JP3774080B2 - Hydrodynamic bearing unit - Google Patents

Hydrodynamic bearing unit Download PDF

Info

Publication number
JP3774080B2
JP3774080B2 JP09791999A JP9791999A JP3774080B2 JP 3774080 B2 JP3774080 B2 JP 3774080B2 JP 09791999 A JP09791999 A JP 09791999A JP 9791999 A JP9791999 A JP 9791999A JP 3774080 B2 JP3774080 B2 JP 3774080B2
Authority
JP
Japan
Prior art keywords
bearing
thrust
shaft
dynamic pressure
flange portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09791999A
Other languages
Japanese (ja)
Other versions
JP2000291648A5 (en
JP2000291648A (en
Inventor
嗣人 中関
一男 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP09791999A priority Critical patent/JP3774080B2/en
Priority to US09/539,617 priority patent/US6390681B1/en
Priority to KR1020000017652A priority patent/KR100696238B1/en
Publication of JP2000291648A publication Critical patent/JP2000291648A/en
Publication of JP2000291648A5 publication Critical patent/JP2000291648A5/ja
Application granted granted Critical
Publication of JP3774080B2 publication Critical patent/JP3774080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、動圧型軸受ユニットに関する。この軸受ユニットは、特に情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、DVD−ROM等の光ディスク装置、MD、MO等の光磁気ディスク装置などのスピンドルモータ、あるいはレーザビームプリンタ(LBP)のポリゴンスキャナモータなどのスピンドル支持用として好適なものである。
【0002】
【従来の技術】
上記各種情報機器のスピンドルモータには、高回転精度の他、高速化、低コスト化、低騒音化などが求められている。これらの要求性能を決定づける構成要素の一つに当該モータのスピンドルを支持する軸受があり、近年では、この種の軸受として、上記要求性能に優れた特性を有する動圧型軸受の使用が検討され、あるいは実際に使用されている。
【0003】
図5はこの種のスピンドルモータの一例で、軸受ユニット21で回転自在に支持された軸部材22(軸22aと、軸22aへの装着によりフランジ部となるスラスト円盤22bとで構成される)を、軸受部材27に固定したモータステータ4と、軸部材22に装着したモータロータ5との間に生じる励磁力で回転駆動する構造である。軸受ユニット21には、軸部材22をラジアル方向で支持するラジアル軸受部30とスラスト円盤22bをスラスト方向で支持するスラスト軸受部31とが設けられ、これらの軸受部30、31は何れも軸受面に動圧発生用の溝(動圧溝)を有する動圧型軸受とされる。ラジアル軸受部30の動圧溝は、軸受部材27の内周面に形成され、スラスト軸受部31の動圧溝は、軸部材22の下端に固定したスラスト円盤22bの両端面にそれぞれ形成される。軸受部材27の底部には、スラスト円盤22bの厚さにスラスト軸受隙間の幅(t=10〜20μm程度)分を加算した段差が設けられ、この段差部分にバックメタル33を組み込むことによって、スラスト円盤22bの軸方向両側に上記所定幅のスラスト軸受隙間Cs1、Cs2が形成される(t=Cs1+Cs2)。
【0004】
この軸受ユニット21は、軸受部材27にスラスト円盤22bとバックメタル33とを組み込んだ後、軸受部材27の内径部にその内径よりラジアル軸受隙間Cr分だけ小径の軸22aを挿入し、さらに軸22a先端をスラスト円盤22bの内径部に圧入することによって組立てられる。
【0005】
【発明が解決しようとする課題】
上記軸受ユニット21において、軸22aとスラスト円盤22bとの直角度の精度が悪いと、スラスト軸受隙間Cs1、Cs2内でスラスト円盤22bがその対向面と接触し、軸受性能を悪化させるおそれがある。従って、組立工程では、軸22aをスラスト円盤22bに精度よく圧入する必要があるが、圧入では必要な精度(直角度2μm程度)を得ることが難しい。また、直角度を測定しようとしても、軸22aやスラスト円盤22bは既にユニット内に組み込まれているから、その精度測定や確認は一般に困難であり、仮に可能であっても煩雑な作業を要して組立コストの増大等を招く。
【0006】
そこで、本発明は、軸とスラスト円盤との間の精度(直角度等)を低コストに向上させ得る動圧型軸受ユニットの提供を目的とする。
【0007】
【課題を解決するための手段】
上記目的の達成のため、本発明にかかる動圧型軸受ユニットは、ハウジングと、軸およびフランジ部からなる軸部材と、ハウジングの内周面に固定された軸受部材と、軸の外周面とこれに対向する軸受部材の内周面との間にラジアル軸受隙間を備え、軸部材をラジアル方向で支持するラジアル軸受部と、フランジ部の両側に2つのスラスト軸受隙間を備え、軸部材のフランジ部をスラスト方向で支持するスラスト軸受部とを有し、ラジアル軸受部およびスラスト軸受部がそれぞれ動圧作用で軸部材を非接触支持するものにおいて、ハウジングの一端が開口されると共に、他端がスラスト支持部で封口され、ハウジングの内周面が段差のない円筒面状をなし、フランジ部が軸の一端に設けられ、フランジ部の一方の端面と、これに対向する軸受部材の端面とでスラスト軸受部の一方のスラスト軸受隙間を構成すると共に、フランジ部の他方の端面とスラスト支持部の端面との間にスラスト軸受部の他方のスラスト軸受隙間を構成し、軸とフランジ部を一体に構成したものである。軸部材の軸およびフランジ部は、鍛造によって一体形成したり、あるいは溶接によって一体化することができる。
【0008】
このように軸部材を一体構造とすると、軸とフランジ部間の直角度等の精度を容易に確保することができ、しかも軸受ユニットへの組込み前に直角度が測定可能となるので、精度測定やその確認作業も容易なものとなる。
【0011】
スラスト軸受部の動圧溝は、軸受部材およびスラスト支持部の何れか一方(スラスト負荷の方向により決まる)、または双方に設けるのが望ましい。
【0012】
軸受部材の一端側は、シール部材で密封しておくのがよい。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を図1乃至図4に基いて説明する。
【0014】
図1は、本発明にかかる動圧型軸受ユニット1を備える情報機器用スピンドルモータの断面図で、一例としてHDD(ハードディスクドライブ)スピンドルモータを示している。このスピンドルモータは、軸部材2を回転自在に支持する軸受ユニット1と、軸部材2に取付けられ、磁気ディスクDを一又は複数枚保持するディスクハブ3と、半径方向のギャップを介して対向させたモータステータ4およびモータロータ5とを有する。ステータ4は、軸受ユニット1を保持するケーシング9の円筒状外周部に取付けられ、ロータ5はディスクハブ3の内周面に取付けられている。ステータ4に通電すると、ステータ4とロータ5との間の励磁力でロータ5が回転し、ディスクハブ3および軸部材2が回転する。
【0015】
図1および図2に示すように、軸受ユニット1は、軸部材2と、有底円筒状のいわゆる袋型ハウジング6と、ハウジング6の内周面に固定された厚肉円筒状の軸受部材7と、軸受部材7の一端側(ハウジング6の開口側をいう)を密封するシールワッシャ等のシール部材8とを主な構成要素とする。軸部材2は、軸2aと軸2aの下端部に設けられたフランジ部2bとからなり、かつ軸2aを軸受部材7の内周部に、フランジ部2bを軸受部材7とハウジング6の底部との間に収容して配置される。
【0016】
軸受部材7は、例えば銅や真鍮等の軟質金属等で形成される。軸受部材7の内周面には、動圧溝を有するラジアル軸受面10aが形成され、これより軸部材2と軸受部材7の相対回転時(本実施形態では軸部材2の回転時)には、ラジアル軸受面10aと軸2aの外周面との間のラジアル軸受隙間Crに動圧が発生し、軸2aをラジアル方向で非接触支持するラジアル軸受部10が構成される。なお、図中のラジアル軸受隙間Crの幅は誇張して描かれている(後述のスラスト軸受隙間Cs1、Cs2についても同様)。
【0017】
軸受部材7は軟質金属等だけでなく、例えば焼結金属によっても成形することもできる。その場合の動圧溝は圧縮成形、すなわち、コアロッドの外周面にラジアル軸受面10aの動圧溝形状(図3(a)参照)に対応した凹凸形状の溝型を形成し、コアロッドの外周に焼結金属を供給して焼結金属を圧迫し、焼結金属の内周部に溝型形状に対応した動圧溝を転写することによって、低コストにかつ高精度に成形することができる。この場合、焼結金属の脱型は、圧迫力を解除することによる焼結金属のスプリングバックを利用して簡単に行える。このように軸受部材7の素材として焼結金属を用いる場合、軸受部材7に潤滑油や潤滑グリースを含浸させた動圧型含油軸受として使用することができる。
【0018】
フランジ部2bの軸方向両側には、軸方向の隙間であるスラスト軸受隙間Cs1、Cs2が設けられる。スラスト軸受隙間Cs1は、フランジ部2bの上端面2b1とこれに対向する軸受部材7の端面との間に形成され、他方のスラスト軸受隙間Cs2は、フランジ部2bの下端面2b2と、これに対向するスラスト支持部13の上面との間に形成される。本実施形態は、スラスト支持部13をハウジング6と一体に形成し、かつスラスト支持部13をハウジング6の他端開口を封口する底部とした構造を例示している。一方のスラスト軸受隙間Cs1を臨む軸受部材7の下端面、および他方のスラスト軸受隙間Cs2を臨むスラスト支持部13の上面には、それぞれ動圧溝を有するスラスト軸受面11a、11bが形成され、これより上記回転時には、スラスト軸受隙間Cs1、Cs2に動圧が発生し、フランジ部2bをスラスト方向両側から非接触支持するスラスト軸受部11が構成される。
【0019】
上記ラジアル軸受面10aおよびスラスト軸受面11a、11bの動圧溝形状は任意に選択することができ、公知のへリングボーン型、スパイラル型、ステップ型、多円弧型等の何れかを選択し、あるいはこれらを適宜組合わせて使用することができる。図3は動圧溝形状の一例としてへリングボーン型を示すもので、同図(A)はラジアル軸受面10aを、同図(B)は、スラスト支持部13に設けられたスラスト軸受面11bを示す。図示のように、ラジアル軸受面10aは、一方に傾斜する動圧溝14が形成された第1の溝領域m1と、第1の溝領域m1から軸方向に離隔し、他方に傾斜する動圧溝14が配列された第2の溝領域m2と、2つの溝領域間m1、m2間に位置する環状の平滑部nとを備え、平滑部nと動圧溝13間の背の部分15とは同一レベルにある。スラスト軸受面11bの動圧溝16は、半径方向のほぼ中心部に屈曲部分を有するほぼV字状をなしている。
【0020】
上記軸受ユニット1は、ハウジング6内にフランジ部2bを下にして軸部材2を挿入し、さらに所定幅(10〜20μm程度)のスラスト軸受隙間Cs1、Cs2が形成されるようにハウジング6内周部の所定位置に、軸受部材7を圧入あるいは接着することにより組立てられる。そして、この軸受ユニット1をケーシング9の円筒状内周部に圧入あるいは接着し、さらにロータ5やディスクハブ3からなるアッセンブリ(モータロータ)を軸2aの上端に圧入することにより、図1に示すスピンドルモータが組立てられる。
【0021】
本発明では、軸部材2の軸2aとフランジ部2bとが例えば鍛造あるいは機械加工等によって一体に形成される。このように軸部材2を一体構造とすると、軸2aとフランジ部2b間の直角度等の精度を容易に高めることができ、しかも軸受ユニットへの組込み前に直角度が測定可能となるので、精度測定やその確認も簡単に行える。また、モータロータを最後に取付けることができるので、軸受ユニット1への注油が容易となり、さらにはスピンドルユニットとしての取扱いが可能となり、取扱いが容易となる利点も得られる。なお、軸部材2は、軸2aとフランジ部2bとを溶接により一体化した後、所定の精度に仕上げることによっても製造可能である。
【0022】
上述のように、軸2aにはモータロータが圧入されるので、軸部材2の材質としては高硬度の鉄系材料で形成するのが望ましい。一方、鉄系材料では、従来のようにフランジ部2bの端面に動圧溝を塑性加工や機械加工で形成することが難しくなるため、加工コストが高騰するが、その場合でも上記のように動圧溝をフランジ部2bではなく、軸受部材7の端面やスラスト支持部13に設けるようにすれば、この種の問題を解消することができる。すなわち、軸受部材7やスラスト支持部13を軟質金属や焼結金属(塑性加工や機械加工の容易な材料)で形成することができ、加工コストの低減化を図ることができる。例えば、軟質金属を使用する場合はプレス加工等により、焼結金属を使用する場合はラジアル軸受面10aと同様の圧縮成形により、動圧溝16付きのスラスト軸受面11a、11bを形成することができる。なお、加工コストが特に問題にならない場合は、フランジ部2bの両端面に上記スラスト軸受面11a、11bを形成することもできる。
【0023】
図4に本発明の他の実施形態を示す。この軸受ユニット1は、図5に示す構成に対応するもので、図1のハウジング6と軸受部材7とを一体化して単体の軸受部材7’とし、当該軸受部材7’の底部開口を別部材のスラスト支持部13(例えば従来と同様のバックメタル33)で封口した構造を示す。その他の実質的な構成は図1乃至図3と同様である。この場合も軸部材2は一体構造とされ、スラスト軸受面11a、11bはそれぞれ軸受部材7’の端面およびスラスト支持部13に設けることができる。
【0024】
【発明の効果】
このように本発明では、軸部材を一体構造としているので、軸とフランジ部間の直角度等の精度を容易に高めることができ、しかもその精度測定や確認も簡単に行える。従って、情報機器用スピンドルモータ用として好適な高精度で安価な軸受ユニットを提供することができる。
【0025】
また、スラスト軸受部の動圧溝を、軸受部材およびスラスト支持部の何れか一方、または双方に設けるようにすれば、軸部材を鉄系等の硬質材料で形成した場合でも、軸受部材やスラスト支持部を、動圧溝を加工しやすい軟質金属や焼結金属等で形成することにより、スラスト軸受面の加工コストを低減化することができる。
【図面の簡単な説明】
【図1】本発明にかかる動圧型軸受ユニットを有する情報機器用スピンドルモータの断面図である。
【図2】図1の要部拡大断面図である。
【図3】(A)図は軸受部材の断面図、(B)図はスラスト軸受部の平面図である
【図4】本発明の他の実施形態を示す断面図である。
【図5】従来の情報機器用スピンドルモータの断面図である。
【符号の説明】
1 動圧型軸受ユニット
2 軸部材
2a 軸
2b フランジ部
7 軸受部材
7’ 軸受部材
8 シール部材
10 ラジアル軸受部
10a ラジアル軸受面
11 スラスト軸受部
11a スラスト軸受面
11b スラスト軸受面
13 スラスト支持部
14 動圧溝
16 動圧溝
Cr ラジアル軸受隙間
Cs1 スラスト軸受隙間
Cs2 スラスト軸受隙間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dynamic pressure type bearing unit. This bearing unit is particularly suitable for information equipment, for example, a spindle motor such as a magnetic disk device such as HDD or FDD, an optical disk device such as CD-ROM or DVD-ROM, a magneto-optical disk device such as MD or MO, or a laser beam printer ( It is suitable for supporting a spindle such as a polygon scanner motor of LBP).
[0002]
[Prior art]
In addition to high rotational accuracy, spindle motors of the various information devices are required to have high speed, low cost, low noise, and the like. One of the components that determine the required performance is a bearing that supports the spindle of the motor.In recent years, the use of a hydrodynamic bearing having characteristics excellent in the required performance has been studied as this type of bearing. Or it is actually used.
[0003]
