JP2008144847A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device Download PDF

Info

Publication number
JP2008144847A
JP2008144847A JP2006332130A JP2006332130A JP2008144847A JP 2008144847 A JP2008144847 A JP 2008144847A JP 2006332130 A JP2006332130 A JP 2006332130A JP 2006332130 A JP2006332130 A JP 2006332130A JP 2008144847 A JP2008144847 A JP 2008144847A
Authority
JP
Japan
Prior art keywords
shaft member
hub
end surface
peripheral surface
thrust bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006332130A
Other languages
Japanese (ja)
Inventor
Atsushi Hiraide
淳 平出
Yoshihiko Bito
仁彦 尾藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006332130A priority Critical patent/JP2008144847A/en
Priority to PCT/JP2007/066601 priority patent/WO2008032555A1/en
Priority to US12/377,293 priority patent/US20100226601A1/en
Priority to CN2007800338798A priority patent/CN101517251B/en
Publication of JP2008144847A publication Critical patent/JP2008144847A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance bearing performance by accurately positioning an end surface of a hub forming a thrust bearing clearance relative to a shaft member in an axial direction. <P>SOLUTION: The thrust bearing clearance is formed by an end surface 31a of a core metal 31, and the end surface 31a of the core metal 31 is abutted on a shoulder surface 2c of the shaft member 2. Thereby, since the thrust bearing surface can be positioned, with high precision, relative to the shaft member 2 in the axial direction, high accuracy of the clearance width of the thrust bearing clearance, reduction of rotation torque or miniaturization of the bearing device can be attained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軸受隙間に生じる潤滑膜の動圧作用で、軸部材を回転自在に支持する動圧軸受装置及びその製造方法に関する。   The present invention relates to a hydrodynamic bearing device that rotatably supports a shaft member by a hydrodynamic action of a lubricating film generated in a bearing gap, and a manufacturing method thereof.

この種の動圧軸受装置は、情報機器、例えばHDD等の磁気ディスク駆動装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク駆動装置、MD、MO等の光磁気ディスク駆動装置等のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイール、あるいは電気機器、例えばファンモータなどの小型モータ用として好適に使用可能である。   This type of hydrodynamic bearing device includes information devices, for example, magnetic disk drive devices such as HDD, optical disk drive devices such as CD-ROM, CD-R / RW, DVD-ROM / RAM, and magneto-optical disks such as MD and MO. It can be suitably used for a spindle motor such as a driving device, a polygon scanner motor of a laser beam printer (LBP), a color wheel of a projector, or an electric device such as a small motor such as a fan motor.

例えば、特許文献1の図6に示されている動圧軸受装置は、軸部材と、軸部材の一端に設けられたフランジ部と、軸部材の他端に設けられたフランジ状のハブ(ディスクハブ)と、内周に軸部材を挿入した軸受スリーブと、軸受スリーブを保持するハウジングとを備える。軸部材が回転すると、ハブの端面とハウジングの端面との間に一方のスラスト軸受隙間が形成されると共に、フランジ部の端面と軸受スリーブの端面との間に他方のスラスト軸受隙間が形成され、これらのスラスト軸受隙間に生じる潤滑油の動圧作用で、軸部材が両スラスト方向に支持される。   For example, a hydrodynamic bearing device shown in FIG. 6 of Patent Document 1 includes a shaft member, a flange portion provided at one end of the shaft member, and a flange-shaped hub (disc) provided at the other end of the shaft member. A hub), a bearing sleeve having a shaft member inserted into the inner periphery thereof, and a housing for holding the bearing sleeve. When the shaft member rotates, one thrust bearing gap is formed between the end face of the hub and the end face of the housing, and the other thrust bearing gap is formed between the end face of the flange portion and the end face of the bearing sleeve. The shaft member is supported in both thrust directions by the dynamic pressure action of the lubricating oil generated in these thrust bearing gaps.

また、同文献の図2には、軸部材にフランジ部が設けられず、スラスト軸受隙間が一箇所のみに形成された動圧軸受装置が示されている。   Further, FIG. 2 of the same document shows a hydrodynamic bearing device in which a shaft member is not provided with a flange portion and a thrust bearing gap is formed only at one location.

特開2005−337342号公報(図2、図5、及び図6)Japanese Patent Laying-Open No. 2005-337342 (FIGS. 2, 5, and 6)

上記のような軸受装置では、ハブの軸部材に対する軸方向での位置決め精度が重要となる。例えば、上記の特許文献1の図6に示す動圧軸受装置では、一方のスラスト軸受隙間に面するハブの端面と、他方のスラスト軸受隙間に面するフランジ部の端面との軸方向距離は、各スラスト軸受隙間の幅精度に直結する。このため、ハブが軸部材に対して軸方向で精度良く位置決めされていないと、スラスト軸受隙間の幅精度が低下し、スラスト方向の支持力が低下する。   In the bearing device as described above, the positioning accuracy in the axial direction with respect to the shaft member of the hub is important. For example, in the hydrodynamic bearing device shown in FIG. 6 of Patent Document 1 above, the axial distance between the end surface of the hub facing one thrust bearing gap and the end surface of the flange portion facing the other thrust bearing gap is Directly linked to the width accuracy of each thrust bearing gap. For this reason, if the hub is not accurately positioned with respect to the shaft member in the axial direction, the width accuracy of the thrust bearing gap is lowered, and the supporting force in the thrust direction is lowered.

また、上記の特許文献1の図2に示す動圧軸受装置では、ハブの軸部材に対する軸方向での位置決め精度は、軸部材の下端面とハウジングの内底面との軸方向距離に反映される。これらの軸方向距離が過小であると、軸部材の回転時にトルクの増大を招く恐れがある。一方、これらの軸方向距離が過大であると、軸受内部の空間が増大し、充填される潤滑油量も増大するため、潤滑油の温度変化に伴う体積変化を吸収するシール空間の容積を拡大する必要が生じ、軸受装置の大型化を招くこととなる。   Further, in the hydrodynamic bearing device shown in FIG. 2 of Patent Document 1 above, the positioning accuracy in the axial direction of the hub with respect to the shaft member is reflected in the axial distance between the lower end surface of the shaft member and the inner bottom surface of the housing. . If these axial distances are too small, the torque may increase when the shaft member rotates. On the other hand, if these axial distances are excessive, the space inside the bearing increases and the amount of lubricating oil to be filled also increases, so the volume of the seal space that absorbs the volume change accompanying the temperature change of the lubricating oil is expanded. Therefore, it is necessary to increase the size of the bearing device.

ところで、これらのような動圧軸受装置において、ハブ全体を金属材料で形成すると、加工が困難となりコスト高を招く。一方、ハブ全体を樹脂材料で形成すると、十分な強度が得られず、製品寿命が短縮される恐れがある。この点に鑑み、同文献の図5に示されている動圧軸受装置では、軸部材の外周面に嵌合した芯金をインサートして樹脂で射出成形することによりハブを形成している。この構成によると、芯金で補強することによりハブの強度が高められると共に、複雑な形状の部分を射出成形で形成することによりハブの成形性を高めている。   By the way, in such a hydrodynamic bearing device, if the entire hub is made of a metal material, it becomes difficult to process, resulting in high costs. On the other hand, if the entire hub is formed of a resin material, sufficient strength cannot be obtained and the product life may be shortened. In view of this point, in the hydrodynamic bearing device shown in FIG. 5 of the same document, a hub is formed by inserting a metal core fitted to the outer peripheral surface of the shaft member and injection-molding it with resin. According to this configuration, the strength of the hub is enhanced by reinforcing with the core metal, and the moldability of the hub is enhanced by forming a complicated shape portion by injection molding.

この動圧軸受装置では、軸部材が肩面を有する段付軸状に形成され、この肩面に芯金を当接させることにより、芯金を軸部材に対して軸方向で位置決めしている。しかし、この芯金は樹脂部で被覆されているため、たとえ芯金を精度良く位置決めしても、樹脂の成形収縮によりハブの端面の精度が低下し、所望のスラスト軸受隙間の幅精度等が得られない恐れがある。   In this hydrodynamic bearing device, the shaft member is formed in a stepped shaft shape having a shoulder surface, and the core metal is positioned in the axial direction with respect to the shaft member by bringing the core metal into contact with the shoulder surface. . However, since the core is covered with the resin portion, even if the core is accurately positioned, the accuracy of the end face of the hub is reduced due to the molding shrinkage of the resin, and the desired width accuracy of the thrust bearing gap is reduced. There is a risk that it will not be obtained.

そこで、本発明は、芯金を有するハブを備えた動圧軸受装置において、スラスト軸受隙間を形成するハブの端面を軸部材に対して軸方向で精度良く位置決めすることにより、軸受性能の向上を図ることを目的とする。   In view of this, the present invention provides a hydrodynamic bearing device having a hub having a cored bar, which improves the bearing performance by accurately positioning the end surface of the hub forming the thrust bearing gap in the axial direction with respect to the shaft member. The purpose is to plan.

前記の目的を達成するために、本発明は、肩面を有する段付き軸状の軸部材と、軸部材の外周面に嵌合した芯金と、芯金をインサートして射出成形されたフランジ状のハブと、軸部材の外周面が面するラジアル軸受隙間と、該ラジアル軸受隙間に生じる潤滑膜の動圧作用で軸部材をラジアル方向に支持するラジアル軸受部と、ハブの端面が面するスラスト軸受隙間と、該スラスト軸受隙間に生じる潤滑膜の動圧作用で軸部材をスラスト方向に支持するスラスト軸受部とを備えた動圧軸受装置において、芯金の端面を軸部材の肩面に当接させると共に、芯金の端面でスラスト軸受隙間を形成したことを特徴とする。   In order to achieve the above object, the present invention provides a stepped shaft-shaped shaft member having a shoulder surface, a core metal fitted to the outer peripheral surface of the shaft member, and a flange that is injection-molded by inserting the core metal. Of the shaft, a radial bearing gap that faces the outer peripheral surface of the shaft member, a radial bearing portion that supports the shaft member in the radial direction by the dynamic pressure action of the lubricating film generated in the radial bearing gap, and the end face of the hub faces In a hydrodynamic bearing device including a thrust bearing gap and a thrust bearing portion that supports a shaft member in a thrust direction by a dynamic pressure action of a lubricating film generated in the thrust bearing gap, an end surface of a core metal is used as a shoulder surface of the shaft member. A thrust bearing gap is formed at the end face of the cored bar as well as contacting.

このように、本発明の動圧軸受装置では、芯金の端面でスラスト軸受隙間を形成するため、樹脂で被覆した従来品のように成形収縮により端面精度が低下することが無い。従って、芯金の端面を軸部材の肩面に当接させ、軸部材に対して軸方向で精度良く位置決めすることにより、スラスト軸受隙間の幅精度の向上や、回転トルクの低減、あるいは軸受装置の小型化が可能となる。   Thus, in the hydrodynamic bearing device of the present invention, since the thrust bearing gap is formed at the end face of the core metal, the end face accuracy is not reduced by molding shrinkage as in the conventional product coated with resin. Therefore, the end surface of the core bar is brought into contact with the shoulder surface of the shaft member, and the shaft member is accurately positioned in the axial direction, thereby improving the width accuracy of the thrust bearing gap, reducing the rotational torque, or the bearing device. Can be reduced in size.

また、軸部材の外周面のうち、ハブと接触する領域に凹凸部を設けると、この凹凸部にハブの射出成形材料が入り込むことによるアンカー効果で、射出成形材料と軸部材の外周面との密着性が向上し、ハブと軸部材との固定強度の向上が図られる。   In addition, when an uneven portion is provided in a region in contact with the hub in the outer peripheral surface of the shaft member, an anchor effect caused by the injection molding material of the hub entering the uneven portion causes the injection molding material and the outer peripheral surface of the shaft member to Adhesion is improved, and the fixing strength between the hub and the shaft member is improved.

また、軸部材の肩面を研削により高精度に加工しておくと、芯金の軸部材に対する位置決め精度をより一層高めることができる。この肩面の研削は、軸部材の一方の端面を基準として行うことが好ましい。例えばこの端面に、スラスト軸受隙間を形成するフランジ部を当接させて位置決めする場合(図2参照)、一方のスラスト軸受隙間を形成する芯金の端面と他方のスラスト軸受隙間を形成するフランジ部の端面との軸方向距離Lをより一層精度良く設定することができ、スラスト軸受隙間の幅設定のさらなる高精度化が可能となる。   Further, if the shoulder surface of the shaft member is processed with high accuracy by grinding, the positioning accuracy of the cored bar with respect to the shaft member can be further increased. The shoulder surface is preferably ground on the basis of one end surface of the shaft member. For example, when positioning a flange portion that forms a thrust bearing gap on this end face (see FIG. 2), the end face of the metal core that forms one thrust bearing gap and the flange portion that forms the other thrust bearing gap It is possible to set the axial distance L with respect to the end face with higher accuracy, and it is possible to further increase the accuracy of the width setting of the thrust bearing gap.

また、軸部材のうち、ラジアル軸受隙間に面する外周面と肩面とを同時研削すると、工程数を削減することができると共に、研削治具を高精度に加工しておくことにより、これらの面の直角度や振れ精度を高精度に設定することができる。従って、外周面が形成するラジアル軸受隙間と肩面に当接した芯金が形成するスラスト軸受隙間との直角度や振れ精度が高精度に設定され、軸受隙間の幅精度の向上による支持力増大や、軸受装置の回転精度の向上が図られる。   In addition, when the outer peripheral surface facing the radial bearing gap and the shoulder surface of the shaft member are simultaneously ground, it is possible to reduce the number of steps and to process these grinding jigs with high accuracy. The perpendicularity and runout accuracy of the surface can be set with high accuracy. Therefore, the perpendicularity and runout accuracy between the radial bearing gap formed by the outer peripheral surface and the thrust bearing gap formed by the metal core in contact with the shoulder surface are set with high accuracy, and the bearing capacity is increased by improving the width accuracy of the bearing gap. In addition, the rotational accuracy of the bearing device can be improved.

以上のように、本発明の動圧軸受装置では、スラスト軸受隙間を形成するハブの端面を軸部材に対して軸方向で精度良く位置決めすることにより、軸受性能の向上を図ることができる。   As described above, in the hydrodynamic bearing device of the present invention, the end face of the hub forming the thrust bearing gap can be accurately positioned in the axial direction with respect to the shaft member, so that the bearing performance can be improved.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明が適用される動圧軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2及びハブ3を相対回転自在に非接触支持する動圧軸受装置1と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6とを備えている。ステータコイル4はブラケット6の外径側内周面6aに取付けられ、ロータマグネット5は、ハブ3の外周に固定されている。動圧軸受装置1は、ブラケット6の内周に固定される。また、ハブ3には、図示は省略するが、情報記録媒体としてのディスクが一枚又は複数枚保持される。このように構成されたスピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する励磁力でロータマグネット5が回転し、これに伴って、ハブ3およびハブ3に保持されたディスクが軸部材2と一体に回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 to which the present invention is applied. The spindle motor is used in a disk drive device such as an HDD, and is opposed to the hydrodynamic bearing device 1 that supports the shaft member 2 and the hub 3 in a non-contact manner so as to be relatively rotatable, for example, via a radial gap. A stator coil 4, a rotor magnet 5, and a bracket 6 are provided. The stator coil 4 is attached to the outer peripheral side inner peripheral surface 6 a of the bracket 6, and the rotor magnet 5 is fixed to the outer periphery of the hub 3. The hydrodynamic bearing device 1 is fixed to the inner periphery of the bracket 6. Although not shown, the hub 3 holds one or more disks as information recording media. In the spindle motor configured as described above, when the stator coil 4 is energized, the rotor magnet 5 is rotated by an exciting force generated between the stator coil 4 and the rotor magnet 5, and accordingly, the hub 3 and the hub 3 are rotated. The disk held on the shaft rotates together with the shaft member 2.

