JP2011074951A - Fluid dynamic bearing device - Google Patents

Fluid dynamic bearing device Download PDF

Info

Publication number
JP2011074951A
JP2011074951A JP2009224608A JP2009224608A JP2011074951A JP 2011074951 A JP2011074951 A JP 2011074951A JP 2009224608 A JP2009224608 A JP 2009224608A JP 2009224608 A JP2009224608 A JP 2009224608A JP 2011074951 A JP2011074951 A JP 2011074951A
Authority
JP
Japan
Prior art keywords
housing
peripheral surface
bearing sleeve
bearing
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009224608A
Other languages
Japanese (ja)
Inventor
Tetsuya Kurimura
栗村  哲弥
Hiromichi Kunigome
広道 國米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2009224608A priority Critical patent/JP2011074951A/en
Publication of JP2011074951A publication Critical patent/JP2011074951A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve run-out accuracy of a rotor fixed on a housing of an axis fix type fluid dynamic bearing device easily at low cost. <P>SOLUTION: An outer circumference surface 7b (fixing surface 7b1) of the housing 7 is formed as a cutting surface on a basis of an inner circumference surface 8a of a bearing sleeve 8. Dimension error (uneven wall thickness) of the bearing sleeve 8 and the housing 7, and assembly error of the bearing sleeve 8 and the housing 7 are canceled by cutting of the housing 7 thereby. Consequently, run-out accuracy of the outer circumference surface 7b of the housing 7 to the inner circumference surface 8a of the bearing sleeve 8 is improved without increasing machining accuracy of the bearing sleeve 8 and the housing 7 and fixing accuracy of both more than necessary. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、軸部材の外周面と軸受スリーブの内周面との間のラジアル軸受隙間に生じる流体膜の動圧作用で、回転側の部材をラジアル方向に支持する流体動圧軸受装置に関し、特に、軸部材を固定側とし、軸受スリーブ及びハウジングを回転側とした軸固定タイプの流体動圧軸受装置に関する。   The present invention relates to a fluid dynamic pressure bearing device for supporting a rotary member in a radial direction by a dynamic pressure action of a fluid film generated in a radial bearing gap between an outer peripheral surface of a shaft member and an inner peripheral surface of a bearing sleeve. In particular, the present invention relates to a fixed shaft type hydrodynamic bearing device having a shaft member as a fixed side and a bearing sleeve and a housing as a rotation side.

流体動圧軸受装置は、その高回転精度および静粛性から、情報機器(例えばHDD)の磁気ディスク駆動装置、CD・DVD・ブルーレイディスク等の光ディスク駆動装置、あるいはMD・MO等の光磁気ディスク駆動装置等のスピンドルモータ用として好適に使用されている。   Due to its high rotational accuracy and quietness, the fluid dynamic pressure bearing device is driven by a magnetic disk drive for information equipment (for example, HDD), an optical disk drive such as a CD / DVD / Blu-ray disc, or a magneto-optical disk drive such as an MD / MO. It is suitably used as a spindle motor for devices and the like.

例えばHDDのディスク駆動装置は、HDDの大容量化に伴って搭載されるディスクの枚数が増加する傾向にある。ディスクの搭載枚数が増えると重量が増大するため、ディスクが搭載されるディスクハブの振れが大きくなり、ディスクの回転精度、ひいてはディスクの読み取り精度が低下する恐れがある。かかる事情から、ディスクの搭載枚数の増加により重量が増大した場合であっても安定して支持することができる流体動圧軸受装置が求められている。   For example, HDD disk drive devices tend to increase the number of disks mounted as HDD capacity increases. As the number of mounted disks increases, the weight increases, so that the vibration of the disk hub on which the disks are mounted increases, and the rotation accuracy of the disk and thus the reading accuracy of the disk may be reduced. Under such circumstances, there is a need for a fluid dynamic bearing device that can be stably supported even when the weight increases due to an increase in the number of mounted disks.

図10に、軸部材102を回転側とした軸回転タイプの流体動圧軸受装置100(例えば特許文献1参照)を、HDD用ディスク駆動装置のスピンドルモータに適用した場合を示す。この流体動圧軸受装置100は、軸部材102と、内周に軸部材102が挿入された軸受スリーブ108と、内周面に軸受スリーブ108が固定されたハウジング107とを備える。軸部材102が回転すると、軸部材102と軸受スリーブ108との間のラジアル軸受隙間の流体膜に動圧作用が生じ、これにより軸部材102を回転自在に支持するラジアル軸受部Rが構成される。ハウジング107は固定側となるベース106に固定され、軸部材102の上端部にはディスクハブ103が固定される。このような軸回転タイプの流体動圧軸受装置100では、軸部材102のうち、ディスクハブ103との固定部(上端部)よりも下方領域をラジアル軸受部Rで支持するため、ラジアル軸受部Rで軸部材102を片持ち支持するような状態となる。このため、ラジアル軸受部Rによる軸部材2の支持が不安定となり、ディスクの搭載枚数が増えて重量が増大すると、ディスクハブ103の振れが大きくなる恐れがある。   FIG. 10 shows a case where a shaft rotation type fluid dynamic pressure bearing device 100 (see, for example, Patent Document 1) with the shaft member 102 as a rotation side is applied to a spindle motor of an HDD disk drive device. The fluid dynamic pressure bearing device 100 includes a shaft member 102, a bearing sleeve 108 with the shaft member 102 inserted into the inner periphery, and a housing 107 with the bearing sleeve 108 fixed on the inner peripheral surface. When the shaft member 102 rotates, a dynamic pressure action is generated in the fluid film in the radial bearing gap between the shaft member 102 and the bearing sleeve 108, thereby forming a radial bearing portion R that rotatably supports the shaft member 102. . The housing 107 is fixed to the base 106 on the fixed side, and the disk hub 103 is fixed to the upper end portion of the shaft member 102. In such a shaft rotation type fluid dynamic bearing device 100, the radial bearing portion R supports the lower region of the shaft member 102 than the fixed portion (upper end portion) to the disk hub 103 with the radial bearing portion R. Thus, the shaft member 102 is cantilevered. For this reason, the support of the shaft member 2 by the radial bearing portion R becomes unstable, and when the number of mounted disks increases and the weight increases, the vibration of the disk hub 103 may increase.

これに対し、図1に、軸部材2を固定側とした軸固定タイプの流体動圧軸受装置1(例えば特許文献2参照)を、HDD用ディスク駆動装置のスピンドルモータに適用した場合を示す。この流体動圧軸受装置1は、軸部材2と、内周に軸部材2が挿入された軸受スリーブ8と、内周面に軸受スリーブ8が固定されたハウジング7とを備える。軸受スリーブ8及びハウジング7が回転すると、軸部材2と軸受スリーブ8との間のラジアル軸受隙間の流体膜に動圧作用が生じ、これにより軸受スリーブ8及びハウジング7を回転自在に支持するラジアル軸受部Rが構成される。軸部材2の両端部は固定側となるベース6a及びカバー6bに固定され、ハウジング7の外周面にディスクハブ3が固定される。このように、軸固定タイプの流体動圧軸受装置1では、ハウジング7とディスクハブ3との固定部がラジアル軸受部Rの外周に配されるため、当該固定部をラジアル軸受部Rの軸方向領域内に配する設計が可能となる。このため、ディスクの搭載枚数が増えた場合でも、ラジアル軸受部Rによる軸受スリーブ8及びハウジング7の支持を安定させ、ディスクハブ3の振れを抑えることができる。   On the other hand, FIG. 1 shows a case where a shaft fixed type fluid dynamic bearing device 1 (see, for example, Patent Document 2) with the shaft member 2 as a fixed side is applied to a spindle motor of an HDD disk drive device. The fluid dynamic pressure bearing device 1 includes a shaft member 2, a bearing sleeve 8 in which the shaft member 2 is inserted on the inner periphery, and a housing 7 in which the bearing sleeve 8 is fixed on an inner peripheral surface. When the bearing sleeve 8 and the housing 7 rotate, a dynamic pressure action is generated in the fluid film in the radial bearing gap between the shaft member 2 and the bearing sleeve 8, and thereby the radial bearing that rotatably supports the bearing sleeve 8 and the housing 7. Part R is configured. Both end portions of the shaft member 2 are fixed to the base 6 a and the cover 6 b on the fixed side, and the disc hub 3 is fixed to the outer peripheral surface of the housing 7. As described above, in the shaft-fixed type fluid dynamic bearing device 1, since the fixed portion between the housing 7 and the disk hub 3 is arranged on the outer periphery of the radial bearing portion R, the fixed portion is arranged in the axial direction of the radial bearing portion R. Designs can be arranged within the area. For this reason, even when the number of mounted disks increases, the support of the bearing sleeve 8 and the housing 7 by the radial bearing portion R can be stabilized and the vibration of the disk hub 3 can be suppressed.

