JP2007082339A - Fluid bearing device and manufacturing method therefor - Google Patents

Fluid bearing device and manufacturing method therefor Download PDF

Info

Publication number
JP2007082339A
JP2007082339A JP2005267144A JP2005267144A JP2007082339A JP 2007082339 A JP2007082339 A JP 2007082339A JP 2005267144 A JP2005267144 A JP 2005267144A JP 2005267144 A JP2005267144 A JP 2005267144A JP 2007082339 A JP2007082339 A JP 2007082339A
Authority
JP
Japan
Prior art keywords
hub portion
shaft member
hub
gate
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005267144A
Other languages
Japanese (ja)
Inventor
Fuyuki Itou
冬木 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005267144A priority Critical patent/JP2007082339A/en
Priority to PCT/JP2006/317961 priority patent/WO2007032299A1/en
Priority to CN2006800337790A priority patent/CN101263644B/en
Priority to KR1020087003608A priority patent/KR20080046635A/en
Priority to US12/066,597 priority patent/US8107190B2/en
Publication of JP2007082339A publication Critical patent/JP2007082339A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Motor Or Generator Frames (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Rotational Drive Of Disk (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid bearing device that can be manufactured at low cost and has a high level of cleanliness. <P>SOLUTION: A hub 10 having a disk mounting face 10d is formed by injection molding. A gate trace 18 is formed in the hub 10 in proximity to the outside diameter end of the lower end face 10c1 of its flange 10c by this injection molding. This gate trace 18 is closed by an adhesive 13 applied to the bond area between the hub 10 and a yoke 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ラジアル軸受隙間に生じる流体の潤滑膜で軸部材をラジアル方向に相対回転自在に支持する流体軸受装置およびその製造方法に関するものである。この種の軸受装置は、情報機器、例えばHDD等の磁気ディスク駆動装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク駆動装置、MD、MO等の光磁気ディスク駆動装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイールモータ、あるいはファンモータなどの小型モータ用として好適に使用可能である。   The present invention relates to a hydrodynamic bearing device that supports a shaft member so as to be relatively rotatable in a radial direction with a lubricating film of a fluid generated in a radial bearing gap, and a manufacturing method thereof. This type of bearing device includes information devices such as magnetic disk drive devices such as HDD, optical disk drive devices such as CD-ROM, CD-R / RW, DVD-ROM / RAM, and magneto-optical disk drive devices such as MD and MO. It can be suitably used for a small motor such as a spindle motor such as a polygon scanner motor of a laser beam printer (LBP), a color wheel motor of a projector, or a fan motor.

上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化等が求められている。これらの要求性能を決定づける構成要素の1つに当該モータのスピンドルを支持する軸受があり、近年では、上記要求性能に優れた特性を有する流体軸受の使用が検討され、あるいは実際に使用されている。   In addition to high rotational accuracy, the various motors are required to have high speed, low cost, low noise, and the like. One of the components that determine the required performance is a bearing that supports the spindle of the motor. In recent years, the use of a fluid bearing having characteristics excellent in the required performance has been studied or actually used. .

この種の流体軸受は、軸受隙間内の潤滑流体に動圧を発生させるための動圧発生部を備えた動圧軸受と、動圧発生部を備えていない、いわゆる真円軸受(軸受断面が真円形状である軸受)とに大別される。   This type of hydrodynamic bearing includes a hydrodynamic bearing having a dynamic pressure generating portion for generating a dynamic pressure in the lubricating fluid in the bearing gap, and a so-called true circular bearing having no dynamic pressure generating portion (with a bearing cross section). It is roughly divided into a perfect circle bearing).

例えば、HDD等のディスク駆動装置のスピンドルモータに組み込まれる流体軸受装置では、軸部材をラジアル方向に支持するラジアル軸受部およびスラスト方向に支持するスラスト軸受部の双方を動圧軸受で構成する場合がある。この種の流体軸受装置(動圧軸受装置)におけるラジアル軸受部としては、例えば軸受スリーブの内周面と、これに対向する軸部材の外周面との何れか一方に、動圧発生部としての動圧溝を形成すると共に、両面間にラジアル軸受隙間を形成するものが知られている。また、スラスト軸受部としては、例えば軸受スリーブの端面に、動圧発生部としての動圧溝を形成すると共に、この軸受スリーブの端面と、これに対向する軸部材のフランジ部端面との間にスラスト軸受隙間を形成するものが知られている(例えば、特許文献1を参照)。   For example, in a hydrodynamic bearing device incorporated in a spindle motor of a disk drive device such as an HDD, both a radial bearing portion that supports a shaft member in the radial direction and a thrust bearing portion that supports the shaft direction in a thrust direction may be configured by dynamic pressure bearings. is there. As a radial bearing portion in this type of hydrodynamic bearing device (dynamic pressure bearing device), for example, either the inner peripheral surface of the bearing sleeve or the outer peripheral surface of the shaft member facing the bearing sleeve is used as a dynamic pressure generating portion. It is known that a dynamic pressure groove is formed and a radial bearing gap is formed between both surfaces. Further, as the thrust bearing portion, for example, a dynamic pressure groove as a dynamic pressure generating portion is formed on the end surface of the bearing sleeve, and between the end surface of the bearing sleeve and the end surface of the flange portion of the shaft member opposed thereto. What forms a thrust bearing gap is known (see, for example, Patent Document 1).

