JP2005265180A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device Download PDF

Info

Publication number
JP2005265180A
JP2005265180A JP2005009434A JP2005009434A JP2005265180A JP 2005265180 A JP2005265180 A JP 2005265180A JP 2005009434 A JP2005009434 A JP 2005009434A JP 2005009434 A JP2005009434 A JP 2005009434A JP 2005265180 A JP2005265180 A JP 2005265180A
Authority
JP
Japan
Prior art keywords
dynamic pressure
bearing
pressure groove
groove region
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005009434A
Other languages
Japanese (ja)
Inventor
Toshiyuki Mizutani
敏幸 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005009434A priority Critical patent/JP2005265180A/en
Publication of JP2005265180A publication Critical patent/JP2005265180A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • F16C33/145Special methods of manufacture; Running-in of sintered porous bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)
  • Rotational Drive Of Disk (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic pressure bearing device for preventing degradation in bearing rigidity, while suppressing increase in rotational torque of a thrust bearing part. <P>SOLUTION: Smooth faces 2b3, 2b4 are defined and formed with difference in level at both end faces 2b1, 2b2 of the flange which face dynamic pressure groove areas 8e1, 7c1. Outermost diameter parts of the smooth faces 2b3, 2b4 are disposed to be closer to an inner diameter side compared with the outermost diameter parts of the dynamic pressure groove areas 8e1, 7c1, and radial lengths of the smooth faces 2b3, 2b4 are shorter than radial lengths of the dynamic pressure groove areas 8e1, 7c1 which face the smooth faces 2b3, 2b4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、軸受すき間に生じる流体の動圧作用によって軸部材を非接触支持する動圧軸受装置に関するものである。この軸受装置は、情報機器、例えばHDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、その他の小型モータ用として好適である。   The present invention relates to a hydrodynamic bearing device that supports a shaft member in a non-contact manner by a hydrodynamic action of a fluid generated between bearing gaps. This bearing device is a spindle motor such as an information device, for example, a magnetic disk device such as an HDD, an optical disk device such as a CD-ROM, CD-R / RW, DVD-ROM / RAM, or a magneto-optical disk device such as MD or MO, It is suitable for polygon scanner motors of laser beam printers (LBP) and other small motors.

上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化等が求められている。これらの要求性能を決定づける構成要素の1つに当該モータのスピンドルを支持する軸受があり、近年では、上記要求性能に優れた特性を有する動圧軸受の使用が検討され、あるいは実際に使用されている。例えば、HDD等のディスク駆動装置のスピンドルモータでは、軸部材をラジアル方向に支持するラジアル軸受部および軸部材をスラスト方向に支持するスラスト軸受部のそれぞれに動圧軸受を使用した動圧軸受装置が用いられる。この動圧軸受装置では、ラジアル軸受部を形成する軸受スリーブの内周面または軸部材の外周面に動圧発生手段としての動圧溝が設けられ、また、スラスト軸受部を形成する軸部材のフランジ部の両端面、あるいは、これに対向する面(軸受スリーブの端面やスラストプレートの端面等)に動圧溝が設けられている。   In addition to high rotational accuracy, the various motors are required to have high speed, low cost, low noise, and the like. One of the components that determine the required performance is a bearing that supports the spindle of the motor. In recent years, the use of a hydrodynamic bearing having characteristics excellent in the required performance has been studied or actually used. Yes. For example, in a spindle motor of a disk drive device such as an HDD, a hydrodynamic bearing device that uses a hydrodynamic bearing for each of a radial bearing portion that supports a shaft member in a radial direction and a thrust bearing portion that supports a shaft member in a thrust direction. Used. In this dynamic pressure bearing device, dynamic pressure grooves as dynamic pressure generating means are provided on the inner peripheral surface of the bearing sleeve forming the radial bearing portion or the outer peripheral surface of the shaft member, and the shaft member forming the thrust bearing portion is provided. Dynamic pressure grooves are provided on both end surfaces of the flange portion or on the opposite surfaces (end surface of the bearing sleeve, end surface of the thrust plate, etc.).

これらの動圧溝を形成する場合、特に軸受スリーブの内周に動圧溝を形成する場合には、動圧溝の加工方法が問題となる。この加工方法の一例として、動圧溝形状に対応した溝型を有する成形型を軸受スリーブ素材の内周に挿入した後、軸受スリーブ素材を、その軸方向を拘束した状態で半径方向に圧迫して、その内周面を成形型に押し付けて塑性変形させる方法が提案されている(例えば、特許文献1参照)。
特開平11−190344号公報
When these dynamic pressure grooves are formed, particularly when the dynamic pressure grooves are formed on the inner periphery of the bearing sleeve, the method of processing the dynamic pressure grooves becomes a problem. As an example of this processing method, after inserting a forming die having a groove shape corresponding to the shape of the dynamic pressure groove into the inner periphery of the bearing sleeve material, the bearing sleeve material is compressed in the radial direction with its axial direction restricted. Thus, a method has been proposed in which the inner peripheral surface is pressed against a mold and plastically deformed (see, for example, Patent Document 1).
JP-A-11-190344