図2は、動圧軸受装置1を示している。この動圧軸受装置1は、軸部材2と、軸部材2の一端に設けたフランジ部材9と、軸部材2の他端に設けたフランジ状のハブ3と、内周に軸部材2を挿入した軸受スリーブ8と、軸受スリーブ8を保持し、軸方向両側に開口したハウジング7と、ハウジング7の一端開口部を閉塞する蓋部材70とを主に備える。なお、説明の便宜上、ハウジング7の軸方向両端側に形成された開口部のうち、蓋部材70で閉塞されている側を下側、開口している側を上側として以下説明する。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a shaft member 2, a flange member 9 provided at one end of the shaft member 2, a flange-shaped hub 3 provided at the other end of the shaft member 2, and the shaft member 2 inserted into the inner periphery. The bearing sleeve 8, the housing 7 that holds the bearing sleeve 8 and opens on both sides in the axial direction, and the lid member 70 that closes one end opening of the housing 7 are mainly provided. For the sake of convenience of explanation, of the openings formed on both ends in the axial direction of the housing 7, the side closed by the lid member 70 will be described below, and the open side will be described below.

この動圧軸受装置1では、詳細は後述するが、軸部材2の大径外周面2aと軸受スリーブ8の内周面8aとの間に、ラジアル軸受部R1、R2が軸方向に離隔して設けられる。また、ハウジング7の上端面7aとハブ3の円盤部3aの下側端面3a1との間に第1スラスト軸受部T1が設けられると共に、フランジ部材9の上側端面9aと軸受スリーブ8の下側端面8bとの間に第2スラスト軸受部T2が設けられる。   Although details will be described later in this hydrodynamic bearing device 1, the radial bearing portions R <b> 1 and R <b> 2 are separated in the axial direction between the large-diameter outer peripheral surface 2 a of the shaft member 2 and the inner peripheral surface 8 a of the bearing sleeve 8. Provided. A first thrust bearing portion T1 is provided between the upper end surface 7a of the housing 7 and the lower end surface 3a1 of the disk portion 3a of the hub 3, and the upper end surface 9a of the flange member 9 and the lower end surface of the bearing sleeve 8 are provided. A second thrust bearing portion T2 is provided between 8b and 8b.

軸受スリーブ8は、例えば銅を主成分とする焼結金属の多孔質体で円筒状に形成され、ハウジング7の内周面7cに、接着、圧入(圧入接着を含む)、溶着(超音波溶着を含む)、溶接(レーザ溶接を含む)等、適宜の手段で固定される。   The bearing sleeve 8 is formed in a cylindrical shape, for example, of a sintered metal porous body mainly composed of copper, and is bonded, press-fitted (including press-fitting adhesion), and welded (ultrasonic welding) to the inner peripheral surface 7 c of the housing 7. ), Welding (including laser welding), or the like.

軸受スリーブ8の内周面8aの全面又は一部円筒領域には、図3に示すように、複数の動圧溝8a1、8a2をヘリングボーン形状に配列した領域が軸方向に離隔して形成される。上側の動圧溝8a1は、軸方向で非対称形状に形成されており、詳しくは、軸方向中間部に設けられた環状の平滑部より上側の溝の軸方向寸法Xが、下側の溝の軸方向寸法Yよりも大きくなるように形成されている。一方、下側の動圧溝8a2は、軸方向で対称な形状に形成されている。   As shown in FIG. 3, a region in which a plurality of dynamic pressure grooves 8a1 and 8a2 are arranged in a herringbone shape is formed in the entire surface of the inner peripheral surface 8a of the bearing sleeve 8 or a part of the cylindrical region. The The upper dynamic pressure groove 8a1 is formed in an asymmetric shape in the axial direction, and more specifically, the axial dimension X of the groove on the upper side of the annular smooth portion provided in the axially intermediate portion is equal to that of the lower groove. It is formed to be larger than the axial dimension Y. On the other hand, the lower dynamic pressure groove 8a2 is formed in a symmetrical shape in the axial direction.

軸受スリーブ8の下側端面8bの全面又は一部環状領域には、図示は省略するが、スパイラル形状に配列した動圧溝が形成される。また、軸受スリーブ8の外周面8dには、軸方向溝8d1が一本、又は円周方向等間隔に複数本形成される。   Although not shown, dynamic pressure grooves arranged in a spiral shape are formed on the entire lower surface 8b of the bearing sleeve 8 or a partial annular region. Further, one axial groove 8d1 or a plurality of axial grooves 8d1 are formed on the outer peripheral surface 8d of the bearing sleeve 8 at equal intervals in the circumferential direction.

ハウジング7は、金属材料又は樹脂材料で略円筒形状に形成され、下端側の開口部を蓋部材70で閉塞している。蓋部材70は、ハウジング7の下方部内周に形成された段部7fに当接し、接着、圧入、溶着、あるいは溶接等の手段で固定されている。ハウジング7の上端面7aの全面または一部環状領域には、図4に示すように、複数の動圧溝7a1をスパイラル形状に配列した領域が形成される。ハウジング7の上方部外周には、上方に向かって漸次拡径する第1テーパ面7bが形成される。この第1テーパ面7bは、後述するハブ3に形成された第2テーパ面3b1との間にシール空間Sを形成する。ハウジング7の下方部外周には円筒面7eが形成され、この円筒面7eがブラケット6の内周に、接着、圧入、溶着、あるいは溶接等の手段で固定される。   The housing 7 is formed in a substantially cylindrical shape with a metal material or a resin material, and the opening on the lower end side is closed with a lid member 70. The lid member 70 is in contact with a step 7f formed on the inner periphery of the lower part of the housing 7, and is fixed by means such as adhesion, press-fitting, welding, or welding. As shown in FIG. 4, a region in which a plurality of dynamic pressure grooves 7 a 1 are arranged in a spiral shape is formed on the entire upper surface 7 a of the housing 7 or a partial annular region. On the outer periphery of the upper portion of the housing 7, a first tapered surface 7 b that gradually increases in diameter upward is formed. The first taper surface 7b forms a seal space S between the first taper surface 7b and a second taper surface 3b1 formed on the hub 3 to be described later. A cylindrical surface 7e is formed on the outer periphery of the lower portion of the housing 7, and the cylindrical surface 7e is fixed to the inner periphery of the bracket 6 by means such as adhesion, press-fitting, welding, or welding.

軸部材2は、例えばステンレス鋼等の金属材料で段付軸状に形成され、詳しくは、大径外周面2aと、大径外周面2aの上側に設けられた小径外周面2bと、これらの間に形成された径方向の肩面2cとを備える。軸部材2の小径外周面2bにはハブ3がフランジ状に設けられ、大径外周面2aは軸受スリーブ8の内周面8aとの間にラジアル軸受隙間を形成する。   The shaft member 2 is formed in a stepped shaft shape with a metal material such as stainless steel, for example. Specifically, the large-diameter outer peripheral surface 2a, the small-diameter outer peripheral surface 2b provided on the upper side of the large-diameter outer peripheral surface 2a, and these And a radial shoulder surface 2c formed therebetween. The hub 3 is provided in a flange shape on the small-diameter outer peripheral surface 2 b of the shaft member 2, and the large-diameter outer peripheral surface 2 a forms a radial bearing gap with the inner peripheral surface 8 a of the bearing sleeve 8.

軸部材2の下端部には、フランジ部材9が設けられる。フランジ部材9は軸部材2の下端部に設けられたねじ穴にねじ結合され、軸部材2の下端面2dと当接することにより軸部材2に対して位置決めされる。フランジ部材9の上側端面9aは、軸受スリーブ8の下側端面8bとの間にスラスト軸受隙間を形成する。尚、フランジ部材9と軸部材2との固定方法は上記に限らず、例えば接着により両部材を固定してもよい。   A flange member 9 is provided at the lower end of the shaft member 2. The flange member 9 is screwed into a screw hole provided in the lower end portion of the shaft member 2, and is positioned with respect to the shaft member 2 by contacting the lower end surface 2 d of the shaft member 2. A thrust bearing gap is formed between the upper end surface 9 a of the flange member 9 and the lower end surface 8 b of the bearing sleeve 8. In addition, the fixing method of the flange member 9 and the shaft member 2 is not limited to the above, and both members may be fixed by adhesion, for example.

ハブ3は、軸部材2の小径外周面2bにフランジ状に設けられ、芯金31をインサートした射出成形により形成される。ハブ3は、ハウジング7の上端開口部を覆う円盤部3aと、円盤部3aの外周部から軸方向下方に延びる筒状部3bと、筒状部3bから外径側に突出する鍔部3cとを備える。図示されていないディスクは、円盤部3aの外周に外嵌されると共に、鍔部3cの上側端面に形成されたディスク搭載面3dに載置される。そして、図示しない適当な保持手段(クランパなど)によってディスクがハブ3に保持される。上記のように、樹脂製のハブ3が芯金31を有することにより、ハブ3の強度が高められるため、ディスク搭載時のクランプ力等によるハブ3の変形を防止できる。   The hub 3 is provided in a flange shape on the small-diameter outer peripheral surface 2b of the shaft member 2, and is formed by injection molding in which a core metal 31 is inserted. The hub 3 includes a disk part 3a that covers the upper end opening of the housing 7, a cylindrical part 3b that extends downward in the axial direction from the outer peripheral part of the disk part 3a, and a flange part 3c that protrudes outward from the cylindrical part 3b. Is provided. A disc (not shown) is fitted on the outer periphery of the disc portion 3a and placed on a disc mounting surface 3d formed on the upper end surface of the flange portion 3c. Then, the disc is held on the hub 3 by an appropriate holding means (such as a clamper) not shown. As described above, since the resin hub 3 has the core 31, the strength of the hub 3 is increased, so that deformation of the hub 3 due to a clamping force or the like when the disk is mounted can be prevented.

芯金31は、例えばステンレス鋼の塑性加工(例えばプレス加工)で略円盤状に形成される。芯金31は、その内周面31bを軸部材2の小径外周面2bに圧入嵌合(軽圧入を含む)し、下側端面31aを軸部材2の肩面2cに当接させることにより、軸方向で位置決めされる。このとき、軸部材2の小径内周面2bと肩面2cの境界部にはヌスミ部2eが形成されているため(図5参照)、芯金31を軸部材2の肩面2cに確実に密着させることができる。この状態で、芯金31と軸部材2との嵌合面を溶接することにより両者が固定される。   The core metal 31 is formed in a substantially disk shape by plastic processing (for example, press processing) of stainless steel, for example. The metal core 31 is press-fitted (including light press-fitting) with the inner peripheral surface 31b of the small-diameter outer peripheral surface 2b of the shaft member 2, and the lower end surface 31a is brought into contact with the shoulder surface 2c of the shaft member 2, Positioned in the axial direction. At this time, since the Nusumi portion 2e is formed at the boundary between the small-diameter inner peripheral surface 2b and the shoulder surface 2c of the shaft member 2 (see FIG. 5), the cored bar 31 is securely attached to the shoulder surface 2c of the shaft member 2. It can be adhered. In this state, the fitting surfaces of the cored bar 31 and the shaft member 2 are welded to fix both.

上記のようにして固定された芯金31及び軸部材2をインサートして樹脂で射出成形することにより、ハブ3の樹脂成形部32が形成される。樹脂成形部32は、例えば液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等の結晶性樹脂や、ポリフェニルサルフォン(PPSU)、ポリエーテルサルフォン(PES)、ポリエーテルイミド(PEI)等の非晶性樹脂をベース樹脂とする樹脂組成物の射出成形で成形される。また、炭素繊維やガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカ状充填材、マイカ等の鱗片状充填材、カーボンブラック、黒鉛、カーボンナノマテリアル、各種金属粉等の繊維状または粉末状の導電性充填材を、目的に応じて上記ベース樹脂に適量配合したものを使用することもできる。   The resin molding part 32 of the hub 3 is formed by inserting the cored bar 31 and the shaft member 2 fixed as described above and performing injection molding with resin. The resin molding part 32 includes, for example, a crystalline resin such as liquid crystal polymer (LCP), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyphenyl sulfone (PPSU), polyether sulfone (PES), poly It is molded by injection molding of a resin composition having an amorphous resin such as etherimide (PEI) as a base resin. Also, fibrous or powder such as carbon fiber and glass fiber, whisker-like filler such as potassium titanate, scaly filler such as mica, carbon black, graphite, carbon nanomaterial, various metal powders, etc. A suitable amount of the conductive filler in the form of a base resin can be used depending on the purpose.

また、ハブ3の射出成形材料は樹脂に限らず、溶融金属を使用することもできる。金属材料としては、例えば、マグネシウム合金やアルミニウム合金等の低融点金属材料が使用可能で、この場合、樹脂材料を使用する場合に比べて、強度や導電性を向上させることができる。この他、金属粉とバインダーの混合物で射出成形した後、脱脂・焼結するいわゆるMIM成形、あるいはセラミックによる射出成形(いわゆる、CIM成形)を採用することもできる。   The injection molding material for the hub 3 is not limited to resin, and molten metal can also be used. As the metal material, for example, a low-melting-point metal material such as a magnesium alloy or an aluminum alloy can be used, and in this case, strength and conductivity can be improved as compared with the case of using a resin material. In addition, so-called MIM molding in which degreasing and sintering are performed after injection molding with a mixture of metal powder and binder, or ceramic injection molding (so-called CIM molding) can also be employed.

ハブ3の樹脂成形部32は軸部材2の小径外周面2bと接触する。この小径外周面2bに凹凸を設け、この凹凸部に射出材料としての溶融樹脂を入り込ませることで、アンカー効果を発揮して樹脂成形部32と軸部材2との固着力が高められる。この凹凸部は、例えば、後述するように、軸部材2の旋削加工による旋削目を小径外周面2bに残すことにより形成することができる。これに限らず、例えば図6に示すように、小径外周面2bに形成したスプライン溝2b1により凹凸部を構成することもできる。   The resin molded portion 32 of the hub 3 is in contact with the small-diameter outer peripheral surface 2 b of the shaft member 2. By providing irregularities on the small-diameter outer peripheral surface 2b and allowing molten resin as an injection material to enter the irregular portions, the anchor effect is exerted, and the fixing force between the resin molded portion 32 and the shaft member 2 is enhanced. For example, as described later, the uneven portion can be formed by leaving a turning mark by turning of the shaft member 2 on the small-diameter outer peripheral surface 2b. For example, as shown in FIG. 6, the concavo-convex portion can be formed by the spline groove 2 b 1 formed on the small-diameter outer peripheral surface 2 b.

ハブ3の筒状部3bの内周面の上方部には、上方へ向けて漸次拡径した第2テーパ面3b1が形成される。第2テーパ面3b1は、第1テーパ面7bと比べて軸方向に対するテーパ角が小さく設定されている。従って、これらの間に形成されるシール空間Sは、上方へ向けて径方向寸法を漸次縮小したテーパ状に形成される。このように、シール空間Sの外周部を上方へ向けて拡径した第2テーパ面3b1で構成することで、ハブ3の回転時には、テーパ状のシール空間Sの毛細管力による引き込み作用に加え、シール空間S内の潤滑油が遠心力により上方、すなわち軸受内部側へ引き込まれるため、潤滑油の外部への漏れ出しをより確実に防止することができる。   A second tapered surface 3b1 is formed in the upper portion of the inner peripheral surface of the cylindrical portion 3b of the hub 3 so as to gradually increase in diameter upward. The second taper surface 3b1 is set to have a smaller taper angle with respect to the axial direction than the first taper surface 7b. Accordingly, the seal space S formed between them is formed in a tapered shape with the radial dimension gradually reduced upward. In this way, by configuring the outer peripheral portion of the seal space S with the second tapered surface 3b1 whose diameter is increased upward, in addition to the pull-in action by the capillary force of the tapered seal space S when the hub 3 rotates, Since the lubricating oil in the seal space S is drawn upward by centrifugal force, that is, toward the bearing inner side, leakage of the lubricating oil to the outside can be prevented more reliably.