また、上記流体軸受装置をHDD等のディスク駆動装置用モータに組込んで使用する場合、軸部材に磁気ディスク等の情報記憶媒体を保持するためのディスクハブが設けられる。ディスクハブの、モータの固定側に設けられたステータコイルと対向する位置には、通常ロータマグネットとステータコイル間の磁力効率を向上させるための磁性体からなるヨークが固定される。この種のヨークを上記ディスクハブに固定する手段として、例えば接着剤を使用した手段が知られている(例えば、特許文献2を参照)。
特開2003−239951号公報 特開2005−45924号公報
When the hydrodynamic bearing device is used by being incorporated in a motor for a disk drive device such as an HDD, a disk hub for holding an information storage medium such as a magnetic disk is provided on the shaft member. A yoke made of a magnetic material for improving the magnetic efficiency between the rotor magnet and the stator coil is usually fixed at a position of the disk hub facing the stator coil provided on the fixed side of the motor. As means for fixing this type of yoke to the disk hub, for example, means using an adhesive is known (see, for example, Patent Document 2).
JP 2003-239951 A JP-A-2005-45924

ところで、最近では情報機器の低価格化の要求を受けて、上記流体軸受装置の製造コスト低減のための提案が数多くなされている。例えば材料コストの低減化を狙って、上記流体軸受装置の構成部品、例えばディスクハブの樹脂化が検討されている。あるいは、金属製の部品をインサート部品とする上記樹脂成形品の射出成形が検討されている。   By the way, recently, in response to a request for lowering the price of information equipment, many proposals for reducing the manufacturing cost of the hydrodynamic bearing device have been made. For example, with the aim of reducing the material cost, the component parts of the hydrodynamic bearing device, for example, the resinization of the disk hub has been studied. Alternatively, injection molding of the resin molded product using a metal part as an insert part has been studied.

この種の樹脂成形品を射出成形する場合、一般には、成形金型のキャビティに溶融状態の樹脂を充填するためのゲートを設け、このゲートから溶融樹脂をキャビティ内に射出する。そして、キャビティ内の溶融樹脂が冷却されて固化した後、成形金型の型開きを行うことで、成形品が取り出される。成形品は、型開き前の状態では、ゲート内に形成されたゲート固化部とつながった形態となるが、型開きを行うことにより、ゲート固化部が分断され、ゲート固化部の一部がゲート跡として成形品側に残る。そのため、成形品側に残ったゲート跡(ゲート固化部)のサイズや形状によっては、成形後に、例えば切削加工を行い、ゲート固化部を成形品から取り除くようにしている。   When this type of resin molded product is injection-molded, generally, a gate for filling a molten resin into a cavity of a molding die is provided, and the molten resin is injected into the cavity from this gate. Then, after the molten resin in the cavity is cooled and solidified, the molded product is taken out by opening the mold. In the state before the mold opening, the molded product is connected to the gate solidified part formed in the gate, but by opening the mold, the gate solidified part is divided and a part of the gate solidified part is gated. It remains on the molded product side as a mark. Therefore, depending on the size and shape of the gate mark (gate solidified portion) remaining on the molded product side, for example, cutting is performed after molding to remove the gate solidified portion from the molded product.

