JP2006200583A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device Download PDF

Info

Publication number
JP2006200583A
JP2006200583A JP2005010751A JP2005010751A JP2006200583A JP 2006200583 A JP2006200583 A JP 2006200583A JP 2005010751 A JP2005010751 A JP 2005010751A JP 2005010751 A JP2005010751 A JP 2005010751A JP 2006200583 A JP2006200583 A JP 2006200583A
Authority
JP
Japan
Prior art keywords
bearing
shaft member
hydrodynamic
thrust
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005010751A
Other languages
Japanese (ja)
Inventor
Isao Komori
功 古森
Atsushi Hiraide
淳 平出
Tetsuya Kurimura
栗村  哲弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005010751A priority Critical patent/JP2006200583A/en
Publication of JP2006200583A publication Critical patent/JP2006200583A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Rotational Drive Of Disk (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure a superior thrust bearing function, by preventing plastic deformation of a thrust surface, when pressing a rotary member in a shaft member. <P>SOLUTION: A guide surface 2c forming a guide when pressing in a disk hub as the rotary member, is formed on the upper end of the shaft member. The guide surface 2c, an outer peripheral surface 2a3 of the shaft member 2 adjacent to the guide surface 2c, and a boundary part between the guide surface 2c and the outer peripheral surface 2a3 are simultaneously ground, and a blunting part 2d of a radius (r) is formed in the boundary part. Thus, the disk hub can be pressed in and fixed by press-in force less than yield stress of a member surface for constituting a thrust bearing part, by reducing press-in resistance when pressing the disk hub in the shaft end of the shaft member. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、軸受隙間に生じる流体(潤滑流体)の動圧作用によって軸部材を非接触支持する動圧軸受装置に関するものである。この軸受装置は、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置などのスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイール、あるいは電気機器、例えば軸流ファンなどの小型モータ用の軸受装置として好適である。   The present invention relates to a hydrodynamic bearing device that supports a shaft member in a non-contact manner by a hydrodynamic action of a fluid (lubricating fluid) generated in a bearing gap. This bearing device is a spindle of information equipment such as magnetic disk devices such as HDD and FDD, optical disk devices such as CD-ROM, CD-R / RW and DVD-ROM / RAM, and magneto-optical disk devices such as MD and MO. It is suitable as a bearing device for a motor, a polygon scanner motor of a laser beam printer (LBP), a color wheel of a projector, or a small motor such as an electric device such as an axial fan.

上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化などが求められている。これらの要求性能を決定づける構成要素の一つに当該モータのスピンドルを支持する軸受があり、近年では、この種の軸受として、上記要求性能に優れた特性を有する動圧軸受(流体動圧軸受)の使用が検討され、あるいは実際に使用されている。   In addition to high rotational accuracy, the various motors are required to have high speed, low cost, low noise, and the like. One of the components that determine the required performance is a bearing that supports the spindle of the motor. In recent years, as this type of bearing, a hydrodynamic bearing (fluid hydrodynamic bearing) having characteristics excellent in the required performance. Is being considered or actually used.

例えば、HDD等のディスク装置のスピンドルモータに組込まれる動圧軸受装置では、軸部材をラジアル方向に回転自在に非接触支持するラジアル軸受部と、軸部材をスラスト方向に回転自在に非接触支持するスラスト軸受部とが設けられる。ラジアル軸受部は軸受スリーブの内周面と軸部材の外周面との間に形成したラジアル軸受隙間に、軸部材と軸受スリーブの相対回転による流体の動圧作用により、ラジアル方向で回転自在に非接触支持する。スラスト軸受部は、軸部材に設けたフランジ部の端面と、これに対向する軸受スリーブの端面等との間に形成したスラスト軸受隙間に、軸部材と軸受スリーブ等の相対回転による流体の動圧作用により、スラスト方向で回転自在に非接触支持する。   For example, in a hydrodynamic bearing device incorporated in a spindle motor of a disk device such as an HDD, a radial bearing portion that supports a shaft member in a non-contact manner in a radial direction and a shaft member is supported in a non-contact manner in a thrust direction. And a thrust bearing portion. The radial bearing portion is non-rotatable in the radial direction by the fluid dynamic pressure action caused by the relative rotation of the shaft member and the bearing sleeve in the radial bearing gap formed between the inner circumferential surface of the bearing sleeve and the outer circumferential surface of the shaft member. Support contact. The thrust bearing portion is a fluid dynamic pressure generated by relative rotation of the shaft member and the bearing sleeve, etc., in a thrust bearing gap formed between the end surface of the flange portion provided on the shaft member and the end surface of the bearing sleeve facing the flange portion. By the action, it is supported in a non-contact manner so as to be rotatable in the thrust direction.

この種の動圧軸受装置を組み込んだスピンドルモータでは、磁気ディスク等のディスク状情報記録媒体(以下、ディスクという。)を載置するための回転部材(ディスクハブ)が動圧軸受装置の軸部材上部に、例えば、圧入等により固定されている(例えば、特許文献1〜3)。
特開2000−235766号公報 特開2001−54628号公報 特開2003―174748号公報
In a spindle motor incorporating this type of fluid dynamic bearing device, a rotating member (disk hub) for placing a disk-shaped information recording medium (hereinafter referred to as a disk) such as a magnetic disk is a shaft member of the fluid dynamic bearing device. It is fixed to the upper part by, for example, press fitting (for example, Patent Documents 1 to 3).
JP 2000-235766 A JP 2001-54628 A Japanese Patent Laid-Open No. 2003-174748

ところで、一般的に回転部材は動圧軸受装置の完成後に軸部材に固定されるが、固定手段として圧入を採用する場合、圧入時の圧入力によって動圧軸受装置の各所、特にスラスト軸受部を構成する部材の表面(例えば、軸部材に設けられるフランジ部の端面、軸受スリーブの端面、スラスト部材の端面やハウジングの内底面等。以下、「スラスト面」と称す。)には大きな荷重が付加され、ときにはスラスト面の塑性変形を招く可能性がある。特に、回転部材が傾いて圧入されると、圧入抵抗がさらに大きくなるためその傾向は益々顕著になる。スラスト面は、スラスト軸受隙間を高精度に管理できるよう、高い平面度を有し、かつ、スラスト軸受隙間を介して相対向するスラスト面のうち一方には高精度に形成された動圧発生手段、例えば動圧溝が設けられている。そして、回転部材の圧入に伴う荷重によりスラスト面の塑性変形が起こると、スラスト軸受機能の低下、つまり動圧軸受装置の回転精度の低下を招く可能性がある。   By the way, the rotating member is generally fixed to the shaft member after the completion of the hydrodynamic bearing device. However, when press-fitting is adopted as a fixing means, various parts of the hydrodynamic bearing device, particularly the thrust bearing portion, are applied by press-fitting at the time of press-fitting. A large load is applied to the surface of the component member (for example, the end surface of the flange portion provided on the shaft member, the end surface of the bearing sleeve, the end surface of the thrust member, the inner bottom surface of the housing, etc., hereinafter referred to as “thrust surface”). In some cases, this may cause plastic deformation of the thrust surface. In particular, when the rotary member is tilted and press-fitted, the press-fitting resistance is further increased, and this tendency becomes more remarkable. The thrust surface has high flatness so that the thrust bearing gap can be managed with high accuracy, and the dynamic pressure generating means is formed with high accuracy on one of the thrust surfaces facing each other through the thrust bearing gap. For example, a dynamic pressure groove is provided. When plastic deformation of the thrust surface occurs due to the load accompanying the press-fitting of the rotating member, there is a possibility that the thrust bearing function is lowered, that is, the rotational accuracy of the hydrodynamic bearing device is lowered.