FIG. 5 shows an example of this type of spindle motor. A shaft member 22 (comprised of a shaft 22a and a thrust disk 22b that becomes a flange portion when mounted on the shaft 22a) is rotatably supported by a bearing unit 21. In this structure, the motor stator 4 fixed to the bearing member 27 and the motor rotor 5 mounted on the shaft member 22 are rotationally driven by an exciting force. The bearing unit 21 is provided with a radial bearing portion 30 for supporting the shaft member 22 in the radial direction and a thrust bearing portion 31 for supporting the thrust disk 22b in the thrust direction. These bearing portions 30, 31 are both bearing surfaces. The hydrodynamic bearing has a dynamic pressure generating groove (dynamic pressure groove). The dynamic pressure grooves of the radial bearing portion 30 are formed on the inner peripheral surface of the bearing member 27, and the dynamic pressure grooves of the thrust bearing portion 31 are formed on both end surfaces of the thrust disk 22b fixed to the lower end of the shaft member 22, respectively. . The bottom of the bearing member 27 is provided with a level difference obtained by adding the thrust bearing gap width (t = 10 to 20 μm) to the thickness of the thrust disk 22b. Thrust bearing gaps Cs1 and Cs2 having the predetermined width are formed on both axial sides of the disk 22b (t = Cs1 + Cs2).
[0004]
In this bearing unit 21, after the thrust disk 22b and the back metal 33 are assembled in the bearing member 27, a shaft 22a having a smaller diameter than the inner diameter is inserted into the inner diameter portion of the bearing member 27, and the shaft 22a The tip is assembled by press-fitting the inner end of the thrust disk 22b.
[0005]
[Problems to be solved by the invention]
In the bearing unit 21, if the perpendicularity accuracy between the shaft 22a and the thrust disk 22b is poor, the thrust disk 22b may come into contact with the facing surface in the thrust bearing gaps Cs1 and Cs2, and the bearing performance may be deteriorated. Therefore, in the assembly process, it is necessary to press-fit the shaft 22a into the thrust disk 22b with high accuracy, but it is difficult to obtain the required accuracy (squareness of about 2 μm) by press-fitting. Further, even if an attempt is made to measure the squareness, since the shaft 22a and the thrust disk 22b are already incorporated in the unit, it is generally difficult to measure and confirm their accuracy, and even if possible, complicated work is required. Increase assembly costs.
[0006]
Therefore, an object of the present invention is to provide a hydrodynamic bearing unit that can improve the accuracy (perpendicularity, etc.) between the shaft and the thrust disk at low cost.
[0007]
[Means for Solving the Problems]
To achieve the above object, a hydrodynamic bearing unit according to the present invention includes a housing, a shaft member including a shaft and a flange, a bearing member fixed to the inner peripheral surface of the housing, an outer peripheral surface of the shaft, and A radial bearing gap is provided between the inner peripheral surfaces of the opposing bearing members, a radial bearing portion that supports the shaft member in the radial direction, two thrust bearing gaps on both sides of the flange portion, and a flange portion of the shaft member. A thrust bearing portion that supports in the thrust direction, and the radial bearing portion and the thrust bearing portion each support the shaft member in a non-contact manner by dynamic pressure action, and one end of the housing is opened and the other end is thrust supported. The inner peripheral surface of the housing has a cylindrical surface shape without a step, the flange portion is provided at one end of the shaft, and one end surface of the flange portion and the bearing facing this In the end surface of the wood as well as constituting one of the thrust bearing gap of the thrust bearing portion to constitute the other thrust bearing gap of the thrust bearing portion between the other end face and the thrust support portion end surface of the flange portion, and the shaft The flange portion is integrally formed. The shaft and the flange portion of the shaft member can be integrally formed by forging, or can be integrated by welding.