これらゲート跡となるゲート固化部や、ゲート固化部の除去加工後に成形品側に残るゲート除去跡には、ゲートカット時に形成される分断面や、除去加工時に形成される除去加工面が存在する。これら分断面や除去加工面は、成形面とは異なり、樹脂成形品の内部断面が露出したものであるから、例えば樹脂材料に配合した充填材が一部露出する等して、かかる面から充填材等が脱落し易くなる。脱落した充填材等はハウジング等の表面に付着し、軸受装置の組立て時に、軸受装置内部に充満した潤滑油にコンタミとして混入する恐れがある。特に、ディスクハブの周囲で発生したコンタミはディスク表面に付着することで、ディスクの読取り精度を低下させる恐れがあり好ましくない。   The gate solidified portion that becomes the gate trace and the gate removal trace that remains on the molded product side after the gate solidified portion is removed include a sectional surface formed at the time of gate cut and a removal processed surface formed at the time of removal processing. . Unlike the molded surface, these sectional surfaces and removal processed surfaces are exposed from the internal cross section of the resin molded product. For example, a part of the filler mixed in the resin material is exposed and filled from this surface. It becomes easy to drop off materials. The dropped filler or the like adheres to the surface of the housing or the like, and may be mixed as contamination in the lubricating oil filled in the bearing device when the bearing device is assembled. In particular, the contamination generated around the disc hub adheres to the disc surface, which may reduce the reading accuracy of the disc.

本発明の課題は、低コストに製造可能で、かつ高い清浄度を有する流体軸受装置を提供することである。   An object of the present invention is to provide a hydrodynamic bearing device that can be manufactured at low cost and has high cleanliness.

前記課題を解決するため、本発明は、軸部材と、軸部材に一体又は別体に設けられるハブ部と、軸部材の外周面が臨むラジアル軸受隙間に生じる流体の潤滑膜で軸部材をラジアル方向に相対回転自在に支持するラジアル軸受部と、磁性体からなり、ハブ部に接着固定されるヨークとを備えたものにおいて、ハブ部は樹脂で射出成形され、射出成形によりハブ部に形成されるゲート跡が、ハブ部とヨークとの接着固定面に供給された接着剤で閉塞されていることを特徴とする流体軸受装置を提供する。ここで、ゲート跡は、軸受部材の射出成形時、溶融樹脂を成形金型内に充填する際のゲート位置を当該成形品から判別し得る箇所を指し、例えば射出成形時にゲート内部で固化した樹脂のうち、ゲートカット後も成形品表面に残存する部分を含む。あるいは、この残存部分を機械加工等により除去加工した際に形成されるゲート除去跡を含む。   In order to solve the above-described problems, the present invention provides a shaft member, a hub portion provided integrally or separately with the shaft member, and a lubricating film of fluid generated in a radial bearing gap facing the outer peripheral surface of the shaft member. In a bearing having a radial bearing that is supported so as to be relatively rotatable in a direction, and a yoke that is made of a magnetic material and is adhesively fixed to the hub, the hub is injection-molded with resin, and is formed on the hub by injection molding. The hydrodynamic bearing device is characterized in that the gate mark is closed with an adhesive supplied to an adhesive fixing surface between the hub portion and the yoke. Here, the trace of the gate refers to a portion where the gate position when the molten resin is filled in the molding die can be discriminated from the molded product at the time of injection molding of the bearing member. For example, the resin solidified inside the gate at the time of injection molding Of these, the portion remaining on the surface of the molded product even after gate cutting is included. Alternatively, a gate removal trace formed when the remaining portion is removed by machining or the like is included.

また、前記課題を解決するため、本発明は、軸部材と、軸部材に一体又は別体に設けられるハブ部と、軸部材の外周面が臨むラジアル軸受隙間に生じる流体の潤滑膜で軸部材をラジアル方向に相対回転自在に支持するラジアル軸受部と、磁性体からなり、ハブ部に接着固定されるヨークとを備えた流体軸受装置の製造方法において、ハブ部を樹脂で射出成形する射出成形工程と、射出成形工程で成形されたハブ部にヨークを接着固定する接着固定工程とを含み、接着固定工程において、ハブ部の射出成形により形成されたゲート跡を、ハブ部とヨークとの接着固定面に供給される接着剤で閉塞した状態で接着剤を固化させることを特徴とする流体軸受装置の製造方法を提供する。   In order to solve the above problems, the present invention provides a shaft member comprising a shaft member, a hub portion provided integrally or separately with the shaft member, and a lubricating film of fluid generated in a radial bearing gap facing the outer peripheral surface of the shaft member. In a method of manufacturing a hydrodynamic bearing device comprising a radial bearing portion that supports a shaft in a radial direction and a yoke that is made of a magnetic material and is adhesively fixed to the hub portion, the hub portion is injection-molded with resin. And a bonding and fixing step in which the yoke is bonded and fixed to the hub portion formed in the injection molding step. In the bonding and fixing step, the gate mark formed by injection molding of the hub portion is bonded to the hub portion and the yoke. There is provided a method for manufacturing a hydrodynamic bearing device, characterized in that an adhesive is solidified in a state of being blocked by an adhesive supplied to a fixed surface.