動圧軸受装置1内部には、潤滑剤として例えば潤滑油が充満され、油面は常にシール空間S内に保持される。この潤滑油としては、種々のものが使用可能であるが、HDD等のディスク駆動装置用の動圧軸受装置に提供される潤滑油には、その使用時あるいは輸送時における温度変化を考慮して、低蒸発率及び低粘度性に優れたエステル系潤滑油、例えばジオクチルセバケート(DOS)、ジオクチルアゼレート(DOZ)等を基油として使用した潤滑油が好適に使用可能である。   The inside of the hydrodynamic bearing device 1 is filled with, for example, lubricating oil as a lubricant, and the oil level is always held in the seal space S. Various types of lubricating oil can be used, but the lubricating oil provided to the hydrodynamic bearing device for a disk drive device such as an HDD takes into account temperature changes during use or transportation. In addition, an ester-based lubricating oil excellent in low evaporation rate and low viscosity, for example, a lubricating oil using dioctyl sebacate (DOS), dioctyl azelate (DOZ) or the like as a base oil can be suitably used.

上記構成の動圧軸受装置1において、軸部材2が回転すると、軸受スリーブ8の内周面8aに形成された動圧溝8a1、8a2形成領域と、対向する軸部材2の大径外周面2aとの間にラジアル軸受隙間が形成される。そして、軸部材2の回転に伴い、上記ラジアル軸受隙間の潤滑油が動圧溝8a1、8a2の軸方向中心側に押し込まれ、その圧力が上昇する。この動圧溝8a1、8a2によって生じる潤滑油の動圧作用によって、軸部材2をラジアル方向に非接触支持する第1ラジアル軸受部R1及び第2ラジアル軸受部R2が構成される。   In the hydrodynamic bearing device 1 having the above-described configuration, when the shaft member 2 rotates, the hydrodynamic groove 8a1 and 8a2 formation region formed on the inner peripheral surface 8a of the bearing sleeve 8 and the large-diameter outer peripheral surface 2a of the opposing shaft member 2 are formed. A radial bearing gap is formed between the two. As the shaft member 2 rotates, the lubricating oil in the radial bearing gap is pushed toward the axial center of the dynamic pressure grooves 8a1 and 8a2, and the pressure rises. The first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in the radial direction without contact are configured by the dynamic pressure action of the lubricating oil generated by the dynamic pressure grooves 8a1 and 8a2.

これと同時に、ハウジング7の上端面7aの動圧溝7a1形成領域とハブ3の下側端面3a1との間にスラスト軸受隙間が形成されると共に、軸受スリーブ8の下側端面8bの動圧溝形成領域とフランジ部材9の上側端面9aとの間にスラスト軸受隙間が形成される。これらのスラスト軸受隙間に形成される潤滑油膜の圧力が、各動圧溝の動圧作用により高められることにより、軸部材2及びハブ3を両スラスト方向に非接触支持する第1スラスト軸受部T1及び第2スラスト軸受部T2が構成される。   At the same time, a thrust bearing gap is formed between the region where the dynamic pressure groove 7a1 is formed on the upper end surface 7a of the housing 7 and the lower end surface 3a1 of the hub 3, and the dynamic pressure groove is formed on the lower end surface 8b of the bearing sleeve 8. A thrust bearing gap is formed between the formation region and the upper end surface 9 a of the flange member 9. The pressure of the lubricating oil film formed in these thrust bearing gaps is increased by the dynamic pressure action of each dynamic pressure groove, so that the first thrust bearing portion T1 that supports the shaft member 2 and the hub 3 in a non-contact manner in both thrust directions. And the 2nd thrust bearing part T2 is comprised.

また、軸受スリーブ8の外周面8dに軸方向溝8d1が形成されることにより、第2スラスト軸受部T2の外径側の空間と第1スラスト軸受部T1の内径側の空間とを連通することができる。これにより、軸受の内部空間に局所的な負圧がすることによる気泡の生成を防止することができる。また、本実施形態では、図3に示すように、第1ラジアル軸受部R1の動圧溝8a1が軸方向で非対称形状に形成されるため、ラジアル軸受隙間に潤滑油が軸方向下方に押込まれる。これにより、潤滑油がラジアル軸受隙間→第2スラスト軸受部T2のスラスト軸受隙間→軸方向溝8d1→軸受スリーブ8の上側端面8cとハブ3との間の空間、という経路を通って再びラジアル軸受隙間に引き込まれる。このように、軸受内部の潤滑油を強制的に循環させることにより、局所的な負圧の発生をより確実に防止することができる。尚、このような強制的な循環が特に必要なければ、動圧溝8a1を軸方向対称な形状に形成してもよい。   Further, by forming the axial groove 8d1 on the outer peripheral surface 8d of the bearing sleeve 8, the space on the outer diameter side of the second thrust bearing portion T2 communicates with the space on the inner diameter side of the first thrust bearing portion T1. Can do. Thereby, the production | generation of the bubble by a local negative pressure being applied to the internal space of a bearing can be prevented. In the present embodiment, as shown in FIG. 3, the dynamic pressure groove 8a1 of the first radial bearing portion R1 is formed in an asymmetric shape in the axial direction, so that the lubricating oil is pushed downward in the radial bearing gap. It is. As a result, the lubricating oil again passes through the radial bearing gap → the thrust bearing gap of the second thrust bearing portion T2 → the axial groove 8d1 → the space between the upper end surface 8c of the bearing sleeve 8 and the hub 3, and again the radial bearing. It is drawn into the gap. In this way, by forcibly circulating the lubricating oil inside the bearing, local negative pressure can be more reliably prevented. If such forced circulation is not particularly necessary, the dynamic pressure groove 8a1 may be formed in an axially symmetric shape.

以上のように、本発明では、第1スラスト軸受部T1のスラスト軸受隙間を芯金31で形成するため、芯金を樹脂で被覆した従来品のように成形収縮により端面精度が低下することが無い。従って、芯金31の端面31aを軸部材2の肩面2cに当接させることにより、芯金31の端面31aを軸部材2に対して軸方向で高精度に位置決めすることができる。特に、芯金31が、軸部材2の下端面2dに対して精度良く位置決めされることで、この下端面2dと当接することで位置決めされたフランジ部材9との軸方向距離L(図2参照)を精度良く設定することができる。これにより、両スラスト軸受部T1、T2のスラスト軸受隙間の隙間幅の合計量が高精度に設定され、スラスト方向の支持力を高めることができる。   As described above, in the present invention, since the thrust bearing gap of the first thrust bearing portion T1 is formed by the core metal 31, the end face accuracy may be reduced by molding shrinkage as in the conventional product in which the core metal is coated with resin. No. Therefore, the end surface 31 a of the core metal 31 can be positioned with high accuracy in the axial direction with respect to the shaft member 2 by bringing the end surface 31 a of the core metal 31 into contact with the shoulder surface 2 c of the shaft member 2. In particular, the core metal 31 is accurately positioned with respect to the lower end surface 2d of the shaft member 2, so that the axial distance L from the flange member 9 positioned by contacting the lower end surface 2d (see FIG. 2). ) Can be set with high accuracy. Thereby, the total amount of the gap widths of the thrust bearing gaps of both thrust bearing portions T1, T2 is set with high accuracy, and the supporting force in the thrust direction can be increased.

また、軸受装置の起動、停止時等の低速回転時には、動圧溝による動圧作用が十分に発現されないため、ハブ3の円盤部3aの下側端面3a1が、スラスト軸受隙間を介して対向するハウジング7の上端面7aと接触摺動する。このため、スラスト軸受隙間を形成するハブ3の円盤部3aの下側端面3a1には高い耐摩耗性が要求される。上記のように、ハブ3の円盤部3aの下側端面3a1を芯金31の下側端面31aで形成することにより、低速回転時に接触摺動する部分の耐摩耗性を高めることができる。   Further, when the bearing device is started and stopped at a low speed, the dynamic pressure action by the dynamic pressure groove is not sufficiently exhibited, so that the lower end surface 3a1 of the disk portion 3a of the hub 3 faces through the thrust bearing gap. It slides in contact with the upper end surface 7 a of the housing 7. For this reason, high wear resistance is required for the lower end surface 3a1 of the disk portion 3a of the hub 3 forming the thrust bearing gap. As described above, by forming the lower end surface 3a1 of the disk portion 3a of the hub 3 with the lower end surface 31a of the cored bar 31, the wear resistance of the portion that contacts and slides during low-speed rotation can be improved.