[0008]
If the shaft member is integrated in this way, accuracy such as the squareness between the shaft and the flange can be easily secured, and the squareness can be measured before installation in the bearing unit, so accuracy measurement And the confirmation work becomes easy.
[0011]
The dynamic pressure groove of the thrust bearing portion is preferably provided in either one of the bearing member and the thrust support portion (determined by the direction of the thrust load) or both.
[0012]
One end side of the bearing member is preferably sealed with a seal member.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0014]
FIG. 1 is a sectional view of a spindle motor for information equipment provided with a hydrodynamic bearing unit 1 according to the present invention, and shows an HDD (Hard Disk Drive) spindle motor as an example. This spindle motor is opposed to a bearing unit 1 that rotatably supports a shaft member 2 and a disk hub 3 that is attached to the shaft member 2 and holds one or more magnetic disks D via a radial gap. A motor stator 4 and a motor rotor 5. The stator 4 is attached to the cylindrical outer peripheral portion of the casing 9 that holds the bearing unit 1, and the rotor 5 is attached to the inner peripheral surface of the disk hub 3. When the stator 4 is energized, the rotor 5 is rotated by the exciting force between the stator 4 and the rotor 5, and the disk hub 3 and the shaft member 2 are rotated.
[0015]
As shown in FIGS. 1 and 2, the bearing unit 1 includes a shaft member 2, a so-called bag-shaped housing 6 having a bottomed cylindrical shape, and a thick-walled cylindrical bearing member 7 fixed to the inner peripheral surface of the housing 6. And a seal member 8 such as a seal washer that seals one end side of the bearing member 7 (referring to the opening side of the housing 6). The shaft member 2 includes a shaft 2a and a flange portion 2b provided at the lower end portion of the shaft 2a. The shaft 2a is formed on the inner peripheral portion of the bearing member 7, and the flange portion 2b is formed on the bearing member 7 and the bottom portion of the housing 6. It is accommodated and arranged between.
[0016]
The bearing member 7 is made of a soft metal such as copper or brass, for example. A radial bearing surface 10a having a dynamic pressure groove is formed on the inner peripheral surface of the bearing member 7, and from this, when the shaft member 2 and the bearing member 7 are rotated relative to each other (when the shaft member 2 is rotated in this embodiment). A dynamic pressure is generated in the radial bearing gap Cr between the radial bearing surface 10a and the outer peripheral surface of the shaft 2a, and the radial bearing portion 10 is configured to support the shaft 2a in a non-contact manner in the radial direction. Note that the width of the radial bearing gap Cr in the drawing is exaggerated (the same applies to thrust bearing gaps Cs1 and Cs2 described later).
[0017]
The bearing member 7 can be formed not only from a soft metal or the like but also from a sintered metal, for example. In this case, the dynamic pressure groove is compression-molded, that is, an uneven groove shape corresponding to the dynamic pressure groove shape of the radial bearing surface 10a (see FIG. 3A) is formed on the outer peripheral surface of the core rod, and the outer periphery of the core rod is formed. By supplying the sintered metal, pressing the sintered metal, and transferring the dynamic pressure groove corresponding to the groove shape to the inner peripheral portion of the sintered metal, it is possible to form at low cost and with high accuracy. In this case, demolding of the sintered metal can be easily performed using a spring back of the sintered metal by releasing the pressing force. Thus, when using a sintered metal as a raw material of the bearing member 7, it can be used as a hydrodynamic oil-impregnated bearing in which the bearing member 7 is impregnated with lubricating oil or lubricating grease.
