JP4275631B2 - Sintered oil-impregnated bearing - Google Patents

Sintered oil-impregnated bearing Download PDF

Info

Publication number
JP4275631B2
JP4275631B2 JP2005056147A JP2005056147A JP4275631B2 JP 4275631 B2 JP4275631 B2 JP 4275631B2 JP 2005056147 A JP2005056147 A JP 2005056147A JP 2005056147 A JP2005056147 A JP 2005056147A JP 4275631 B2 JP4275631 B2 JP 4275631B2
Authority
JP
Japan
Prior art keywords
bearing
oil
dynamic pressure
bearing member
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005056147A
Other languages
Japanese (ja)
Other versions
JP2005164049A (en
Inventor
容敬 伊藤
康明 前田
嘉則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2005056147A priority Critical patent/JP4275631B2/en
Publication of JP2005164049A publication Critical patent/JP2005164049A/en
Application granted granted Critical
Publication of JP4275631B2 publication Critical patent/JP4275631B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、焼結金属に油を含浸させた焼結含油軸受、およびその製造方法に関するものである。   The present invention relates to a sintered oil-impregnated bearing obtained by impregnating a sintered metal with oil and a method for producing the same.

焼結含油軸受の中でも特に動圧発生用の溝、すなわち動圧溝を有する軸受(溝付き動圧型焼結含油軸受)は、高回転精度、高速回転、低騒音、低コスト等の特徴を備えるものであり、近年ではこれらの特徴から、HDD等の磁気ディスク、DVD等の光ディスク、MO等の光磁気ディスクのスピンドルモータやレーザビームプリンタのポリゴンスキャナモータ等におけるスピンドル支持用の軸受としての使用が期待され、あるいは実際に使用されている。   Among the sintered oil-impregnated bearings, a groove for generating dynamic pressure, that is, a bearing having a dynamic pressure groove (a grooved hydrodynamic sintered oil-impregnated bearing) has features such as high rotational accuracy, high speed rotation, low noise, and low cost. In recent years, these characteristics have led to their use as spindle support bearings in spindle motors of magnetic disks such as HDDs, optical disks such as DVDs, magneto-optical disks such as MOs, and polygon scanner motors of laser beam printers. Expected or actually used.

この溝付き動圧型焼結含油軸受は、円筒状の含油焼結金属からなる軸受部材に、サイジング→両端面のバニシ仕上げ→動圧溝の加工、を順次施すことにより製造される。バニシ仕上げにより、軸受部材の端面は、その表面開孔率(表面開孔とは、多孔質組織の細孔が外表面に開口した部分をいい、表面開孔率とは、外表面の単位面積内に占める表面開口の面積割合をいう)が20%以下となるまで表面細孔がつぶされる。   This grooved hydrodynamic sintered oil-impregnated bearing is manufactured by sequentially performing sizing, burnishing on both end faces, and processing of the hydrodynamic groove on a bearing member made of a cylindrical oil-impregnated sintered metal. Due to burnishing, the end surface of the bearing member has its surface open area ratio (surface open area refers to the portion where the pores of the porous structure are opened to the outer surface, and the surface open area is the unit area of the outer surface. The surface pores are crushed until the area ratio of the surface openings occupying inside is 20% or less.

従来、バニシ仕上げは、図5に示すように、超硬合金やセラミック等の硬質材料からなる治具33,34を焼結含油金属31の軸方向両端に配し、両治具33,34の端面に形成した突条の加圧部37(図6参照)をそれぞれ焼結含油金属31の両端面に押し当てた状態で、治具33,34を互いに逆回転させることによって行っている。   Conventionally, as shown in FIG. 5, burnishing is performed by arranging jigs 33 and 34 made of a hard material such as cemented carbide or ceramic at both ends in the axial direction of the sintered oil-impregnated metal 31. This is done by rotating the jigs 33 and 34 in the reverse direction while pressing the pressing portions 37 (see FIG. 6) of the ridges formed on the end surfaces against the both end surfaces of the sintered oil-impregnated metal 31 respectively.

上記溝付き動圧型焼結含油軸受では、軸受隙間での動圧を十分に確保するため、軸受部材の表面からの油の流出はできるだけ少なくするのが好ましい。そのため、軸受部材端面のバニシ仕上げにおいては、表面開孔率ができるだけ小さくかつ均一となるような加工が望まれる。   In the above-mentioned grooved hydrodynamic sintered oil-impregnated bearing, it is preferable to minimize the outflow of oil from the surface of the bearing member in order to ensure sufficient dynamic pressure in the bearing gap. Therefore, in the burnishing of the end face of the bearing member, it is desired that the surface opening rate be as small and uniform as possible.