そこで、本発明では、ディスクハブ等の回転部材を軸部材に圧入するに際し、スラスト面の塑性変形を防止して、良好なスラスト軸受機能を確保した動圧軸装置の提供を目的とする。   Accordingly, an object of the present invention is to provide a dynamic pressure shaft device that prevents plastic deformation of a thrust surface and secures a good thrust bearing function when a rotating member such as a disk hub is press-fitted into a shaft member.

前記目的を達成するため、本発明で提供する動圧軸受装置は、軸受スリーブと、軸受スリーブの内周に挿入された軸部材と、軸部材の外周に圧入された回転部材と、ラジアル軸受隙間に生じる流体の動圧作用で軸部材をラジアル方向に非接触支持するラジアル軸受部と、スラスト軸受隙間に生じる流体の動圧作用で軸部材をスラスト方向に非接触支持するスラスト軸受部とを備え、回転部材は、スラスト軸受部を構成する部材表面の降伏応力未満の圧入力で圧入されたことを特徴とするものである。   In order to achieve the above object, a hydrodynamic bearing device provided by the present invention includes a bearing sleeve, a shaft member inserted into the inner periphery of the bearing sleeve, a rotating member press-fitted into the outer periphery of the shaft member, and a radial bearing gap. A radial bearing that non-contact supports the shaft member in the radial direction by the dynamic pressure action of the fluid generated in the shaft, and a thrust bearing portion that supports the shaft member in the thrust direction by the dynamic pressure action of the fluid generated in the thrust bearing gap. The rotating member is press-fitted with a pressure input less than the yield stress on the surface of the member constituting the thrust bearing portion.

このように、回転部材を軸部材にスラスト軸受部を構成する部材表面(スラスト面)の降伏応力未満の圧入力で圧入することにより、圧入時におけるスラスト面の塑性変形を防止して、スラスト面の面精度やスラスト面に設けられる動圧発生手段の形状精度を維持することができる。これにより、良好なスラスト軸受機能を確保することができる。   Thus, the thrust surface is prevented from being plastically deformed by press-fitting the rotating member with the shaft member with a pressure input less than the yield stress of the member surface (thrust surface) constituting the thrust bearing portion. The surface accuracy and the shape accuracy of the dynamic pressure generating means provided on the thrust surface can be maintained. Thereby, a favorable thrust bearing function can be secured.

ここで、上記の流体(潤滑流体)としては、潤滑油(又は潤滑グリース)、磁性流体、エアー等の気体を用いることができる。   Here, as the fluid (lubricating fluid), gases such as lubricating oil (or lubricating grease), magnetic fluid, and air can be used.

回転部材をスラスト面の降伏応力未満の圧入力で圧入するための手段として、例えば、圧入時における回転部材の傾きを抑える手段を採用することができる。より具体的には、軸部材の軸端(回転部材の挿入側の端部)にテーパ状のガイド面を形成する手段を採用することができる。通常、軸部材は研削加工により高精度に仕上げられるが、このガイド面は軸部材の回転精度には直接影響しないから、ガイド面を精度よく仕上げる必要はない。従って、軸部材の研削工程においては、例えば図10に示すように、砥石30で軸部材20の外周面21のみを研削し、ガイド面22を未研削の旋削面の状態で放置すれば足りる。   As a means for press-fitting the rotating member with a pressure input less than the yield stress of the thrust surface, for example, a means for suppressing the inclination of the rotating member at the time of press-fitting can be employed. More specifically, means for forming a tapered guide surface at the shaft end of the shaft member (end portion on the insertion side of the rotating member) can be employed. Normally, the shaft member is finished with high accuracy by grinding. However, since this guide surface does not directly affect the rotation accuracy of the shaft member, it is not necessary to finish the guide surface with high accuracy. Therefore, in the grinding process of the shaft member, for example, as shown in FIG. 10, it is sufficient to grind only the outer peripheral surface 21 of the shaft member 20 with the grindstone 30 and leave the guide surface 22 in an unground turning surface state.

しかしながら、外周面21のみを研削すると、軸部材の外周面21とガイド面22の境界23がピン角と呼ばれるエッジとなり、このエッジがディスクハブを軸端に圧入固定する際の抵抗となる。このエッジを除去するため、外周面の研削後に軸部材にバレル加工等を施すことも考えられるが、バレル加工では、研削面が荒れ、かつ傷の発生が懸念されるために軸受の性能上好ましくない。   However, when only the outer peripheral surface 21 is ground, a boundary 23 between the outer peripheral surface 21 and the guide surface 22 of the shaft member becomes an edge called a pin angle, and this edge becomes a resistance when the disk hub is press-fitted and fixed to the shaft end. In order to remove this edge, it may be possible to barrel the shaft member after grinding the outer peripheral surface. However, the barrel processing is preferable in terms of bearing performance because the ground surface is rough and there are concerns about the occurrence of scratches. Absent.

以上の検証に基づき、軸部材の軸端に、回転部材を圧入する際のガイドとなるガイド面と、このガイド面に隣接する軸部材の外周面との間に、エッジを鈍化させた形状の鈍化部を設けることが好ましい。   Based on the above verification, the shape of the edge is blunted between the guide surface serving as a guide when the rotary member is press-fitted into the shaft end of the shaft member and the outer peripheral surface of the shaft member adjacent to the guide surface. It is preferable to provide a blunt part.

ガイド面は、その機能上、これに隣接する軸部材の外周面よりも縮径した形状、例えば上方ほど縮径させたテーパ面状に形成される。ガイド面の位置は特に問わないが、通常は軸部材の上端に形成される。なお、軸部材に固定する回転部材の一例としては、ディスクを載置するディスクハブを挙げることができる。   The guide surface is formed in a shape that is smaller in diameter than the outer peripheral surface of the shaft member adjacent to the guide surface, for example, a tapered surface that is reduced in diameter toward the upper side. The position of the guide surface is not particularly limited, but is usually formed at the upper end of the shaft member. An example of the rotating member fixed to the shaft member is a disk hub on which a disk is placed.

上記のように、軸部材に回転部材を圧入する際のガイドとなるガイド面を設けることで、圧入の際には、回転部材が軸部材のガイド面にテーパ案内されるため、圧入に伴う当該回転部材の傾きが抑制される。また、ガイド面とこれに隣接する軸部材の外周面との間に、エッジを鈍化させた形状を有する鈍化部を設けているので、両面を、エッジを介することなく滑らかに連続させることができる。従って、回転部材を圧入する際の圧入抵抗が抑制され、回転部材を傾斜させることなくスムーズに圧入固定することが可能となる。これにより、回転部材の圧入時、スラスト面にその降伏応力以上の過大な負荷が加わる現象を回避することができる。   As described above, by providing a guide surface that serves as a guide when the rotary member is press-fitted into the shaft member, the rotary member is tapered and guided to the guide surface of the shaft member during press-fitting. The inclination of the rotating member is suppressed. Moreover, since the blunting part which has the shape which blunted the edge is provided between the guide surface and the outer peripheral surface of the shaft member adjacent to this, both surfaces can be smoothly continued without passing through the edge. . Therefore, the press-fitting resistance when the rotary member is press-fitted is suppressed, and the press-fitting and fixing can be smoothly performed without tilting the rotary member. As a result, it is possible to avoid a phenomenon in which an excessive load exceeding the yield stress is applied to the thrust surface when the rotating member is press-fitted.