ところが、このように動圧溝を型成形した場合、複数の動圧溝を配列した領域(動圧溝領域)のうち、溝型との非接触部に近い部分では素材に作用する圧縮力が逃げ易く、そのため溝型の凹部に素材の肉が充足され難くなる。従って、例えばラジアル軸受部の動圧溝領域では、図6(b)に示すように、動圧溝18b間の背18cの部分の母線形状が軸方向の両端で低くなる、いわゆる「ダレ」を生じる。この場合、図7に示すように、ラジアル軸受すき間の軸方向両端部のすき間幅G1が軸方向中央部のすき間幅G2に比べて大きくなる。従って、ラジアル軸受すき間のすき間幅が軸方向の全長で一定であると仮定して軸受設計を行うと、すき間幅が大きい部分で動圧効果が減じられるため、所期の動圧効果が得られず、軸受全体の軸受剛性が低下する。   However, when the dynamic pressure grooves are molded in this way, the compression force acting on the material is close to the non-contact portion with the groove mold in the region where the plurality of dynamic pressure grooves are arranged (dynamic pressure groove region). It is easy to escape, so that it becomes difficult for the meat of the material to be filled in the groove-shaped recess. Therefore, for example, in the dynamic pressure groove region of the radial bearing portion, as shown in FIG. 6B, a so-called “sag” in which the generatrix shape of the back portion 18c between the dynamic pressure grooves 18b becomes lower at both ends in the axial direction. Arise. In this case, as shown in FIG. 7, the gap width G1 at both axial ends of the radial bearing gap is larger than the gap width G2 at the axial center. Therefore, if the bearing design is performed on the assumption that the clearance width between the radial bearing gaps is constant over the entire length in the axial direction, the dynamic pressure effect is reduced in the portion where the clearance width is large, so the desired dynamic pressure effect is obtained. Therefore, the bearing rigidity of the entire bearing is reduced.

このような軸受剛性の低下は、例えば動圧溝領域18a、18aの軸方向長さを長く設定することで回復できるが、単に動圧溝領域18a、18aの軸方向長さを長くするだけでは、狭隘なラジアル軸受すき間の軸方向長さが長大化し、この軸受すき間での流体抵抗が増すため、回転トルクの増加を招く。   Such a decrease in bearing rigidity can be recovered by, for example, setting the axial length of the dynamic pressure groove regions 18a, 18a to be long, but simply increasing the axial length of the dynamic pressure groove regions 18a, 18a. Since the axial length of the narrow radial bearing gap increases and the fluid resistance in the bearing gap increases, the rotational torque increases.

同様の問題は、ラジアル軸受部だけでなく、スラスト軸受部の動圧溝でも生じ得る。スラスト軸受部の動圧溝は、例えば動圧溝形状に対応した溝型を用いてプレス成形されるが、その場合には、上記と同様に溝型との非接触領域に近い部分で塑性流動が不十分となるので、動圧溝領域の母線形状にダレが生じ、上記と同様の問題が生じる。   Similar problems can occur not only in the radial bearing portion but also in the dynamic pressure groove of the thrust bearing portion. The dynamic pressure groove of the thrust bearing portion is, for example, press-molded using a groove mold corresponding to the shape of the dynamic pressure groove. In that case, the plastic flow occurs in a portion close to the non-contact area with the groove mold as described above. Becomes insufficient, sagging occurs in the generatrix shape of the dynamic pressure groove region, and the same problem as described above occurs.

そこで、本発明は、スラスト軸受部における回転トルクの増加を避けつつ、動圧溝領域の母線形状のダレに基づく軸受剛性の低下を防止することができる動圧軸受装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a hydrodynamic bearing device capable of preventing a decrease in bearing rigidity based on a sagging of the busbar shape in the hydrodynamic groove region while avoiding an increase in rotational torque in the thrust bearing portion. To do.

前記課題を解決するため、本発明に係る動圧軸受装置は、複数の動圧溝を配列した動圧溝領域と、動圧溝領域とスラスト方向に対向する平滑面と、動圧溝領域と平滑面との間に形成され、固定側と回転側の相対回転で流体動圧を生じる軸受すき間とを備える動圧軸受装置において、平滑面の最外径部を、動圧溝領域の最外径部よりも内径側に配したことを特徴とする。   In order to solve the above problems, a hydrodynamic bearing device according to the present invention includes a hydrodynamic groove region in which a plurality of hydrodynamic grooves are arranged, a smooth surface facing the hydrodynamic groove region in the thrust direction, and a hydrodynamic groove region. In a hydrodynamic bearing device including a bearing gap formed between a smooth surface and generating fluid dynamic pressure by relative rotation between the fixed side and the rotating side, the outermost diameter portion of the smooth surface is defined as the outermost portion of the hydrodynamic groove region. It is characterized by being arranged closer to the inner diameter side than the diameter portion.

この構成によれば、平滑面を、ダレの顕著な動圧溝領域の端部を除外してほぼ一定の溝深さを有する動圧溝領域の中央部と対向させることができる。従って、スラスト軸受すき間をほぼ一定幅にでき、この一定幅の軸受すき間で規定の動圧効果が得られるよう動圧溝領域全体の径方向幅を設計することにより、軸受剛性の低下を回避することができる。また、かかる構成によれば、動圧溝領域の外径側端部に形成されたダレ部を平滑面以外の部分と対向させることで、この部分のすき間幅を上記スラスト軸受すき間よりも大きくすることができる。従って、流体抵抗によるトルクの増大を最小限に抑えることができる。また、平滑面を、その径方向幅が動圧溝領域の径方向幅よりも小さくなるように段差をもって区画して形成することにより、平滑面以外の部分と動圧溝領域のダレ部とを、その両端部で対向させることができる。   According to this configuration, the smooth surface can be opposed to the central portion of the dynamic pressure groove region having a substantially constant groove depth except for the end portion of the dynamic pressure groove region where the sagging is noticeable. Therefore, it is possible to make the thrust bearing gap substantially constant, and by designing the radial width of the entire dynamic pressure groove region so as to obtain the specified dynamic pressure effect in the bearing gap of this constant width, avoiding reduction in bearing rigidity. be able to. Further, according to such a configuration, the gap formed at the outer diameter side end portion of the dynamic pressure groove region is opposed to the portion other than the smooth surface, so that the clearance width of this portion is larger than the thrust bearing clearance. be able to. Therefore, an increase in torque due to fluid resistance can be minimized. Further, by forming the smooth surface with a step so that the radial width thereof is smaller than the radial width of the dynamic pressure groove region, a portion other than the smooth surface and the sagging portion of the dynamic pressure groove region are formed. , Can be opposed at both ends.