このように、樹脂の射出成形によりハブ部の表面に形成されるゲート跡が、ハブ部とヨークとの接着固定面に供給された接着剤で閉塞されていることにより、ハブ部とヨークとの接着固定後、ゲート跡が外部空間(外気)に対して密封された状態となる。従って、ゲート跡(ゲート固化部やゲート除去跡)から充填剤等がコンタミとして軸受装置内部や周辺に脱落、付着する事態を避けて、かかる軸受装置およびその周辺の清浄度を高めることができる。   As described above, the gate mark formed on the surface of the hub portion by injection molding of the resin is blocked by the adhesive supplied to the adhesive fixing surface between the hub portion and the yoke. After bonding and fixing, the gate mark is sealed against the external space (outside air). Therefore, it is possible to avoid such a situation that the filler or the like falls off and adheres to the inside or the periphery of the bearing device as contamination from the gate mark (gate solidified portion or gate removal mark), and the cleanliness of the bearing device and its periphery can be improved.

また、かかる構成によれば、ハブ部とヨークとの接着固定に伴いゲート跡が閉塞される。そのため、ゲート跡の閉塞には、流体軸受装置の構成部品であるヨークや、ヨークの接着固定に用いる接着剤のみで足り、またハブ部の射出成形工程や接着固定工程の他に別途ゲート跡を閉塞するための工程を追加する必要がない。そのため、かかる閉塞作業を、コストの高騰を招くことなく行うことができる。   Further, according to such a configuration, the gate mark is closed as the hub portion and the yoke are bonded and fixed. For this reason, only the yoke used as a component of the hydrodynamic bearing device and the adhesive used for bonding and fixing the yoke are sufficient to block the gate mark. In addition to the injection molding process and adhesive fixing process of the hub part, the gate mark is separately provided. There is no need to add a process for blocking. Therefore, such a closing operation can be performed without causing an increase in cost.

ゲート跡は、ヨークとの接着固定面にあるのがより好ましい。かかる構成によれば、ゲート跡がヨークとハブ部との接着固定面間に供給された接着剤によって確実に封止されるので、ゲート跡からのコンタミの発生をより確実に防止することができる。   More preferably, the gate mark is on an adhesive fixing surface with the yoke. According to such a configuration, since the gate mark is reliably sealed by the adhesive supplied between the adhesive fixing surfaces of the yoke and the hub portion, it is possible to more reliably prevent the occurrence of contamination from the gate mark. .

以上のように、本発明によれば、低コストに製造可能で、かつ高い清浄度を有する流体軸受装置を提供することができる。   As described above, according to the present invention, it is possible to provide a hydrodynamic bearing device that can be manufactured at low cost and has high cleanliness.

以下、本発明の一実施形態を図1〜図8に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の一実施形態に係る流体軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2およびハブ部10を有する回転部材3を相対回転自在に非接触支持する流体軸受装置(動圧軸受装置)1と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6とを備えている。ステータコイル4はブラケット6の外周に取付けられ、ロータマグネット5はハブ部10の外径側に設けられたヨーク12に固定されている。流体軸受装置1の軸受部材7は、ブラケット6の内周に固定される。また、ハブ部10には、図示は省略するが、情報記録媒体としてのディスクDが一又は複数枚保持される。このように構成されたスピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する励磁力でロータマグネット5が回転し、これに伴って、ハブ部10およびハブ部10に保持されたディスクが軸部材2と一体に回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a hydrodynamic bearing device 1 according to an embodiment of the present invention. The spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device (dynamic pressure bearing device) 1 that supports a rotating member 3 having a shaft member 2 and a hub portion 10 in a non-contact manner so as to be relatively rotatable. For example, a stator coil 4 and a rotor magnet 5 which are opposed to each other via a gap in the radial direction, and a bracket 6 are provided. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is fixed to a yoke 12 provided on the outer diameter side of the hub portion 10. The bearing member 7 of the hydrodynamic bearing device 1 is fixed to the inner periphery of the bracket 6. Although not shown, the hub 10 holds one or more disks D as information recording media. In the spindle motor configured as described above, when the stator coil 4 is energized, the rotor magnet 5 is rotated by an exciting force generated between the stator coil 4 and the rotor magnet 5. The disk held by the portion 10 rotates integrally with the shaft member 2.

