydrodynamic bearing device
JP2006071062A (en) Dynamic pressure bearing
JP4420339B2 (en) Manufacturing method of hydrodynamic bearing
JP2006316896A (en) Method for manufacturing oil-impregnated sintered bearing and oil-impregnated sintered bearing
JP3607661B2 (en) Hydrodynamic porous oil-impregnated bearing and method for producing the same
JP2011047005A (en) Method of manufacturing bearing sleeve and fluid dynamic bearing device
US7789565B2 (en) Fluid dynamic bearing apparatus
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP5172576B2 (en) Fluid dynamic bearing device and manufacturing method thereof
JP5901979B2 (en) Method for manufacturing fluid dynamic bearing device
JP4642416B2 (en) Manufacturing method of shaft member for hydrodynamic bearing device
JP2006220216A (en) Fluid bearing device housing and its manufacturing method
JP3784690B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP2005265180A (en) Dynamic pressure bearing device
JP2003227512A (en) Oil impregnated sintered bearing and manufacturing method therefor
JP2000192945A (en) Bearing device and its manufacture
JP2019157918A (en) Sintered metal-made dynamic pressure bearing
JP4498932B2 (en) Hydrodynamic bearing device
JP4275631B2 (en) Sintered oil-impregnated bearing
JP2001124057A (en) Dynamic pressure bearing
JP2007100803A (en) Method for manufacturing oil impregnated sintered bearing, and sizing pin to be used for the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees