JP2007263225A - Fluid bearing device - Google Patents

Fluid bearing device Download PDF

Info

Publication number
JP2007263225A
JP2007263225A JP2006088724A JP2006088724A JP2007263225A JP 2007263225 A JP2007263225 A JP 2007263225A JP 2006088724 A JP2006088724 A JP 2006088724A JP 2006088724 A JP2006088724 A JP 2006088724A JP 2007263225 A JP2007263225 A JP 2007263225A
Authority
JP
Japan
Prior art keywords
bearing
shaft portion
hub
bearing device
rotating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006088724A
Other languages
Japanese (ja)
Inventor
Fuyuki Itou
冬木 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006088724A priority Critical patent/JP2007263225A/en
Publication of JP2007263225A publication Critical patent/JP2007263225A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To contribute to higher rotating accuracy and lower cost of a fluid bearing device by improving the fixing accuracy and fastening strength of a hub portion relative to a shaft portion. <P>SOLUTION: The hub portion 9 into which the shaft portion 2 is inserted is injection molded of a resin composition using polyphenylene sulfide (PPS) as a base resin. The hub 9 engages with an outer peripheral face 2a of the shaft portion 2 at its recessed portion 12 provided in a region where it is fixed to the hub portion 9, in the axial and circumferential directions to prevent its come-off and rotation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、流体軸受装置に関するものである。   The present invention relates to a hydrodynamic bearing device.

流体軸受装置は、軸受部材と回転部材との相対回転により、軸受隙間に生じる流体の潤滑膜で回転部材を回転自在に支持するものである。この流体軸受装置は、高速回転、高回転精度、低騒音等の特徴を有するものであり、近年ではその特徴を活かして、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等のディスク装置に搭載するスピンドルモータ用の軸受等として広く用いられている。   The fluid dynamic bearing device supports a rotating member rotatably with a lubricating film of fluid generated in a bearing gap by relative rotation between the bearing member and the rotating member. This hydrodynamic bearing device has characteristics such as high-speed rotation, high rotation accuracy, and low noise. In recent years, by utilizing the characteristics, information devices such as magnetic disk devices such as HDD and FDD, CD-ROM, CD It is widely used as a bearing for a spindle motor mounted on a disk device such as an optical disk device such as R / RW or DVD-ROM / RAM, or a magneto-optical disk device such as MD or MO.

この種の流体軸受は、軸受隙間内の流体(例えば、潤滑油)に動圧を発生させる動圧発生手段を備えた動圧軸受と、動圧発生手段を備えていない、いわゆる真円軸受(軸受面が真円形状である軸受)とに大別される。   This type of hydrodynamic bearing includes a hydrodynamic bearing provided with dynamic pressure generating means for generating dynamic pressure in a fluid (for example, lubricating oil) in a bearing gap, and a so-called circular bearing (not provided with dynamic pressure generating means). The bearing surface is roughly divided into a bearing having a perfect circular shape.

例えば、上記のスピンドルモータに組込まれる流体軸受装置では、回転部材を構成する軸部(軸部材)をラジアル方向に支持するラジアル軸受部が設けられ、該ラジアル軸受部は動圧軸受で構成される場合が多い。また、この種の流体軸受装置には、回転部材をスラスト方向に支持するスラスト軸受部が設けられ、該スラスト軸受部としては、動圧軸受が用いられる場合と、軸部の一端を接触支持する構造の軸受(いわゆるピボット軸受)が用いられる場合とがある。   For example, in the hydrodynamic bearing device incorporated in the above spindle motor, a radial bearing portion that supports a shaft portion (shaft member) constituting the rotating member in the radial direction is provided, and the radial bearing portion is configured by a dynamic pressure bearing. There are many cases. In addition, this type of hydrodynamic bearing device is provided with a thrust bearing portion that supports the rotating member in the thrust direction. As the thrust bearing portion, a hydrodynamic bearing is used, and one end of the shaft portion is contact-supported. A structure bearing (so-called pivot bearing) may be used.

上記スピンドルモータには、ディスクを支持するハブ部(ディスクハブ)が設けられる。ハブ部は軸部と別体の金属材料で形成され、圧入、溶接、焼きばめ、塑性流動加工等適宜の手段で、軸部の一端外径側に固定される。軸部には、さらに、ハブ部との間でディスクを挟持するクランパが固定され、このクランパは、例えば軸部のうち、ハブ部との固定部内径側に設けられたねじ穴にねじ止め固定される(例えば、特許文献1参照)。
特開2000−235766号公報
The spindle motor is provided with a hub portion (disc hub) for supporting the disc. The hub portion is formed of a metal material that is separate from the shaft portion, and is fixed to one end outer diameter side of the shaft portion by appropriate means such as press-fitting, welding, shrink fitting, or plastic flow processing. Further, a clamper that clamps the disk between the hub portion and the hub portion is fixed to the shaft portion, and this clamper is screwed and fixed to, for example, a screw hole provided on the inner diameter side of the fixing portion with the hub portion of the shaft portion. (See, for example, Patent Document 1).
JP 2000-235766 A

近年のディスク装置の大容量化に伴ってディスクの記録・再生の高密度化が進展している。これに伴い、スピンドルモータ用の流体軸受装置には、軸振れ等のない高い回転精度が要求されている。また、HDD等のディスク装置に搭載される流体軸受装置では、ディスクの高い回転精度を維持できるよう、ディスクを搭載するハブ部と軸部との間には高い締結強度も求められる。   With the recent increase in capacity of disk devices, the recording / reproducing density of disks has been increasing. Along with this, high rotational accuracy without shaft runout is required for a hydrodynamic bearing device for a spindle motor. Also, in a hydrodynamic bearing device mounted on a disk device such as an HDD, high fastening strength is also required between the hub portion and the shaft portion on which the disk is mounted so that high rotational accuracy of the disk can be maintained.

従来構成において、軸部のうち、ハブ部の固定部となる領域の肉厚は、その内径側にねじ穴が設けられているため薄肉となる。そのため、圧入や塑性流動加工のように圧入力を伴う方法で固定する場合には、固定部が圧入に伴って変形するおそれがあり、また、溶接や焼きばめのように高温加熱が必要な方法で固定する場合には、熱変形するおそれがある。したがって、従来構成では、軸部に対するハブ部の組付け精度や締結強度を確保し、高回転精度化の要求に対応するのが困難である。   In the conventional configuration, the thickness of the region of the shaft portion serving as the fixing portion of the hub portion is thin because a screw hole is provided on the inner diameter side thereof. Therefore, when fixing with a method that involves press-fitting, such as press-fitting or plastic flow processing, the fixed part may be deformed with press-fitting, and high-temperature heating is required, such as welding or shrink fitting. When fixing by the method, there is a risk of thermal deformation. Therefore, in the conventional configuration, it is difficult to ensure the assembly accuracy and fastening strength of the hub portion with respect to the shaft portion and meet the demand for higher rotational accuracy.

その一方で、近年のディスク装置の低価格化に伴って、流体軸受装置に対するコスト低減の要求が厳しさを増している。   On the other hand, with the recent price reduction of disk devices, the demand for cost reduction for hydrodynamic bearing devices has become more severe.

本発明の課題は、軸部に対するハブ部の組付け精度および締結強度を高め、流体軸受装置の高回転精度化を図ることにある。また本発明の他の課題は、流体軸受装置の低コスト化を図ることにある。   An object of the present invention is to increase the assembly accuracy and fastening strength of the hub portion with respect to the shaft portion, and to increase the rotational accuracy of the hydrodynamic bearing device. Another object of the present invention is to reduce the cost of the hydrodynamic bearing device.

上記課題を解決するため、本発明に係る流体軸受装置は、軸受部材と、軸受部材に対して相対回転する回転部材と、軸受部材と回転部材との間のラジアル軸受隙間に生じる流体の潤滑膜で回転部材をラジアル方向に回転自在に支持するラジアル軸受部とを備え、回転部材は、軸受部材の内周に挿入され、一端部にねじ穴を有する軸部と、軸部の外周面のうち、ねじ穴の外径側に固定されたハブ部とを有するものであって、ハブ部が軸部をインサートして樹脂で射出成形され、かつこのハブ部が、軸部の外周面のうち、ハブ部との固定領域に設けられた凹部で軸部と軸方向および円周方向に係合していることを特徴とするものである。ここでいうハブ部として、例えば、磁気ディスク等を支持するディスクハブやターンテーブル等が挙げられる。   In order to solve the above problems, a hydrodynamic bearing device according to the present invention includes a bearing member, a rotating member that rotates relative to the bearing member, and a lubricating film for fluid generated in a radial bearing gap between the bearing member and the rotating member. A radial bearing portion that rotatably supports the rotating member in the radial direction, and the rotating member is inserted into the inner periphery of the bearing member, and has a shaft portion having a screw hole at one end, and an outer peripheral surface of the shaft portion. A hub portion fixed to the outer diameter side of the screw hole, and the hub portion is injection-molded with resin by inserting the shaft portion, and the hub portion is, of the outer peripheral surface of the shaft portion, The concave portion provided in the fixing region with the hub portion is engaged with the shaft portion in the axial direction and the circumferential direction. Examples of the hub portion here include a disk hub or a turntable that supports a magnetic disk or the like.

上記のように、軸部をインサートしてハブ部を射出成形(インサート成形)すれば、型精度を高めておくだけで、軸部に対する組付け精度を高めることができる。このハブ部は、軸部の外周面のうち、ハブ部との固定領域に設けられた凹部で軸部と軸方向および円周方向に係合していることから、軸部に対する抜け止め、さらには回り止めが図られ、軸部との締結強度が高められる。またインサート成形であれば、ハブ部の成形と組付けを一工程で行うことができるため製造コストの低廉化が図られ、さらに射出材料として樹脂を用いれば、ハブ部を金属で形成する場合に比べて軽量化および低コスト化を図ることができる。   As described above, when the shaft portion is inserted and the hub portion is injection-molded (insert molding), the assembly accuracy with respect to the shaft portion can be increased only by increasing the mold accuracy. The hub portion is engaged with the shaft portion in the axial direction and the circumferential direction by a recess provided in a fixing region with the hub portion on the outer peripheral surface of the shaft portion, Is prevented from rotating, and the fastening strength with the shaft is increased. Also, with insert molding, the hub part can be molded and assembled in a single process, which reduces manufacturing costs. If resin is used as the injection material, the hub part can be made of metal. Compared with this, weight reduction and cost reduction can be achieved.

軸部に設けられる凹部は、加工コストを抑制し、また凹部の成形に伴う変形を防止してハブ部の組付け精度を高める観点から、例えば切削等の機械加工で容易に形成可能な構成とするのが望ましく、例えば、円環溝と、該円環溝の溝底面の一部領域に形成された平坦面とで構成することができる。あるいは、凹部は、円環溝と、該円環溝に繋がる軸部の外周面の一部領域に形成された平坦面とで構成することができる。ハブ部の射出成形時に軸部の凹部にも充填されて固化した部分が、円環溝の両側壁と軸方向に係合することにより、ハブ部の軸部に対する軸方向両側への相対移動が規制され、かつ、平坦面と円周方向に係合することにより、ハブ部の軸部に対する円周方向両側への相対移動が規制される。これにより、ハブ部の軸部に対する抜け止めと回り止めが同時に達成され、ハブ部と軸部との締結強度が高められる。   The concave portion provided in the shaft portion can be easily formed by machining such as cutting, for example, from the viewpoint of suppressing machining costs and preventing deformation associated with the formation of the concave portion to increase the assembly accuracy of the hub portion. For example, it can be configured by an annular groove and a flat surface formed in a partial region of the groove bottom surface of the annular groove. Or a recessed part can be comprised by the annular groove | channel and the flat surface formed in the partial area | region of the outer peripheral surface of the axial part connected to this annular groove. When the hub part is injection-molded, the portion that is filled and solidified in the concave part of the shaft part is engaged with both side walls of the annular groove in the axial direction, so that the relative movement of the hub part to both sides in the axial direction is prevented. By being regulated and engaging with the flat surface in the circumferential direction, relative movement of the hub portion relative to both sides in the circumferential direction with respect to the shaft portion is regulated. Accordingly, the hub portion is prevented from coming off and prevented from rotating with respect to the shaft portion at the same time, and the fastening strength between the hub portion and the shaft portion is increased.

ハブ部には、それ自体の強度も必要とされるから、射出成形に用いる樹脂は、射出成形可能な樹脂のなかでも、特に高強度なポリフェニレンサルファイド(PPS)あるいは液晶ポリマー(LCP)をベース樹脂とする樹脂組成物が望ましい。   Since the hub part also requires its own strength, the resin used for injection molding is a base resin made of particularly high-strength polyphenylene sulfide (PPS) or liquid crystal polymer (LCP), among resins that can be injection molded. The resin composition is preferably used.

本発明に係る流体軸受装置は、ステータコイルと、ロータマグネットとを有するモータに好ましく用いることができ、特に本発明の流体軸受装置は、上記のような特徴を有することから、モバイル用のディスク装置に搭載されるスピンドルモータに好ましく用いることができる。   The hydrodynamic bearing device according to the present invention can be preferably used for a motor having a stator coil and a rotor magnet. In particular, the hydrodynamic bearing device of the present invention has the above-described characteristics, and therefore, a mobile disk device. It can be preferably used for a spindle motor mounted on the motor.

以上より、本発明によれば、軸部に対するハブ部の組立精度や締結強度を高め、流体軸受装置の高回転精度化を図ることができる。また、ハブ部を備えた流体軸受装置の低コスト化を図ることもできる。   As mentioned above, according to this invention, the assembly precision and fastening strength of the hub part with respect to a shaft part can be improved, and the high rotational precision of a hydrodynamic bearing device can be achieved. Further, the cost of the hydrodynamic bearing device including the hub portion can be reduced.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係る流体軸受装置(流体動圧軸受装置)1を組み込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部2を備えた回転部材3を回転自在に支持する流体軸受装置1と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6とを備えている。ステータコイル4はブラケット6の内周に取付けられ、ロータマグネット5は回転部材3の外周に取付けられる。流体軸受装置1のハウジング7は、ブラケット6の内周に装着される。回転部材3には、図示は省略するが、磁気ディスク等のディスク状情報記録媒体(以下単に、ディスクと称す)が一又は複数枚保持される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それに伴って、回転部材3および回転部材3に保持されたディスクが軸部2と一体に回転する。   FIG. 1 conceptually shows one configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device (fluid dynamic pressure bearing device) 1 according to the present invention. This spindle motor is used in a disk drive device such as an HDD, and is a stator that is opposed to a hydrodynamic bearing device 1 that rotatably supports a rotating member 3 having a shaft portion 2 via, for example, a radial gap. A coil 4 and a rotor magnet 5 and a bracket 6 are provided. The stator coil 4 is attached to the inner periphery of the bracket 6, and the rotor magnet 5 is attached to the outer periphery of the rotating member 3. The housing 7 of the hydrodynamic bearing device 1 is attached to the inner periphery of the bracket 6. Although not shown, the rotating member 3 holds one or a plurality of disk-shaped information recording media (hereinafter simply referred to as disks) such as magnetic disks. When the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator coil 4 and the rotor magnet 5, and accordingly, the rotating member 3 and the disk held by the rotating member 3 are integrated with the shaft portion 2. Rotate to.

図2は、上記スピンドルモータで使用される流体軸受装置1の一例を示すものである。この流体軸受装置1は、軸受部材10と、軸受部材10に対して相対回転する回転部材3とを主要な構成部品として備える。本実施形態において、軸受部材10は、ハウジング7と、ハウジング7の内部に保持された軸受スリーブ8とで構成されている。なお、以下説明の便宜上、ハウジング7の底部7bが設けられた側を下側、その軸方向反対側を上側として説明を進める。   FIG. 2 shows an example of the hydrodynamic bearing device 1 used in the spindle motor. The hydrodynamic bearing device 1 includes a bearing member 10 and a rotating member 3 that rotates relative to the bearing member 10 as main components. In this embodiment, the bearing member 10 includes a housing 7 and a bearing sleeve 8 held inside the housing 7. For convenience of explanation, the description will be made with the side on which the bottom 7b of the housing 7 is provided as the lower side and the opposite side in the axial direction as the upper side.

ハウジング7は、金属材料あるいは樹脂材料で略円筒状に形成された側部7aと、側部7aの下端開口部を閉塞する底部7bとで構成される。側部7aの外周には、上方に向かって漸次拡径するテーパ状の外壁7a3が形成されている。側部7aの下端内径側には、底部7bが固定される段部7a4が形成され、この段部7a4を除き、側部7aの内周面7a1は同径でストレートな円筒面に形成されている。底部7bは、段部7a4の内周に、接着、圧入、圧入接着、溶着等、形成材料に合わせて適宜の手段で固定される。   The housing 7 includes a side portion 7a formed in a substantially cylindrical shape with a metal material or a resin material, and a bottom portion 7b that closes the lower end opening of the side portion 7a. A tapered outer wall 7a3 that gradually increases in diameter upward is formed on the outer periphery of the side portion 7a. A step portion 7a4 to which the bottom portion 7b is fixed is formed on the inner diameter side of the lower end of the side portion 7a. Except for this step portion 7a4, the inner peripheral surface 7a1 of the side portion 7a is formed in a straight cylindrical surface having the same diameter. Yes. The bottom portion 7b is fixed to the inner periphery of the step portion 7a4 by an appropriate means such as bonding, press-fitting, press-fitting adhesion, welding, or the like according to the forming material.

ハウジング7のうち、側部7aの上側端面7a2の全面または一部環状領域は、第1スラスト軸受部T1のスラスト軸受面となり、該スラスト軸受面となる領域には、図示は省略するが、例えばスパイラル形状に配列された複数の動圧溝が形成されている。動圧溝は、ハウジング7の上側端面7a2とスラスト軸受隙間を介して対向するハブ部9の下側端面9a1に形成してもよい。なお動圧溝形状は、スパイラル形状の他、例えばヘリングボーン形状等に形成することもできる。   In the housing 7, the entire surface or a partial annular region of the upper end surface 7 a 2 of the side portion 7 a becomes the thrust bearing surface of the first thrust bearing portion T 1. A plurality of dynamic pressure grooves arranged in a spiral shape are formed. The dynamic pressure groove may be formed on the lower end surface 9a1 of the hub portion 9 that faces the upper end surface 7a2 of the housing 7 via the thrust bearing gap. The dynamic pressure groove shape may be formed in a spiral shape or a herringbone shape, for example.

軸受スリーブ8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする燒結金属の多孔質体で円筒状に形成され、ハウジング7の内周面7a1の所定位置に圧入、接着、あるいは圧入接着等の手段で固定される。なお、焼結金属に限らず、多孔質体ではない他の金属材料、例えば黄銅等の軟質金属で軸受スリーブ8を形成することも可能である。   The bearing sleeve 8 is formed, for example, in a cylindrical shape with a porous body made of sintered metal, in particular, a sintered body of sintered metal mainly composed of copper, and is press-fitted and bonded to a predetermined position on the inner peripheral surface 7a1 of the housing 7. Alternatively, it is fixed by means such as press-fit adhesion. Note that the bearing sleeve 8 can be formed of not only a sintered metal but also a metal material other than a porous body, for example, a soft metal such as brass.

軸受スリーブ8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面となる上下2つの領域が軸方向に離隔して設けられ、該2つの領域には、例えば図3(a)に示すようなヘリングボーン形状の動圧溝8a1、8a2がそれぞれ形成される。上側の動圧溝8a1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。一方、下側の動圧溝8a2は軸方向対称に形成され、その上下領域の軸方向寸法はそれぞれ上記軸方向寸法X2と等しくなっている。この場合、軸部材2の回転時には、動圧溝による潤滑油の引き込み力(ポンピング力)は下側の対称形の動圧溝8a2に比べ、上側の動圧溝8a1で相対的に大きくなる。動圧溝形状としては、公知のその他の形状、例えばスパイラル形状等に形成することもできる。なお、軸受スリーブ8の外周面8bには、1本又は複数本の軸方向溝8b1が軸方向全長に亘って形成されており、本実施形態では、3本の軸方向溝8b1が円周方向等間隔に形成されている。   The inner peripheral surface 8a of the bearing sleeve 8 is provided with two upper and lower regions that are radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2, and are separated from each other in the axial direction. For example, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 as shown in FIG. 3A are formed. The upper dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions), and the axial dimension X1 of the upper region is lower than the axial center m. It is larger than the axial dimension X2 of the side region. On the other hand, the lower dynamic pressure grooves 8a2 are formed symmetrically in the axial direction, and the axial dimensions of the upper and lower regions thereof are respectively equal to the axial dimension X2. In this case, when the shaft member 2 rotates, the pulling force (pumping force) of the lubricating oil by the dynamic pressure groove is relatively larger in the upper dynamic pressure groove 8a1 than in the lower symmetrical dynamic pressure groove 8a2. As the dynamic pressure groove shape, other known shapes such as a spiral shape can also be formed. Note that one or a plurality of axial grooves 8b1 are formed over the entire length in the axial direction on the outer peripheral surface 8b of the bearing sleeve 8. In this embodiment, the three axial grooves 8b1 are circumferential. It is formed at equal intervals.

また、軸受スリーブ8の下側端面8cの一部または全部環状領域には、第2スラスト軸受部T2のスラスト軸受面が形成され、当該スラスト軸受面となる領域には、例えば図3(b)に示すようなスパイラル形状の動圧溝8c1が形成される。なお、動圧溝形状は、スパイラル形状の他、例えばヘリングボーン形状等に形成することもできる。またスラスト軸受面(動圧溝)は、スラスト軸受隙間を介して対向するフランジ部11の上側端面11aに形成してもよい。   In addition, a thrust bearing surface of the second thrust bearing portion T2 is formed in a part or all of the annular region of the lower end surface 8c of the bearing sleeve 8, and the region serving as the thrust bearing surface includes, for example, FIG. A spiral-shaped dynamic pressure groove 8c1 as shown in FIG. The dynamic pressure groove shape can be formed in a spiral shape or a herringbone shape, for example. Further, the thrust bearing surface (dynamic pressure groove) may be formed on the upper end surface 11a of the flange portion 11 that is opposed to the thrust bearing gap.

回転部材3は、軸受スリーブ8の内周に挿入される軸部2と、該軸部2をインサートして樹脂で射出成形(インサート成形)されたハブ部(ディスクハブ)9と、軸部2の下端に固定されたフランジ部11とで構成される。   The rotating member 3 includes a shaft portion 2 that is inserted into the inner periphery of the bearing sleeve 8, a hub portion (disc hub) 9 that is insert-molded with resin by inserting the shaft portion 2, and the shaft portion 2. And a flange portion 11 fixed to the lower end of the.

軸部2は、例えばステンレス鋼等の金属材料で略円筒状に形成される。軸部2aの上端部内周にはねじ穴2a1が設けられ、該ねじ穴2a1に、ハブ部9との間でディスクを挟持するクランパ(図示省略)がねじ止め固定される。また、軸部2の下端部内周にもねじ穴2a2が設けられ、軸部2の抜け止めとして、金属製のフランジ部11がねじ止め固定される。軸部2の外周面2aは、ハブ部9の固定部となる領域を除き、動圧溝等のない平滑な円筒面に形成されている。   The shaft portion 2 is formed in a substantially cylindrical shape with a metal material such as stainless steel. A screw hole 2a1 is provided in the inner periphery of the upper end portion of the shaft portion 2a, and a clamper (not shown) that clamps the disk between the hub portion 9 and the screw hole 2a1 is fixed by screwing. Also, a screw hole 2a2 is provided in the inner periphery of the lower end portion of the shaft portion 2, and a metal flange portion 11 is screwed and fixed to prevent the shaft portion 2 from coming off. The outer peripheral surface 2 a of the shaft portion 2 is formed in a smooth cylindrical surface without a dynamic pressure groove or the like except for a region serving as a fixing portion of the hub portion 9.

軸部2の外周面2aのうち、ハブ部9の固定部となる領域には、図2および図4に示すような凹部12が例えば切削等の機械加工で形成されており、この凹部12にはハブ部9を構成する樹脂材料が充填され固化している。本実施形態において、凹部12は、軸方向の一又は複数箇所(図示例では1箇所)で全周に亘って設けられた円環溝12aと、円環溝12aの溝底面の一部領域に形成された平坦面12bとで構成されている。本実施形態では、2つの平坦面12bが180度対向した領域に形成されている。また、各平坦面12bは軸線と平行に形成されている。凹部12に充填されて固化したハブ部9の部分が、円環溝12aの両側壁と軸方向に係合することにより、ハブ部9の軸部2に対する軸方向両側への相対移動が規制され、かつ、平坦面12bと円周方向に係合することにより、ハブ部9の軸部2に対する円周方向両側への相対移動が規制される。これにより、ハブ部9の軸部2に対する抜け止めと回り止めが同時に達成され、ハブ部9と軸部2との締結強度が高められる。尚、円環溝12aの深さや軸方向幅、および平坦面12bの大きさは、クランパをねじ止め固定する際の締結強度に悪影響を与えず、かつハブ部9の抜け止めおよび回り止め強度を確保し得る適切な値(例えば、最深部が肉厚の半分程度)となるように設定される。また、図示例では平坦面12bを、180度対向した円周方向の2箇所に設けているが、これを円周方向の1箇所または3箇所以上に設けることもできる。   A recess 12 as shown in FIGS. 2 and 4 is formed by machining such as cutting in a region of the outer peripheral surface 2a of the shaft portion 2 that serves as a fixing portion of the hub portion 9. Is filled with a resin material constituting the hub portion 9 and solidified. In the present embodiment, the recess 12 is formed in an annular groove 12a provided over the entire circumference in one or a plurality of locations (one location in the illustrated example) in the axial direction, and a partial region of the groove bottom surface of the annular groove 12a. And the formed flat surface 12b. In the present embodiment, the two flat surfaces 12b are formed in a region facing each other by 180 degrees. Each flat surface 12b is formed parallel to the axis. The portion of the hub portion 9 filled and solidified in the recess 12 is engaged with both side walls of the annular groove 12a in the axial direction, so that the relative movement of the hub portion 9 in the axial direction with respect to the shaft portion 2 is restricted. In addition, by engaging the flat surface 12b in the circumferential direction, relative movement of the hub portion 9 to both sides in the circumferential direction with respect to the shaft portion 2 is restricted. As a result, the hub part 9 can be prevented from coming off and prevented from rotating with respect to the shaft part 2 at the same time, and the fastening strength between the hub part 9 and the shaft part 2 can be increased. It should be noted that the depth and axial width of the annular groove 12a and the size of the flat surface 12b do not adversely affect the fastening strength when the clamper is screwed and fixed, and prevent the hub portion 9 from coming off and preventing rotation. It is set so as to be an appropriate value that can be secured (for example, the deepest part is about half the thickness). Further, in the illustrated example, the flat surfaces 12b are provided at two places in the circumferential direction opposed to each other by 180 degrees. However, they can be provided at one place or three places or more in the circumferential direction.

ハブ部9は、ハウジング7の上方に配置された円盤部9aと、円盤部9aの外周部から軸方向下方に延びた筒状部9bと、筒状部9bの外周に設けられたディスク搭載面9cおよび鍔部9dとを備えている。図示しないディスクは、円盤部9aの外周に外嵌され、ディスク搭載面9cに載置される。そして、図示しないクランパとの間でディスクが挟持される。   The hub part 9 includes a disk part 9a disposed above the housing 7, a cylindrical part 9b extending axially downward from the outer peripheral part of the disk part 9a, and a disk mounting surface provided on the outer periphery of the cylindrical part 9b. 9c and a flange 9d. A disk (not shown) is fitted on the outer periphery of the disk portion 9a and placed on the disk mounting surface 9c. Then, the disc is sandwiched between a clamper (not shown).

ハブ部9の筒状部9bの内周面9b1は、ハウジング7の側部7aの外壁7a3との間に、ハウジング7の下端側から上方に向けて半径方向寸法が漸次縮小した環状のシール空間Sを形成する。このシール空間Sは、回転部材3の回転時、第1スラスト軸受部T1のスラスト軸受隙間の外径側と連通する。   The inner peripheral surface 9b1 of the tubular portion 9b of the hub portion 9 is between the outer wall 7a3 of the side portion 7a of the housing 7 and an annular seal space in which the radial dimension is gradually reduced upward from the lower end side of the housing 7. S is formed. The seal space S communicates with the outer diameter side of the thrust bearing gap of the first thrust bearing portion T1 when the rotating member 3 rotates.

上記ハブ部9を成形する樹脂材料としては、射出可能であれば結晶性樹脂あるいは非晶性樹脂を問わず使用可能であるが、特に高強度で寸法安定性に優れるポリフェニレンサルファイド(PPS)あるいは液晶ポリマー(LCP)をベース樹脂とする樹脂組成物が用いられる。上記ベース樹脂には、必要に応じて、強化材(繊維状、粉末状等の形態は問わない)や導電材等の各種充填材を一又は二種以上配合してもよい。   As the resin material for molding the hub portion 9, any resin can be used as long as it can be injected, whether it is a crystalline resin or an amorphous resin. However, polyphenylene sulfide (PPS) or liquid crystal that is particularly high in strength and excellent in dimensional stability. A resin composition having a polymer (LCP) as a base resin is used. If necessary, the base resin may be blended with one or two or more kinds of fillers such as a reinforcing material (in any form such as a fiber or powder) or a conductive material.

なお、ベース樹脂としては、上記以外にも、例えば、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)等の結晶性樹脂のほか、例えば、ポリサルフォン(PSU)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等の非晶性樹脂も使用可能である。これらは、あくまでも使用可能なベース樹脂を例示したものであり、もちろん、この他の公知の樹脂材料をベース樹脂として使用することもできる。   In addition to the above, as the base resin, in addition to crystalline resins such as polyether ether ketone (PEEK) and polybutylene terephthalate (PBT), for example, polysulfone (PSU), polyether sulfone (PES) Amorphous resins such as polyphenylsulfone (PPSU) and polyetherimide (PEI) can also be used. These are only examples of usable base resins, and other known resin materials can of course be used as the base resins.

また、特に重量等が問題とならないのであれば、射出材料として金属を用いることも可能である。金属材料としては、例えば、マグネシウム合金やアルミニウム合金等の低融点金属材料が使用可能である。この場合、樹脂材料を使用する場合に比べて、強度を一層向上させることができる。この他、金属粉とバインダーの混合物で射出成形した後、脱脂・焼結するいわゆるMIM成形を採用することもできる。さらにこの他、セラミックを使用することもできる。   Further, if the weight or the like is not particularly a problem, a metal can be used as the injection material. As the metal material, for example, a low melting point metal material such as a magnesium alloy or an aluminum alloy can be used. In this case, the strength can be further improved as compared with the case of using a resin material. In addition, so-called MIM molding may be employed in which after the injection molding with a mixture of metal powder and binder, degreasing and sintering. In addition, ceramics can also be used.

上記構成の流体軸受装置1において、回転部材3が回転すると、軸受スリーブ8の内周面8aのラジアル軸受面となる上下2箇所に離隔して設けられる領域は、それぞれ軸部2の外周面2aとラジアル軸受隙間を介して対向する。そして、回転部材3の回転に伴い、上記ラジアル軸受隙間に生じる潤滑膜は、動圧溝の動圧作用によってその油膜剛性が高められ、回転部材3がラジアル方向に回転自在に非接触支持される。これにより、回転部材3をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが形成される。   In the hydrodynamic bearing device 1 having the above-described configuration, when the rotating member 3 rotates, the regions provided separately at the two upper and lower positions serving as the radial bearing surface of the inner peripheral surface 8a of the bearing sleeve 8 are the outer peripheral surface 2a of the shaft portion 2 respectively. And through a radial bearing gap. As the rotating member 3 rotates, the lubricating film generated in the radial bearing gap is enhanced in oil film rigidity by the dynamic pressure action of the dynamic pressure groove, and the rotating member 3 is supported in a non-contact manner so as to be rotatable in the radial direction. . As a result, the first radial bearing portion R1 and the second radial bearing portion R2 that support the rotating member 3 in a non-contact manner so as to be rotatable in the radial direction are formed.

また、回転部材3が回転すると、ハウジング7の上側端面7a2のスラスト軸受面となる領域がハブ部9の下側端面9a1と所定のスラスト軸受隙間を介して対向し、軸受スリーブ8の下側端面8cのスラスト軸受面となる領域がフランジ部11の上側端面11aと所定のスラスト軸受隙間を介して対向する。そして回転部材3の回転に伴い、両スラスト軸受隙間に形成された潤滑油膜は、動圧溝の動圧作用によってその油膜剛性が高められ、回転部材3が両スラスト方向に回転自在に非接触支持される。これにより、回転部材3をスラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが形成される。   Further, when the rotating member 3 rotates, a region serving as a thrust bearing surface of the upper end surface 7a2 of the housing 7 faces the lower end surface 9a1 of the hub portion 9 via a predetermined thrust bearing gap, and the lower end surface of the bearing sleeve 8 A region serving as a thrust bearing surface of 8c faces the upper end surface 11a of the flange portion 11 via a predetermined thrust bearing gap. As the rotating member 3 rotates, the lubricating oil film formed in both thrust bearing gaps is enhanced in its oil film rigidity by the dynamic pressure action of the dynamic pressure groove, and the rotating member 3 is supported in a non-contact manner so as to be rotatable in both thrust directions. Is done. Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which support the rotation member 3 in the thrust direction so that rotation is possible non-contactingly are formed.

本実施形態では、ハブ部9を、軸部2をインサートして射出成形したので、型精度を高めておくだけで軸部2に対する組付け精度が高められ、また成形と組付けを同一工程で行えるため製造コストの低廉化が図られる。さらに、軸部2に凹部12を設け、この凹部12の円環溝12aでハブ部9を軸部2と軸方向に係合させ、かつ平坦面12bでハブ部9を軸部2と円周方向(接線方向)に係合させたので、ハブ部9の抜け止め、および回り止めが図られ、軸部2とハブ部9の締結強度を高めることができる。   In this embodiment, since the hub portion 9 is injection-molded by inserting the shaft portion 2, the assembly accuracy with respect to the shaft portion 2 can be increased only by increasing the mold accuracy, and the molding and the assembly are performed in the same process. Since this is possible, the manufacturing cost can be reduced. Further, the shaft portion 2 is provided with a recess 12, the hub portion 9 is engaged with the shaft portion 2 in the axial direction by the annular groove 12 a of the recess 12, and the hub portion 9 is circumferentially connected to the shaft portion 2 by the flat surface 12 b. Since it is engaged in the direction (tangential direction), the hub part 9 is prevented from coming off and prevented from rotating, and the fastening strength between the shaft part 2 and the hub part 9 can be increased.

以上の説明では、凹部12を構成する平坦面12bを、同じく凹部12を構成する円環溝12aの溝底面の一部領域に形成する形態を例示したが、例えば図5に示すように、平坦面12bを、円環溝12aに繋がる軸部2の外周面の一部領域に形成することもできる。この場合、円環溝12aが形成された領域で軸部2は断面真円状に、また平坦面12bが形成された領域で軸部2は断面Dカット状となる。この構成では、図4に示す構成と比べ、平坦面12bを外径側に設けることができる分、平坦面の面積を大きくすることができるので、円周方向両側への係合力、すなわち回り止めを強固なものとすることができる。なお、図5では、平坦面12bを円環溝12aに繋がる領域に設けた構成としたが、平坦面12bはハブ部9の固定部となる軸方向領域内であるかぎり、円環溝12aと軸方向に離隔した領域に設けることもできる。   In the above description, an example in which the flat surface 12b constituting the concave portion 12 is formed in a partial region of the groove bottom surface of the annular groove 12a that also constitutes the concave portion 12 is illustrated, but for example, as shown in FIG. The surface 12b can also be formed in a partial region of the outer peripheral surface of the shaft portion 2 connected to the annular groove 12a. In this case, in the region where the annular groove 12a is formed, the shaft portion 2 has a perfect circular section, and in the region where the flat surface 12b is formed, the shaft portion 2 has a D-cut shape. In this configuration, compared to the configuration shown in FIG. 4, the flat surface 12b can be provided on the outer diameter side, so that the area of the flat surface can be increased. Can be made strong. In FIG. 5, the flat surface 12b is provided in a region connected to the annular groove 12a. However, as long as the flat surface 12b is in an axial region serving as a fixing portion of the hub portion 9, It can also be provided in regions separated in the axial direction.

以上、本発明の一実施形態について説明を行ったが、本発明の構成は上記構成からなる流体軸受装置1のみならず、他の構成からなる流体軸受装置にも好ましく適用することができる。以下、流体軸受装置の他の構成例について説明を行うが、図2に示すものと同一の機能・作用を有する構成部材には同一の参照番号を付与し、重複説明を省略する。   Although one embodiment of the present invention has been described above, the configuration of the present invention can be preferably applied not only to the hydrodynamic bearing device 1 having the above configuration but also to hydrodynamic bearing devices having other configurations. Hereinafter, other configuration examples of the hydrodynamic bearing device will be described, but the same reference numerals are assigned to the components having the same functions and operations as those shown in FIG.