なお、平滑面と動圧溝領域の軸方向長さの大小関係に着目したものとして、特開2002−70842号公報に記載された発明があるが、この発明では、平滑面の長さを動圧溝領域の長さよりも長くしており、長さの大小関係が本願と逆の態様になっている。   In addition, there is an invention described in Japanese Patent Application Laid-Open No. 2002-70842 as focusing on the magnitude relationship between the smooth surface and the axial length of the dynamic pressure groove region. In this invention, the length of the smooth surface is adjusted. The length is longer than the length of the pressure groove region, and the size relationship is opposite to that of the present application.

本願発明は、動圧軸受で構成したスラスト軸受部を有する動圧軸受装置に適用することができる。この動圧軸受装置は、軸部材に外径側に張り出したフランジ部を設けたもので、軸受すき間は、フランジ部の端面と当該端面に対向する面との間に形成される(スラスト軸受すき間)。このスラスト軸受すき間に形成された流体動圧により軸部材がスラスト方向に非接触支持される。この場合、動圧溝領域は、軸部材のフランジ部の端面、あるいは、これに対向する面のうち何れか一方に形成され、平滑面は他方に形成される。   The present invention can be applied to a hydrodynamic bearing device having a thrust bearing portion constituted by a hydrodynamic bearing. This dynamic pressure bearing device has a shaft member provided with a flange portion projecting to the outer diameter side, and a bearing clearance is formed between an end surface of the flange portion and a surface facing the end surface (thrust bearing clearance). ). The shaft member is supported in a non-contact manner in the thrust direction by the fluid dynamic pressure formed in the thrust bearing gap. In this case, the dynamic pressure groove region is formed on either one of the end surface of the flange portion of the shaft member or the surface facing this, and the smooth surface is formed on the other.

本願発明は、動圧軸受で構成したラジアル軸受部にも適用することができる。ラジアル軸受部を有する動圧軸受装置は、既述の動圧溝領域、平滑面、軸受すき間、および軸部材に加え、軸受スリーブを備える。前記軸受すき間としてのラジアル軸受すき間は、軸受スリーブの内周面と軸部材の外周面との間に形成され、このラジアル軸受すき間に形成された流体動圧により軸部材がラジアル方向に非接触支持される。この場合、例えば動圧溝領域は軸受スリーブの内周に、平滑面は軸部材の外周に形成することができる。   The present invention can also be applied to a radial bearing portion constituted by a dynamic pressure bearing. A hydrodynamic bearing device having a radial bearing portion includes a bearing sleeve in addition to the hydrodynamic groove region, the smooth surface, the bearing clearance, and the shaft member described above. The radial bearing gap as the bearing gap is formed between the inner peripheral surface of the bearing sleeve and the outer peripheral surface of the shaft member, and the shaft member is supported in a non-contact manner in the radial direction by the fluid dynamic pressure formed in the radial bearing gap. Is done. In this case, for example, the dynamic pressure groove region can be formed on the inner periphery of the bearing sleeve, and the smooth surface can be formed on the outer periphery of the shaft member.

上記動圧溝領域は、望ましくはその形状に対応した型を押し付けて塑性加工することにより、所定形状(ヘリングボーン形状、スパイラル形状等)に成形される。型を押し付けるのであるから、転造による動圧溝成形は除外され、塑性加工するのであるから、素材の塑性変形を伴わない例えば樹脂の射出成形による動圧溝成形も除外される。   The dynamic pressure groove region is preferably formed into a predetermined shape (herringbone shape, spiral shape, etc.) by pressing a mold corresponding to the shape and plastic working. Since the mold is pressed, dynamic pressure groove forming by rolling is excluded, and plastic working is excluded, and dynamic pressure groove forming by, for example, resin injection molding without plastic deformation of the material is also excluded.

以上に述べた動圧軸受装置で、例えばディスク装置のスピンドルモータを構成することができ、これによれば、高回転精度で低トルクのモータを提供することが可能となる。   With the dynamic pressure bearing device described above, for example, a spindle motor of a disk device can be configured, and according to this, it is possible to provide a motor with high rotational accuracy and low torque.

以上のように、本発明に係る動圧軸受装置によれば、スラスト軸受部における回転トルクの増加を避けつつ、動圧溝領域の母線形状のダレに基づく軸受剛性の低下を防止することができる。   As described above, according to the hydrodynamic bearing device according to the present invention, it is possible to prevent a decrease in bearing rigidity based on a busbar shape sagging in the hydrodynamic groove region while avoiding an increase in rotational torque in the thrust bearing portion. .

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本願発明の一実施形態に係る動圧軸受装置を組込んだ情報機器用スピンドルモータの全体構成を概念的に示している。この情報機器用スピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に装着されたディスクハブ3と、半径方向のギャップを介して対向させたモータステータ4およびモータロータ5とを備えている。モータステータ4はケーシング6の外周に取り付けられ、モータロータ5はディスクハブ3の内周に取り付けられる。動圧軸受装置1のハウジング7は、ケーシング6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが一枚又は複数枚保持される。モータステータ4に通電すると、モータステータ4とモータロータ5との間の励磁力でモータロータ5が回転し、それによってディスクハブ3および軸部材2が一体となって回転する。   FIG. 1 conceptually shows the overall configuration of a spindle motor for information equipment incorporating a fluid dynamic bearing device according to an embodiment of the present invention. This spindle motor for information equipment is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that supports the shaft member 2 in a non-contact manner in a freely rotatable manner, a disk hub 3 mounted on the shaft member 2, A motor stator 4 and a motor rotor 5 are provided to face each other with a gap in the radial direction. The motor stator 4 is attached to the outer periphery of the casing 6, and the motor rotor 5 is attached to the inner periphery of the disc hub 3. The housing 7 of the hydrodynamic bearing device 1 is mounted on the inner periphery of the casing 6. The disk hub 3 holds one or more disks D such as a magnetic disk. When the motor stator 4 is energized, the motor rotor 5 is rotated by the exciting force between the motor stator 4 and the motor rotor 5, whereby the disk hub 3 and the shaft member 2 are rotated together.

図2は、動圧軸受装置1を示している。この動圧軸受装置1は、一端に開口部7a、他端にスラストプレート7cを有する有底円筒状のハウジング7と、ハウジング7の内周に固定される円筒状の軸受スリーブ8と、軸受スリーブ8の内周に挿入される軸部材2と、ハウジング7の開口部7aに固定されるシール部材9とを主要な部材として構成される。なお、説明の便宜上、ハウジング7の開口部7aの側を上方向、ハウジング7のスラストプレート7cの側を下方向として以下説明を行う。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a bottomed cylindrical housing 7 having an opening 7a at one end and a thrust plate 7c at the other end, a cylindrical bearing sleeve 8 fixed to the inner periphery of the housing 7, and a bearing sleeve. The shaft member 2 to be inserted into the inner periphery of 8 and the seal member 9 fixed to the opening 7a of the housing 7 are configured as main members. For convenience of explanation, the following description will be made with the opening 7a side of the housing 7 as the upward direction and the thrust plate 7c side of the housing 7 as the downward direction.

ハウジング7は、例えば真ちゅう等の軟質金属材で形成され、円筒状の側部7bとハウジング7の底部となる円板蓋状のスラストプレート7cとを別体構造として備えている。スラストプレート7cの内底面には、動圧溝7c2(図5参照)を複数配列したスパイラル形状等の動圧溝領域7c1がプレス加工で成形されている。また、ハウジング7の側部7bの内周面7dの下端には、他所よりも大径に形成した大径部7eが形成され、この大径部7eにスラストプレート7cが例えば加締め、接着等の手段で固定されている。   The housing 7 is formed of, for example, a soft metal material such as brass, and includes a cylindrical side portion 7b and a disc-covered thrust plate 7c serving as a bottom portion of the housing 7 as separate structures. On the inner bottom surface of the thrust plate 7c, a dynamic pressure groove region 7c1 such as a spiral shape in which a plurality of dynamic pressure grooves 7c2 (see FIG. 5) are arranged is formed by press working. Further, a large diameter portion 7e having a larger diameter than other portions is formed at the lower end of the inner peripheral surface 7d of the side portion 7b of the housing 7, and a thrust plate 7c is caulked, adhered, etc. to the large diameter portion 7e. It is fixed by means of

軸受スリーブ8は、例えば焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体で円筒状に形成されている。軸受スリーブ8の内周には、例えば図3(a)に示すように、動圧溝8b、8bをそれぞれ複数配列したへリングボーン形状の動圧溝領域8a、8aが軸方向に離隔して2箇所形成されている。軸受スリーブ8の下側端面8eには、動圧溝8e2(図5参照)を複数配列したスパイラル形状等の動圧溝領域8e1が形成されている。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body made of sintered metal, for example, a sintered metal porous body mainly containing copper. On the inner periphery of the bearing sleeve 8, for example, as shown in FIG. 3A, herringbone-shaped dynamic pressure groove regions 8 a and 8 a in which a plurality of dynamic pressure grooves 8 b and 8 b are arranged are separated in the axial direction. Two places are formed. On the lower end surface 8e of the bearing sleeve 8, a dynamic pressure groove region 8e1 having a spiral shape or the like in which a plurality of dynamic pressure grooves 8e2 (see FIG. 5) are arranged is formed.

軸受スリーブ内周の動圧溝領域8aおよび下側端面8eの動圧溝領域8e1は何れも型成形される。このうち、軸受スリーブ8の内周面に形成される動圧溝領域8aは、各領域8aの動圧溝形状に対応した溝型を有するコアロッドを軸受スリーブ素材の内周に挿入した後、軸受スリーブ素材を、その軸方向を拘束した状態で半径方向に圧迫して、その内周面をコアロッドに押し付け、内周面の塑性変形により溝型形状を転写することにより成形される。かかる塑性加工後のコアロッドの脱型は、圧迫力の解除に伴う軸受スリーブ素材のスプリングバックにより、互いに干渉させることなくスムーズに行うことができる。軸受スリーブ8の下側端面8eに形成される動圧溝領域8e1は、軸受スリーブ素材を軸方向から拘束する治具(パンチ等)の端面にその動圧溝形状に対応した溝型を形成することにより、内周面の動圧溝領域8aと同時に成形することができる。   Both the dynamic pressure groove region 8a on the inner periphery of the bearing sleeve and the dynamic pressure groove region 8e1 on the lower end surface 8e are molded. Among these, the dynamic pressure groove region 8a formed on the inner peripheral surface of the bearing sleeve 8 is inserted into the inner periphery of the bearing sleeve material after inserting a core rod having a groove shape corresponding to the dynamic pressure groove shape of each region 8a. The sleeve material is pressed in the radial direction with its axial direction constrained, the inner peripheral surface is pressed against the core rod, and the groove shape is transferred by plastic deformation of the inner peripheral surface. The mold removal of the core rod after the plastic working can be smoothly performed without causing interference with each other by the spring back of the bearing sleeve material accompanying the release of the compression force. The dynamic pressure groove region 8e1 formed on the lower end surface 8e of the bearing sleeve 8 forms a groove shape corresponding to the shape of the dynamic pressure groove on the end surface of a jig (punch or the like) that restrains the bearing sleeve material from the axial direction. By this, it can shape | mold simultaneously with the dynamic pressure groove area | region 8a of an internal peripheral surface.

軸部材2は、例えばステンレス鋼等の金属材料で形成されており、軸部2cと、軸部2cの下端に一体または別体に設けられたフランジ部2bとを備えている。図4に拡大して示すように、軸部2cは段付の軸状で、軸部2cの外周面2aのうち、軸受組立後に軸受スリーブ内周の二つの動圧溝領域8aと対向する領域には、他所よりも大径でかつ凹凸のない円筒状の平滑面2dがそれぞれ形成されている。これら平滑面2d、2dの軸方向両側は、平滑面2d、2dを除く外周面2aと段差Hをもって区画されている。両平滑面2dの軸方向の長さ寸法Bは、何れも対応する動圧溝領域8aの軸方向の長さ寸法A(図3参照)よりも小さく、両平滑面2dの何れもその全領域が動圧溝領域8aと対向している。   The shaft member 2 is made of a metal material such as stainless steel, for example, and includes a shaft portion 2c and a flange portion 2b provided integrally or separately at the lower end of the shaft portion 2c. As shown in an enlarged view in FIG. 4, the shaft portion 2c has a stepped shaft shape, and is a region of the outer peripheral surface 2a of the shaft portion 2c that faces two dynamic pressure groove regions 8a on the inner periphery of the bearing sleeve after the assembly of the bearing. Are formed with a cylindrical smooth surface 2d having a diameter larger than that of other portions and having no irregularities. Both sides of the smooth surfaces 2d and 2d in the axial direction are partitioned by a step H from the outer peripheral surface 2a excluding the smooth surfaces 2d and 2d. The length dimension B in the axial direction of both smooth surfaces 2d is smaller than the length dimension A in the axial direction of the corresponding dynamic pressure groove region 8a (see FIG. 3), and both smooth surfaces 2d are all in their entire regions. Is opposed to the dynamic pressure groove region 8a.

なお、図4では、理解を容易にするため、段差Hの大きさを誇張して描いているが、実際には段差Hは10μm以上が適当である。段差Hが10μmよりも小さいと後述するトルクの低減効果が不十分となることが考えられる。動圧溝の溝深さも実際は、1〜20μm程度であるが、図面ではこれを誇張して描いている。   In FIG. 4, the size of the step H is exaggerated for easy understanding, but in practice, the step H is suitably 10 μm or more. If the level difference H is smaller than 10 μm, it is considered that the torque reduction effect described later becomes insufficient. The depth of the dynamic pressure groove is actually about 1 to 20 μm, but this is exaggerated in the drawing.

シール部材9は環状を成すものであり、図2に示すように、ハウジング7の開口部7aの内周面に圧入、接着等の手段で固定される。この実施形態において、シール部材9の内周面は円筒状に形成され、シール部材9の下側端面9aは軸受スリーブ8の上側端面8fと当接している。   The seal member 9 has an annular shape, and is fixed to the inner peripheral surface of the opening 7a of the housing 7 by means such as press-fitting and bonding as shown in FIG. In this embodiment, the inner peripheral surface of the seal member 9 is formed in a cylindrical shape, and the lower end surface 9 a of the seal member 9 is in contact with the upper end surface 8 f of the bearing sleeve 8.

この動圧軸受装置1の組立後は、軸部材2の軸部2cが軸受スリーブ8の内周に挿入され、フランジ部2bが軸受スリーブ8の下側端面8eとハウジング7のスラストプレート7c内底面との間の空間部に収容される。このとき、シール部材9の内周面に対向する軸部2cのテーパ状外周面との間には、ハウジング7の外部方向(同図で上方向)に向かって漸次拡大するテーパ形状のシール空間Sが形成される。シール部材9で密封されたハウジング7の内部空間は、軸受スリーブ8の内部空孔を含め、潤滑油で充満され、その潤滑油の油面はシール空間S内に維持される。   After the assembly of the hydrodynamic bearing device 1, the shaft portion 2 c of the shaft member 2 is inserted into the inner periphery of the bearing sleeve 8, and the flange portion 2 b is the lower end surface 8 e of the bearing sleeve 8 and the inner bottom surface of the thrust plate 7 c of the housing 7. It is accommodated in the space part between. At this time, between the tapered outer peripheral surface of the shaft portion 2 c facing the inner peripheral surface of the seal member 9, a taper-shaped seal space that gradually expands toward the outside direction of the housing 7 (upward in the figure). S is formed. The internal space of the housing 7 sealed with the seal member 9 is filled with lubricating oil including the internal holes of the bearing sleeve 8, and the oil level of the lubricating oil is maintained in the sealing space S.