しかしながら、図5および図6に示す従来方法では、均一に封孔することが難しく、封孔度合いのばらつきが大きい。そのため、仕上げ後の表面開孔率は広い範囲で許容せざるを得ず、その上限は上記の通り20%が限度であった。また、軸受部材の端面にスラスト方向の動圧を発生するための動圧溝を形成する場合には、相手面との接触によるトルク変動を避けるため、表面粗さを小さくする必要があるが、従来方法では表面開孔率の低減と表面粗さの向上を両立することは難しかった。さらには、加圧部材の劣化が早く、早期に治具全体の交換が必要となってコストアップを招く不具合も指摘されている。   However, in the conventional method shown in FIGS. 5 and 6, it is difficult to uniformly seal, and the variation in the degree of sealing is large. Therefore, the surface area ratio after finishing must be allowed in a wide range, and the upper limit is 20% as described above. In addition, when forming a dynamic pressure groove for generating dynamic pressure in the thrust direction on the end surface of the bearing member, it is necessary to reduce the surface roughness in order to avoid torque fluctuation due to contact with the mating surface. In the conventional method, it has been difficult to achieve both reduction of the surface area ratio and improvement of the surface roughness. Further, it has been pointed out that the pressurizing member is rapidly deteriorated and the entire jig needs to be replaced at an early stage, resulting in an increase in cost.

そこで、本発明は、油膜力の強化による軸受剛性の向上を達成することができ、また、トルク変動の低減を達成することができる焼結含油軸受の提供を目的とする。   Therefore, an object of the present invention is to provide a sintered oil-impregnated bearing that can achieve improvement in bearing rigidity by enhancing oil film force and that can achieve reduction in torque fluctuation.

上記目的の達成のため、本発明では、含油焼結金属からなる軸受部材を備え、軸受部材の内周にラジアル軸受面を有し、軸受部材の両端面のうち一方に動圧溝を有する焼結含油軸受において、軸受部材の動圧溝を有する一方の端面は、硬質材料からなる加圧部材を弾性部材を介して加えられる加圧力で加圧してバニシ仕上げした後、前記動圧溝を加工することにより形成され、表面開孔率が動圧溝の領域を含めて10%以下の値であり、かつ、表面粗さが0.05Ra以上、0.4Ra以下であり、他方の端面の表面開孔率が20%以下の値である構成を提供する。 In order to achieve the above object, the present invention includes a bearing member made of an oil-impregnated sintered metal, a radial bearing surface on the inner periphery of the bearing member, and a hydrodynamic groove on one of both end surfaces of the bearing member. In the oil-impregnated bearing, one end face of the bearing member having the dynamic pressure groove is burnished by pressing a pressure member made of a hard material with a pressure applied via an elastic member, and then the dynamic pressure groove is processed. The surface open area ratio is a value of 10% or less including the region of the dynamic pressure groove, the surface roughness is 0.05 Ra or more and 0.4 Ra or less, and the surface of the other end face A configuration in which the open area ratio is a value of 20% or less is provided.

上記一方の端面の表面粗さは、0.05Ra以上0.4Ra以下に設定するのが望ましい。   The surface roughness of the one end face is preferably set to 0.05 Ra or more and 0.4 Ra or less.

軸受部材の一方の端面に、軸部材との相対回転時にスラスト方向の動圧を発生するための動圧溝を形成することにより、スラスト方向の動圧で軸部材を非接触支持する焼結含油軸受を提供できる。この場合、上記一方の端面の表面粗さを0.05Ra以上0.4Ra以下に設定することにより、軸部材との接触を回避し、トルク変動の少ない焼結含油軸受を提供することが可能となる。   Sintered oil impregnation that supports the shaft member in a non-contact manner with a dynamic pressure in the thrust direction by forming a dynamic pressure groove on one end face of the bearing member for generating a dynamic pressure in the thrust direction when rotating relative to the shaft member A bearing can be provided. In this case, by setting the surface roughness of the one end face to 0.05 Ra or more and 0.4 Ra or less, it is possible to avoid contact with the shaft member and provide a sintered oil-impregnated bearing with less torque fluctuation. Become.