特開2006−112614号公報JP 2006-112614 A 特開2006−220307号公報JP 2006-220307 A

また、回転体の振れ精度を高める(振れを小さくする)ためには、流体動圧軸受装置のうち、回転体の取り付け面の振れ精度を高めることが重要となる。   Further, in order to increase the shake accuracy of the rotating body (reduce the shake), it is important to improve the shake accuracy of the mounting surface of the rotating body in the fluid dynamic pressure bearing device.

例えば図10に示すような軸回転タイプの流体動圧軸受装置100の場合、ディスクハブ103は軸部材102の外周面に取り付けられ、この軸部材102の軸心が回転中心となる。このため、軸部材102を高精度に加工することで、ディスクハブ103の取り付け面(軸部材102の外周面)の振れ精度を高めることができる。   For example, in the case of a shaft rotation type fluid dynamic bearing device 100 as shown in FIG. 10, the disk hub 103 is attached to the outer peripheral surface of the shaft member 102, and the shaft center of the shaft member 102 is the center of rotation. For this reason, by processing the shaft member 102 with high accuracy, the deflection accuracy of the mounting surface of the disk hub 103 (the outer peripheral surface of the shaft member 102) can be increased.

これに対し、図1に示すような軸固定タイプの流体動圧軸受装置1の場合、ハウジング7の外周面にディスクハブ3の取り付け面が設けられ、軸受スリーブ8の内周面の軸心が回転中心となる。このため、ディスクハブ3の取り付け面(ハウジング7の外周面)の振れ精度は、ハウジング7の寸法精度、ハウジング7と軸受スリーブ8との固定精度、及び、軸受スリーブ8の寸法精度の影響を受ける。このように、軸固定タイプの流体動圧軸受装置では、軸回転タイプと比べて、回転体の取り付け面の振れ精度を高めるために加工精度や固定精度を高める必要のある箇所が多く、コストアップや生産性の低下を招く。   On the other hand, in the case of the shaft fixed type fluid dynamic bearing device 1 as shown in FIG. 1, the mounting surface of the disk hub 3 is provided on the outer peripheral surface of the housing 7, and the shaft center of the inner peripheral surface of the bearing sleeve 8 is It becomes the center of rotation. Therefore, the deflection accuracy of the mounting surface of the disk hub 3 (the outer peripheral surface of the housing 7) is affected by the dimensional accuracy of the housing 7, the fixing accuracy between the housing 7 and the bearing sleeve 8, and the dimensional accuracy of the bearing sleeve 8. . In this way, the fixed shaft type fluid dynamic bearing device has many points that require increased machining accuracy and fixed accuracy in order to increase the runout accuracy of the mounting surface of the rotating body compared to the rotating shaft type, which increases costs. And this leads to a decrease in productivity.

本発明が解決しようとする課題は、軸固定タイプの流体動圧軸受装置において、ハウジングの外周面の振れ精度を簡易且つ低コストに高めることにある。   The problem to be solved by the present invention is to increase the deflection accuracy of the outer peripheral surface of the housing simply and at low cost in a shaft-fixed type fluid dynamic bearing device.

前記課題を解決するために、本発明は、軸部材と、内周に軸部材が挿入された軸受スリーブと、内周面に軸受スリーブが固定された筒状のハウジングと、軸部材の外周面と軸受スリーブの内周面との間のラジアル軸受隙間に生じる流体膜の動圧作用により、固定側となる軸部材に対して軸受スリーブ及びハウジングを回転自在に支持するラジアル軸受部とを備えた軸固定タイプの流体動圧軸受装置において、ハウジングの外周面が、その内周面に固定された軸受スリーブの内周面を基準として切削加工された面であることを特徴とする。   In order to solve the above-described problems, the present invention provides a shaft member, a bearing sleeve in which the shaft member is inserted on the inner periphery, a cylindrical housing in which the bearing sleeve is fixed on the inner periphery, and an outer peripheral surface of the shaft member. And a radial bearing portion that rotatably supports the bearing sleeve and the housing with respect to the shaft member on the fixed side by the dynamic pressure action of the fluid film generated in the radial bearing gap between the inner sleeve and the inner peripheral surface of the bearing sleeve In the shaft fixed type fluid dynamic pressure bearing device, the outer peripheral surface of the housing is a surface cut with reference to the inner peripheral surface of the bearing sleeve fixed to the inner peripheral surface.

このように、軸受スリーブの内周面を基準としてハウジングの外周面を切削加工することにより、軸受スリーブ及びハウジングの寸法誤差や両者の組付誤差を、ハウジングの切削加工で相殺することができる。これにより、軸受スリーブ及びハウジングの加工精度や両者の固定精度を必要以上に高めることなく、軸受スリーブの内周面に対するハウジングの外周面(回転体の取り付け面)の振れ精度を高めることができる。   In this way, by cutting the outer peripheral surface of the housing with the inner peripheral surface of the bearing sleeve as a reference, the dimensional error of the bearing sleeve and the housing and the assembly error between them can be offset by the cutting of the housing. Thereby, the runout accuracy of the outer peripheral surface of the housing (the mounting surface of the rotating body) with respect to the inner peripheral surface of the bearing sleeve can be increased without unnecessarily increasing the processing accuracy of the bearing sleeve and the housing and the fixing accuracy of both.

特に、各種ディスク駆動装置のスピンドルモータ用として使用される流体動圧軸受装置では、ディスクの回転精度の向上に対する要求が益々高まっており、軸受スリーブの内周面に対するハウジングの外周面の振れ精度は、例えば5μm以下に抑えることが要求される。本発明によれば、軸受スリーブの内周面を基準としてハウジングの外周面を切削加工することにより、簡易且つ低コストに上記要求を満たすことができる。   In particular, in fluid dynamic pressure bearing devices used for spindle motors of various disk drive devices, there is an increasing demand for improvement in disk rotation accuracy, and the deflection accuracy of the outer peripheral surface of the housing relative to the inner peripheral surface of the bearing sleeve is increased. For example, it is required to be suppressed to 5 μm or less. According to the present invention, by cutting the outer peripheral surface of the housing on the basis of the inner peripheral surface of the bearing sleeve, the above requirement can be satisfied easily and at low cost.

本発明の流体動圧軸受装置では、軸受スリーブ及びハウジングの寸法誤差及び軸受スリーブとハウジングとの組付誤差をハウジングの切削加工により相殺するため、切削加工後のハウジング単体の寸法公差は大きくなる場合がある。このようなハウジング単体の寸法公差が大きくなると、回転側の部材の重量バランスが崩れて回転精度が低下する恐れがある。従って、ハウジングの寸法公差、特に径方向の肉厚の寸法公差はなるべく小さい方が好ましく、具体的には40μm以下に抑えることが好ましい。   In the fluid dynamic bearing device of the present invention, since the dimensional error of the bearing sleeve and the housing and the assembly error between the bearing sleeve and the housing are offset by the cutting of the housing, the dimensional tolerance of the single housing after the cutting becomes large. There is. When the dimensional tolerance of such a single housing becomes large, the weight balance of the rotating member may be lost, and the rotational accuracy may be reduced. Therefore, it is preferable that the dimensional tolerance of the housing, particularly the dimensional tolerance of the thickness in the radial direction, be as small as possible, and specifically, be suppressed to 40 μm or less.

ハウジングの外周面は回転体の取り付け面となるため、その表面粗さをなるべく小さくすることが好ましく、具体的には表面粗さをRa0.8μm以下とすることが好ましい。   Since the outer peripheral surface of the housing serves as a mounting surface for the rotating body, it is preferable to reduce the surface roughness as much as possible. Specifically, the surface roughness is preferably set to Ra 0.8 μm or less.

ハウジングの内周面と軸受スリーブの外周面とを、両者を隙間嵌めした状態でその隙間に接着剤を介在させる、いわゆる隙間接着により行う場合、両者の固定精度を高めることは難しく、組付誤差が生じやすいため、本発明が特に好適に適用される。   When the inner peripheral surface of the housing and the outer peripheral surface of the bearing sleeve are fitted with a gap between them and an adhesive is interposed in the gap, so-called gap bonding is difficult, it is difficult to increase the fixing accuracy of both, and there is an assembly error. Therefore, the present invention is particularly preferably applied.

ハウジングの外周面に取付けられた回転体の抜去力は1500N以上確保することが望ましい。また、回転体とハウジングとの固定は、例えば圧入により行うことができる。   It is desirable to secure a removal force of the rotating body attached to the outer peripheral surface of the housing of 1500 N or more. The rotating body and the housing can be fixed by press-fitting, for example.

上記の流体動圧軸受装置では、ハウジングの外周面に、回転体の内周面に圧入される固定面と、ラジアル軸受部の軸方向領域に設けられ、固定面よりも小径な逃げ面とを形成することができる。これにより、ラジアル軸受部の軸方向領域ではハウジングと回転体とが圧入されない(あるいは圧入力が小さくなる)ため、この領域においてハウジング及び軸受スリーブの変形、特にラジアル軸受面(ラジアル軸受部で支持される面、以下同様)の変形が抑えられ、ラジアル方向の支持力の低下を防止することができる。   In the fluid dynamic pressure bearing device, a fixed surface that is press-fitted into the outer peripheral surface of the housing and an flank that is provided in an axial region of the radial bearing portion and has a smaller diameter than the fixed surface. Can be formed. As a result, the housing and the rotating body are not press-fitted (or the pressure input is reduced) in the axial direction region of the radial bearing portion. Therefore, in this region, deformation of the housing and the bearing sleeve, particularly the radial bearing surface (supported by the radial bearing portion). Deformation of the surface, the same applies to the following), and a reduction in the supporting force in the radial direction can be prevented.

以上のように、本発明によれば、軸固定タイプの流体動圧軸受装置において、ハウジングの外周面の振れ精度を簡易且つ低コストに高めることができる。   As described above, according to the present invention, in the fluid dynamic bearing device of the fixed shaft type, the deflection accuracy of the outer peripheral surface of the housing can be easily increased at low cost.

軸固定タイプの流体動圧軸受装置を組み込んだスピンドルモータの断面図である。It is a sectional view of a spindle motor incorporating a fixed shaft type fluid dynamic bearing device. 軸固定タイプの流体動圧軸受装置の軸方向断面図である。It is an axial sectional view of a fixed shaft type fluid dynamic bearing device. 軸受スリーブの軸方向断面図である。It is an axial sectional view of a bearing sleeve. 軸受スリーブの上面図である。It is a top view of a bearing sleeve. 軸受スリーブの下面図である。It is a bottom view of a bearing sleeve. ハウジング及び軸受スリーブの径方向断面図である。It is radial direction sectional drawing of a housing and a bearing sleeve. (a)〜(c)は、ハウジングの外周面を切削加工する機械を示す断面図である。(A)-(c) is sectional drawing which shows the machine which cuts the outer peripheral surface of a housing. 軸受スリーブの内周面に対するハウジングの外周面の振れ精度を測定するための装置であり、(a)は(b)図のY−Y断面図、(b)は(a)図をX方向から見た側面図である。It is a device for measuring the deflection accuracy of the outer peripheral surface of the housing with respect to the inner peripheral surface of the bearing sleeve, (a) is a YY sectional view of (b) figure, (b) is (a) figure from the X direction. FIG. 軸固定タイプの流体動圧軸受装置の他の例を示す軸方向断面図である。It is an axial direction sectional view showing other examples of a shaft fixed type fluid dynamic pressure bearing device. 軸回転タイプの流体動圧軸受装置を組み込んだスピンドルモータの断面図である。It is sectional drawing of the spindle motor incorporating the shaft rotation type fluid dynamic pressure bearing apparatus.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係る流体動圧軸受装置1を組み込んだ情報機器用スピンドルモータの断面図を示す。このスピンドルモータは、例えばHDD等のディスク駆動装置に用いられるもので、固定側(ベース6a)に設けられたステータコイル4と、回転側(ディスクハブ3)に設けられたロータマグネット5とを備える。流体動圧軸受装置1は、軸部材2を固定側とし、ハウジング7及び軸受スリーブ8を回転側とした、いわゆる軸固定タイプである。本実施形態では、軸部材2の下端部がベース6aに、上端部がカバー6bにそれぞれ固定され、ハウジング7の外周面には回転体としてのディスクハブ3が固定される。ディスクハブ3には所定枚数(図1では2枚)のディスクDが保持される。このように構成されたスピンドルモータにおいて、ステータコイル4に通電するとロータマグネット5が回転し、これに伴ってディスクハブ3、ディスクD、ハウジング7、及び軸受スリーブ8が一体に回転する。   FIG. 1 is a sectional view of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 according to the present invention. The spindle motor is used for a disk drive device such as an HDD, and includes a stator coil 4 provided on the fixed side (base 6a) and a rotor magnet 5 provided on the rotation side (disk hub 3). . The fluid dynamic pressure bearing device 1 is a so-called fixed shaft type in which the shaft member 2 is on the fixed side and the housing 7 and the bearing sleeve 8 are on the rotation side. In the present embodiment, the lower end portion of the shaft member 2 is fixed to the base 6 a and the upper end portion is fixed to the cover 6 b, and the disc hub 3 as a rotating body is fixed to the outer peripheral surface of the housing 7. A predetermined number (two in FIG. 1) of disks D are held on the disk hub 3. In the spindle motor configured as described above, when the stator coil 4 is energized, the rotor magnet 5 rotates, and accordingly, the disk hub 3, the disk D, the housing 7, and the bearing sleeve 8 rotate together.

流体動圧軸受装置1は、図2に示すように、軸部材2と、内周に軸部材2を挿入した軸受スリーブ8と、内周面7aに軸受スリーブ8を固定した筒状のハウジング7と、軸部材2に固定され、潤滑油の外部への漏れ出しを防止するシール部材10とを備える。本実施形態では、ハウジング7が軸方向両端を開口した円筒状に形成され、ハウジング7の両端開口部にそれぞれシール部材10が1個ずつ設けられる。尚、以下では、説明の便宜上、軸方向において、ハウジング7から軸部材2が大きく突出している側を下側、その反対側を上側とする。   As shown in FIG. 2, the fluid dynamic bearing device 1 includes a shaft member 2, a bearing sleeve 8 in which the shaft member 2 is inserted on the inner periphery, and a cylindrical housing 7 in which the bearing sleeve 8 is fixed to the inner peripheral surface 7 a. And a sealing member 10 that is fixed to the shaft member 2 and prevents leakage of the lubricating oil to the outside. In the present embodiment, the housing 7 is formed in a cylindrical shape having both ends in the axial direction, and one seal member 10 is provided at each end opening of the housing 7. In the following, for convenience of explanation, in the axial direction, the side where the shaft member 2 protrudes greatly from the housing 7 is defined as the lower side, and the opposite side is defined as the upper side.

軸部材2は、例えばステンレス鋼で略円柱状に形成される。軸部材2の外周面2aには、軸受スリーブ8の内周面8aのラジアル軸受面(図2に点線で示す)と径方向に対向した円筒面状の支持面2a1と、軸部材2の軸方向略中央部に形成され、支持面2a1よりも若干小径に形成された逃げ部2a2とが形成される。本実施形態のようにHDDのディスク駆動装置のスピンドルモータに適用される場合は、軸部材2の直径(特に支持面2a1の直径)が2〜4mmの範囲とされる。軸部材2の上下両端部が固定側の部材(ベース6a及びカバー6b)に固定される。本実施形態では、軸部材2の下端部に、ハウジング7の下側開口部から下方に突出し、支持面2a1よりも若干小径な圧入部2a3が設けられ、この圧入部2a3がベース6aの固定穴6a1に圧入固定される。軸部材2の上端部には軸方向のねじ穴2bが形成され、このねじ穴2bに、カバー6bに設けられた固定穴6b1を介してボルト等(図示省略)を固定することにより、軸部材2の上端部がカバー6bに固定される。   The shaft member 2 is made of, for example, stainless steel and has a substantially cylindrical shape. The outer peripheral surface 2 a of the shaft member 2 includes a cylindrical bearing surface 2 a 1 radially opposed to a radial bearing surface (indicated by a dotted line in FIG. 2) of the inner peripheral surface 8 a of the bearing sleeve 8, and the shaft of the shaft member 2. An escape portion 2a2 is formed which is formed at a substantially central portion in the direction and is slightly smaller in diameter than the support surface 2a1. When applied to a spindle motor of an HDD disk drive device as in this embodiment, the diameter of the shaft member 2 (particularly the diameter of the support surface 2a1) is in the range of 2 to 4 mm. The upper and lower ends of the shaft member 2 are fixed to fixed members (base 6a and cover 6b). In this embodiment, the lower end portion of the shaft member 2 is provided with a press-fit portion 2a3 that protrudes downward from the lower opening of the housing 7 and has a slightly smaller diameter than the support surface 2a1, and the press-fit portion 2a3 is a fixing hole of the base 6a. It is press-fitted and fixed to 6a1. An axial screw hole 2b is formed at the upper end of the shaft member 2, and a bolt or the like (not shown) is fixed to the screw hole 2b via a fixing hole 6b1 provided in the cover 6b. 2 is fixed to the cover 6b.

軸受スリーブ8は、金属材料や樹脂材料で略円筒状に形成され、本実施形態では焼結金属、特に銅、鉄、あるいは銅及び鉄系の金属粉末を用いた焼結金属で形成される。軸受スリーブ8の内周面8aには、ラジアル軸受隙間の流体膜(例えば油膜)に動圧作用を発生させるラジアル動圧発生部が形成され、このラジアル動圧発生部の形成領域がラジアル軸受面となる。本実施形態では、図3に示すように、ラジアル動圧発生部としてヘリングボーン形状の動圧溝8a1・8a2が軸方向に離隔した2箇所の領域に形成される。具体的には、軸受スリーブ8の内周面8aの軸方向に離隔した2箇所の領域に、内径に僅かに突出したヘリングボーン形状の丘部8a10・8a20(図4にクロスハッチングで示す)が形成される。丘部8a10・8a20は、各々の軸方向略中央部に形成された環状部8a11・8a21と、環状部8a11・8a21から軸方向両側に延びた傾斜部8a12・8a22とからなり、傾斜部8a12・8a22の径方向間に動圧溝8a1・8a2が形成される。丘部8a10・8a20の頂面は、平滑な円筒面状となっている。動圧溝8a1・8a2の溝深さ(すなわち丘部8a10・8a20の径方向高さ)は、例えば2.5〜5μmの範囲に設定される。尚、本実施形態では、上側の動圧溝8a1は、軸受内部における潤滑油の循環を意図的に作り出す目的で、軸方向非対称に形成される。具体的には、動圧溝8a1のうち、丘部8a10の環状部8a11より上側領域の軸方向寸法X1が、下側領域の軸方向寸法X2よりも大きくなるように形成されている。一方、下側の動圧溝8a2は、軸方向対称な形状に形成されている。 The bearing sleeve 8 is formed of a metal material or a resin material in a substantially cylindrical shape, and is formed of a sintered metal, particularly copper, iron, or a sintered metal using copper and iron-based metal powder in this embodiment. On the inner peripheral surface 8a of the bearing sleeve 8, a radial dynamic pressure generating portion that generates a dynamic pressure action on a fluid film (for example, an oil film) in the radial bearing gap is formed. It becomes. In this embodiment, as shown in FIG. 3, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 are formed in two regions separated in the axial direction as radial dynamic pressure generating portions. Specifically, herringbone-shaped hill portions 8a10 and 8a20 (shown by cross-hatching in FIG. 4) slightly projecting to the inner diameter are formed in two regions separated in the axial direction of the inner peripheral surface 8a of the bearing sleeve 8. It is formed. The hill portions 8a10 and 8a20 are composed of annular portions 8a11 and 8a21 formed at the substantially central portions in the axial direction, and inclined portions 8a12 and 8a22 extending from the annular portions 8a11 and 8a21 in the axial direction. Dynamic pressure grooves 8a1 and 8a2 are formed between the radial directions of 8a22. The top surfaces of the hill portions 8a10 and 8a20 have a smooth cylindrical surface shape. The groove depth of the dynamic pressure grooves 8a1 and 8a2 (that is, the radial height of the hill portions 8a10 and 8a20) is set in the range of 2.5 to 5 μm, for example. In the present embodiment, the upper dynamic pressure groove 8a1 is formed asymmetrically in the axial direction for the purpose of intentionally creating a circulation of lubricating oil inside the bearing. Specifically, of the dynamic pressure grooves 8a1, the axial dimension X 1 of the upper region the annular portion 8a11 of the hill portion 8a10 is formed to be larger than the axial dimension X 2 of the lower region. On the other hand, the lower dynamic pressure groove 8a2 is formed in an axially symmetrical shape.

軸受スリーブ8の上側端面8b及び下側端面8cには、それぞれスラスト軸受隙間の流体膜に動圧作用を発生させるスラスト動圧発生部が形成され、スラスト動圧発生部の形成領域がスラスト軸受面となる。本実施形態では、軸受スリーブ8の上側端面8bにスラスト動圧発生部としてスパイラル形状の動圧溝8b1が形成され(図4参照)、下側端面8cには同じくスパイラル形状の動圧溝8c1が形成される(図5参照)。これらの動圧溝8b1・8c1は、スパイラル形状の丘部8b10・8c10の間に形成され、軸部材2の回転に伴って潤滑油を内径側に押し込む、いわゆるポンプインタイプの動圧溝である。   The upper end surface 8b and the lower end surface 8c of the bearing sleeve 8 are each formed with a thrust dynamic pressure generating portion that generates a dynamic pressure action on the fluid film in the thrust bearing gap, and the formation region of the thrust dynamic pressure generating portion is a thrust bearing surface. It becomes. In this embodiment, a spiral-shaped dynamic pressure groove 8b1 is formed as a thrust dynamic pressure generating portion on the upper end surface 8b of the bearing sleeve 8 (see FIG. 4), and a spiral-shaped dynamic pressure groove 8c1 is similarly formed on the lower end surface 8c. Formed (see FIG. 5). These dynamic pressure grooves 8b1 and 8c1 are so-called pump-in type dynamic pressure grooves that are formed between the spiral-shaped hill portions 8b10 and 8c10 and push the lubricating oil into the inner diameter side as the shaft member 2 rotates. .

軸受スリーブ8の外周面8dには、軸方向に延びる所定本数の軸方向溝8d1が形成され、本実施形態では、例えば3本の軸方向溝8d1が円周方向等間隔位置に形成される。流体動圧軸受装置1を組み立てた状態では、図2に示すように、軸受スリーブ8の軸方向溝8d1とハウジング7の内周面7aとで潤滑油を軸受内部で循環させるための循環経路の一部が構成される。   A predetermined number of axial grooves 8d1 extending in the axial direction are formed on the outer peripheral surface 8d of the bearing sleeve 8. In the present embodiment, for example, three axial grooves 8d1 are formed at equal intervals in the circumferential direction. In the assembled state of the fluid dynamic pressure bearing device 1, as shown in FIG. 2, a circulation path for circulating lubricating oil inside the bearing by the axial groove 8 d 1 of the bearing sleeve 8 and the inner peripheral surface 7 a of the housing 7 is provided. Part is composed.

ハウジング7は、金属材料や樹脂材料で筒状に形成され、本実施形態では、真ちゅうにより軸方向両端を開口した円筒状に形成される(図2参照)。ハウジング7の内周面7aには、軸受スリーブ8の外周面8dが、例えば隙間接着により固定される。ハウジング7と軸受スリーブ8との固定方法はこれに限らず、例えば圧入や、接着剤介在下での圧入、あるいは溶着(超音波溶着やレーザ溶着を含む)などの手段も採用可能である。   The housing 7 is formed in a cylindrical shape with a metal material or a resin material. In this embodiment, the housing 7 is formed in a cylindrical shape having both axial ends opened by brass (see FIG. 2). The outer peripheral surface 8d of the bearing sleeve 8 is fixed to the inner peripheral surface 7a of the housing 7 by, for example, gap adhesion. The method for fixing the housing 7 and the bearing sleeve 8 is not limited to this, and for example, means such as press-fitting, press-fitting with an adhesive, or welding (including ultrasonic welding and laser welding) can be employed.

ハウジング7の外周面7bは、軸受スリーブ8の内周面8a(詳しくは、内周面8aに形成された丘部8a10及び8a20の頂面)を基準として切削加工された面となっている。具体的には、ハウジング7の外周面7bのうち、少なくともディスクハブ3が圧入固定される円筒面状の固定面7b1(上端部のテーパ面7b2を除く領域)が、上記切削加工面となっている。この切削加工により、ハウジング7の外周面7bの固定面7b1は、軸受スリーブ8の内周面8aに対する振れ精度が5μm以下とされ、表面粗さがRa0.8μm以下とされる。切削加工後のハウジング7は、固定面7b1における径方向の肉厚の寸法公差が40μm以下となっている。また、ハウジング7の固定面7b1に対するディスクハブ3(図1参照)の抜去力は1500N以上に設定される。本実施形態のように両者が圧入固定される場合は、ディスクハブ3の抜去力が1500N以上となるように、ハウジング7の固定面7b1の外径寸法が設定される。   The outer peripheral surface 7b of the housing 7 is a surface that is cut with reference to the inner peripheral surface 8a of the bearing sleeve 8 (specifically, the top surfaces of the hill portions 8a10 and 8a20 formed on the inner peripheral surface 8a). Specifically, of the outer peripheral surface 7b of the housing 7, at least a cylindrical fixed surface 7b1 to which the disk hub 3 is press-fitted and fixed (a region excluding the tapered surface 7b2 at the upper end) is the cutting surface. Yes. By this cutting process, the fixed surface 7b1 of the outer peripheral surface 7b of the housing 7 has a deflection accuracy with respect to the inner peripheral surface 8a of the bearing sleeve 8 of 5 μm or less and a surface roughness of Ra 0.8 μm or less. The housing 7 after cutting has a dimensional tolerance of a radial thickness on the fixed surface 7b1 of 40 μm or less. Further, the removal force of the disc hub 3 (see FIG. 1) with respect to the fixed surface 7b1 of the housing 7 is set to 1500 N or more. When both are press-fitted and fixed as in this embodiment, the outer diameter dimension of the fixing surface 7b1 of the housing 7 is set so that the removal force of the disk hub 3 is 1500 N or more.

シール部材10は、金属材料や樹脂材料で環状に形成され、軸部材2の外周面2aに圧入、接着、溶着、溶接、加締めなど任意の手段で固定される。本実施形態では、軸受スリーブ8の軸方向両側にシール部材10が1個ずつ配され、各シール部材10の軸受内部側の端面10bは、軸受スリーブ8の端面8b・8cのスラスト軸受面(図2に点線で示す)と軸方向に対向する。シール部材10の外周面10aは軸方向中心側に向けて徐々に拡径したテーパ面状をなし、このテーパ面状外周面10aとハウジング7の円筒面状内周面7aとの間に、軸方向中心側に向けて径方向幅を徐々に小さくした楔形のシール空間Sが形成される。潤滑油を流体動圧軸受装置1の内部に充填した状態では、シール空間Sでシールされた軸受の内部空間が軸受スリーブ8の内部気孔を含めて潤滑油で満たされ、潤滑油の油面は常にシール空間Sの内部に維持される。   The seal member 10 is formed in a ring shape with a metal material or a resin material, and is fixed to the outer peripheral surface 2a of the shaft member 2 by any means such as press fitting, adhesion, welding, welding, and caulking. In the present embodiment, one seal member 10 is arranged on each side of the bearing sleeve 8 in the axial direction, and the end surface 10b on the bearing inner side of each seal member 10 is a thrust bearing surface of the end surfaces 8b and 8c of the bearing sleeve 8 (see FIG. 2 (indicated by a dotted line). The outer peripheral surface 10a of the seal member 10 has a tapered surface shape whose diameter is gradually increased toward the axial center, and a shaft is formed between the tapered outer peripheral surface 10a and the cylindrical inner peripheral surface 7a of the housing 7. A wedge-shaped seal space S is formed in which the radial width gradually decreases toward the center in the direction. In a state in which the lubricating oil is filled in the fluid dynamic pressure bearing device 1, the inner space of the bearing sealed by the seal space S is filled with the lubricating oil including the inner pores of the bearing sleeve 8, and the oil level of the lubricating oil is It is always maintained inside the seal space S.

以上の構成からなる流体動圧軸受装置1において、ディスクハブ3、ハウジング7、及び軸受スリーブ8が一体に回転すると、軸受スリーブ8の内周面8aと軸部材2の外周面2aとの間にラジアル軸受隙間が形成される。そして、軸部材2の回転に伴って発生する動圧溝8a1・8a2の動圧作用によってラジアル軸受隙間の油膜の圧力が高められ、この動圧作用により軸受スリーブ8を含む回転側の部材をラジアル方向に非接触支持するラジアル軸受部R1・R2が軸方向に離隔した2箇所に形成される。   In the fluid dynamic pressure bearing device 1 having the above configuration, when the disk hub 3, the housing 7, and the bearing sleeve 8 rotate together, the inner surface 8 a of the bearing sleeve 8 and the outer surface 2 a of the shaft member 2 are interposed. A radial bearing gap is formed. Then, the pressure of the oil film in the radial bearing gap is increased by the dynamic pressure action of the dynamic pressure grooves 8a1 and 8a2 generated along with the rotation of the shaft member 2, and the rotary side member including the bearing sleeve 8 is radialized by this dynamic pressure action. Radial bearing portions R1 and R2 that are supported in a non-contact manner in the direction are formed at two locations separated in the axial direction.

これと同時に、軸受スリーブ8の両端面8b・8cと各シール部材10の端面10bとの間に、それぞれスラスト軸受隙間が形成される。そして、軸部材2の回転に伴って発生する動圧溝8b1・8c1の動圧作用によって両スラスト軸受隙間の油膜の圧力が高められ、この動圧作用により軸受スリーブ8を含む回転側の部材を両スラスト方向に非接触支持するスラスト軸受部T1・T2が形成される。   At the same time, thrust bearing gaps are formed between both end faces 8b and 8c of the bearing sleeve 8 and the end faces 10b of the seal members 10, respectively. Then, the pressure of the oil film in both thrust bearing gaps is increased by the dynamic pressure action of the dynamic pressure grooves 8b1 and 8c1 generated with the rotation of the shaft member 2, and the rotation side member including the bearing sleeve 8 is moved by this dynamic pressure action. Thrust bearing portions T1 and T2 that are supported in a non-contact manner in both thrust directions are formed.

以下、ハウジング7の外周面7bの仕上げ切削工程を説明する。この仕上げ切削工程は、軸受スリーブ8とハウジング7とを固定した後、軸受スリーブ8の内周面8aを基準としてハウジング7の外周面7bを切削加工(旋削加工)することにより行われる。   Hereinafter, the finish cutting process of the outer peripheral surface 7b of the housing 7 will be described. This finishing cutting process is performed by fixing the bearing sleeve 8 and the housing 7 and then cutting (turning) the outer peripheral surface 7b of the housing 7 with the inner peripheral surface 8a of the bearing sleeve 8 as a reference.

まず、ハウジング7の内周面7aに軸受スリーブ8の外周面8dを固定し、図6に示すようなサブアッシ品Aを構成する。本実施形態では、両者が隙間接着により固定される。ハウジング7及び軸受スリーブ8は、完全な円筒形状とすることは現実的に不可能であるため、円周方向に偏肉した形状となっている。具体的には、ハウジング7には厚肉部Cmax及び薄肉部Cminが形成され、軸受スリーブ8には厚肉部Dmax及び薄肉部Dminが形成される。また、ハウジング7と軸受スリーブ8との間の隙間を均一にすることも現実的に不可能であり、大隙間部Bmax及び小隙間部Bminが形成される。従って、仕上げ切削加工前の状態において、軸受スリーブ8の内周面8aに対するハウジング7の外周面7b’の振れ精度は、ハウジング7及び軸受スリーブ8の寸法精度や固定精度の影響を受けている。 First, the outer peripheral surface 8d of the bearing sleeve 8 is fixed to the inner peripheral surface 7a of the housing 7 to constitute a sub-assembly product A as shown in FIG. In this embodiment, both are fixed by gap adhesion. The housing 7 and the bearing sleeve 8 have a shape that is uneven in the circumferential direction because it is practically impossible to form a complete cylindrical shape. Specifically, a thick portion C max and a thin portion C min are formed in the housing 7, and a thick portion D max and a thin portion D min are formed in the bearing sleeve 8. In addition, it is practically impossible to make the gap between the housing 7 and the bearing sleeve 8 uniform, and the large gap B max and the small gap B min are formed. Therefore, the deflection accuracy of the outer peripheral surface 7b ′ of the housing 7 with respect to the inner peripheral surface 8a of the bearing sleeve 8 is affected by the dimensional accuracy and fixing accuracy of the housing 7 and the bearing sleeve 8 before the finish cutting.

上記のよう固定されたハウジング7及び軸受スリーブ8のサブアッシ品Aに、切削加工(旋削加工)を施す。具体的には、まず、図7(a)に示すように、切削機械(図示省略)の回転装置21に円柱状の軸素材22’を固定し、回転装置21及び軸素材22’を一体に回転させる。この状態で、軸素材22’の外周面に切削加工を施すことにより(図7(a)の点線参照)、回転軸22が形成される。回転軸22は、図7(b)に示すように、軸受スリーブ8の内周面8aを支持する小径外周面22aと、小径外周面22aの基端側に設けられた大径外周面22bと、小径外周面22aと大径外周面22bとの間に形成された径方向の肩面22cとを有する。このように、回転装置21と共に軸素材22’を回転させた状態で回転軸22の外周面を加工することで、回転装置21の回転中心と回転軸22の外周面(特に小径外周面22a)の軸心とを高精度に一致させ、回転軸22の外周面を非常に優れた振れ精度で回転させることができる。   Cutting (turning) is performed on the subassemblies A of the housing 7 and the bearing sleeve 8 fixed as described above. Specifically, first, as shown in FIG. 7A, a cylindrical shaft material 22 ′ is fixed to a rotating device 21 of a cutting machine (not shown), and the rotating device 21 and the shaft material 22 ′ are integrated. Rotate. In this state, the rotating shaft 22 is formed by cutting the outer peripheral surface of the shaft material 22 '(see the dotted line in FIG. 7A). As shown in FIG. 7B, the rotary shaft 22 includes a small-diameter outer peripheral surface 22a that supports the inner peripheral surface 8a of the bearing sleeve 8, and a large-diameter outer peripheral surface 22b provided on the proximal end side of the small-diameter outer peripheral surface 22a. And a radial shoulder surface 22c formed between the small-diameter outer peripheral surface 22a and the large-diameter outer peripheral surface 22b. Thus, by processing the outer peripheral surface of the rotating shaft 22 in a state where the shaft material 22 ′ is rotated together with the rotating device 21, the rotation center of the rotating device 21 and the outer peripheral surface of the rotating shaft 22 (particularly the small-diameter outer peripheral surface 22 a). And the outer peripheral surface of the rotating shaft 22 can be rotated with very good runout accuracy.

次に、回転軸22に軸受スリーブ8及びハウジング7のサブアッシ品Aを装着する。このとき、上記のように軸素材22’の外周面を切削加工して回転軸22を形成した後、回転軸22を回転装置21から取り外すことなく、サブアッシ品Aを回転軸22に装着することで、回転軸22の小径外周面22aの優れた振れ精度を維持した状態でサブアッシ品Aを装着することができる。具体的には、回転軸22の小径外周面22aを軸受スリーブ8の内周面8a(詳しくは、内周面8aに形成された丘部8a10・8a20の頂面、図3参照)に嵌合させ、これにより軸受スリーブ8の内周面8aがハウジング7の外周面7bの仕上げ切削加工の基準面となる。   Next, the bearing sleeve 8 and the sub assembly A of the housing 7 are mounted on the rotary shaft 22. At this time, after the outer peripheral surface of the shaft material 22 ′ is cut to form the rotating shaft 22 as described above, the sub-assembly product A is mounted on the rotating shaft 22 without removing the rotating shaft 22 from the rotating device 21. Thus, the sub assembly A can be mounted in a state in which the excellent deflection accuracy of the small-diameter outer peripheral surface 22a of the rotating shaft 22 is maintained. Specifically, the small-diameter outer peripheral surface 22a of the rotary shaft 22 is fitted to the inner peripheral surface 8a of the bearing sleeve 8 (specifically, the top surfaces of the hill portions 8a10 and 8a20 formed on the inner peripheral surface 8a, see FIG. 3). As a result, the inner peripheral surface 8a of the bearing sleeve 8 becomes the reference surface for the finish cutting of the outer peripheral surface 7b of the housing 7.

この状態で、図7(c)に示すように、回転軸22の先端部に固定部材23を固定することにより、サブアッシ品Aが回転軸22に位置決め固定される。固定部材23は、軸心に配された雄ねじ部23aと、雄ねじ部23aの周りに設けられた当接部23bとを有する。固定部材23の雄ねじ部23aを回転軸22のねじ穴22dに固定すると共に、当接部23bを軸受スリーブ8の端面に当接させることにより、固定部材23の当接部23bと回転軸22の肩面22cとで軸受スリーブ8を軸方向両側から挟持固定している。   In this state, as shown in FIG. 7C, the fixing member 23 is fixed to the distal end portion of the rotating shaft 22, so that the sub assembly product A is positioned and fixed to the rotating shaft 22. The fixing member 23 includes a male screw portion 23a disposed on the shaft center and a contact portion 23b provided around the male screw portion 23a. The male screw portion 23a of the fixing member 23 is fixed to the screw hole 22d of the rotating shaft 22, and the abutting portion 23b is brought into contact with the end surface of the bearing sleeve 8, whereby the abutting portion 23b of the fixing member 23 and the rotating shaft 22 are brought into contact with each other. The bearing sleeve 8 is clamped and fixed from both sides in the axial direction by the shoulder surface 22c.