図2は、流体軸受装置1を示している。この流体軸受装置1は、軸受部材7と、軸受部材7の一端を閉口する蓋部材11と、軸受部材7および蓋部材11に対して相対回転する回転部材3とを主に備えている。なお、説明の便宜上、軸方向両端に形成される軸受部材7の開口部のうち、蓋部材11で閉口される側を下側、閉口側と反対の側を上側として以下説明する。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 mainly includes a bearing member 7, a lid member 11 that closes one end of the bearing member 7, and a rotating member 3 that rotates relative to the bearing member 7 and the lid member 11. For the sake of convenience of explanation, of the openings of the bearing member 7 formed at both ends in the axial direction, the side closed by the lid member 11 will be described as the lower side, and the side opposite to the closed side will be described as the upper side.

軸受部材7は、軸方向両端を開口した形状をなし、略円筒状のスリーブ部8、およびスリーブ部8の外径側に位置し、スリーブ部8と一体又は別体に形成されるハウジング部9とを備えている。   The bearing member 7 has a shape in which both ends in the axial direction are open. The sleeve portion 8 has a substantially cylindrical shape, and is positioned on the outer diameter side of the sleeve portion 8. The housing portion 9 is formed integrally with or separate from the sleeve portion 8. And.

スリーブ部8は、例えば金属製の非孔質体あるいは焼結金属からなる多孔質体で円筒状に形成される。この実施形態では、スリーブ部8は、銅を主成分とする焼結金属の多孔質体で円筒状に形成され、ハウジング部9の内周面9cに、例えば接着(ルーズ接着を含む)、圧入(圧入接着を含む)、溶着(超音波溶着を含む)等、適宜の手段で固定される。もちろん、スリーブ部8を樹脂やセラミック等、金属以外の材料で形成することも可能である。   The sleeve portion 8 is formed in a cylindrical shape with a porous body made of, for example, a metal non-porous body or sintered metal. In this embodiment, the sleeve portion 8 is made of a sintered metal porous body mainly composed of copper and formed in a cylindrical shape. For example, the sleeve portion 8 is bonded to the inner peripheral surface 9c of the housing portion 9 (including loose bonding) or press-fitted. It is fixed by appropriate means such as (including press-fit adhesion) and welding (including ultrasonic welding). Of course, the sleeve portion 8 can be formed of a material other than metal, such as resin or ceramic.

スリーブ部8の内周面8aの全面又は一部円筒領域には、ラジアル動圧発生部として複数の動圧溝を配列した領域が形成される。この実施形態では、例えば図3に示すように、複数の動圧溝8a1、8a2をヘリングボーン形状に配列した領域が軸方向に離隔して2箇所形成される。   A region where a plurality of dynamic pressure grooves are arranged as a radial dynamic pressure generating portion is formed on the entire inner surface or a partial cylindrical region of the inner peripheral surface 8 a of the sleeve portion 8. In this embodiment, for example, as shown in FIG. 3, two regions where a plurality of dynamic pressure grooves 8a1 and 8a2 are arranged in a herringbone shape are formed apart from each other in the axial direction.

スリーブ部8の下端面8bの全面又は一部環状領域には、スラスト動圧発生部として、例えば図4に示すように、複数の動圧溝8b1をスパイラル状に配列した領域が形成される。   As shown in FIG. 4, for example, as shown in FIG. 4, a region in which a plurality of dynamic pressure grooves 8 b 1 are arranged in a spiral shape is formed on the entire lower surface 8 b of the sleeve portion 8 or a partial annular region.

ハウジング部9は、金属材料又は樹脂材料で略円筒状に形成される。この実施形態では、ハウジング部9は、その軸方向両端を開口した形状をなし、かつ一端側を蓋部材11で封口している。他端側の端面(上端面)9aの全面または一部環状領域には、スラスト動圧発生部として、例えば図5に示すように、複数の動圧溝9a1をスパイラル形状に配列した領域が形成される。ハウジング部9の上方部外周には、上方(封口側とは反対の側)に向かって漸次拡径するテーパ面9bが形成される。   The housing part 9 is formed in a substantially cylindrical shape with a metal material or a resin material. In this embodiment, the housing part 9 has a shape in which both ends in the axial direction are opened, and one end side is sealed with the lid member 11. As shown in FIG. 5, for example, as shown in FIG. 5, a region in which a plurality of dynamic pressure grooves 9a1 are arranged in a spiral shape is formed on the entire end surface (upper end surface) 9a on the other end side or a partial annular region. Is done. A tapered surface 9b is formed on the outer periphery of the upper portion of the housing portion 9 and gradually increases in diameter toward the upper side (the side opposite to the sealing side).