本発明によれば、軸受部材の一方の端面の表面開孔率のバラツキを抑えてその許容範囲の上限値をより小さく規制することができる。従って、油膜力を強化して軸受剛性を高めることができ、また、軸受部材の端面に形成されたスラスト軸受面と軸部材との接触を回避してトルク変動を低減することができる。   According to the present invention, it is possible to restrict the upper limit value of the permissible range by suppressing variations in the surface area ratio of one end face of the bearing member. Therefore, the oil film force can be strengthened to increase the bearing rigidity, and contact between the thrust bearing surface formed on the end surface of the bearing member and the shaft member can be avoided to reduce torque fluctuation.

以下、本発明の実施形態を図1〜図5に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1に示すように、本実施形態における動圧型焼結含油軸受においては、円筒状の含油焼結金属からなる軸受部材1の内周に、複数の動圧発生用の溝3(動圧溝)を有するラジアル軸受面5が形成される。図示例では、軸方向に離隔させて二つのラジアル軸受面5を形成した場合を例示しているが、ラジアル軸受面5の数は、二つに限られず、一つあるいは三つ以上とすることもできる。ラジアル軸受面5の動圧溝形状としては、図示のようなヘリングボーン形の他、スパイラル形を選択することもできる。この他、ステップ型や調和波形等の非真円形状のラジアル軸受面を使用することも可能である。   As shown in FIG. 1, in the hydrodynamic sintered oil-impregnated bearing according to the present embodiment, a plurality of dynamic pressure generating grooves 3 (dynamic pressure grooves) are formed on the inner periphery of a bearing member 1 made of a cylindrical oil-impregnated sintered metal. ) Is formed. In the illustrated example, the case where two radial bearing surfaces 5 are formed apart from each other in the axial direction is illustrated. However, the number of radial bearing surfaces 5 is not limited to two, and may be one or three or more. You can also. As the dynamic pressure groove shape of the radial bearing surface 5, a spiral shape can be selected in addition to the herringbone shape as shown in the figure. In addition, it is also possible to use a non-round radial bearing surface such as a step type or a harmonic waveform.

軸受部材1に非接触支持される軸部材7は、ストレート状の軸部7aと軸部7aの端部に設けられたフランジ部7bとで構成される。軸部7aとフランジ部7bは、圧入した別部品で形成する他、鍛造等の手段で一体成形することもできる。   The shaft member 7 supported in a non-contact manner by the bearing member 1 includes a straight shaft portion 7a and a flange portion 7b provided at the end of the shaft portion 7a. The shaft portion 7a and the flange portion 7b can be formed by separate press-fitted parts, or can be integrally formed by means such as forging.

軸受部材1は、有底円筒状のハウジング9の内周に圧入や接着等の手段で固定される。この時、軸受部材1の内周に軸部材7の軸部7aが配置され、ハウジング9の底部9aと軸受部材の端面1aとの間の空間にフランジ部7bが配置される。ハウジング底部9aは、図示のように筒状のハウジング本体9bと一体成形する他、ハウジング本体9bとは別部品で形成し、これらを嵌合・接着することにより組み立てることもできる。ハウジング本体9bの開口部は、油の流出を防止するため、シール部材10によって密封されている。   The bearing member 1 is fixed to the inner periphery of the bottomed cylindrical housing 9 by means such as press fitting or adhesion. At this time, the shaft portion 7a of the shaft member 7 is disposed on the inner periphery of the bearing member 1, and the flange portion 7b is disposed in a space between the bottom portion 9a of the housing 9 and the end surface 1a of the bearing member. As shown in the figure, the housing bottom portion 9a can be integrally formed with the cylindrical housing body 9b, or formed as a separate part from the housing body 9b, and can be assembled by fitting and adhering them. The opening of the housing body 9b is sealed with a seal member 10 to prevent oil from flowing out.