図6は、本発明に係る流体軸受装置1の第2実施形態を示している。図示例の流体軸受装置1は、別体のハウジング7(の側部7a)と軸受スリーブ部8とで構成された軸受部材を、一体の軸受部材17で構成した点で図2に示す実施形態と構成を異にする。このように軸受部材17を単一部品とすることで、部品点数および組立工数の削減を通じて一層低コスト化を図ることもできる。この場合、軸受部材17の内周面17aと軸部2の外周面2aとの間にラジアル軸受部R1、R2が形成され、軸受部材17の上側端面17bとハブ部9の下側端面9a1との間、および軸受部材17の下側端面17cとフランジ部11の上側端面11aとの間にそれぞれスラスト軸受部T1、T2が形成される。   FIG. 6 shows a second embodiment of the hydrodynamic bearing device 1 according to the present invention. The hydrodynamic bearing device 1 in the illustrated example is an embodiment shown in FIG. 2 in that a bearing member constituted by a separate housing 7 (side 7a) and a bearing sleeve portion 8 is constituted by an integral bearing member 17. And the configuration is different. In this way, by using the bearing member 17 as a single component, the cost can be further reduced by reducing the number of components and the number of assembly steps. In this case, radial bearing portions R1 and R2 are formed between the inner peripheral surface 17a of the bearing member 17 and the outer peripheral surface 2a of the shaft portion 2, and the upper end surface 17b of the bearing member 17 and the lower end surface 9a1 of the hub portion 9 Thrust bearing portions T1 and T2 are formed between the lower end surface 17c of the bearing member 17 and the upper end surface 11a of the flange portion 11, respectively.

図7は、本発明に係る流体軸受装置の第3実施形態を示している。図示例の流体軸受装置1は、主に回転部材を構成する軸部21とフランジ部22とが一体に形成された点、シール空間Sが、ハウジング7の一端内周に固定されたシール部材19の内周面19aと軸部21の外周面21aとの間に形成された点、およびスラスト軸受部がフランジ部22の両端面22a、22bが面するスラスト軸受隙間に形成される点で図2に示す実施形態と構成を異にする。なお、本実施形態では、軸受部材を別体のハウジング7(の側部7a)と軸受スリーブ8とで構成する形態を例示しているが、図6に示すものと同様、一体の軸受部材で構成することもできる。   FIG. 7 shows a third embodiment of a hydrodynamic bearing device according to the present invention. In the illustrated hydrodynamic bearing device 1, a seal member 19 in which a shaft portion 21 and a flange portion 22 that mainly constitute a rotating member are integrally formed, and a seal space S is fixed to an inner periphery of one end of the housing 7. 2 in that it is formed between the inner peripheral surface 19a of the shaft portion 21 and the outer peripheral surface 21a of the shaft portion 21 and the thrust bearing portion is formed in the thrust bearing gap that faces both end surfaces 22a and 22b of the flange portion 22. The configuration shown in FIG. In this embodiment, the bearing member is composed of a separate housing 7 (side portion 7a) and the bearing sleeve 8. However, like the one shown in FIG. It can also be configured.

以上の説明では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、ヘリングボーン形状やスパイラル形状の動圧溝により潤滑油の動圧作用を発生させる構成を例示しているが、本発明はこれに限定されるものではない。   In the above description, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are exemplified by the configuration in which the dynamic pressure action of the lubricating oil is generated by the dynamic pressure grooves having a herringbone shape or a spiral shape. Is not limited to this.

例えば、図示は省略するが、ラジアル軸受部R1、R2の一方又は双方は、例えば、ラジアル軸受面となる領域に複数の軸方向溝を円周方向等間隔に設けた、いわゆるステップ軸受や、ラジアル軸受面となる領域に複数の円弧面を設けた、いわゆる多円弧軸受等を採用しても良い。また、スラスト軸受部T1、T2の一方又は双方は、例えば、スラスト軸受面となる領域に、複数の半径方向溝を円周方向所定間隔に設けた、いわゆるステップ軸受、いわゆる波型軸受(ステップ型が波型になったもの)等を採用しても良い。   For example, although illustration is omitted, one or both of the radial bearing portions R1 and R2 are, for example, so-called step bearings or radial bearings in which a plurality of axial grooves are provided at equal intervals in the circumferential direction in a region serving as a radial bearing surface. You may employ | adopt what is called a multi-arc bearing etc. which provided the some circular arc surface in the area | region used as a bearing surface. In addition, one or both of the thrust bearing portions T1 and T2 are, for example, so-called step bearings, so-called wave bearings (step-type bearings) in which a plurality of radial grooves are provided at predetermined intervals in the circumferential direction in a region serving as a thrust bearing surface. May also be used.

また、以上の説明では、第1ラジアル軸受部R1および第2ラジアル軸受部R2の双方を動圧軸受で構成する形態を例示したが、第1ラジアル軸受部R1および第2ラジアル軸受部R2の一方又は双方を真円軸受で構成することもできる(図示省略)。   In the above description, the form in which both the first radial bearing portion R1 and the second radial bearing portion R2 are configured by dynamic pressure bearings has been exemplified. However, one of the first radial bearing portion R1 and the second radial bearing portion R2 is exemplified. Alternatively, both may be constituted by a perfect circle bearing (not shown).

また、以上の説明では、スラスト軸受部を動圧軸受で構成する形態を例示したが、スラスト軸受部を、軸部2の一端を凸球状に形成し、該軸端を軸受部材10(ハウジング7)の底部7bで接触支持するいわゆるピボット軸受とすることもできる。   Further, in the above description, the configuration in which the thrust bearing portion is constituted by a dynamic pressure bearing has been exemplified. However, the thrust bearing portion is formed such that one end of the shaft portion 2 has a convex spherical shape, and the shaft end is the bearing member 10 (housing 7). It is also possible to use a so-called pivot bearing that is in contact with and supported by the bottom 7b.

以上の説明では、流体軸受装置1の内部に充満する流体として潤滑油を例示したが、それ以外にも、例えば空気等の気体や、磁性流体等を使用することもできる。   In the above description, the lubricating oil is exemplified as the fluid that fills the inside of the hydrodynamic bearing device 1, but other than that, for example, a gas such as air, a magnetic fluid, or the like can be used.

ディスク装置用のスピンドルモータを概念的に示す断面図である。It is sectional drawing which shows notionally the spindle motor for disk apparatuses. 流体軸受装置の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of a hydrodynamic bearing apparatus. (a)図は軸受スリーブの断面図、(b)図は軸受スリーブの下側端面を示す図である。(A) is a sectional view of the bearing sleeve, and (b) is a view showing a lower end surface of the bearing sleeve. 軸部の一端部の拡大断面図である。It is an expanded sectional view of the one end part of a shaft part. 軸部の一端部の他の構成例を示す拡大断面図である。It is an expanded sectional view which shows the other structural example of the one end part of a axial part. 流体軸受装置の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of a hydrodynamic bearing apparatus. 流体軸受装置の第3実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of a hydrodynamic bearing apparatus.