また、ガイド面、ガイド面に隣接する軸部材の外周面、および鈍化部を研削加工で仕上げることにより、圧入抵抗のさらなる低減を図ることができる。なお、加工能率を考慮すると、ガイド面、ガイド面に隣接する軸部材の外周面、および鈍化部は同時研削することが望ましい。   Further, the press-fitting resistance can be further reduced by finishing the guide surface, the outer peripheral surface of the shaft member adjacent to the guide surface, and the blunt portion by grinding. In consideration of machining efficiency, it is desirable to grind the guide surface, the outer peripheral surface of the shaft member adjacent to the guide surface, and the blunted portion simultaneously.

さらに、圧入抵抗をより一層低減させるためには、ガイド面、ガイド面に隣接する軸部材の外周面、および鈍化部の母線形状は極力滑らかに連続させるのがよい。かかる連続性を容易に実現可能とするため、鈍化部は曲面状に形成するのが望ましい。   Furthermore, in order to further reduce the press-fitting resistance, it is preferable that the guide surface, the outer peripheral surface of the shaft member adjacent to the guide surface, and the bus bar shape of the blunt portion be made as smoothly as possible. In order to easily realize such continuity, it is desirable to form the blunt portion in a curved surface shape.

上記構成の動圧軸受装置において、ラジアル軸受部は、ヘリングボーン形状等の軸方向に傾斜した形状の動圧溝を設けた動圧軸受、複数の軸方向溝形状の動圧溝を円周方向所定間隔に設けた動圧軸受(ステップ軸受)、ラジアル軸受面を多円弧面で構成した動圧軸受(多円弧軸受)で構成することができる。   In the hydrodynamic bearing device configured as described above, the radial bearing portion includes a hydrodynamic bearing provided with a hydrodynamic groove having a shape inclined in the axial direction, such as a herringbone shape, and a plurality of axial groove-shaped hydrodynamic grooves in the circumferential direction. It can be constituted by a dynamic pressure bearing (step bearing) provided at a predetermined interval or a dynamic pressure bearing (multi-arc bearing) in which a radial bearing surface is constituted by a multi-arc surface.

本発明の動圧軸受装置は、特にディスク装置のスピンドルモータに好適である。   The hydrodynamic bearing device of the present invention is particularly suitable for a spindle motor of a disk device.

本発明によれば、回転部材の圧入時におけるスラスト面の塑性変形を防止して、スラスト面の面精度やスラスト面に設けられる動圧発生手段の形状精度を維持することができ、これにより、良好なスラスト軸受機能を確保することができる。   According to the present invention, it is possible to prevent the plastic deformation of the thrust surface during press-fitting of the rotating member, and maintain the surface accuracy of the thrust surface and the shape accuracy of the dynamic pressure generating means provided on the thrust surface. A good thrust bearing function can be secured.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態にかかる動圧軸受装置(流体動圧軸受装置)1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。この情報機器用スピンドルモータは、HDD等のディスク装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に取り付けられた回転部材としてのディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6とを備えている。ステータコイル4はブラケット6の外周に取り付けられ、ロータマグネット5は、ディスクハブ3の内周に取り付けられている。ブラケット6は、その内周に動圧軸受装置1を装着している。また、ディスクハブ3には、磁気ディスク等のディスクDが一枚または複数枚装着されている。この情報機器用スピンドルモータは、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する電磁力でロータマグネット5が回転し、それに伴って軸部材2及びディスクハブ3、さらにはディスクハブ3に保持されたディスクDが一体となって回転する。   FIG. 1 conceptually shows one configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device (fluid fluid dynamic bearing device) 1 according to an embodiment of the present invention. This spindle motor for information equipment is used in a disk device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2 in a non-contact manner, and a disk hub as a rotating member attached to the shaft member 2. 3, for example, a stator coil 4 and a rotor magnet 5 that are opposed to each other via a radial gap, and a bracket 6. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The bracket 6 has the hydrodynamic bearing device 1 mounted on the inner periphery thereof. In addition, one or more disks D such as magnetic disks are mounted on the disk hub 3. In this information equipment spindle motor, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force generated between the stator coil 4 and the rotor magnet 5, and accordingly, the shaft member 2 and the disk hub 3, The disk D held by the disk hub 3 rotates as a unit.

図2は、上記スピンドルモータで使用される動圧軸受装置の第一の実施形態を示すものである。この実施形態にかかる動圧軸受装置1は、一端に底部7cを有するハウジング7と、ハウジング7に固定された軸受スリーブ8と、軸受スリーブ8の内周に挿入される軸部材2と、シール部材9とを主要な構成部材として具備する。なお、説明の便宜上、ハウジング7の底部7cの側を下側、これと軸方向反対の側を上側として説明を進める。   FIG. 2 shows a first embodiment of a hydrodynamic bearing device used in the spindle motor. The hydrodynamic bearing device 1 according to this embodiment includes a housing 7 having a bottom 7c at one end, a bearing sleeve 8 fixed to the housing 7, a shaft member 2 inserted into the inner periphery of the bearing sleeve 8, and a seal member. 9 as main constituent members. For convenience of explanation, the description will proceed with the bottom 7c side of the housing 7 as the lower side and the side opposite to the axial direction as the upper side.

軸受スリーブ8の内周面8aと軸部材2の軸部2aの外周面2a1との間に第1ラジアル軸受部R1と第2ラジアル軸受部R2とが軸方向に離隔して設けられる。また、軸受スリーブ8の下側端面8cと軸部材2のフランジ部2bの上側端面2b1との間に第1スラスト軸受部T1が設けられ、ハウジング7の底部7cの上側端面7c1とフランジ部2bの下側端面2b2との間に第2スラスト軸受部T2が設けられる。   Between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a of the shaft member 2, the first radial bearing portion R1 and the second radial bearing portion R2 are provided apart from each other in the axial direction. A first thrust bearing portion T1 is provided between the lower end surface 8c of the bearing sleeve 8 and the upper end surface 2b1 of the flange portion 2b of the shaft member 2, and the upper end surface 7c1 of the bottom portion 7c of the housing 7 and the flange portion 2b A second thrust bearing portion T2 is provided between the lower end surface 2b2.

ハウジング7は、略円筒状の側部7bと、側部7bの一端開口を封口する略円盤状の底部7cとで構成されている。側部7bと底部7cは、例えば、ステンレス鋼や黄銅等の金属材料、あるいは樹脂材料で一体又は別体に形成される。この実施形態で側部7bと底部7cとは金属材料で別体として形成され、底部7cは側部7bの下端部に接着、圧入、レーザ溶接等の適宜の手段で固定されている。第2スラスト軸受部T2のスラスト軸受面となる底部7cの上側端面7c1の一部領域には動圧発生手段が設けられており、図示は省略するが、例えばスパイラル形状に配列された動圧溝が形成されている。なお、側部7bと底部7cとを金属材料や樹脂材料で一体に型成形することもできる。その際、上側端面7c1に設けられる動圧溝は、側部7bおよび底部7cからなるハウジング7の成形と同時に型成形することができ、これにより別途底部7cに動圧溝を成形する手間を省くことができる。動圧溝の形状としては、上記の他ヘリングボーン形状等を採用しても良い。   The housing 7 includes a substantially cylindrical side portion 7b and a substantially disc-shaped bottom portion 7c that seals one end opening of the side portion 7b. The side part 7b and the bottom part 7c are integrally or separately formed of, for example, a metal material such as stainless steel or brass, or a resin material. In this embodiment, the side portion 7b and the bottom portion 7c are formed separately from each other with a metal material, and the bottom portion 7c is fixed to the lower end portion of the side portion 7b by an appropriate means such as adhesion, press-fitting, or laser welding. A dynamic pressure generating means is provided in a partial region of the upper end surface 7c1 of the bottom 7c serving as a thrust bearing surface of the second thrust bearing portion T2. Although illustration is omitted, for example, dynamic pressure grooves arranged in a spiral shape Is formed. Note that the side portion 7b and the bottom portion 7c can be integrally molded with a metal material or a resin material. At that time, the dynamic pressure groove provided in the upper end surface 7c1 can be molded simultaneously with the molding of the housing 7 including the side portion 7b and the bottom portion 7c, thereby eliminating the trouble of separately forming the dynamic pressure groove in the bottom portion 7c. be able to. As the shape of the dynamic pressure groove, the above-described herringbone shape or the like may be adopted.

軸受スリーブ8は、例えば、黄銅やアルミ(アルミ合金)等の軟質金属材料、あるいは、焼結金属材料で円筒状に形成される。軸受スリーブ8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面となる上下2つの領域に動圧発生手段が設けられており、該2つの領域には、例えばヘリングボーン形状の動圧溝が形成されている。具体的には、例えば図3に示すように、軸方向に離隔した上下2箇所の領域にヘリングボーン形状の動圧溝8a1、8a2がそれぞれ形成されており、上側領域の動圧溝8a1は、軸方向中心(上下の傾斜溝間領域の軸方向中心)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。また、軸受スリーブ8の外周面8dには、1本又は複数本の軸方向溝8d1が軸方向全長に亘って形成されている。なお、この実施形態では、3本の軸方向溝8d1が円周方向等間隔に形成されている。   The bearing sleeve 8 is formed in a cylindrical shape with, for example, a soft metal material such as brass or aluminum (aluminum alloy), or a sintered metal material. The inner circumferential surface 8a of the bearing sleeve 8 is provided with dynamic pressure generating means in two upper and lower regions which are the radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2. For example, a herringbone-shaped dynamic pressure groove is formed. Specifically, for example, as shown in FIG. 3, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 are formed in two upper and lower regions spaced apart in the axial direction, respectively. It is formed axially asymmetric with respect to the axial center (the axial center of the upper and lower inclined groove regions), and the axial dimension X1 in the upper region from the axial center m is larger than the axial dimension X2 in the lower region. It is getting bigger. Further, one or a plurality of axial grooves 8d1 are formed on the outer peripheral surface 8d of the bearing sleeve 8 over the entire axial length. In this embodiment, three axial grooves 8d1 are formed at equal intervals in the circumferential direction.

さらに、第1スラスト軸受部T1のスラスト軸受面となる軸受スリーブ8の下側端面8cの一部領域には、図示は省略するが、動圧発生手段として例えばスパイラル形状に配列された複数の動圧溝が形成されている。   Furthermore, although not shown in the partial region of the lower end surface 8c of the bearing sleeve 8 that becomes the thrust bearing surface of the first thrust bearing portion T1, a plurality of dynamic arrays arranged in a spiral shape, for example, as dynamic pressure generating means. A pressure groove is formed.

軸部材2は、例えば、ステンレス鋼等の金属材料を旋削あるいは鍛造で粗成形した後、研削を施して形成される。図示例の軸部材2は、軸部2aと、軸部2aの下端に一体に設けられたフランジ部2bとで構成されている。なお、軸部2aとフランジ部2bを別体とすることもでき、その場合、フランジ部2bを軸部2aに圧入、溶接等することによって軸部材2が構成される。軸部材2の形態としては、上記の他、金属部分と樹脂部分からなるハイブリッド構造(例えば、軸部2aを金属材料で形成し、フランジ部2bを樹脂材料で形成する。)とすることもできる。軸部2aは軸受スリーブ8の内周に挿入され、軸部2aの外周面2a1は、軸受スリーブ8の内周面8aと対向する。   The shaft member 2 is formed, for example, by subjecting a metal material such as stainless steel to rough forming by turning or forging and then performing grinding. The shaft member 2 of the example of illustration is comprised by the shaft part 2a and the flange part 2b integrally provided in the lower end of the shaft part 2a. In addition, the shaft part 2a and the flange part 2b can also be made into a different body. In that case, the shaft member 2 is comprised by press-fitting, welding, etc. to the shaft part 2a. As a form of the shaft member 2, in addition to the above, a hybrid structure including a metal portion and a resin portion (for example, the shaft portion 2a is formed of a metal material and the flange portion 2b is formed of a resin material) can be used. . The shaft portion 2 a is inserted into the inner periphery of the bearing sleeve 8, and the outer peripheral surface 2 a 1 of the shaft portion 2 a faces the inner peripheral surface 8 a of the bearing sleeve 8.

図4に拡大して示すように、軸部2aの上端には、テーパ状のガイド面2cが形成される。ガイド面2cのテーパ角θ(軸心に対する傾斜角度)は5°〜20°程度に形成される。このガイド面2cとガイド面2cに隣接する軸部材2の外周面2a3(以下、「隣接外周面」と称す。)との間の境界部ではエッジが消失しており、両面間にはエッジを鈍化させた形状の鈍化部2dが形成されている。この実施形態において、鈍化部2dは半径rの曲面状をなし、ガイド面2cと隣接外周面2a3とを滑らかに連続している。   As shown in an enlarged view in FIG. 4, a tapered guide surface 2c is formed at the upper end of the shaft portion 2a. The taper angle θ (inclination angle with respect to the axis) of the guide surface 2c is formed to be about 5 ° to 20 °. The edge disappears at the boundary between the guide surface 2c and the outer peripheral surface 2a3 of the shaft member 2 adjacent to the guide surface 2c (hereinafter referred to as “adjacent outer peripheral surface”), and the edge is not formed between both surfaces. A blunt portion 2d having a blunt shape is formed. In this embodiment, the blunt portion 2d has a curved surface shape with a radius r, and the guide surface 2c and the adjacent outer peripheral surface 2a3 are smoothly continuous.