フランジ部7bの両端面7b1,7b2は、軸受部材1の一方の端面1a、およびハウジング底部9aのスラスト受け面9a1とそれぞれ対向している。フランジ部7bと対向する軸受部材1の端面1aおよびスラスト受け面9a1には、複数の動圧溝(図示省略)を備えたスラスト軸受面11a,11bがそれぞれ形成される。スラスト軸受面11a,11bの動圧溝形状は任意であり、ラジアル軸受面5と同様にヘリングボーン形やスパイラル形の動圧溝を形成する他、ステップ形に形成することもできる。この動圧溝は、軸受部材端面1aやスラスト受け面9a1に代えてフランジ部7bの両端面7b1,7b2に形成することもでき、この場合には、フランジ部7bの両端面7b1,7b2に上記スラスト軸受面が形成される。   Both end surfaces 7b1 and 7b2 of the flange portion 7b are opposed to one end surface 1a of the bearing member 1 and the thrust receiving surface 9a1 of the housing bottom portion 9a. Thrust bearing surfaces 11a and 11b having a plurality of dynamic pressure grooves (not shown) are formed on the end surface 1a of the bearing member 1 and the thrust receiving surface 9a1 facing the flange portion 7b, respectively. The dynamic pressure groove shape of the thrust bearing surfaces 11a and 11b is arbitrary. Like the radial bearing surface 5, the dynamic pressure groove shape can be formed in a step shape in addition to forming a herringbone type or spiral type dynamic pressure groove. The dynamic pressure grooves can be formed on both end faces 7b1 and 7b2 of the flange portion 7b instead of the bearing member end face 1a and the thrust receiving face 9a1, and in this case, the end faces 7b1 and 7b2 of the flange portion 7b A thrust bearing surface is formed.

軸受部材1は、焼結金属に潤滑油あるいは潤滑グリースを含浸させて細孔内に油を保有させた含油焼結金属で形成される。焼結金属としては、例えば銅系あるいは鉄系、またはその双方を主成分とするものが使用でき、望ましくは銅を20〜95%使用して成形される。この軸受部材1は、従来と同様に、圧粉成形→焼結→サイジング→含油→両端面のバニシ仕上げ→動圧溝加工、の各工程を経て製造される。なお、上記各工程は、バニシ仕上げ工程を除き、従来と同様の方法・装置で行うことができる。バニシ仕上げ工程の詳細は後述する。   The bearing member 1 is formed of an oil-impregnated sintered metal in which a sintered metal is impregnated with lubricating oil or lubricating grease so that the oil is retained in the pores. As the sintered metal, for example, a copper-based or iron-based material, or a material containing both of them as a main component can be used. Preferably, the sintered metal is formed using 20 to 95% of copper. This bearing member 1 is manufactured through the steps of compacting, sintering, sizing, oil impregnation, burnishing on both end faces, and dynamic pressure groove machining, as in the conventional case. In addition, each said process can be performed with the method and apparatus similar to the past except a burnishing process. Details of the burnishing process will be described later.

ラジアル軸受面5と軸部7aの外周面との間の微小隙間(ラジアル軸受隙間)、およびスラスト軸受面11a,11bとこれに対向する面(図示例ではフランジ部7bの両端面7b1,7b2)との間の微小隙間(スラスト軸受隙間)には、それぞれ潤滑流体としての油が満たされている。軸部材7と軸受部材1の相対回転時(本実施形態では軸部材7の回転時)には、各軸受面5,11a,11bに設けられた動圧溝の作用により、ラジアル軸受隙間およびスラスト軸受隙間に油の動圧が生じ、軸部材7がラジアル方向およびスラスト両方向で軸受部材1に対して非接触支持される。   A minute gap (radial bearing gap) between the radial bearing surface 5 and the outer peripheral surface of the shaft portion 7a, and thrust bearing surfaces 11a, 11b and surfaces facing the same (in the illustrated example, both end surfaces 7b1, 7b2 of the flange portion 7b) Each of the minute gaps (thrust bearing gaps) between them is filled with oil as a lubricating fluid. At the time of relative rotation of the shaft member 7 and the bearing member 1 (when the shaft member 7 is rotated in the present embodiment), the radial bearing gap and the thrust are caused by the action of the dynamic pressure grooves provided on the bearing surfaces 5, 11a, 11b. Oil dynamic pressure is generated in the bearing gap, and the shaft member 7 is supported in a non-contact manner relative to the bearing member 1 in both the radial direction and the thrust direction.

軸受運転中は、各軸受隙間に生じた正圧により、油は軸受面5,11a,11bの表面に開口した孔から軸受部材1の内部に還流する。その一方で動圧溝の作用によって新たな油が次々と各軸受隙間に押し込まれ続けるので、油膜力や軸受剛性は高い状態で維持される。   During the bearing operation, the oil returns to the inside of the bearing member 1 from the holes opened in the surfaces of the bearing surfaces 5, 11a, 11b due to the positive pressure generated in the bearing gaps. On the other hand, since the new oil continues to be pushed into the bearing gaps one after another by the action of the dynamic pressure grooves, the oil film force and the bearing rigidity are maintained in a high state.