[0018]
Thrust bearing gaps Cs1, Cs2, which are axial gaps, are provided on both axial sides of the flange portion 2b. The thrust bearing gap Cs1 is formed between the upper end surface 2b1 of the flange portion 2b and the end surface of the bearing member 7 facing this, and the other thrust bearing gap Cs2 is opposed to the lower end surface 2b2 of the flange portion 2b. It is formed between the upper surface of the thrust support part 13 to be performed. This embodiment illustrates a structure in which the thrust support portion 13 is formed integrally with the housing 6, and the thrust support portion 13 is a bottom portion that seals the other end opening of the housing 6. Thrust bearing surfaces 11a and 11b having dynamic pressure grooves are formed on the lower end surface of the bearing member 7 facing one thrust bearing gap Cs1 and the upper surface of the thrust support portion 13 facing the other thrust bearing gap Cs2. Further, during the rotation, dynamic pressure is generated in the thrust bearing gaps Cs1 and Cs2, and the thrust bearing portion 11 is configured to support the flange portion 2b in a non-contact manner from both sides in the thrust direction.
[0019]
The dynamic pressure groove shape of the radial bearing surface 10a and the thrust bearing surfaces 11a, 11b can be arbitrarily selected, and any one of known herringbone type, spiral type, step type, multi-arc type, etc. is selected, Or these can be used combining suitably. FIG. 3 shows a herringbone type as an example of the dynamic pressure groove shape. FIG. 3A shows a radial bearing surface 10a, and FIG. 3B shows a thrust bearing surface 11b provided on the thrust support portion 13. FIG. Indicates. As shown in the figure, the radial bearing surface 10a has a first groove region m1 in which a dynamic pressure groove 14 inclined on one side is formed, and a dynamic pressure which is axially separated from the first groove region m1 and inclined on the other side. A second groove region m2 in which the grooves 14 are arranged, and an annular smooth portion n positioned between the two groove regions m1 and m2, and a back portion 15 between the smooth portion n and the dynamic pressure groove 13; Are at the same level. The dynamic pressure groove 16 of the thrust bearing surface 11b has a substantially V shape having a bent portion at a substantially central portion in the radial direction.
[0020]
In the bearing unit 1, the shaft member 2 is inserted into the housing 6 with the flange portion 2b facing down, and the inner periphery of the housing 6 is formed so that thrust bearing gaps Cs1 and Cs2 having a predetermined width (about 10 to 20 μm) are formed. The bearing member 7 is assembled by press-fitting or bonding to a predetermined position of the part. Then, the bearing unit 1 is press-fitted or bonded to the cylindrical inner peripheral portion of the casing 9, and an assembly (motor rotor) including the rotor 5 and the disk hub 3 is press-fitted to the upper end of the shaft 2a, whereby the spindle shown in FIG. The motor is assembled.
[0021]
In the present invention, the shaft 2a and the flange portion 2b of the shaft member 2 are integrally formed by, for example, forging or machining. If the shaft member 2 has an integral structure in this way, the accuracy of the perpendicularity between the shaft 2a and the flange portion 2b can be easily increased, and the perpendicularity can be measured before assembly into the bearing unit. Accuracy measurement and confirmation can be performed easily. In addition, since the motor rotor can be mounted last, lubrication to the bearing unit 1 is facilitated, and further, handling as a spindle unit is possible, and an advantage of easy handling can be obtained. The shaft member 2 can also be manufactured by integrating the shaft 2a and the flange portion 2b by welding and then finishing to a predetermined accuracy.