本実施形態において、鈍化部2dは、上述した境界部をガイド面2cおよび隣接外周面2a3と同時研削することによって成形される。同時研削は、図4に示すように、隣接外周面2a3に対応するストレート部11a、ガイド面2cに対応するテーパ部11b、鈍化部2dに対応する曲面部11cを有する砥石11によって行われる。砥石11の曲面部11cは、R0.1〜R0.5の範囲に形成され、この曲面部11cを介して砥石11のストレート部11aとテーパ部11bを滑らかに連続させておく。この砥石11を用いて軸部材2の外周を研削することにより、ガイド面2c、鈍化部2d、および隣接外周面2a3がエッジのない連続面となる。   In the present embodiment, the blunt portion 2d is formed by simultaneously grinding the boundary portion described above with the guide surface 2c and the adjacent outer peripheral surface 2a3. As shown in FIG. 4, the simultaneous grinding is performed by a grindstone 11 having a straight portion 11a corresponding to the adjacent outer peripheral surface 2a3, a tapered portion 11b corresponding to the guide surface 2c, and a curved surface portion 11c corresponding to the blunt portion 2d. The curved surface portion 11c of the grindstone 11 is formed in a range of R0.1 to R0.5, and the straight portion 11a and the tapered portion 11b of the grindstone 11 are smoothly and continuously connected through the curved surface portion 11c. By grinding the outer periphery of the shaft member 2 using the grindstone 11, the guide surface 2c, the blunted portion 2d, and the adjacent outer peripheral surface 2a3 become continuous surfaces without edges.

ハウジング7の開口部7aの内周には、金属材料あるいは樹脂材料で形成された環状のシール部材9が圧入、接着等の手段で固定されている。シール部材9の内周面9aは、軸部2aのテーパ面2a2と所定容積のシール空間Sを介して対向する。テーパ面2a2は上側に向かって漸次縮径し、軸部材2の回転により遠心力シールとしても機能する。また、シール部材9の下側端面9bは軸受スリーブ8の上側端面8bと当接している。動圧軸受装置の組立後、シール部材9で密封された動圧軸受装置1の内部空間には、流体として例えば潤滑油が充満され、この状態では、潤滑油の油面はシール空間Sの範囲内に維持される。なお、部品点数の削減および組立工数の削減のため、シール部材9をハウジング7と一体形成することもできる。あるいは、軸受スリーブ8の内周面8aの上端部側領域をラジアル軸受面となる領域よりもわずかに大径に形成し、この大径に形成した領域の内径側に所定容積のシール空間が形成されるようにしても良い。   An annular seal member 9 formed of a metal material or a resin material is fixed to the inner periphery of the opening 7a of the housing 7 by means such as press-fitting or bonding. The inner peripheral surface 9a of the seal member 9 faces the tapered surface 2a2 of the shaft portion 2a via a seal space S having a predetermined volume. The tapered surface 2a2 gradually decreases in diameter toward the upper side, and functions as a centrifugal force seal by the rotation of the shaft member 2. Further, the lower end surface 9 b of the seal member 9 is in contact with the upper end surface 8 b of the bearing sleeve 8. After assembly of the hydrodynamic bearing device, the internal space of the hydrodynamic bearing device 1 sealed with the seal member 9 is filled with, for example, lubricating oil as a fluid. In this state, the oil level of the lubricating oil is within the range of the seal space S. Maintained within. Note that the seal member 9 can be formed integrally with the housing 7 in order to reduce the number of parts and the number of assembly steps. Alternatively, the upper end side region of the inner peripheral surface 8a of the bearing sleeve 8 is formed to have a slightly larger diameter than the region serving as the radial bearing surface, and a seal space having a predetermined volume is formed on the inner diameter side of the region formed to have the large diameter. You may be made to do.

動圧軸受装置1は以上のように構成され、軸部材2の回転時、軸受スリーブ8の内周面8aのラジアル軸受面となる上下二つの領域は、それぞれ軸部2aの外周面2a1とラジアル軸受隙間を介して対向する。そして、軸部材2の回転に伴い、上記ラジアル軸受隙間に潤滑油の動圧が発生し、その圧力によって軸部材2の軸部2aがラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが形成される。   The hydrodynamic bearing device 1 is configured as described above, and when the shaft member 2 rotates, the upper and lower two regions that become the radial bearing surface of the inner peripheral surface 8a of the bearing sleeve 8 are respectively the radial surface and the outer peripheral surface 2a1 of the shaft portion 2a. Opposing through the bearing gap. As the shaft member 2 rotates, dynamic pressure of lubricating oil is generated in the radial bearing gap, and the shaft portion 2a of the shaft member 2 is supported in a non-contact manner so as to be rotatable in the radial direction. As a result, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are formed.

また、軸受スリーブ8の下側端面8cのスラスト軸受面となる領域は、フランジ部2bの上側端面2b1とスラスト軸受隙間を介して対向し、底部7cの上側端面7c1のスラスト軸受面となる領域は、フランジ部2bの下側端面2b2とスラスト軸受隙間を介して対向する。そして、軸部材2の回転に伴い、スラスト軸受隙間にも潤滑油の動圧が発生し、その圧力によって軸部材2が両スラスト方向に回転自在に非接触支持される。これにより、軸部材2を両スラスト方向に回転自在に非接触支持する第1スラスト軸受部T1および第2スラスト軸受部T2が形成される。   Further, the region that becomes the thrust bearing surface of the lower end surface 8c of the bearing sleeve 8 is opposed to the upper end surface 2b1 of the flange portion 2b via the thrust bearing gap, and the region that becomes the thrust bearing surface of the upper end surface 7c1 of the bottom portion 7c is It faces the lower end surface 2b2 of the flange portion 2b through a thrust bearing gap. As the shaft member 2 rotates, dynamic pressure of lubricating oil is generated in the thrust bearing gap, and the shaft member 2 is supported in a non-contact manner in both thrust directions by the pressure. Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which non-contact-support the shaft member 2 rotatably in both thrust directions are formed.

上記構成の動圧軸受装置1の組立完了後、モータの組立時には、軸部材2の軸部2a上端に回転部材としてのディスクハブ3が圧入固定される。この圧入時には、軸部2aの上端に設けたガイド面2cがディスクハブ3を圧入する際のガイドとなるので、ディスクハブ3がガイド面2cによってテーパ案内され、圧入に伴うディスクハブ3の傾きが抑制される。また、隣接外周面2a3とガイド面2cとの間にR形状の鈍化部2dを設けているので、圧入抵抗も低減される。従って、ディスクハブ3を傾斜させることなくスムーズに圧入することが可能となる。これにより、ディスクハブ3を軸部材2の軸部2a上端に圧入する際の圧入力を、スラスト軸受部T1、T2を構成する部材の表面、すなわち、フランジ部2bの上側端面2b1及び下側端面2b2、軸受スリーブ8の下側端面8c、底部7cの上側端面7c1の降伏応力未満に規制することが可能となる。また、ディスクハブ3の圧入に際し、特別な装置等を必要とせず容易に圧入が可能であるため、モータの組立コストを低減することもできる。   After the assembly of the hydrodynamic bearing device 1 having the above configuration is completed, the disk hub 3 as a rotating member is press-fitted and fixed to the upper end of the shaft portion 2a of the shaft member 2 when the motor is assembled. At the time of the press-fitting, the guide surface 2c provided at the upper end of the shaft portion 2a serves as a guide for press-fitting the disc hub 3, so that the disc hub 3 is taper-guided by the guide surface 2c, and the inclination of the disc hub 3 due to press-fitting is inclined. It is suppressed. Further, since the R-shaped blunt portion 2d is provided between the adjacent outer peripheral surface 2a3 and the guide surface 2c, the press-fit resistance is also reduced. Therefore, it is possible to press-fit smoothly without tilting the disk hub 3. Thus, the pressure input when the disk hub 3 is press-fitted into the upper end of the shaft portion 2a of the shaft member 2 is the surface of the member constituting the thrust bearing portions T1, T2, that is, the upper end surface 2b1 and the lower end surface of the flange portion 2b. 2b2, the lower end surface 8c of the bearing sleeve 8, and the lower end stress of the upper end surface 7c1 of the bottom portion 7c can be restricted to less than the yield stress. Further, when the disk hub 3 is press-fitted, the press-fitting can be easily performed without requiring a special device or the like, so that the assembly cost of the motor can be reduced.