ハウジング部9の下端側を封口する蓋部材11は、金属あるいは樹脂で形成され、ハウジング部9の下端内周側に設けられた段部9dに固定される。ここで、固定手段は特に限定されず、例えば接着(ルーズ接着や圧入接着を含む)、圧入、溶着(例えば超音波溶着)、溶接(例えばレーザ溶接)などの手段を、材料の組合わせや要求される固定強度、密封性などに合わせて適宜選択することができる。   The lid member 11 that seals the lower end side of the housing part 9 is made of metal or resin, and is fixed to a step part 9 d provided on the inner peripheral side of the lower end of the housing part 9. Here, the fixing means is not particularly limited. For example, means such as adhesion (including loose adhesion and press-fit adhesion), press-fit, welding (for example, ultrasonic welding), welding (for example, laser welding), combinations of materials and requirements Can be appropriately selected in accordance with the fixing strength, sealing performance, and the like.

回転部材3は、この実施形態では、スリーブ部8の内周に挿入される軸部材2と、軸部材2の上端に設けられ、軸受部材7の開口側に配置されるハブ部10とを備えている。   In this embodiment, the rotating member 3 includes a shaft member 2 that is inserted into the inner periphery of the sleeve portion 8, and a hub portion 10 that is provided at the upper end of the shaft member 2 and is disposed on the opening side of the bearing member 7. ing.

軸部材2は、この実施形態では金属製で、ハブ部10と別体に形成される。軸部材2の外周面2aは、軸部材2をスリーブ部8の内周に挿入した状態では、スリーブ部8の内周面8aに形成された動圧溝8a1、8a2形成領域と対向する。そして、軸部材2の回転時、内周面8aとの間に後述する第一、第二ラジアル軸受部R1、R2のラジアル軸受隙間をそれぞれ形成する(図2を参照)。   The shaft member 2 is made of metal in this embodiment, and is formed separately from the hub portion 10. The outer peripheral surface 2 a of the shaft member 2 faces the dynamic pressure grooves 8 a 1 and 8 a 2 forming regions formed in the inner peripheral surface 8 a of the sleeve portion 8 in a state where the shaft member 2 is inserted into the inner periphery of the sleeve portion 8. Then, when the shaft member 2 rotates, radial bearing gaps of first and second radial bearing portions R1 and R2 described later are formed between the inner peripheral surface 8a (see FIG. 2).

軸部材2の下端には、抜止めとしてフランジ部2bが別体に設けられる。フランジ部2bは金属製で、例えばねじ結合等の手段により軸部材2に固定される。フランジ部2bの上端面2b1は、スリーブ部8の下端面8bに形成された動圧溝8b1形成領域と対向し、軸部材2の回転時、動圧溝8b1形成領域との間に後述する第一スラスト軸受部T1のスラスト軸受隙間を形成する(図2を参照)。また、軸部材2の上端には凹部(この実施形態では環状溝)2cが形成されており、後述するが、軸部材2をインサート部品とする樹脂の射出成形でハブ部10を形成する場合、上記凹部2cがハブ部10に対する軸部材2の抜止めとして作用する。   A flange portion 2b is separately provided at the lower end of the shaft member 2 as a retaining member. The flange portion 2b is made of metal and is fixed to the shaft member 2 by means such as screw connection. An upper end surface 2b1 of the flange portion 2b is opposed to a formation region of the dynamic pressure groove 8b1 formed on the lower end surface 8b of the sleeve portion 8, and a later-described gap is formed between the formation region of the dynamic pressure groove 8b1 when the shaft member 2 rotates. A thrust bearing gap of one thrust bearing portion T1 is formed (see FIG. 2). Further, a concave portion (annular groove in this embodiment) 2c is formed at the upper end of the shaft member 2, which will be described later, when the hub portion 10 is formed by resin injection molding using the shaft member 2 as an insert part. The concave portion 2 c functions as a retaining member for the shaft member 2 with respect to the hub portion 10.

ハブ部10は、軸受部材7の開口側(上側)を覆う円盤部10aと、円盤部10aの外周部から軸方向下方に延びる筒状部10bと、筒状部10bから外径側に突出する鍔部10cおよび鍔部10cの上端に形成されるディスク搭載面10dとを備える。図示されていないディスクは、円盤部10aの外周に外嵌され、ディスク搭載面10dに載置される。そして、図示しない適当な保持手段(クランパなど)によってディスクがハブ部10に保持される。   The hub part 10 projects to the outer diameter side from the disk part 10a that covers the opening side (upper side) of the bearing member 7, the cylindrical part 10b that extends downward in the axial direction from the outer peripheral part of the disk part 10a, and the cylindrical part 10b. And a disc mounting surface 10d formed at the upper end of the flange portion 10c. A disk (not shown) is fitted on the outer periphery of the disk portion 10a and placed on the disk mounting surface 10d. Then, the disc is held on the hub portion 10 by an appropriate holding means (such as a clamper) not shown.