この状態で軸部材2を軸受スリーブ8に対して回転させると、軸部材2の平滑面2dとこれに対向する動圧溝領域8aとの間のラジアル軸受すき間にそれぞれ潤滑油の動圧が発生し、軸部材2をラジアル方向で非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが軸方向に離隔して形成される。同時に、軸受スリーブ8の下側端面8eと軸部材2のフランジ部2bの上側端面2b1との間、およびスラストプレート7cの内底面とフランジ部2bの下側端面2b2との間の各スラスト軸受すき間にそれぞれ潤滑油の動圧が発生し、軸部材2をスラスト方向で非接触支持する第1スラスト軸受部S1および第2スラスト軸受部S2が形成される。   When the shaft member 2 is rotated with respect to the bearing sleeve 8 in this state, the dynamic pressure of the lubricating oil is generated between the radial bearing gaps between the smooth surface 2d of the shaft member 2 and the dynamic pressure groove region 8a opposed thereto. The first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in the radial direction in a non-contact manner are formed apart from each other in the axial direction. At the same time, each thrust bearing gap between the lower end surface 8e of the bearing sleeve 8 and the upper end surface 2b1 of the flange portion 2b of the shaft member 2 and between the inner bottom surface of the thrust plate 7c and the lower end surface 2b2 of the flange portion 2b. The first and second thrust bearing portions S1 and S2 are generated in each of which the dynamic pressure of the lubricating oil is generated to support the shaft member 2 in the thrust direction in a non-contact manner.

ラジアル軸受部R1、R2の動圧溝領域8aでは、これを型成形した関係で、図3および図4に示すように、その軸方向の母線形状において、軸方向両端の動圧溝8b間の背の部分8cにダレを生じるが、本発明では、平滑面2dの軸方向長さ寸法Bを動圧溝領域8aの軸方向長さ寸法Aよりも短くしているので、平滑面2dとの対向領域から動圧溝領域8a両端のダレ部を排除し、平滑面2dをほぼ一定の溝深さを有する動圧溝領域8aの中央部と対向させることができる。従って、ラジアル軸受すき間をほぼ一定幅にでき、この一定幅の軸受すき間で規定の動圧効果が得られるよう動圧溝領域8aの軸方向長さを設定することにより、軸受剛性の低下を回避することができる。これは、従来の軸受設計よりも動圧溝領域の軸方向長さを増大させることを意味するが、その場合でも動圧効果への関与の乏しいダレ部を平滑面2dとの対向領域から排除して平滑面2dよりも小径の軸部外周面2aと対向させ、段差Hにより、この部分のすき間幅を一定幅の軸受すき間よりも大きくしているので、流体抵抗によるトルクの増大を最小限に抑えることができる。従って、軸受剛性の向上とトルクの低減という二律背反の目的を両立することが可能となる。   In the dynamic pressure groove region 8a of the radial bearing portions R1 and R2, this is formed by molding, and as shown in FIG. 3 and FIG. 4, in the shape of the axial line, between the dynamic pressure grooves 8b at both ends in the axial direction. In the present invention, the axial length dimension B of the smooth surface 2d is shorter than the axial length dimension A of the dynamic pressure groove region 8a. The sagging portions at both ends of the dynamic pressure groove region 8a can be eliminated from the facing region, and the smooth surface 2d can be made to face the central portion of the dynamic pressure groove region 8a having a substantially constant groove depth. Therefore, the radial bearing clearance can be made substantially constant, and the axial length of the dynamic pressure groove region 8a is set so that the prescribed dynamic pressure effect can be obtained in the bearing clearance of this constant width, thereby avoiding a decrease in bearing rigidity. can do. This means that the axial length of the dynamic pressure groove region is increased as compared with the conventional bearing design, but even in this case, the sagging portion that is less involved in the dynamic pressure effect is excluded from the region facing the smooth surface 2d. Then, the shaft portion outer peripheral surface 2a having a diameter smaller than that of the smooth surface 2d is opposed to each other, and the gap width of this portion is made larger than the bearing clearance having a constant width by the step H, so that an increase in torque due to fluid resistance is minimized. Can be suppressed. Accordingly, it is possible to achieve both the contradictory purposes of improving the bearing rigidity and reducing the torque.

なお、動圧溝領域8aと平滑面2dの軸方向長さの差は、動圧溝領域8aに生じるダレ部の長さに応じて定められる。現状では、動圧溝領域8aの軸方向両端から概ね0.2mmの範囲にダレが生じているので、上記軸方向長さの差は0.2mmの2倍以上、すなわち0.4mm以上に設定するのが望ましい。   The difference in the axial length between the dynamic pressure groove region 8a and the smooth surface 2d is determined according to the length of the sag portion generated in the dynamic pressure groove region 8a. At present, sagging has occurred in a range of approximately 0.2 mm from both axial ends of the dynamic pressure groove region 8a, and thus the difference in axial length is set to at least twice 0.2 mm, that is, 0.4 mm or more. It is desirable to do.