本発明は、図2に示す動圧軸受装置1のみならず、以下に例示する他の動圧軸受装置にも同様に適用することができる。なお、以下の説明では、基本的に図2に示す実施形態と同一機能を有する部材および要素には共通の参照番号を付して重複説明を省略する。   The present invention can be similarly applied not only to the fluid dynamic bearing device 1 shown in FIG. 2 but also to other fluid dynamic bearing devices exemplified below. In the following description, members and elements having basically the same functions as those in the embodiment shown in FIG.

図5は、動圧軸受装置の他の実施形態を示すものである。この動圧軸受装置1のスラスト軸受部Tは、ハウジング7の開口部側に位置し、一方のスラスト方向で軸部材2を軸受スリーブ8に対して非接触支持する。軸部材2の下端よりも上方にフランジ部2bが設けられ、このフランジ部2bの下側端面2b2と軸受スリーブ8の上側端面8bとの間にスラスト軸受部Tのスラスト軸受隙間が形成される。ハウジング7の開口部内周にはシール部材9が装着され、シール部材9の内周面9aと軸部材2の軸部2aの外周面2a1との間にシール空間Sが形成される。シール部材9の下側端面9bはフランジ部2bの上側端面2b1と軸方向隙間を介して対向しており、軸部材2が上方へ変位した際には、フランジ部2bの上側端面2b1がシール部材9の下側端面9bと係合し、軸部材2の抜け止めがなされる。本実施形態においても、ディスクハブ3の圧入時に、その圧入力がスラスト軸受部Tを構成する部材の表面、すなわち、フランジ部2bの下側端面2b2、軸受スリーブ8の上側端面8bの降伏応力未満となるように、図4に示すものと同様のガイド面2c、隣接外周面2a3、鈍化部2dを設けている。   FIG. 5 shows another embodiment of the hydrodynamic bearing device. The thrust bearing portion T of the hydrodynamic bearing device 1 is located on the opening side of the housing 7 and supports the shaft member 2 with respect to the bearing sleeve 8 in a non-contact manner in one thrust direction. A flange portion 2 b is provided above the lower end of the shaft member 2, and a thrust bearing gap of the thrust bearing portion T is formed between the lower end surface 2 b 2 of the flange portion 2 b and the upper end surface 8 b of the bearing sleeve 8. A seal member 9 is attached to the inner periphery of the opening of the housing 7, and a seal space S is formed between the inner peripheral surface 9 a of the seal member 9 and the outer peripheral surface 2 a 1 of the shaft portion 2 a of the shaft member 2. The lower end surface 9b of the seal member 9 is opposed to the upper end surface 2b1 of the flange portion 2b via an axial clearance, and when the shaft member 2 is displaced upward, the upper end surface 2b1 of the flange portion 2b is the seal member. 9 is engaged with the lower end surface 9b, and the shaft member 2 is prevented from coming off. Also in this embodiment, when the disk hub 3 is press-fitted, the pressure input is less than the yield stress of the surface of the member constituting the thrust bearing portion T, that is, the lower end surface 2b2 of the flange portion 2b and the upper end surface 8b of the bearing sleeve 8. As shown in FIG. 4, a guide surface 2c, an adjacent outer peripheral surface 2a3, and a blunt portion 2d similar to those shown in FIG. 4 are provided.

なお、上記実施形態において、ラジアル軸受部(R1、R2)の動圧溝は軸部材2の軸部2aの外周面2a1に形成することもできる。また、スラスト軸受部(T、T1、T2)の動圧溝は、軸部材2のフランジ部2bの上側端面2b1および下側端面2b2(図5に示す実施形態の場合、下側端面2b2)に形成することもできる。   In the above-described embodiment, the dynamic pressure grooves of the radial bearing portions (R1, R2) can be formed on the outer peripheral surface 2a1 of the shaft portion 2a of the shaft member 2. The dynamic pressure grooves of the thrust bearing portions (T, T1, T2) are formed on the upper end surface 2b1 and the lower end surface 2b2 of the flange portion 2b of the shaft member 2 (lower end surface 2b2 in the case of the embodiment shown in FIG. 5). It can also be formed.

さらに、以上の説明では、ラジアル軸受部R1、R2およびスラスト軸受部T、T1、T2として、へリングボーン形状やスパイラル形状の動圧溝により流体の動圧作用を発生させる構成を例示しているが、本発明はこれに限定されるものではない。   Furthermore, in the above description, the radial bearing portions R1 and R2 and the thrust bearing portions T, T1, and T2 are exemplified by a configuration in which a fluid dynamic pressure action is generated by a herringbone shape or spiral shape dynamic pressure groove. However, the present invention is not limited to this.

例えば、ラジアル軸受部R1、R2として、いわゆるステップ軸受や多円弧軸受を採用しても良い。   For example, so-called step bearings or multi-arc bearings may be employed as the radial bearing portions R1 and R2.

図6は、ラジアル軸受部R1、R2の一方又は双方をステップ軸受で構成した場合の一例を示している。この例では、軸受スリーブ8の内周面8aのラジアル軸受面となる領域に、複数の軸方向溝形状の動圧溝8a3が円周方向所定間隔に設けられている。   FIG. 6 shows an example in which one or both of the radial bearing portions R1 and R2 are configured by step bearings. In this example, a plurality of axial groove-shaped dynamic pressure grooves 8a3 are provided at predetermined intervals in the circumferential direction in a region that becomes a radial bearing surface of the inner peripheral surface 8a of the bearing sleeve 8.