[0022]
As described above, since the motor rotor is press-fitted into the shaft 2a, it is desirable that the shaft member 2 is formed of a high-hardness iron-based material. On the other hand, in the case of ferrous materials, it becomes difficult to form dynamic pressure grooves on the end face of the flange portion 2b by plastic working or machining as in the conventional case, so that the processing cost increases. This type of problem can be solved if the pressure groove is provided not on the flange portion 2b but on the end face of the bearing member 7 or the thrust support portion 13. That is, the bearing member 7 and the thrust support portion 13 can be formed of a soft metal or a sintered metal (a material that can be easily plastically processed or machined), and the processing cost can be reduced. For example, the thrust bearing surfaces 11a and 11b with the dynamic pressure grooves 16 may be formed by pressing or the like when using a soft metal, or by compression molding similar to the radial bearing surface 10a when using a sintered metal. it can. When the processing cost is not particularly problematic, the thrust bearing surfaces 11a and 11b can be formed on both end surfaces of the flange portion 2b.
[0023]
FIG. 4 shows another embodiment of the present invention. The bearing unit 1 corresponds to the configuration shown in FIG. 5, and the housing 6 and the bearing member 7 of FIG. 1 are integrated into a single bearing member 7 ′, and the bottom opening of the bearing member 7 ′ is a separate member. A structure sealed with a thrust support portion 13 (for example, a back metal 33 similar to the conventional one) is shown. Other substantial configurations are the same as those in FIGS. 1 to 3. Also in this case, the shaft member 2 has an integral structure, and the thrust bearing surfaces 11a and 11b can be provided on the end surface of the bearing member 7 ′ and the thrust support portion 13, respectively.
[0024]
【The invention's effect】
Thus, in the present invention, since the shaft member has an integral structure, the accuracy such as the perpendicularity between the shaft and the flange portion can be easily increased, and the accuracy can be easily measured and confirmed. Therefore, a highly accurate and inexpensive bearing unit suitable for a spindle motor for information equipment can be provided.
[0025]
Further, if the dynamic pressure groove of the thrust bearing portion is provided in one or both of the bearing member and the thrust support portion, even when the shaft member is formed of a hard material such as iron, the bearing member and the thrust By forming the support portion with a soft metal, a sintered metal, or the like that easily processes the dynamic pressure groove, the processing cost of the thrust bearing surface can be reduced.
[Brief description of the drawings]
FIG. 1 is a sectional view of a spindle motor for information equipment having a hydrodynamic bearing unit according to the present invention.
FIG. 2 is an enlarged cross-sectional view of a main part of FIG.
3A is a sectional view of a bearing member, and FIG. 3B is a plan view of a thrust bearing portion. FIG. 4 is a sectional view showing another embodiment of the present invention.
FIG. 5 is a cross-sectional view of a conventional spindle motor for information equipment.
[Explanation of symbols]
1 Hydrodynamic bearing unit 2 Shaft member
2a axis
2b Flange 7 Bearing member 7 'Bearing member 8 Seal member
10 Radial bearing
10a Radial bearing surface
11 Thrust bearing
11a Thrust bearing surface
11b Thrust bearing surface
13 Thrust support
14 Dynamic pressure groove
16 Dynamic pressure groove Cr Radial bearing clearance Cs1 Thrust bearing clearance Cs2 Thrust bearing clearance