以下に、軸部材2の加工方法を図5を用いて説明する。   Below, the processing method of the shaft member 2 is demonstrated using FIG.

まず、ステンレス鋼からなる円筒状の軸材を所定の長さに切断し、この軸材の外周面に旋削加工を施すことにより、軸部材2に大径外周面2a、小径外周面2b、及び肩面2cが形成される。これらの面は、旋削目が形成された粗面となる。この旋削加工と同時に、小径外周面2bと肩面2cとの境界部にヌスミ部2eが形成される。   First, a cylindrical shaft member made of stainless steel is cut into a predetermined length, and the outer peripheral surface of this shaft member is turned so that the shaft member 2 has a large-diameter outer peripheral surface 2a, a small-diameter outer peripheral surface 2b, and A shoulder surface 2c is formed. These surfaces are rough surfaces on which turning lines are formed. Simultaneously with this turning process, a pusmy part 2e is formed at the boundary between the small-diameter outer peripheral surface 2b and the shoulder surface 2c.

その後、軸部材2の大径外周面2a及び肩面2cに研削加工を施し、これらの面の面精度を高める。この研削加工では、軸部材2の中心軸に対して傾斜した軸を中心に回転するアンギュラ研削砥石40と、軸部材2の下端面2dと当接する位置決め治具50とが用いられる(図5参照)。研削砥石40は、軸部材2の大径外周面2aを研削する第1研削面41と、軸部材2の肩面2cを研削する第2研削面42と、軸部材2の小径外周面2bと対向する第3研削面43とを有する。第2研削面42の径方向寸法L1(軸部材2の径方向における寸法)は、軸部材2の肩面2cの径方向寸法L2よりも小さく設定される(L1<L2)。このような研削砥石40を回転させて軸部材2を研削すると、軸部材2の大径外周面2a及び肩面2cを第1研削面41及び第2研削面42で研削する一方で、小径外周面2bと第3研削面43とを非接触とすることができる。これにより、大径外周面2a及び肩面2cを高精度に加工された研削面とすると共に、小径外周面2bを旋削加工による旋削目を残した粗面とすることができる。   Thereafter, the large-diameter outer peripheral surface 2a and the shoulder surface 2c of the shaft member 2 are ground to improve the surface accuracy of these surfaces. In this grinding process, an angular grinding wheel 40 that rotates about an axis inclined with respect to the central axis of the shaft member 2 and a positioning jig 50 that contacts the lower end surface 2d of the shaft member 2 are used (see FIG. 5). ). The grinding wheel 40 includes a first grinding surface 41 that grinds the large-diameter outer circumferential surface 2a of the shaft member 2, a second grinding surface 42 that grinds the shoulder surface 2c of the shaft member 2, and a small-diameter outer circumferential surface 2b of the shaft member 2. And an opposing third grinding surface 43. The radial dimension L1 of the second grinding surface 42 (dimension in the radial direction of the shaft member 2) is set smaller than the radial dimension L2 of the shoulder surface 2c of the shaft member 2 (L1 <L2). When the shaft member 2 is ground by rotating such a grinding wheel 40, the large-diameter outer peripheral surface 2a and the shoulder surface 2c of the shaft member 2 are ground by the first grinding surface 41 and the second grinding surface 42, while the small-diameter outer periphery is ground. The surface 2b and the 3rd grinding surface 43 can be made non-contact. As a result, the large-diameter outer peripheral surface 2a and the shoulder surface 2c can be made to be a ground surface processed with high precision, and the small-diameter outer peripheral surface 2b can be made to be a rough surface leaving a turning line by turning.

また、図5に示すように、軸部材2の下端面2dに位置決め治具50を当接させた状態で、すなわち、軸部材2の下端面2dを基準として、肩面2cを第2研削面42で研削することにより、軸部材2の肩面2cと下端面2dの軸方向距離L3を高精度に設定することができる。尚、予め軸部材2の下端面2dに研削加工を施してこの面の面精度を高めておくと、位置決め治具50との当接による軸方向の位置決めがより正確に行われるため、軸部材2の肩面2cと下端面2dとの軸方向距離がより高精度に設定される。   In addition, as shown in FIG. 5, the shoulder surface 2c is the second ground surface in a state where the positioning jig 50 is in contact with the lower end surface 2d of the shaft member 2, that is, with the lower end surface 2d of the shaft member 2 as a reference. By grinding at 42, the axial distance L3 between the shoulder surface 2c and the lower end surface 2d of the shaft member 2 can be set with high accuracy. In addition, since the lower end surface 2d of the shaft member 2 is ground in advance to increase the surface accuracy of this surface, the axial positioning by the contact with the positioning jig 50 is performed more accurately. The axial distance between the second shoulder surface 2c and the lower end surface 2d is set with higher accuracy.

このように、軸部材2の肩面2cに研削加工を施してこの面の面精度を高めることにより、芯金31の軸部材2に対する位置決め精度が高められる。さらに、軸部材2の肩面2cを下端面2dを基準として研削することで、肩面2cと下端面2dとの軸方向距離L3が高精度に設定される。これにより、芯金31とフランジ部材9との軸方向距離Lの設定精度がより一層高められ、スラスト軸受隙間の幅精度が向上し、スラスト方向の支持力がさらに高められる。   As described above, by grinding the shoulder surface 2c of the shaft member 2 and increasing the surface accuracy of this surface, the positioning accuracy of the cored bar 31 with respect to the shaft member 2 is increased. Furthermore, by grinding the shoulder surface 2c of the shaft member 2 with the lower end surface 2d as a reference, the axial distance L3 between the shoulder surface 2c and the lower end surface 2d is set with high accuracy. Thereby, the setting accuracy of the axial distance L between the metal core 31 and the flange member 9 is further increased, the width accuracy of the thrust bearing gap is improved, and the supporting force in the thrust direction is further increased.

また、上記のように、軸部材2のうち、大径外周面2aと肩面2cとを研削砥石40で同時研削することにより、工程数が削減されると共に、これらの面の直角度や振れ精度を高精度に設定することができる。これにより、大径外周面2aが形成するラジアル軸受隙間と肩面2cで位置決めされた芯金31が形成するスラスト軸受隙間との直角度や振れ精度を高精度に設定することができる。従って、軸受隙間の幅精度の向上による支持力増大や、軸部材2の回転精度の向上が図られる。   Further, as described above, by simultaneously grinding the large-diameter outer peripheral surface 2a and the shoulder surface 2c of the shaft member 2 with the grinding wheel 40, the number of steps can be reduced, and the squareness and vibration of these surfaces can be reduced. The accuracy can be set with high accuracy. Thereby, the perpendicularity and runout accuracy between the radial bearing gap formed by the large-diameter outer peripheral surface 2a and the thrust bearing gap formed by the cored bar 31 positioned by the shoulder surface 2c can be set with high accuracy. Therefore, the bearing force can be increased by improving the width accuracy of the bearing gap, and the rotation accuracy of the shaft member 2 can be improved.

本発明は、上記の実施形態に限られない。以下、本発明の他の実施形態を説明する。尚、以下の説明において、上記の実施形態と同様の構成、機能を有する箇所には同一符号を付し、説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, other embodiments of the present invention will be described. In the following description, parts having the same configuration and function as those in the above embodiment are denoted by the same reference numerals, and description thereof is omitted.