図7は、ラジアル軸受部R1、R2の一方又は双方を多円弧軸受で構成した場合の一例を示している。この例では、軸受スリーブ8の内周面8aのラジアル軸受面となる領域が、3つの円弧面8a4、8a5、8a6で構成されている(いわゆる3円弧軸受)。3つの円弧面8a4、8a5、8a6の曲率中心は、それぞれ、軸受スリーブ8(軸部2a)の軸中心Oから等距離オフセットされている。3つの円弧面8a4、8a5、8a6で区画される各領域において、ラジアル軸受隙間は、円周方向の両方向に対して、それぞれ楔状に漸次縮小した形状を有している。そのため、軸受スリーブ8と軸部2aとが相対回転すると、その相対回転の方向に応じて、ラジアル軸受隙間内の潤滑流体が楔状に縮小した最小隙間側に押し込まれて、その圧力が上昇する。このような潤滑流体の動圧作用によって、軸受スリーブ8と軸部2aとが非接触支持される。尚、3つの円弧面8a4、8a5、8a6の相互間の境界部に、分離溝と称される、一段深い軸方向溝を形成しても良い。   FIG. 7 shows an example of a case where one or both of the radial bearing portions R1 and R2 are constituted by multi-arc bearings. In this example, the region that becomes the radial bearing surface of the inner peripheral surface 8a of the bearing sleeve 8 is configured by three arc surfaces 8a4, 8a5, and 8a6 (so-called three arc bearings). The centers of curvature of the three arcuate surfaces 8a4, 8a5, 8a6 are offset from the shaft center O of the bearing sleeve 8 (shaft portion 2a) by an equal distance. In each region defined by the three arcuate surfaces 8a4, 8a5, and 8a6, the radial bearing gap has a shape gradually reduced in a wedge shape in both circumferential directions. For this reason, when the bearing sleeve 8 and the shaft portion 2a rotate relative to each other, the lubricating fluid in the radial bearing gap is pushed into the minimum gap side reduced in a wedge shape in accordance with the direction of the relative rotation, and the pressure rises. The bearing sleeve 8 and the shaft portion 2a are supported in a non-contact manner by the dynamic pressure action of the lubricating fluid. Note that a deeper axial groove called a separation groove may be formed at the boundary between the three arcuate surfaces 8a4, 8a5, 8a6.

図8は、ラジアル軸受部R1、R2の一方又は双方を多円弧軸受で構成した場合の他の例を示している。この例においても、軸受スリーブ8の内周面8aのラジアル軸受面となる領域が、3つの円弧面8a7、8a8、8a9で構成されているが(いわゆる3円弧軸受)、3つの円弧面8a7、8a8、8a9で区画される各領域において、ラジアル軸受隙間は、円周方向の一方向に対して、それぞれ楔状に漸次縮小した形状を有している。このような構成の多円弧軸受は、テーパ軸受と称されることもある。また、3つの円弧面8a7、8a8、8a9の相互間の境界部に、分離溝と称される、一段深い軸方向溝8a10、8a11、8a12が形成されている。そのため、軸受スリーブ8と軸部2aとが所定方向に相対回転すると、ラジアル軸受隙間内の潤滑流体が楔状に縮小した最小隙間側に押し込まれて、その圧力が上昇する。このような潤滑流体の動圧作用によって、軸受スリーブ8と軸部2aとが非接触支持される。   FIG. 8 shows another example in the case where one or both of the radial bearing portions R1 and R2 are constituted by multi-arc bearings. In this example as well, the region that becomes the radial bearing surface of the inner peripheral surface 8a of the bearing sleeve 8 is configured by three arc surfaces 8a7, 8a8, and 8a9 (so-called three arc bearings), but the three arc surfaces 8a7, In each region partitioned by 8a8 and 8a9, the radial bearing gap has a shape gradually reduced in a wedge shape with respect to one direction in the circumferential direction. The multi-arc bearing having such a configuration may be referred to as a taper bearing. Further, deeper axial grooves 8a10, 8a11, and 8a12 called separation grooves are formed at boundaries between the three arcuate surfaces 8a7, 8a8, and 8a9. Therefore, when the bearing sleeve 8 and the shaft portion 2a are relatively rotated in a predetermined direction, the lubricating fluid in the radial bearing gap is pushed into the minimum gap side reduced in a wedge shape, and the pressure rises. The bearing sleeve 8 and the shaft portion 2a are supported in a non-contact manner by the dynamic pressure action of the lubricating fluid.

図9は、ラジアル軸受部R1、R2の一方又は双方を多円弧軸受で構成した場合の他の例を示している。この例では、図8に示す構成において、3つの円弧面8a7、8a8、8a9の最小隙間側の所定領域αが、それぞれ、軸受スリーブ8(軸部2a)の軸中心Oを曲率中心とする同心の円弧で構成されている。従って、各所定領域αにおいて、ラジアル軸受隙間(最小隙間)は一定になる。このような構成の多円弧軸受は、テーパ・フラット軸受と称されることもある。   FIG. 9 shows another example in the case where one or both of the radial bearing portions R1 and R2 are configured by multi-arc bearings. In this example, in the configuration shown in FIG. 8, the predetermined regions α on the minimum gap side of the three arcuate surfaces 8a7, 8a8, 8a9 are concentric with the axis O of the bearing sleeve 8 (shaft portion 2a) as the center of curvature. It is composed of arcs. Accordingly, in each predetermined region α, the radial bearing gap (minimum gap) is constant. The multi-arc bearing having such a configuration may be referred to as a tapered flat bearing.

以上の各例における多円弧軸受は、いわゆる3円弧軸受であるが、これに限らず、いわゆる4円弧軸受、5円弧軸受、さらに6円弧以上の数の円弧面で構成された多円弧軸受を採用しても良い。また、ラジアル軸受部をステップ軸受や多円弧軸受で構成する場合、ラジアル軸受部R1、R2のように、2つのラジアル軸受部を軸方向に離隔して設けた構成とする他、軸受スリーブ8の内周面8aの上下領域に亘って1つのラジアル軸受部を設けた構成としても良い。   The multi-arc bearings in the above examples are so-called three-arc bearings, but are not limited to this, and so-called four-arc bearings, five-arc bearings, and multi-arc bearings composed of more than six arc surfaces are adopted. You may do it. Further, when the radial bearing portion is constituted by a step bearing or a multi-arc bearing, in addition to the configuration in which the two radial bearing portions are separated from each other in the axial direction as in the radial bearing portions R1 and R2, the bearing sleeve 8 It is good also as a structure which provided the one radial bearing part over the up-and-down area | region of the internal peripheral surface 8a.

また、スラスト軸受部T、スラスト軸受部T1およびT2のうち一方又は双方は、例えば、スラスト軸受面となる領域に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、いわゆる波型軸受(ステップ型が波型になったもの)等で構成することもできる。   Further, one or both of the thrust bearing portion T and the thrust bearing portions T1 and T2 are provided with a plurality of radial groove-shaped dynamic pressure grooves at predetermined intervals in the circumferential direction, for example, in a region serving as a thrust bearing surface. A so-called step bearing, a so-called corrugated bearing (the step mold is a corrugated bearing), or the like can also be used.

また、以上の実施形態では、動圧軸受装置1の内部に充満し、軸受スリーブ8と軸部材2との間のラジアル軸受隙間や、軸受スリーブ8およびハウジング7と軸部材2との間のスラスト軸受隙間に動圧を発生させる流体として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧を発生させることができる流体、例えば空気等の気体や、磁性流体等を使用することもできる。   Moreover, in the above embodiment, the inside of the hydrodynamic bearing device 1 is filled, and the radial bearing gap between the bearing sleeve 8 and the shaft member 2 and the thrust between the bearing sleeve 8 and the housing 7 and the shaft member 2 are filled. Lubricating oil is exemplified as the fluid that generates dynamic pressure in the bearing gap, but other fluids that can generate dynamic pressure in each bearing gap, for example, gas such as air, magnetic fluid, etc. You can also.