Claims (6)

ハウジングと、軸およびフランジ部からなる軸部材と、ハウジングの内周面に固定された軸受部材と、軸の外周面とこれに対向する軸受部材の内周面との間にラジアル軸受隙間を備え、軸部材をラジアル方向で支持するラジアル軸受部と、フランジ部の両側に2つのスラスト軸受隙間を備え、軸部材のフランジ部をスラスト方向で支持するスラスト軸受部とを有し、ラジアル軸受部およびスラスト軸受部がそれぞれ動圧作用で軸部材を非接触支持するものにおいて、
ハウジングの一端が開口されると共に、他端がスラスト支持部で封口され、ハウジングの内周面が段差のない円筒面状をなし、フランジ部が軸の一端に設けられ、フランジ部の一方の端面と、これに対向する軸受部材の端面とでスラスト軸受部の一方のスラスト軸受隙間を構成すると共に、フランジ部の他方の端面とスラスト支持部の端面との間にスラスト軸受部の他方のスラスト軸受隙間を構成し、軸とフランジ部を一体に構成したことを特徴とする動圧型軸受ユニット。
A housing, a shaft member including a shaft and a flange, a bearing member fixed to the inner peripheral surface of the housing, and a radial bearing gap between the outer peripheral surface of the shaft and the inner peripheral surface of the bearing member facing the shaft has a radial bearing portion for supporting the shaft member in a radial direction, with two thrust bearing gap on either side of the flange portion, and a thrust bearing portion for supporting the flange portion of the shaft member in the thrust direction, the radial bearing portion and In which the thrust bearing part supports the shaft member in a non-contact manner by dynamic pressure action,
One end of the housing is opened, the other end is sealed by a thrust support portion, the inner peripheral surface of the housing has a cylindrical surface shape without a step, the flange portion is provided at one end of the shaft, and one end surface of the flange portion And one end of the thrust bearing portion between the other end surface of the flange portion and the end surface of the thrust support portion. A hydrodynamic bearing unit comprising a gap and a shaft and a flange formed integrally.
スラスト軸受部の動圧溝を軸受部材に設けた請求項記載の動圧型軸受ユニット。The dynamic pressure type bearing unit according to claim 1 , wherein the dynamic pressure groove of the thrust bearing portion is provided in the bearing member. スラスト軸受部の動圧溝をスラスト支持部に設けた請求項1または2記載の動圧型軸受ユニット。The hydrodynamic bearing unit according to claim 1 or 2, wherein a dynamic pressure groove of the thrust bearing portion is provided in the thrust support portion. 軸受部材の一端側をシール部材で密封した請求項1〜3何れか記載の動圧型軸受ユニット。Hydrodynamic type bearing unit of claims 1 to 3, wherein any sealing the one end of the bearing member in the sealing member. 軸部材の軸およびフランジ部を、鍛造によって一体形成した請求項1記載の動圧型軸受ユニット。  The hydrodynamic bearing unit according to claim 1, wherein the shaft and the flange portion of the shaft member are integrally formed by forging. 軸部材の軸およびフランジ部を、溶接によって一体化した請求項1記載の動圧型軸受ユニット。  The hydrodynamic bearing unit according to claim 1, wherein the shaft and the flange portion of the shaft member are integrated by welding.
JP09791999A 1999-04-05 1999-04-05 Hydrodynamic bearing unit Expired - Lifetime JP3774080B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP09791999A JP3774080B2 (en) 1999-04-05 1999-04-05 Hydrodynamic bearing unit
US09/539,617 US6390681B1 (en) 1999-04-05 2000-03-31 Dynamic pressure bearing-unit
KR1020000017652A KR100696238B1 (en) 1999-04-05 2000-04-04 Dynamic pressure bearing-unit and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09791999A JP3774080B2 (en) 1999-04-05 1999-04-05 Hydrodynamic bearing unit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004219149A Division JP2004308918A (en) 2004-07-27 2004-07-27 Hydrodynamic bearing unit