上記構成のハブ部10は、例えばLCP、PPS、PEEK等の結晶性樹脂や、PPSU、PES、PEI等の非晶性樹脂をベース樹脂とする樹脂組成物の射出成形で成形される。この実施形態では、ハブ部10は、軸部材2をインサート部品として射出成形される。また、炭素繊維やガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカ状充填材、マイカ等の鱗片状充填材、カーボンブラック、黒鉛、カーボンナノマテリアル、各種金属粉等の繊維状または粉末状の導電性充填材を、目的に応じて上記ベース樹脂に適量配合したものを使用することもできる。   The hub portion 10 having the above-described configuration is formed by injection molding of a resin composition using a crystalline resin such as LCP, PPS, or PEEK, or an amorphous resin such as PPSU, PES, or PEI as a base resin. In this embodiment, the hub portion 10 is injection-molded using the shaft member 2 as an insert part. Also, fibrous or powder such as carbon fiber and glass fiber, whisker-like filler such as potassium titanate, scaly filler such as mica, carbon black, graphite, carbon nanomaterial, various metal powders, etc. A suitable amount of the conductive filler in the form of a base resin can be used depending on the purpose.

円盤部10aの下端面10a1は、ハウジング部9の一端開口側に設けられた上端面9a(動圧溝9a1形成領域)と対向し、軸部材2の回転時、上端面9aとの間に後述する第二スラスト軸受部T2のスラスト軸受隙間を形成する(図2を参照)。   A lower end surface 10a1 of the disk portion 10a is opposed to an upper end surface 9a (a dynamic pressure groove 9a1 formation region) provided on one end opening side of the housing portion 9, and will be described later between the upper end surface 9a when the shaft member 2 rotates. The thrust bearing gap of the second thrust bearing portion T2 is formed (see FIG. 2).

筒状部10bの内周面10b1は、ハウジング部9の外周上端に設けられたテーパ面9bと対向し、このテーパ面9bとの間に径方向寸法が上方に向かって漸次縮小するテーパ状のシール空間Sを形成する。このシール空間Sは、ハブ部10(回転部材3)の回転時、スラスト軸受部T2のスラスト軸受隙間の外径側と連通する。後述する潤滑油を流体軸受装置1内部に充満させた状態では、潤滑油の油面は常時シール空間Sの範囲内にある。   An inner peripheral surface 10b1 of the cylindrical portion 10b is opposed to a tapered surface 9b provided at the upper end of the outer periphery of the housing portion 9, and has a tapered shape in which the radial dimension gradually decreases upward between the tapered surface 9b. A seal space S is formed. The seal space S communicates with the outer diameter side of the thrust bearing gap of the thrust bearing portion T2 when the hub portion 10 (the rotating member 3) rotates. In a state where the lubricating oil described later is filled in the hydrodynamic bearing device 1, the oil level of the lubricating oil is always within the range of the seal space S.

ここで、ハブ部10は、例えば以下の射出成形工程を経て形成される。   Here, the hub part 10 is formed through the following injection molding processes, for example.

図6は、ハブ部10の射出成形工程の一形態を例示するもので、ハブ部10を成形するための成形型14、15と、成形型14、15の型締めにより両型14、15間に形成される、ハブ部10に対応した形状のキャビティ16、およびキャビティ16に溶融樹脂を充填するためのゲート17が設けられている。この実施形態では、ゲート17は、環状をなし(例えばフィルムゲート)、鍔部10cの下端面10c1の外縁近傍に設けられている。なお、ハブ部10の射出成形時、軸部材2はインサート部品として成形型14、15内の所定位置に配設されるが、同図では省略している。   FIG. 6 exemplifies one form of the injection molding process of the hub part 10, and the molds 14 and 15 for molding the hub part 10 and the molds 14 and 15 are clamped between the molds 14 and 15. A cavity 16 having a shape corresponding to the hub portion 10 and a gate 17 for filling the cavity 16 with a molten resin are provided. In this embodiment, the gate 17 has an annular shape (for example, a film gate) and is provided in the vicinity of the outer edge of the lower end surface 10c1 of the flange portion 10c. During the injection molding of the hub portion 10, the shaft member 2 is disposed at a predetermined position in the molding dies 14 and 15 as an insert part, but is omitted in FIG.