スピンドルモータの概要を示す断面図である。It is sectional drawing which shows the outline | summary of a spindle motor. 本発明にかかる動圧軸受装置の一構成例を示す断面図である。It is sectional drawing which shows one structural example of the hydrodynamic bearing apparatus concerning this invention. 軸受スリーブの縦断面図である。It is a longitudinal cross-sectional view of a bearing sleeve. 軸部材の研削工程を示す概略図である。It is the schematic which shows the grinding process of a shaft member. 動圧軸受装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of a hydrodynamic bearing apparatus. ラジアル軸受部の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of a radial bearing part. ラジアル軸受部の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of a radial bearing part. ラジアル軸受部の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of a radial bearing part. ラジアル軸受部の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of a radial bearing part. 従来の軸部材の研削工程を示す概略図である。It is the schematic which shows the grinding process of the conventional shaft member.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
2a 軸部
2b フランジ部
2a3 ガイド面に隣接する外周面(隣接外周面)
2c ガイド面
2d 鈍化部
3 ディスクハブ(回転部材)
4 ステータコイル
5 ロータマグネット
7 ハウジング
8 軸受スリーブ
R1 第1ラジアル軸受部
R2 第2ラジアル軸受部
T1 第1スラスト軸受部
T2 第2スラスト軸受部
T スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 2a Shaft part 2b Flange part 2a3 The outer peripheral surface (adjacent outer peripheral surface) adjacent to a guide surface
2c Guide surface 2d Blunt part 3 Disc hub (rotating member)
4 Stator coil 5 Rotor magnet 7 Housing 8 Bearing sleeve R1 First radial bearing portion R2 Second radial bearing portion T1 First thrust bearing portion T2 Second thrust bearing portion T Thrust bearing portion

Claims (8)

軸受スリーブと、該軸受スリーブの内周に挿入された軸部材と、該軸部材の外周に圧入された回転部材と、ラジアル軸受隙間に生じる流体の動圧作用で前記軸部材をラジアル方向に非接触支持するラジアル軸受部と、スラスト軸受隙間に生じる流体の動圧作用で前記軸部材をスラスト方向に非接触支持するスラスト軸受部とを備えた動圧軸受装置において、
前記回転部材は、スラスト軸受部を構成する部材表面の降伏応力未満の圧入力で軸部材に圧入されたことを特徴とする動圧軸受装置。
A bearing sleeve, a shaft member inserted into the inner periphery of the bearing sleeve, a rotating member press-fitted into the outer periphery of the shaft member, and the dynamic pressure action of the fluid generated in the radial bearing gap causes the shaft member to be non-radial. In a hydrodynamic bearing device comprising a radial bearing portion that supports contact and a thrust bearing portion that non-contactally supports the shaft member in a thrust direction by a hydrodynamic action of a fluid generated in a thrust bearing gap.
The dynamic pressure bearing device according to claim 1, wherein the rotating member is press-fitted into the shaft member with a pressure input less than a yield stress of a member surface constituting the thrust bearing portion.
前記軸部材に、前記回転部材を圧入する際のガイドとなるガイド面を設け、このガイド面とこれに隣接する軸部材の外周面との間に、エッジを鈍化させた形状の鈍化部を設けたことを特徴とする請求項1記載の動圧軸受装置。   The shaft member is provided with a guide surface that serves as a guide for press-fitting the rotating member, and a blunt portion having a blunt shape is provided between the guide surface and the outer peripheral surface of the shaft member adjacent thereto. The hydrodynamic bearing device according to claim 1. 前記ガイド面、ガイド面に隣接する軸部材の外周面、および鈍化部が研削加工されている請求項1又は2何れか記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the guide surface, the outer peripheral surface of the shaft member adjacent to the guide surface, and the blunt portion are ground. 前記鈍化部が曲面状に形成されている請求項1〜3何れか記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the blunt portion is formed in a curved surface shape. 前記回転部材が、ディスクを載置するディスクハブであることを特徴とする請求項1〜4何れか記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the rotating member is a disc hub on which a disc is placed. 前記ラジアル軸受部が、動圧発生手段として動圧溝を有することを特徴とする請求項1〜5何れか記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the radial bearing portion includes a hydrodynamic groove as a hydrodynamic pressure generating unit. 前記ラジアル軸受部が、多円弧軸受で構成されていることを特徴とする請求項1〜5何れか記載の動圧軸受装置。   The hydrodynamic bearing device according to any one of claims 1 to 5, wherein the radial bearing portion is a multi-arc bearing. 請求項1〜7何れか記載の動圧軸受装置を備えたディスク装置のスピンドルモータ。

A spindle motor of a disk device comprising the hydrodynamic bearing device according to claim 1.

JP2005010751A 2005-01-18 2005-01-18 Dynamic pressure bearing device Withdrawn JP2006200583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005010751A JP2006200583A (en) 2005-01-18 2005-01-18 Dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005010751A JP2006200583A (en) 2005-01-18 2005-01-18 Dynamic pressure bearing device

Publications (1)

Publication Number Publication Date
JP2006200583A true JP2006200583A (en) 2006-08-03

Family

ID=36958769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005010751A Withdrawn JP2006200583A (en) 2005-01-18 2005-01-18 Dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JP2006200583A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102686872A (en) * 2009-12-30 2012-09-19 罗伯特·博世有限公司 Starting device for an internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102686872A (en) * 2009-12-30 2012-09-19 罗伯特·博世有限公司 Starting device for an internal combustion engine
JP2013515910A (en) * 2009-12-30 2013-05-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Starter used for internal combustion engine
US8925404B2 (en) 2009-12-30 2015-01-06 Robert Bosch Gmbh Starting device for an internal combustion engine

Similar Documents

Publication Publication Date Title
US6672767B2 (en) Dynamic bearing device and motor having the same
JP3893021B2 (en) Hydrodynamic bearing unit
US8038350B2 (en) Hydrodynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP3774080B2 (en) Hydrodynamic bearing unit
JP2001124065A (en) Dynamic pressure type bearing unit
JP2006200583A (en) Dynamic pressure bearing device
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP4738964B2 (en) Hydrodynamic bearing device and motor having the same
US20100034493A1 (en) Fluid bearing device
JP4579013B2 (en) Hydrodynamic bearing device
JP2008144847A (en) Dynamic pressure bearing device
JP4459669B2 (en) Hydrodynamic bearing device
JP3773721B2 (en) Hydrodynamic bearing
JP4394657B2 (en) Hydrodynamic bearing unit
JP4615328B2 (en) Hydrodynamic bearing device
JP2005265180A (en) Dynamic pressure bearing device
JP4588561B2 (en) Hydrodynamic bearing device
JP2004116623A (en) Fluid bearing device
JP4498932B2 (en) Hydrodynamic bearing device
JP2006200582A (en) Dynamic pressure bearing device
JP4832736B2 (en) Hydrodynamic bearing unit
JP4731852B2 (en) Hydrodynamic bearing unit
JP4030517B2 (en) Hydrodynamic bearing device
JP2001173645A (en) Dynamic pressure bearing unit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080401