その後、回転軸22及びサブアッシ品Aを一体に回転させ、この状態でハウジング7の外周面7bの固定面7b1を切削加工する(図6に、切削加工後のハウジング7の外周面7bを点線で示す)。このように、軸受スリーブ8の内周面8aを基準としてハウジング7の外周面7bを加工することで、各部材の寸法精度や各部材間の固定精度がそれ程高くない場合でも、軸受スリーブ8の内周面8aに対するハウジング7の外周面7bの振れ精度を高めることができ、具体的には振れ精度を5μm以下に抑えることができる。言い換えると、軸受スリーブ8やハウジング7の寸法精度や固定精度が高精度に設定されていない場合(例えば、ハウジング7の径方向の肉厚の公差が5μm以上、軸受スリーブ8の径方向の肉厚の公差が5μm以上、ハウジング7と軸受スリーブ8との間の径方向隙間の公差が5μm以上である場合)、軸受スリーブ8の内周面8aに対するハウジング7の外周面7bの振れ精度が5μm以下であれば、軸受スリーブ8の内周面8aを基準としてハウジング7の外周面7bを切削加工したと推定することができる。   Thereafter, the rotating shaft 22 and the sub-assembly A are rotated together, and the fixed surface 7b1 of the outer peripheral surface 7b of the housing 7 is cut in this state (FIG. 6 shows the outer peripheral surface 7b of the housing 7 after cutting by a dotted line. Show). Thus, by processing the outer peripheral surface 7b of the housing 7 with the inner peripheral surface 8a of the bearing sleeve 8 as a reference, even if the dimensional accuracy of each member and the fixing accuracy between the members are not so high, the bearing sleeve 8 The deflection accuracy of the outer peripheral surface 7b of the housing 7 with respect to the inner peripheral surface 8a can be increased. Specifically, the deflection accuracy can be suppressed to 5 μm or less. In other words, when the dimensional accuracy and fixing accuracy of the bearing sleeve 8 and the housing 7 are not set with high accuracy (for example, the radial thickness tolerance of the housing 7 is 5 μm or more, the radial thickness of the bearing sleeve 8 is The tolerance of the radial clearance between the housing 7 and the bearing sleeve 8 is 5 μm or more), and the deflection accuracy of the outer peripheral surface 7b of the housing 7 with respect to the inner peripheral surface 8a of the bearing sleeve 8 is 5 μm or less. If so, it can be estimated that the outer peripheral surface 7b of the housing 7 is cut with the inner peripheral surface 8a of the bearing sleeve 8 as a reference.

軸受スリーブ8とハウジング7とのサブアッシ品Aの外周面(ハウジング7の外周面7b)の振れ精度は、例えば図8に示す装置で測定することができる。ここで使用される測定装置30は、ピンゲージ31と、ピンゲージ31を固定するベースブロック32と、サブアッシ品Aの外周面の振れを測定する測定器33(例えばダイアルゲージ)とを備える。ピンゲージ31は、ベースブロック32の上面に形成されたV字溝32aに接着等により固定される。ピンゲージ31の外径寸法は、サブアッシ品Aの内周面(軸受スリーブ8の内周面8a)に挿入可能であり、且つ、可能な限り嵌合隙間が小さくなるように設定される。例えば、軸受スリーブ8の内径寸法が4mm程度である場合、軸受スリーブ8とピンゲージ31の嵌合隙間は2μm以下に設定される。サブアッシ品Aをピンゲージ31に外挿した状態で、サブアッシ品Aをピンゲージ31周りで1回転させ、このときのサブアッシ品Aの外周面の振れ幅を測定器33で測定する。尚、測定箇所は、ハウジング7の外周面7bの固定面7b1であれば場所は特に限定されない。また、測定箇所は1点でも良いし、複数点を測定してもよい。   The deflection accuracy of the outer peripheral surface (the outer peripheral surface 7b of the housing 7) of the sub-assembly product A between the bearing sleeve 8 and the housing 7 can be measured by, for example, the apparatus shown in FIG. The measuring device 30 used here includes a pin gauge 31, a base block 32 that fixes the pin gauge 31, and a measuring instrument 33 (for example, a dial gauge) that measures the deflection of the outer peripheral surface of the sub-assembly product A. The pin gauge 31 is fixed to a V-shaped groove 32a formed on the upper surface of the base block 32 by adhesion or the like. The outer diameter of the pin gauge 31 is set so that it can be inserted into the inner peripheral surface (the inner peripheral surface 8a of the bearing sleeve 8) of the sub assembly A and the fitting gap is as small as possible. For example, when the inner diameter of the bearing sleeve 8 is about 4 mm, the fitting gap between the bearing sleeve 8 and the pin gauge 31 is set to 2 μm or less. In a state where the sub assembly product A is extrapolated to the pin gauge 31, the sub assembly product A is rotated once around the pin gauge 31, and the deflection width of the outer peripheral surface of the sub assembly product A at this time is measured by the measuring device 33. In addition, if a measurement location is the fixed surface 7b1 of the outer peripheral surface 7b of the housing 7, a location will not be specifically limited. Moreover, the measurement location may be one point or a plurality of points may be measured.

本発明は上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記実施形態と同一の構成及び機能を有する箇所には同一の符号を付して重複説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, although other embodiment of this invention is described, the same code | symbol is attached | subjected to the location which has the same structure and function as the said embodiment, and duplication description is abbreviate | omitted.

例えば図9に示すように、ハウジング7の外周面7bのうち、ラジアル軸受部R1・R2の軸方向領域に、固定面7b1よりも小径な逃げ面7b3を形成してもよい。これにより、ラジアル軸受部R1・R2の外径側ではハウジング7とディスクハブ3とが圧入されない(あるいは圧入力が小さい)ため、この領域ではハウジング7及び軸受スリーブ8が内径向きに受ける圧迫力が小さくなり、軸受スリーブ8の内周面8aに形成されたラジアル軸受面の変形を確実に防止できる。   For example, as shown in FIG. 9, a clearance surface 7b3 smaller in diameter than the fixed surface 7b1 may be formed in the axial direction region of the radial bearing portions R1 and R2 in the outer peripheral surface 7b of the housing 7. As a result, the housing 7 and the disk hub 3 are not press-fitted on the outer diameter side of the radial bearing portions R1 and R2 (or the pressure input is small). Therefore, in this region, the pressing force received by the housing 7 and the bearing sleeve 8 toward the inner diameter is increased. As a result, the radial bearing surface formed on the inner peripheral surface 8a of the bearing sleeve 8 can be reliably prevented from being deformed.

また、上記実施形態では、筒状のハウジング7の軸方向両側から軸部材2が突出する構成としているが、これに限らず、ハウジング7の軸方向一方の開口部を閉塞する蓋部(図示省略)を設けても良い。この蓋部は、ハウジングと別体に設けても良いし、ハウジングと一体形成してもよい。この場合、軸部材2の一方の端部のみが固定側(ベース6a)に固定された構造となる。   In the above embodiment, the shaft member 2 protrudes from both sides of the cylindrical housing 7 in the axial direction. However, the present invention is not limited to this, and a lid (not shown) that closes one axial opening of the housing 7 is used. ) May be provided. This lid portion may be provided separately from the housing, or may be formed integrally with the housing. In this case, only one end of the shaft member 2 is fixed to the fixed side (base 6a).

また、軸受スリーブ8に形成された動圧発生部も上記に限らず、他の形状の動圧溝を形成したり、内周面8aを複数の円弧を組み合わせた多円弧形状とすることにより、動圧発生部を構成してもよい。あるいは、軸受スリーブ8には動圧発生部を形成する替わりに、軸受隙間を介して対向する部材(軸部材2及びシール部材10)に動圧発生部を形成してもよい。さらには、軸受スリーブ8の内周面8a及び軸部材2の外周面2aの双方を円筒面状とした、いわゆる真円軸受を構成してもよい。この場合、動圧作用を積極的に発生させる動圧発生部は形成されないが、軸受スリーブ8の僅かな振れ回りにより動圧作用が発生する。   Further, the dynamic pressure generating portion formed in the bearing sleeve 8 is not limited to the above, but by forming a dynamic pressure groove of another shape or by making the inner peripheral surface 8a into a multi-arc shape combining a plurality of arcs, A dynamic pressure generating unit may be configured. Alternatively, instead of forming the dynamic pressure generating portion in the bearing sleeve 8, the dynamic pressure generating portion may be formed in the members (the shaft member 2 and the seal member 10) facing each other through the bearing gap. Furthermore, you may comprise what is called a perfect-circle bearing which made both the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a of the shaft member 2 cylindrical shape. In this case, a dynamic pressure generating portion that actively generates the dynamic pressure action is not formed, but the dynamic pressure action is generated by a slight swing of the bearing sleeve 8.