図7に、本発明の他の実施形態に係る動圧軸受装置101を示す。この動圧軸受装置101は、上記の実施形態で軸部材2の下端に設けられていたフランジ部材、及びフランジ部材が形成していた第2スラスト軸受部が省略されている。ハブ3の筒状部3bの内周上方部に設けられた段部3eには、抜け止め部材10が接着、溶接等の手段で固定される。抜け止め部材10は、例えば金属材料のプレス加工で断面略L字型に形成され、その上端面10aとハウジング7の外周に設けられた径方向の肩面とが軸方向で係合することにより、ハブ3及び軸部材2の抜けを規制している。抜け止め部材10の内周面10bは、上方へ向けて漸次拡径したテーパ状に形成され、ハウジング7の第1テーパ面7bとの間にシール空間Sを形成する。すなわち、抜け止め部材10の内周面10bは、上記実施形態のハブ3に設けられた第2テーパ面3b1と同様の役割を果たす。ハウジング7は、有底筒状のコップ状に形成され、その内底面7dに軸受スリーブ8の下側端面8bが当接している。また、軸部材2の下端面2dは、ハウジング7の内底面7dと一定の隙間を介して軸方向で対向している。   FIG. 7 shows a hydrodynamic bearing device 101 according to another embodiment of the present invention. In the hydrodynamic bearing device 101, the flange member provided at the lower end of the shaft member 2 in the above embodiment and the second thrust bearing portion formed by the flange member are omitted. A retaining member 10 is fixed to the step portion 3e provided at the upper part of the inner periphery of the cylindrical portion 3b of the hub 3 by means such as adhesion or welding. The retaining member 10 is formed in a substantially L-shaped cross section by, for example, pressing a metal material, and the upper end surface 10a and the radial shoulder surface provided on the outer periphery of the housing 7 are engaged in the axial direction. The hub 3 and the shaft member 2 are prevented from coming off. The inner peripheral surface 10 b of the retaining member 10 is formed in a tapered shape that gradually increases in diameter upward, and forms a seal space S with the first tapered surface 7 b of the housing 7. That is, the inner peripheral surface 10b of the retaining member 10 plays the same role as the second tapered surface 3b1 provided on the hub 3 of the above embodiment. The housing 7 is formed in a bottomed cylindrical cup shape, and the lower end surface 8b of the bearing sleeve 8 is in contact with the inner bottom surface 7d thereof. The lower end surface 2d of the shaft member 2 is opposed to the inner bottom surface 7d of the housing 7 in the axial direction with a certain gap.

この動圧軸受装置101では、上記の実施形態と同様に、軸部材2の肩面2cを下端面2dを基準として研削することにより、肩面2cと下端面2dの軸方向距離を高精度に設定している。これにより、ハブ3及び軸部材2がスラスト軸受部T1でスラスト方向に非接触支持された状態で、軸部材2の下端面2dとハウジング7の内底面7dとの軸方向距離を高精度に設定することができる。従って、軸部材2の下端面2dとハウジング7の内底面7dとが過度に接近することによる回転トルクの増大や、これらの面が過度に離隔し、軸受内部空間が増大することによるシール空間Sの大容量化、ひいては軸受装置の大型化を回避することができる。   In this hydrodynamic bearing device 101, as in the above-described embodiment, the axial distance between the shoulder surface 2c and the lower end surface 2d is accurately determined by grinding the shoulder surface 2c of the shaft member 2 with the lower end surface 2d as a reference. It is set. Accordingly, the axial distance between the lower end surface 2d of the shaft member 2 and the inner bottom surface 7d of the housing 7 is set with high accuracy in a state where the hub 3 and the shaft member 2 are supported in the thrust direction by the thrust bearing portion T1. can do. Therefore, the rotational torque increases when the lower end surface 2d of the shaft member 2 and the inner bottom surface 7d of the housing 7 are excessively approached, and the seal space S is generated when these surfaces are excessively separated to increase the bearing internal space. Therefore, it is possible to avoid an increase in the capacity of the bearing device and an increase in the size of the bearing device.

以上の実施形態では、ハブを、芯金13と軸部材2との一体品をインサートして射出成形しているが、これに限らず、例えばハブを芯金をインサート部品として射出成形した後、このハブを軸部材に固定してもよい   In the above embodiment, the hub is injection-molded by inserting an integral part of the cored bar 13 and the shaft member 2, but not limited thereto, for example, after the hub is injection-molded using the cored bar as an insert part, This hub may be fixed to the shaft member

以上の実施形態では、ラジアル軸受部R1、R2、及びスラスト軸受部T1、T2として、へリングボーン形状やスパイラル形状の動圧溝により潤滑油の動圧作用を発生させる構成を例示しているが、本発明はこれに限定されるものではない。   In the above embodiment, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are exemplified by the configuration in which the dynamic pressure action of the lubricating oil is generated by the dynamic pressure grooves having a herringbone shape or a spiral shape. However, the present invention is not limited to this.

例えば、ラジアル軸受部R1、R2として、図示は省略するが、軸方向の溝を円周方向の複数箇所に形成した、いわゆるステップ状の動圧発生部、あるいは、円周方向に複数の円弧面を配列し、対向する軸部材2の真円状の大径外周面2aとの間に、くさび状の径方向隙間(軸受隙間)を形成した、いわゆる多円弧軸受を採用してもよい。   For example, although not shown as radial bearing portions R1 and R2, a so-called step-like dynamic pressure generating portion in which axial grooves are formed at a plurality of locations in the circumferential direction, or a plurality of circular arc surfaces in the circumferential direction. And a so-called multi-arc bearing in which a wedge-shaped radial gap (bearing gap) is formed between the opposing shaft member 2 and the large circular outer peripheral surface 2a.

あるいは、軸受スリーブ8の内周面8aを、動圧発生部としての動圧溝や円弧面等を設けない真円内周面とし、この内周面8aと対向する軸部材2の真円状の大径外周面2aとで、いわゆる真円軸受を構成することができる。   Alternatively, the inner peripheral surface 8a of the bearing sleeve 8 is a perfect circular inner peripheral surface not provided with a dynamic pressure groove or a circular arc surface as a dynamic pressure generating portion, and the perfect circular shape of the shaft member 2 facing the inner peripheral surface 8a. The large-diameter outer peripheral surface 2a can constitute a so-called circular bearing.

また、以上の説明形態では、ラジアル軸受部R1、R2が軸方向に離隔して設けられているが、これらを軸方向で連続して設けてもよい。あるいは、ラジアル軸受部R1、R2の何れか一方のみを設けてもよい。   Moreover, in the above description form, although radial bearing part R1, R2 is spaced apart and provided in the axial direction, you may provide these continuously in an axial direction. Alternatively, only one of the radial bearing portions R1 and R2 may be provided.

また、スラスト軸受部T1、T2は、同じく図示は省略するが、動圧発生部が形成される領域(例えばハウジング7の上端面7a)に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、あるいは波型軸受(ステップ型が波型になったもの)等で構成することもできる。   The thrust bearing portions T1 and T2 are not shown in the figure, but a plurality of radial groove-shaped dynamic pressure grooves are circumferentially formed in a region where the dynamic pressure generating portion is formed (for example, the upper end surface 7a of the housing 7). A so-called step bearing provided at a predetermined interval in the direction, or a corrugated bearing (one in which the step mold is corrugated) may be used.

また、以上の実施形態では、軸受スリーブ8の側にラジアル動圧発生部(動圧溝8a1、8a2)が、また、ハウジング7、あるいは軸受スリーブ8の側にスラスト動圧発生部(動圧溝7a1)がそれぞれ形成される場合を説明したが、これら動圧発生部が形成される領域は、例えばこれらに対向する軸部材2の大径外周面2aやハブ3の下側端面3a1、あるいはフランジ部材9の側に設けることもできる。   In the above embodiment, the radial dynamic pressure generating portion (dynamic pressure grooves 8a1 and 8a2) is provided on the bearing sleeve 8 side, and the thrust dynamic pressure generating portion (dynamic pressure groove is provided on the housing 7 or the bearing sleeve 8 side. 7a1) has been described, the regions where these dynamic pressure generating portions are formed are, for example, the large-diameter outer peripheral surface 2a of the shaft member 2 opposed to them, the lower end surface 3a1 of the hub 3, or the flange. It can also be provided on the member 9 side.

また、以上の説明では、動圧軸受装置1の内部に充満し、ラジアル軸受隙間や、スラスト軸受隙間に動圧作用を生じる流体として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧作用を発生可能な流体、例えば空気等の気体や、磁性流体、あるいは潤滑グリース等を使用することもできる。   Further, in the above description, the lubricating oil is exemplified as the fluid that fills the inside of the hydrodynamic bearing device 1 and causes the hydrodynamic action in the radial bearing gap or the thrust bearing gap. A fluid capable of generating a dynamic pressure action, for example, a gas such as air, a magnetic fluid, or lubricating grease may be used.