符号の説明Explanation of symbols

1 流体軸受装置
2 軸部
3 回転部材
7 ハウジング
8 軸受スリーブ
9 ハブ部
10 軸受部材
12 凹部
12a 円環溝
12b 平坦面
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1 Fluid bearing apparatus 2 Shaft part 3 Rotating member 7 Housing 8 Bearing sleeve 9 Hub part 10 Bearing member 12 Recess 12a Ring groove 12b Flat surface R1, R2 Radial bearing part T1, T2 Thrust bearing part S Seal space

Claims (5)

軸受部材と、該軸受部材に対して相対回転する回転部材と、前記軸受部材と前記回転部材との間のラジアル軸受隙間に生じる流体の潤滑膜で前記回転部材をラジアル方向に回転自在に支持するラジアル軸受部とを備え、前記回転部材は、前記軸受部材の内周に挿入され、一端部にねじ穴を有する軸部と、該軸部の外周面のうち、前記ねじ穴の外径側に固定されたハブ部とを有する流体軸受装置において、
前記ハブ部が前記軸部をインサートして樹脂で射出成形され、かつこのハブ部が、前記軸部の外周面のうち、ハブ部との固定領域に設けられた凹部で前記軸部と軸方向および円周方向に係合していることを特徴とする流体軸受装置。
The rotating member is rotatably supported in the radial direction by a bearing member, a rotating member that rotates relative to the bearing member, and a fluid lubricating film formed in a radial bearing gap between the bearing member and the rotating member. A radial bearing portion, and the rotating member is inserted into an inner periphery of the bearing member, and has a shaft portion having a screw hole at one end portion, and an outer peripheral surface of the shaft portion on an outer diameter side of the screw hole. In a hydrodynamic bearing device having a fixed hub portion,
The hub portion is injection-molded with resin by inserting the shaft portion, and the hub portion is a recess provided in a fixed region with the hub portion on the outer peripheral surface of the shaft portion. And a hydrodynamic bearing device that is engaged in a circumferential direction.
前記凹部を、円環溝と、該円環溝の溝底面の一部領域に形成された平坦面とで構成した請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the concave portion includes an annular groove and a flat surface formed in a partial region of the groove bottom surface of the annular groove. 前記凹部を、円環溝と、該円環溝に繋がる前記軸部の外周面の一部領域に形成された平坦面とで構成した請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the concave portion includes an annular groove and a flat surface formed in a partial region of the outer peripheral surface of the shaft portion connected to the annular groove. 前記樹脂が、ポリフェニレンサルファイドあるいは液晶ポリマーをベース樹脂とする樹脂組成物である請求項1記載の流体軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein the resin is a resin composition based on polyphenylene sulfide or a liquid crystal polymer. 請求項1〜4の何れかに記載の流体軸受装置と、ステータコイルと、ロータマグネットとを有するモータ。   A motor comprising the hydrodynamic bearing device according to claim 1, a stator coil, and a rotor magnet.
JP2006088724A 2006-03-28 2006-03-28 Fluid bearing device Withdrawn JP2007263225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006088724A JP2007263225A (en) 2006-03-28 2006-03-28 Fluid bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006088724A JP2007263225A (en) 2006-03-28 2006-03-28 Fluid bearing device

Publications (1)

Publication Number Publication Date
JP2007263225A true JP2007263225A (en) 2007-10-11

Family

ID=38636421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006088724A Withdrawn JP2007263225A (en) 2006-03-28 2006-03-28 Fluid bearing device

Country Status (1)

Country Link
JP (1) JP2007263225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019518399A (en) * 2017-04-11 2019-06-27 グイリン ジーシェン インフォメーション テクノロジー カンパニー リミテッドGuilin Zhishen Information Technology Co., Ltd. Plastic motor for portable stabilizer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019518399A (en) * 2017-04-11 2019-06-27 グイリン ジーシェン インフォメーション テクノロジー カンパニー リミテッドGuilin Zhishen Information Technology Co., Ltd. Plastic motor for portable stabilizer
JP2020108331A (en) * 2017-04-11 2020-07-09 グイリン ジーシェン インフォメーション テクノロジー カンパニー リミテッドGuilin Zhishen Information Technology Co., Ltd. Motor shell of portable stabilizer
US11211841B2 (en) 2017-04-11 2021-12-28 Guilin Zhishen Information Technology Co., Ltd. Motor shell
US11218047B2 (en) 2017-04-11 2022-01-04 Guilin Zhishen Information Technology Co., Ltd. Plastic motor for handheld stabilizer

Similar Documents

Publication Publication Date Title
JP4531584B2 (en) Fluid dynamic bearing device and motor provided with the same
US8356938B2 (en) Fluid dynamic bearing apparatus
JP2007024146A (en) Dynamic pressure bearing device
JP4874004B2 (en) Hydrodynamic bearing device
KR101405075B1 (en) Fluid bearing device and its manufacturing method
JP2008267531A (en) Method for manufacturing dynamic pressure bearing device
JP4476670B2 (en) Hydrodynamic bearing device
JP2005337490A (en) Dynamic pressure bearing device
JP2009103252A (en) Fluid bearing device and motor having the same
JP5220359B2 (en) Hydrodynamic bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP2007263225A (en) Fluid bearing device
JP2008144847A (en) Dynamic pressure bearing device
JP2006200666A (en) Dynamic-pressure bearing device
JP2006258123A (en) Dynamic pressure bearing device
JP2009011018A (en) Fluid bearing device, and manufacturing method thereof
JP4615328B2 (en) Hydrodynamic bearing device
JP2005337341A (en) Dynamic pressure bearing device and motor using the same
JP4522869B2 (en) Hydrodynamic bearing device
JP2006200582A (en) Dynamic pressure bearing device
JP2007192316A (en) Dynamic pressure bearing device
JP2006200584A (en) Dynamic pressure bearing device
JP4498932B2 (en) Hydrodynamic bearing device
JP2007113778A (en) Fluid bearing device and motor equipped with the same
JP2006214542A (en) Fluid bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602