この場合、軸受面5,11a,11bに開口した細孔をつぶして表面開孔率を小さくすれば、軸受部材1内部への油の還流を少なくすることができ、油膜力を高めて軸受剛性のさらなる向上を図ることができる。これを達成するため、本発明では、スラスト軸受面11aを有する軸受部材1の端面1aを、その表面開孔率が10%(望ましくは7%)を上限としてこれ以下の範囲に規制されるようバニシ仕上げにて封孔処理を行った。この上限値以下の表面開孔率であれば、スラスト軸受面11aから軸受部材1内部へ還流する油の量を効果的に抑制することができる。一方、2%以下の表面開孔率を常時得ようとすれば、バニシ仕上げに際しての治具(後述する)の加圧力が著しく増すため、加工コストが高騰する。従って、端面1aの表面開孔率は、2%以上で10%以下(望ましくは7%以下)の範囲に設定とする。   In this case, if the pores opened in the bearing surfaces 5, 11 a, 11 b are crushed to reduce the surface opening ratio, the return of oil to the inside of the bearing member 1 can be reduced, and the oil film force is increased and the bearing rigidity is increased. Can be further improved. In order to achieve this, in the present invention, the end surface 1a of the bearing member 1 having the thrust bearing surface 11a is restricted to a range below the upper limit of the surface open area of 10% (preferably 7%). Sealing was performed by burnishing. If the surface opening ratio is less than or equal to this upper limit value, the amount of oil recirculated from the thrust bearing surface 11a into the bearing member 1 can be effectively suppressed. On the other hand, if it is attempted to always obtain a surface area ratio of 2% or less, the pressurizing force of a jig (described later) during burnishing is remarkably increased, which increases the processing cost. Therefore, the surface area ratio of the end face 1a is set in the range of 2% to 10% (preferably 7% or less).

この場合、軸受部材1の端面1aに形成されたスラスト軸受面11aの表面粗さは0.05Ra〜0.4Raの範囲内に設定する。この表面粗さが0.4Raよりも大きいと表面の凹凸が増えるために、軸受の運転中にスラスト軸受面11aがこれに対向する面(フランジ部端面7b1)と接触してトルク変動等を生じる要因となる。一方、表面粗さが0.05Raよりも小さい場合は、後述するバニシ仕上げで高い加圧力が必要となり、かつ加工時間も長くなるので、加工コストの増大を招く。   In this case, the surface roughness of the thrust bearing surface 11a formed on the end surface 1a of the bearing member 1 is set within a range of 0.05Ra to 0.4Ra. If the surface roughness is greater than 0.4 Ra, the surface irregularities increase, so that during the operation of the bearing, the thrust bearing surface 11a comes into contact with the opposite surface (flange end surface 7b1) to cause torque fluctuation and the like. It becomes a factor. On the other hand, when the surface roughness is smaller than 0.05 Ra, a high pressurizing force is required for burnishing, which will be described later, and the processing time becomes longer, which increases the processing cost.

なお、ラジアル軸受面5の表面開孔率は、5%〜15%程度に設定するのが望ましい。この範囲の表面開孔率は、軸受部材1のサイジングに際してその内周面を内型(コアロッド等)に押し付ける際の押し付け力を調整することによって得ることができる。   In addition, it is desirable to set the surface opening ratio of the radial bearing surface 5 to about 5% to 15%. The surface area ratio in this range can be obtained by adjusting the pressing force when pressing the inner peripheral surface of the bearing member 1 against the inner mold (core rod or the like) when sizing the bearing member 1.