また、上記の実施形態では、本発明に係る流体動圧軸受装置をHDDのディスク駆動装置のスピンドルモータに組み込んだ例を示しているが、これに限らず、他のディスク駆動装置のスピンドルモータや、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、あるいはプロジェクタのカラーホイールモータ等に適用することもできる。   In the above embodiment, an example in which the fluid dynamic pressure bearing device according to the present invention is incorporated in a spindle motor of an HDD disk drive device is shown. It can also be applied to a polygon scanner motor of a laser beam printer (LBP) or a color wheel motor of a projector.

1 流体動圧軸受装置
2 軸部材
3 ディスクハブ
4 ステータコイル
5 ロータマグネット
6a ベース
6b カバー
7 ハウジング
8 軸受スリーブ
10 シール部材
R1・R2 ラジアル軸受部
T1・T2 スラスト軸受部
S シール空間
D ディスク
21 回転装置
22’ 軸素材
22 回転軸
23 固定部材
30 測定装置
31 ピンゲージ
32 ベースブロック
33 測定器
DESCRIPTION OF SYMBOLS 1 Fluid dynamic pressure bearing apparatus 2 Shaft member 3 Disc hub 4 Stator coil 5 Rotor magnet 6a Base 6b Cover 7 Housing 8 Bearing sleeve 10 Seal member R1 / R2 Radial bearing part T1 / T2 Thrust bearing part S Seal space D Disk 21 Rotating device 22 'Shaft material 22 Rotating shaft 23 Fixed member 30 Measuring device 31 Pin gauge 32 Base block 33 Measuring instrument

Claims (8)

軸部材と、内周に軸部材が挿入された軸受スリーブと、内周面に軸受スリーブが固定された筒状のハウジングと、軸部材の外周面と軸受スリーブの内周面との間のラジアル軸受隙間に生じる流体膜の動圧作用により、固定側となる軸部材に対して軸受スリーブ及びハウジングを回転自在に支持するラジアル軸受部とを備えた軸固定タイプの流体動圧軸受装置において、
ハウジングの外周面が、その内周面に固定された軸受スリーブの内周面を基準として切削加工された面であることを特徴とする流体動圧軸受装置。
A shaft member, a bearing sleeve having the shaft member inserted into the inner periphery, a cylindrical housing having the bearing sleeve fixed to the inner periphery, and a radial between the outer periphery of the shaft member and the inner periphery of the bearing sleeve In a fixed shaft type fluid dynamic pressure bearing device including a radial bearing portion that rotatably supports a bearing sleeve and a housing with respect to a fixed shaft member by a dynamic pressure action of a fluid film generated in a bearing gap.
A hydrodynamic bearing device characterized in that the outer peripheral surface of the housing is a surface cut with reference to the inner peripheral surface of a bearing sleeve fixed to the inner peripheral surface thereof.
軸受スリーブの内周面に対するハウジングの外周面の振れ精度が5μm以下である請求項1記載の流体動圧軸受装置。   2. The fluid dynamic bearing device according to claim 1, wherein the deflection accuracy of the outer peripheral surface of the housing with respect to the inner peripheral surface of the bearing sleeve is 5 [mu] m or less. ハウジングの径方向の肉厚の寸法公差が40μm以下である請求項1又は2記載の流体動圧軸受装置。   The fluid dynamic bearing device according to claim 1 or 2, wherein a dimensional tolerance of a radial thickness of the housing is 40 µm or less. ハウジングの外周面の表面粗さがRa0.8μm以下である請求項1〜3の何れかに記載の流体動圧軸受装置。   The fluid dynamic bearing device according to claim 1, wherein a surface roughness of the outer peripheral surface of the housing is Ra 0.8 μm or less. ハウジングの内周面と軸受スリーブの外周面とを隙間接着により固定した請求項1〜4の何れかに記載の流体動圧軸受装置。   The fluid dynamic pressure bearing device according to any one of claims 1 to 4, wherein an inner peripheral surface of the housing and an outer peripheral surface of the bearing sleeve are fixed by gap adhesion. ハウジングの外周面に固定された回転体の抜去力が1500N以上である請求項1〜5の何れかに記載の流体動圧軸受装置。   The fluid dynamic bearing device according to any one of claims 1 to 5, wherein an extraction force of the rotating body fixed to the outer peripheral surface of the housing is 1500 N or more. ハウジングの外周面に回転体が圧入固定された請求項1〜6の何れかに記載の流体動圧軸受装置。   The fluid dynamic bearing device according to claim 1, wherein a rotating body is press-fitted and fixed to the outer peripheral surface of the housing. ハウジングの外周面に、回転体の内周面に圧入される固定面と、前記ラジアル軸受部の軸方向領域に設けられ、前記固定面よりも小径な逃げ面とを形成した請求項1〜7の何れかに記載の流体動圧軸受装置。   The fixed surface press-fitted into the inner peripheral surface of the rotating body and the flank surface provided in an axial region of the radial bearing portion and having a smaller diameter than the fixed surface are formed on the outer peripheral surface of the housing. The fluid dynamic pressure bearing device according to any one of the above.
JP2009224608A 2009-09-29 2009-09-29 Fluid dynamic bearing device Pending JP2011074951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009224608A JP2011074951A (en) 2009-09-29 2009-09-29 Fluid dynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009224608A JP2011074951A (en) 2009-09-29 2009-09-29 Fluid dynamic bearing device

Publications (1)

Publication Number Publication Date
JP2011074951A true JP2011074951A (en) 2011-04-14

Family

ID=44019162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009224608A Pending JP2011074951A (en) 2009-09-29 2009-09-29 Fluid dynamic bearing device

Country Status (1)

Country Link
JP (1) JP2011074951A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172956A1 (en) * 2011-06-15 2012-12-20 Ntn株式会社 Fluid dynamic bearing device
JP2013002524A (en) * 2011-06-15 2013-01-07 Ntn Corp Fluid dynamic bearing device
JP2013044395A (en) * 2011-08-24 2013-03-04 Ntn Corp Fluid dynamic-pressure bearing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172956A1 (en) * 2011-06-15 2012-12-20 Ntn株式会社 Fluid dynamic bearing device
JP2013002524A (en) * 2011-06-15 2013-01-07 Ntn Corp Fluid dynamic bearing device
JP2013044395A (en) * 2011-08-24 2013-03-04 Ntn Corp Fluid dynamic-pressure bearing device

Similar Documents

Publication Publication Date Title
KR101098791B1 (en) Dynamic pressure bearing device and motor using the same
JP2006194400A (en) Spindle motor and rotating device
JP3893021B2 (en) Hydrodynamic bearing unit
JP2007024146A (en) Dynamic pressure bearing device
JP4451771B2 (en) Spindle motor
JP3774080B2 (en) Hydrodynamic bearing unit
KR20100014973A (en) Method of producing dynamic pressure bearing
JP2007024267A (en) Fluid bearing device and motor equipped with the same
KR20060118550A (en) Fluid bearing device
JP2007107641A (en) Spindle motor and turning device
JP2011074951A (en) Fluid dynamic bearing device
JP2005337490A (en) Dynamic pressure bearing device
JP4619691B2 (en) Hydrodynamic bearing device and motor using the same
JP4738964B2 (en) Hydrodynamic bearing device and motor having the same
JP2004270850A (en) Dynamic pressure gas bearing motor
KR20080039839A (en) Fluid bearing device
JP2005337341A (en) Dynamic pressure bearing device and motor using the same
JP4832736B2 (en) Hydrodynamic bearing unit
JP4498932B2 (en) Hydrodynamic bearing device
JP2013053692A (en) Fluid dynamic pressure bearing device and method of manufacturing the same
JP5602535B2 (en) Fluid dynamic bearing device
JP2005090582A (en) Dynamic pressure bearing device
KR101055496B1 (en) Spindle motor
JP2006200582A (en) Dynamic pressure bearing device
JP2007263225A (en) Fluid bearing device