また、上記の実施形態では、ハブ3にディスクを載置し、動圧軸受装置1をHDD等のディスク駆動装置に用いられるスピンドルモータとして使用しているが、これに限られない。例えば、ハブ3にポリゴンミラーを装着し、動圧軸受装置1をレーザビームプリンタのポリゴンスキャナモータの回転軸支持用に使用することもできる。あるいは、ハブ3にカラーホイールを装着し、動圧軸受装置1をプロジェクタのカラーホイールの回転軸支持用に使用することもできる。あるいは、ハブ3にファンを設置(一体化)し、動圧軸受装置1をファンモータとして使用することもできる。   In the above embodiment, a disk is placed on the hub 3 and the hydrodynamic bearing device 1 is used as a spindle motor used in a disk drive device such as an HDD. However, the present invention is not limited to this. For example, a polygon mirror can be mounted on the hub 3 and the hydrodynamic bearing device 1 can be used for supporting the rotating shaft of a polygon scanner motor of a laser beam printer. Alternatively, a color wheel can be mounted on the hub 3 and the dynamic pressure bearing device 1 can be used for supporting the rotating shaft of the color wheel of the projector. Alternatively, a fan can be installed (integrated) in the hub 3 and the hydrodynamic bearing device 1 can be used as a fan motor.

動圧軸受装置1を組込んだスピンドルモータの断面図である。It is sectional drawing of the spindle motor incorporating the dynamic pressure bearing apparatus. 本発明に係る動圧軸受装置1の断面図である。1 is a cross-sectional view of a fluid dynamic bearing device 1 according to the present invention. 軸受スリーブ8の断面図である。3 is a cross-sectional view of a bearing sleeve 8. FIG. ハウジング7の上面図である。FIG. 6 is a top view of the housing 7. 軸部材2の加工工程を示すの正面図である。5 is a front view showing a processing step of the shaft member 2. FIG. 軸部材2の凹凸部の他の例を示す正面図である。It is a front view which shows the other example of the uneven | corrugated | grooved part of the shaft member. 本発明の他の実施形態を示す動圧軸受装置101の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus 101 which shows other embodiment of this invention.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
2a 大径外周面
2b 小径外周面
2c 肩面
2d 下端面
3 ハブ
31 芯金
32 樹脂成形部
7 ハウジング
8 軸受スリーブ
9 フランジ部材
40 研削砥石
41 第1研削面
42 第2研削面
43 非研削面
50 位置決め治具
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1 Dynamic-pressure bearing apparatus 2 Shaft member 2a Large diameter outer peripheral surface 2b Small diameter outer peripheral surface 2c Shoulder surface 2d Lower end surface 3 Hub 31 Core metal 32 Resin molding part 7 Housing 8 Bearing sleeve 9 Flange member 40 Grinding wheel 41 First grinding surface 42 First 2 Grinding surface 43 Non-grinding surface 50 Positioning jig R1, R2 Radial bearing portion T1, T2 Thrust bearing portion S Seal space

Claims (5)

肩面を有する段付き軸状の軸部材と、軸部材の外周面に嵌合した芯金と、芯金をインサートして射出成形されたフランジ状のハブと、軸部材の外周面が面するラジアル軸受隙間と、該ラジアル軸受隙間に生じる潤滑膜の動圧作用で軸部材をラジアル方向に支持するラジアル軸受部と、ハブの端面が面するスラスト軸受隙間と、該スラスト軸受隙間に生じる潤滑膜の動圧作用で軸部材をスラスト方向に支持するスラスト軸受部とを備えた動圧軸受装置において、
芯金の端面を軸部材の肩面に当接させると共に、芯金の端面でスラスト軸受隙間を形成したことを特徴とする動圧軸受装置。
A stepped shaft-shaped shaft member having a shoulder surface, a core metal fitted to the outer peripheral surface of the shaft member, a flange-shaped hub inserted by injection of the core metal, and the outer peripheral surface of the shaft member A radial bearing gap, a radial bearing portion that supports the shaft member in the radial direction by the dynamic pressure action of the lubricating film generated in the radial bearing gap, a thrust bearing gap facing the end surface of the hub, and a lubricating film generated in the thrust bearing gap In the hydrodynamic bearing device comprising a thrust bearing portion that supports the shaft member in the thrust direction by the hydrodynamic action of
A hydrodynamic bearing device characterized in that an end surface of a core metal is brought into contact with a shoulder surface of a shaft member, and a thrust bearing gap is formed on the end surface of the core metal.
軸部材の外周面のうち、ハブと接触する領域に凹凸部を設けたことを特徴とする請求項1記載の動圧軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein an uneven portion is provided in a region of the outer peripheral surface of the shaft member in contact with the hub. 軸部材の肩面を研削面としたことを特徴とする請求項1記載の動圧軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein a shoulder surface of the shaft member is a ground surface. 軸部材の肩面の研削が、軸部材の一方の端面を基準として行われている請求項3記載の動圧軸受装置。   4. The hydrodynamic bearing device according to claim 3, wherein the grinding of the shoulder surface of the shaft member is performed with reference to one end surface of the shaft member. 軸部材のうち、ラジアル軸受隙間を形成する外周面と肩面とを同時研削した請求項3記載の動圧軸受装置。   4. The hydrodynamic bearing device according to claim 3, wherein an outer peripheral surface and a shoulder surface that form a radial bearing gap are ground simultaneously in the shaft member.
JP2006332130A 2006-09-12 2006-12-08 Dynamic pressure bearing device Withdrawn JP2008144847A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006332130A JP2008144847A (en) 2006-12-08 2006-12-08 Dynamic pressure bearing device
PCT/JP2007/066601 WO2008032555A1 (en) 2006-09-12 2007-08-28 Hydrodynamic bearing device
US12/377,293 US20100226601A1 (en) 2006-09-12 2007-08-28 Fluid dynamic bearing device
CN2007800338798A CN101517251B (en) 2006-09-12 2007-08-28 Hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006332130A JP2008144847A (en) 2006-12-08 2006-12-08 Dynamic pressure bearing device

Publications (1)

Publication Number Publication Date
JP2008144847A true JP2008144847A (en) 2008-06-26

Family

ID=39605253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006332130A Withdrawn JP2008144847A (en) 2006-09-12 2006-12-08 Dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JP2008144847A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100976206B1 (en) * 2008-10-01 2010-08-17 삼성전기주식회사 Motor
KR101006498B1 (en) 2010-06-22 2011-01-07 삼성전기주식회사 Motor
JP2012184800A (en) * 2011-03-04 2012-09-27 Alphana Technology Co Ltd Rotational device and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100976206B1 (en) * 2008-10-01 2010-08-17 삼성전기주식회사 Motor
KR101006498B1 (en) 2010-06-22 2011-01-07 삼성전기주식회사 Motor
JP2012184800A (en) * 2011-03-04 2012-09-27 Alphana Technology Co Ltd Rotational device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP4531584B2 (en) Fluid dynamic bearing device and motor provided with the same
KR101213552B1 (en) Dynamic pressure bearing device
JP2005321089A (en) Dynamic pressure bearing device
JP2007024146A (en) Dynamic pressure bearing device
JP2007263228A (en) Dynamic pressure bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP4672379B2 (en) Hydrodynamic bearing device
JP5095111B2 (en) Hydrodynamic bearing device
JP2008069805A (en) Dynamic pressure bearing device
JP4476670B2 (en) Hydrodynamic bearing device
JP2008130208A (en) Hydrodynamic bearing device and its manufacturing method
JP2008144847A (en) Dynamic pressure bearing device
JP2005337490A (en) Dynamic pressure bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP2007082339A (en) Fluid bearing device and manufacturing method therefor
JP5231095B2 (en) Hydrodynamic bearing device
JP4588561B2 (en) Hydrodynamic bearing device
JP2008075687A (en) Fluid bearing device
JP4739030B2 (en) Hydrodynamic bearing device
JP2008069835A (en) Dynamic pressure bearing device
JP4498932B2 (en) Hydrodynamic bearing device
JP2007100904A (en) Fluid bearing device and its manufacturing method
JP2007263225A (en) Fluid bearing device
JP2007051719A (en) Fluid bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302