軸受部材1の両端面1a,1bのバニシ仕上げは、図5に示す従来方法と同様に、軸受部材1の軸方向両側に治具13,14を配置することによって行われる。図2(A)〜(C)に示すように、治具13,14には、超硬合金やセラミック等の硬質材料からなる加圧部材17が弾性部材18を介して取り付けられている。弾性部材18は、ウレタンゴム等の弾性材料からなり、厚肉円盤状のクッション部18aと、クッション部18aの背面に突設した連結部18bとを有する。クッション部18aの端面18a1には、断面円形の棒状をなす加圧部材17がその一部周面を端面18a1から突出させてその直径方向に沿って埋め込まれ、接着等の固定手段で弾性部材18に固定されている。弾性部材18の連結部18bは、鋼等の金属製のベース19に設けた取り付け孔に挿入され、さらに止めねじ20等の着脱手段によってベース19に対して着脱可能に取り付けられている。着脱手段により、弾性部材18と加圧部材17は、ベース19に対して着脱可能となり、加圧部材17が劣化した場合でもこれら早期に交換することが可能となる。   Burnishing of both end faces 1a and 1b of the bearing member 1 is performed by arranging jigs 13 and 14 on both sides in the axial direction of the bearing member 1 as in the conventional method shown in FIG. As shown in FIGS. 2A to 2C, a pressing member 17 made of a hard material such as cemented carbide or ceramic is attached to the jigs 13 and 14 via an elastic member 18. The elastic member 18 is made of an elastic material such as urethane rubber, and includes a thick disc-shaped cushion portion 18a and a connecting portion 18b protruding from the back surface of the cushion portion 18a. A pressure member 17 having a bar shape with a circular cross section is embedded in the end surface 18a1 of the cushion portion 18a so that a part of the circumferential surface protrudes from the end surface 18a1 along the diameter direction, and the elastic member 18 is fixed by fixing means such as adhesion. It is fixed to. The connecting portion 18b of the elastic member 18 is inserted into an attachment hole provided in a metal base 19 such as steel, and is further detachably attached to the base 19 by attaching / detaching means such as a set screw 20 or the like. The elastic member 18 and the pressure member 17 can be attached to and detached from the base 19 by the attachment / detachment means, and even when the pressure member 17 deteriorates, it can be replaced at an early stage.

ベース19、弾性部材18、および加圧部材17からなる治具13,14は、軸受部材1の軸方向両側に、軸受部材1の両端面1a、1bに加圧部材17を押し当てた状態で配置される。両治具13,14を所定の加圧力で接近方向に加圧しながら互いに逆回転させることにより、軸受部材1の両端面1a,1bが加圧部材17に擦られて仕上げられる。そのため、良好な表面粗さと、低い表面開孔率とを有する端面1a,1bを形成することができる。   The jigs 13 and 14 including the base 19, the elastic member 18, and the pressure member 17 are in a state in which the pressure member 17 is pressed against both end surfaces 1 a and 1 b of the bearing member 1 on both axial sides of the bearing member 1. Be placed. The two end faces 1a and 1b of the bearing member 1 are rubbed against the pressurizing member 17 and finished by rotating both jigs 13 and 14 in reverse directions while pressurizing them in the approaching direction with a predetermined pressing force. Therefore, end faces 1a and 1b having a good surface roughness and a low surface area ratio can be formed.

上述のように本発明では、加圧部材17とベース19の間に弾性部材18を介在させているため、弾性部材18のクッション機能により、加圧部材17はワークとなる軸受部材1の端面形状にならいながら端面1a,1bを摺動する。従って、図6に示す従来の治具33,34に比べ、表面開孔率をそのバラツキを抑えてより小さく、かつ表面精度をより高めてこれらを両立することができ、上述した10%(望ましくは7%)を上限とする表面開孔率や、0.05Ra〜0.4Ra程度の表面粗さも容易に得ることが可能となる。   As described above, in the present invention, since the elastic member 18 is interposed between the pressure member 17 and the base 19, the pressure member 17 is shaped as an end surface of the bearing member 1 that becomes a workpiece by the cushion function of the elastic member 18. The end surfaces 1a and 1b are slid while following. Therefore, compared with the conventional jigs 33 and 34 shown in FIG. 6, the surface open area ratio can be made smaller by suppressing the variation, and the surface accuracy can be further improved to achieve both of them. It is possible to easily obtain a surface area ratio with a maximum of 7%) and a surface roughness of about 0.05 Ra to 0.4 Ra.

また、加圧部材17が弾性的に取り付けられているためにその劣化も従来より遅く、摩耗劣化した場合でも、弾性部材18および加圧部材17をユニットとして交換することができるので、治具の全体を早期に交換せざるを得なかった従来方法(図6参照)に比べ、製造コストを低廉化することができる。   Further, since the pressure member 17 is elastically attached, the deterioration thereof is slower than the conventional one, and even when the wear is deteriorated, the elastic member 18 and the pressure member 17 can be replaced as a unit. Compared with the conventional method (see FIG. 6) in which the whole must be replaced at an early stage, the manufacturing cost can be reduced.

図3は、従来品(A)と本発明品(B)とにおけるバニシ後の表面顕微鏡写真を示すもので、図中の黒部分が表面開孔部分を表している。図示からも明らかなように、本発明品の方が従来品よりも黒塗り部分が少なく、表面開孔率がより小さくなっていることが理解できる。   FIG. 3 shows a surface micrograph after burnishing of the conventional product (A) and the product of the present invention (B), and the black portion in the figure represents the surface opening portion. As is apparent from the figure, it can be understood that the product of the present invention has fewer black portions than the conventional product, and the surface area ratio is smaller.