以上の説明では、ラジアル軸受部R1、R2の動圧溝領域8aを例示したが、同様の構成はスラスト軸受部S1、S2の動圧溝領域8e1、7c1にも適用できる。これらの動圧溝領域8e1、7c1も、上述のように動圧溝形状に対応した溝型を押し付けることにより素材を塑性変形させて形成されるため、図5に模式化して示すように、動圧溝領域8e1、7c1の径方向両端ではダレを生じるが、これら動圧溝領域8e1、7c1に対向するフランジ部の両端面2b1、2b2に段差をもって平滑面2b3、2b4を区画形成し、かつこの平滑面2b3、2b4の半径方向長さを対向する動圧溝領域8e1、7c1の半径方向長さよりも短くすることにより、スラスト軸受部S1、S2での軸受剛性の向上とトルクの低減とを両立することが可能となる。なお、図5でも図4と同様に、動圧溝8e2、7c2の溝深さをそれぞれ誇張して描いている。   In the above description, the dynamic pressure groove regions 8a of the radial bearing portions R1 and R2 are illustrated, but the same configuration can be applied to the dynamic pressure groove regions 8e1 and 7c1 of the thrust bearing portions S1 and S2. These dynamic pressure groove regions 8e1 and 7c1 are also formed by plastically deforming the material by pressing the groove mold corresponding to the dynamic pressure groove shape as described above. Therefore, as schematically shown in FIG. Draft occurs at both ends in the radial direction of the pressure groove regions 8e1 and 7c1, but the smooth surfaces 2b3 and 2b4 are partitioned and formed with steps on both end surfaces 2b1 and 2b2 of the flange portion facing the dynamic pressure groove regions 8e1 and 7c1. By making the length of the smooth surfaces 2b3 and 2b4 in the radial direction shorter than the length of the dynamic pressure groove regions 8e1 and 7c1 facing each other, both improvement in bearing rigidity and reduction in torque in the thrust bearing portions S1 and S2 are achieved. It becomes possible to do. In FIG. 5, the groove depths of the dynamic pressure grooves 8e2 and 7c2 are exaggerated as in FIG.

また、この実施形態では、軸受スリーブ8の下側端面8eに動圧溝領域8e1を、軸部材2のフランジ部2bの上側端面2b1に第1平滑面2b3をそれぞれ形成したものを例示したが、これとは逆に軸受スリーブ8の下側端面8eに平滑面を、フランジ部2bの上側端面2b1に動圧溝領域を形成することも可能である。ハウジング7のスラストプレート7c内底面に形成された動圧溝領域7c1、および軸部材2のフランジ部2bの下側端面2b2に形成された第2平滑面2b4についても、同様に、互いに対向する面と入れ替えて形成することができる。   In this embodiment, the dynamic pressure groove region 8e1 is formed on the lower end surface 8e of the bearing sleeve 8 and the first smooth surface 2b3 is formed on the upper end surface 2b1 of the flange portion 2b of the shaft member 2. On the contrary, it is also possible to form a smooth surface on the lower end surface 8e of the bearing sleeve 8 and a dynamic pressure groove region on the upper end surface 2b1 of the flange portion 2b. Similarly, the dynamic pressure groove region 7c1 formed on the inner bottom surface of the thrust plate 7c of the housing 7 and the second smooth surface 2b4 formed on the lower end surface 2b2 of the flange portion 2b of the shaft member 2 face each other. And can be formed.

本願発明の一実施形態に係る動圧軸受装置を組み込んだ情報機器用スピンドルモータの断面図である。1 is a cross-sectional view of a spindle motor for information equipment incorporating a fluid dynamic bearing device according to an embodiment of the present invention. 本願発明の一実施形態に係る動圧軸受装置の断面図である。It is sectional drawing of the fluid dynamic bearing apparatus which concerns on one Embodiment of this invention. (a)は軸受スリーブの断面図、(b)は軸受スリーブ内周の動圧溝領域の軸方向の母線形状を拡大して示す図である。(A) is sectional drawing of a bearing sleeve, (b) is a figure which expands and shows the bus-bar shape of the axial direction of the dynamic pressure groove area | region of a bearing sleeve inner periphery. ラジアル軸受すき間を形成する動圧溝領域と平滑面との径方向における位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship in the radial direction of the dynamic pressure groove area | region which forms a radial bearing clearance, and a smooth surface. スラスト軸受すき間を形成する動圧溝領域と平滑面との軸方向における位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship in the axial direction of the dynamic pressure groove area | region which forms a thrust bearing clearance, and a smooth surface. (a)は従来の軸受スリーブの断面図、(b)はその内周の動圧溝領域の軸方向の母線形状を拡大して示す図である。(A) is sectional drawing of the conventional bearing sleeve, (b) is a figure which expands and shows the bus-bar shape of the axial direction of the dynamic pressure groove area | region of the inner periphery. ラジアル軸受すき間を形成する動圧溝領域と平滑面との径方向における従来の位置関係を示す模式図である。It is a schematic diagram which shows the conventional positional relationship in the radial direction of the dynamic pressure groove area | region which forms a radial bearing clearance, and a smooth surface.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
2a 外周面
2b フランジ部
2b3 平滑面
2b4 平滑面
2c 軸部
2d 平滑面
3 ディスクハブ
4 モータステータ
5 モータロータ
6 ケーシング
7 ハウジング
7c 底部
7c1 動圧溝領域
7c2 動圧溝
7d 内周面
7e 大径部
8 軸受スリーブ
8a 動圧溝領域
8b 動圧溝
8c 背
8e 下側端面
8e1 動圧溝領域
8e2 動圧溝
9 シール部材
A 軸方向の長さ寸法(動圧溝領域)
B 軸方向の長さ寸法(平滑面)
R1 ラジアル軸受部
R2 ラジアル軸受部
S1 スラスト軸受部
S2 スラスト軸受部

DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 2a Outer peripheral surface 2b Flange part 2b3 Smooth surface 2b4 Smooth surface 2c Shaft part 2d Smooth surface 3 Disc hub 4 Motor stator 5 Motor rotor 6 Casing 7 Housing 7c Bottom part 7c1 Dynamic pressure groove area 7c2 Dynamic pressure groove 7d Inner peripheral surface 7e Large diameter portion 8 Bearing sleeve 8a Dynamic pressure groove region 8b Dynamic pressure groove 8c Back 8e Lower end surface 8e1 Dynamic pressure groove region 8e2 Dynamic pressure groove 9 Seal member A Axial length dimension (dynamic pressure groove region)
B Axial length (smooth surface)
R1 Radial bearing part R2 Radial bearing part S1 Thrust bearing part S2 Thrust bearing part

Claims (5)

複数の動圧溝を配列した動圧溝領域と、動圧溝領域とスラスト方向に対向する平滑面と、動圧溝領域と平滑面との間に形成され、固定側と回転側の相対回転で流体動圧を生じる軸受すき間とを備える動圧軸受装置において、
平滑面の最外径部を、動圧溝領域の最外径部よりも内径側に配したことを特徴とする動圧軸受装置。
A dynamic pressure groove region in which a plurality of dynamic pressure grooves are arranged, a smooth surface facing the dynamic pressure groove region in the thrust direction, and a dynamic pressure groove region and the smooth surface are formed between the fixed side and the rotation side. In a hydrodynamic bearing device comprising a bearing gap that generates fluid dynamic pressure at
A hydrodynamic bearing device, wherein an outermost diameter portion of a smooth surface is arranged on an inner diameter side with respect to an outermost diameter portion of a dynamic pressure groove region.
平滑面を、その径方向幅が動圧溝領域の径方向幅よりも小さくなるように段差でもって区画して形成した請求項1記載の動圧軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein the smooth surface is formed with a step so that a radial width thereof is smaller than a radial width of the dynamic pressure groove region. さらに、外径側に張り出したフランジ部を有する軸部材を備え、前記軸受すき間をフランジ部の端面と当該端面に対向する面との間に形成した請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, further comprising a shaft member having a flange portion projecting to the outer diameter side, wherein the bearing gap is formed between an end surface of the flange portion and a surface facing the end surface. 動圧溝領域が、その形状に対応した型を押し付けて塑性加工されたものである請求項1記載の動圧軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein the hydrodynamic groove region is plastically processed by pressing a die corresponding to the shape thereof. 請求項1〜4の何れかに記載した動圧軸受装置を有するディスク装置のスピンドルモータ。   A spindle motor of a disk device having the hydrodynamic bearing device according to any one of claims 1 to 4.
JP2005009434A 2005-01-17 2005-01-17 Dynamic pressure bearing device Withdrawn JP2005265180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009434A JP2005265180A (en) 2005-01-17 2005-01-17 Dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005009434A JP2005265180A (en) 2005-01-17 2005-01-17 Dynamic pressure bearing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004075101A Division JP4459669B2 (en) 2004-03-16 2004-03-16 Hydrodynamic bearing device

Publications (1)

Publication Number Publication Date
JP2005265180A true JP2005265180A (en) 2005-09-29

Family

ID=35089941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009434A Withdrawn JP2005265180A (en) 2005-01-17 2005-01-17 Dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JP2005265180A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040905A (en) * 2012-08-23 2014-03-06 Samsung Electro-Mechanics Co Ltd Motor and hard disc drive including the same
US8926183B2 (en) 2011-03-09 2015-01-06 Ntn Corporation Fluid dynamic bearing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8926183B2 (en) 2011-03-09 2015-01-06 Ntn Corporation Fluid dynamic bearing device
JP2014040905A (en) * 2012-08-23 2014-03-06 Samsung Electro-Mechanics Co Ltd Motor and hard disc drive including the same
US8737016B1 (en) 2012-08-23 2014-05-27 Samsung Electro-Mechanics Co., Ltd. Motor and hard disk drive including the same

Similar Documents

Publication Publication Date Title
JP4159332B2 (en) Hydrodynamic bearing device
JP2007263228A (en) Dynamic pressure bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP4459669B2 (en) Hydrodynamic bearing device
JP2005337490A (en) Dynamic pressure bearing device
JP2005265180A (en) Dynamic pressure bearing device
JP4219903B2 (en) Hydrodynamic bearing device
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP2006329391A (en) Dynamic pressure bearing arrangement
JP4579013B2 (en) Hydrodynamic bearing device
JP4588561B2 (en) Hydrodynamic bearing device
JP4738831B2 (en) Hydrodynamic bearing device
JP4615328B2 (en) Hydrodynamic bearing device
JP2009014121A (en) Dynamic pressure bearing device and its manufacturing method
JP4554324B2 (en) Hydrodynamic bearing device
JP4738835B2 (en) Hydrodynamic bearing device
JP4739247B2 (en) Hydrodynamic bearing device
JP4832736B2 (en) Hydrodynamic bearing unit
JP5172213B2 (en) Hydrodynamic bearing device and method for manufacturing shaft member thereof
JP2006105331A (en) Bearing sleeve and its manufacturing method
JP4030517B2 (en) Hydrodynamic bearing device
JP4498932B2 (en) Hydrodynamic bearing device
JP2020051546A (en) Sintered bearing, fluid dynamic pressure bearing device and motor
JP2006214542A (en) Fluid bearing device
JP2006200583A (en) Dynamic pressure bearing device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605