Publications (3)

Publication Number Publication Date
JP2000291648A JP2000291648A (en) 2000-10-20
JP2000291648A5 JP2000291648A5 (en) 2005-05-26
JP3774080B2 true JP3774080B2 (en) 2006-05-10

Family

ID=14205117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09791999A Expired - Lifetime JP3774080B2 (en) 1999-04-05 1999-04-05 Hydrodynamic bearing unit

Country Status (1)

Country Link
JP (1) JP3774080B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8297844B2 (en) 2007-08-20 2012-10-30 Ntn Corporation Fluid dynamic bearing device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181033A (en) * 2000-12-12 2002-06-26 Ntn Corp Dynamic pressure type bearing unit
GB2379335B (en) * 2001-08-29 2005-09-07 Sunonwealth Electr Mach Ind Co Supporting structure for a rotor
JP4236891B2 (en) 2002-09-26 2009-03-11 Ntn株式会社 Hydrodynamic bearing device
JP2005042838A (en) 2003-07-23 2005-02-17 Ntn Corp Fluid bearing device
JP2005090653A (en) * 2003-09-18 2005-04-07 Ntn Corp Fluid bearing device
WO2005098251A1 (en) 2004-03-30 2005-10-20 Ntn Corporation Dynamic pressure bearing device
JP4832736B2 (en) * 2004-07-28 2011-12-07 Ntn株式会社 Hydrodynamic bearing unit
US20080309183A1 (en) 2004-08-03 2008-12-18 Ntn Corporation Dynamic Bearing Device
JP2006046430A (en) 2004-08-03 2006-02-16 Ntn Corp Dynamic pressure bearing device
JP4794907B2 (en) * 2005-05-24 2011-10-19 Ntn株式会社 Hydrodynamic bearing device and motor provided with the same
JP5095115B2 (en) 2006-03-27 2012-12-12 Ntn株式会社 Hydrodynamic bearing device
JP2007285414A (en) * 2006-04-17 2007-11-01 Ntn Corp Dynamic pressure bearing device
KR101148242B1 (en) * 2010-08-26 2012-07-03 삼성전기주식회사 Spindle Motor
TWI425153B (en) * 2011-08-12 2014-02-01 Topmag Technology Co Ltd High lubrication performance of the bearing components

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8297844B2 (en) 2007-08-20 2012-10-30 Ntn Corporation Fluid dynamic bearing device

Also Published As

Publication number Publication date
JP2000291648A (en) 2000-10-20

Similar Documents

Publication Publication Date Title
US6390681B1 (en) Dynamic pressure bearing-unit
JP3893021B2 (en) Hydrodynamic bearing unit
JP3774080B2 (en) Hydrodynamic bearing unit
WO2005117239A1 (en) Dynamic pressure bearing device and motor using the same
JP3981564B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2002233100A (en) Spindle motor and bearing assembly
KR101152223B1 (en) Dynamic pressure bearing device
JP2002061641A (en) Dynamic pressure type bearing device
JP3983435B2 (en) Hydrodynamic bearing unit
JP3842499B2 (en) Hydrodynamic bearing unit
JP3998915B2 (en) Manufacturing method of hydrodynamic bearing unit
JP2011074951A (en) Fluid dynamic bearing device
JP3773721B2 (en) Hydrodynamic bearing
JP2007064408A (en) Fluid bearing unit
JP2002276666A (en) Dynamic pressure type bearing unit
JP4048013B2 (en) Hydrodynamic bearing unit
JP4024007B2 (en) Hydrodynamic bearing unit
JP4832736B2 (en) Hydrodynamic bearing unit
JP3936527B2 (en) Manufacturing method of hydrodynamic bearing device
JPH11190340A (en) Dynamic pressure type bearing device
JP4233771B2 (en) Hydrodynamic bearing unit
JP4394657B2 (en) Hydrodynamic bearing unit
JP2004116623A (en) Fluid bearing device
JP2004308918A (en) Hydrodynamic bearing unit
JP2003314533A (en) Fluid bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term