図4は、従来品(A)と本発明品(B)とにおけるバニシ後の断面曲線の測定結果を示すものである。何れも触針速度を0.5[mm/s]、カットオフ値を0.8[mm]、基準長さを3.20[mm]、極性をノーマルとして測定している。この条件下で表面粗さを測定したところ、中心線平均粗さRa、十点平均粗さRy、最大高さRzは、従来品で
Ra=0.4875[μm]
Ry=5.622[μm]
Rmax=10.30[μm]
となり、本発明品で
Ra=0.1750[μm]
Ry=1.838[μm]
Rmax=2.700[μm]
となったので、何れの規格値においても本発明品の表面粗さの方が小さくなることが確認された。
FIG. 4 shows the measurement results of the cross-sectional curve after burnishing in the conventional product (A) and the product of the present invention (B). In all cases, the stylus speed is 0.5 [mm / s], the cut-off value is 0.8 [mm], the reference length is 3.20 [mm], and the polarity is normal. When the surface roughness was measured under these conditions, the center line average roughness Ra, the ten-point average roughness Ry, and the maximum height Rz were as follows: Ra = 0.4875 [μm]
Ry = 5.622 [μm]
Rmax = 10.30 [μm]
In the product of the present invention, Ra = 0.1750 [μm]
Ry = 1.828 [μm]
Rmax = 2.700 [μm]
Therefore, it was confirmed that the surface roughness of the product of the present invention was smaller at any standard value.

以上の説明では、軸受部材1の両端面1a,1bの仕上げに図2に示す治具13,14を使用しているが、特に表面粗さや表面開孔率が問題とならないのであれば、何れか一方の端面(特にフランジ部7bとの対向側と反対側の端面1b)の仕上げは、従来と同様の治具(図6参照)を使用して行うこともできる。   In the above description, the jigs 13 and 14 shown in FIG. 2 are used for finishing the both end faces 1a and 1b of the bearing member 1. However, if the surface roughness and the surface aperture ratio are not particularly problematic, The finishing of one of the end surfaces (particularly, the end surface 1b opposite to the side facing the flange portion 7b) can also be performed using a jig similar to the conventional one (see FIG. 6).

なお、上述した焼結含油軸受には、例えば真円軸受のように軸受部材の端面に動圧溝を有しないものも含まれ、そのような軸受であっても同様に本発明を適用することができる。   The above-mentioned sintered oil-impregnated bearing includes, for example, a bearing having no dynamic pressure groove on the end surface of the bearing member, such as a perfect circle bearing, and the present invention is similarly applied to such a bearing. Can do.

本発明にかかる焼結含油軸受を使用した軸受装置の断面図である。It is sectional drawing of the bearing apparatus using the sintered oil impregnation bearing concerning this invention. 本発明方法で使用する治具を示すもので、(A)図は(B)図中のA−A断面図、(B)図は(A)図中のB矢視図、(C)図は(B)図中のC−C断面図である。The jig | tool used by this invention method is shown, (A) A figure is AA sectional drawing in (B) figure, (B) figure is (B) arrow figure in (A) figure, (C) figure. (B) It is CC sectional drawing in a figure. バニシ後における軸受部材端面の顕微鏡写真で、(A)図は従来品を、(B)図は本発明品を表す。It is a microscope picture of the bearing member end face after burnishing, (A) figure represents a conventional product, and (B) figure represents the product of the present invention. バニシ後における軸受部材端面の断面曲線を示す図で、(A)図は従来品を、(B)図は本発明品を表す。It is a figure which shows the cross-sectional curve of the bearing member end surface after burnishing, (A) A figure shows a conventional product and (B) figure represents this invention product. 軸受部材端面のバニシ工程を示す側面図である。It is a side view which shows the burnishing process of a bearing member end surface. 従来方法で使用する治具を示すもので、(A)図は(B)図中のA−A断面図、(B)図は(A)図中のB矢視図である。The jig | tool used by the conventional method is shown, (A) A figure is AA sectional drawing in (B) figure, (B) figure is a B arrow view in (A) figure.

符号の説明Explanation of symbols

1 軸受部材
1a 一方の端面
1b 他方の端面
3 動圧溝
5 ラジアル軸受面
DESCRIPTION OF SYMBOLS 1 Bearing member 1a One end surface 1b The other end surface 3 Dynamic pressure groove 5 Radial bearing surface

Claims (1)

含油焼結金属からなる軸受部材を備え、該軸受部材の内周にラジアル軸受面を有し、該軸受部材の両端面のうち一方に動圧溝を有する焼結含油軸受において、
前記軸受部材の動圧溝を有する一方の端面は、硬質材料からなる加圧部材を弾性部材を介して加えられる加圧力で加圧してバニシ仕上げした後、前記動圧溝を加工することにより形成され、表面開孔率が前記動圧溝の領域を含めて10%以下の値であり、かつ、表面粗さが0.05Ra以上、0.4Ra以下であり、他方の端面の表面開孔率が20%以下の値であることを特徴とする焼結含油軸受。
In a sintered oil-impregnated bearing comprising a bearing member made of an oil-impregnated sintered metal, having a radial bearing surface on the inner periphery of the bearing member, and having a dynamic pressure groove on one of both end faces of the bearing member,
One end face of the bearing member having the dynamic pressure groove is formed by pressurizing a pressure member made of a hard material with a pressure applied through an elastic member to finish burnishing, and then processing the dynamic pressure groove. is a 10% the following values, including the area of the surface porosity is the dynamic pressure grooves, and the surface roughness is more than 0.05Ra, or less 0.4 Ra, the surface porosity of the other end face Sintered oil-impregnated bearing characterized in that the value is 20% or less.
JP2005056147A 2005-03-01 2005-03-01 Sintered oil-impregnated bearing Expired - Lifetime JP4275631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005056147A JP4275631B2 (en) 2005-03-01 2005-03-01 Sintered oil-impregnated bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005056147A JP4275631B2 (en) 2005-03-01 2005-03-01 Sintered oil-impregnated bearing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002028380A Division JP2003227512A (en) 2002-02-05 2002-02-05 Oil impregnated sintered bearing and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2005164049A JP2005164049A (en) 2005-06-23
JP4275631B2 true JP4275631B2 (en) 2009-06-10

Family

ID=34737718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005056147A Expired - Lifetime JP4275631B2 (en) 2005-03-01 2005-03-01 Sintered oil-impregnated bearing

Country Status (1)

Country Link
JP (1) JP4275631B2 (en)

Also Published As

Publication number Publication date
JP2005164049A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
US6250807B1 (en) Hydrodynamic type bearing and hydrodynamic type bearing unit
JP2004003582A (en) Dynamic-pressure bearing device
CN1203261C (en) Mfg. method of thrust plate and mfg. method of shaft for fluid power bearing
JP3990181B2 (en) Manufacturing method of hydrodynamic bearing device
WO2006085426A1 (en) Housing for fluid bearing device, housing for dynamic pressure bearing device, and method of manufacturing the same
JP2010053914A (en) Hydrodynamic bearing device, spindle motor, and information device
WO2004038240A1 (en) Hydrodynamic bearing device
JP2006071062A (en) Dynamic pressure bearing
JP4786157B2 (en) Shaft member for hydrodynamic bearing device and manufacturing method thereof
JP4275631B2 (en) Sintered oil-impregnated bearing
JP2003227512A (en) Oil impregnated sintered bearing and manufacturing method therefor
US7789565B2 (en) Fluid dynamic bearing apparatus
JP4610973B2 (en) Method for manufacturing shaft member for hydrodynamic bearing device
JP4504391B2 (en) Manufacturing method of hydrodynamic bearing device
JP4420339B2 (en) Manufacturing method of hydrodynamic bearing
JP2000087953A (en) Dynamic pressure type sintered oil-retaining bearing unit
JP2009030780A (en) Method of manufacturing bearing part and hydraulic dynamic-pressure bearing mechanism, hydraulic dynamic-pressure bearing mechanism, and motor
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP4642416B2 (en) Manufacturing method of shaft member for hydrodynamic bearing device
JP5901979B2 (en) Method for manufacturing fluid dynamic bearing device
JP2005265180A (en) Dynamic pressure bearing device
JP2002276649A (en) Dynamic pressure type bearing unit
JP2005127525A (en) Hydrodynamic bearing device
JP2018053948A (en) Shaft member for fluid bearing device, manufacturing method thereof, and fluid bearing device
WO2012121053A1 (en) Fluid dynamic pressure bearing device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090304

R150 Certificate of patent or registration of utility model

Ref document number: 4275631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term