ゲート17からキャビティ16内に溶融樹脂Pを充填し、この溶融樹脂Pが固化した後、成形型14、15を型開きして軸部材2と一体に成形したハブ部10を取り出す。型開きに伴い、ゲート17内に形成されたゲート固化部が自動的に切断され(あるいはゲートカット機構によってゲート固化部が切断され)、ハブ部10のゲート対応位置にゲート固化部の一部がゲート跡18として残る。   After the molten resin P is filled into the cavity 16 from the gate 17 and the molten resin P is solidified, the molds 14 and 15 are opened and the hub part 10 molded integrally with the shaft member 2 is taken out. As the mold is opened, the gate solidified portion formed in the gate 17 is automatically cut (or the gate solidified portion is cut by the gate cut mechanism), and a part of the gate solidified portion is located at the gate corresponding position of the hub portion 10. It remains as a gate mark 18.

このゲート跡18は、この実施形態では、例えば図7中Xの位置まで機械加工等により除去される。これにより、ゲート跡18の大部分が除去され、ゲート跡18の一部としてのゲート除去跡19が下端面10c1に残る。   In this embodiment, the gate mark 18 is removed by machining or the like up to a position X in FIG. As a result, most of the gate trace 18 is removed, and a gate removal trace 19 as a part of the gate trace 18 remains on the lower end surface 10c1.

上述のようにして成形されたハブ部10に、磁性体からなるヨーク12を接着固定する。   A yoke 12 made of a magnetic material is bonded and fixed to the hub portion 10 molded as described above.

ヨーク12は、この実施形態では、断面略L字状をなす環状部材で、内筒部12aと、内筒部12aの一端から外径側に突出する外径突出部12bとを有する。外径突出部12bは、ここでは、ヨーク12に固定するロータマグネット5の、ステータコイル4に対する軸方向位置を調整するため、その外径側を内径側に比べて下方(内筒部12aの他端側)に変位させた形状をなしている。そのため、後述のように、外径突出部12bの上端面12b1はその内径側でハブ部10と当接し、下端面12b2はその外径側でロータマグネット5と当接する。   In this embodiment, the yoke 12 is an annular member having a substantially L-shaped cross section, and includes an inner cylinder portion 12a and an outer diameter protrusion portion 12b protruding from one end of the inner cylinder portion 12a to the outer diameter side. In this embodiment, the outer diameter protruding portion 12b has a lower outer diameter side than the inner diameter side (other than the inner cylinder portion 12a) in order to adjust the axial position of the rotor magnet 5 fixed to the yoke 12 with respect to the stator coil 4. The shape is displaced to the end side. Therefore, as described later, the upper end surface 12b1 of the outer diameter protruding portion 12b contacts the hub portion 10 on the inner diameter side, and the lower end surface 12b2 contacts the rotor magnet 5 on the outer diameter side.

上記構成のヨーク12をハブ部10に接着固定する作業は、例えば以下の様にして行われる。   The operation of bonding and fixing the yoke 12 having the above configuration to the hub portion 10 is performed, for example, as follows.

予め、ヨーク12との接着固定面となる筒状部10bの外周面10b2や鍔部10cの下端面10c1に接着剤13を塗布しておく。そして、ヨーク12を、その外径突出部12bを上側に配した状態で、ハブ部10の筒状部10bの外周に挿入していき、外径突出部12bの上端面12b1を鍔部10cの下端面10c1を押し当てる。これにより、予め下端面10c1に塗布された接着剤13がその塗布領域から周囲に押し広げられ、例えば図8に示すように、外径側に押し出された接着剤13によってゲート跡18(ゲート除去跡19)の一部が封止される。従って、この実施形態では、ゲート跡18としてのゲート除去跡19のうち、内径側の一部が、ハブ部10とヨーク12との接着固定面(上端面12b1と下端面10c1)間にある接着剤13によって封止(閉塞)され、残りの部分(外径側)が接着固定面から押し出された接着剤13によって封止(閉塞)される。   In advance, the adhesive 13 is applied to the outer peripheral surface 10b2 of the cylindrical portion 10b serving as an adhesive fixing surface with the yoke 12 and the lower end surface 10c1 of the flange portion 10c. Then, the yoke 12 is inserted into the outer periphery of the cylindrical portion 10b of the hub portion 10 with the outer diameter protruding portion 12b disposed on the upper side, and the upper end surface 12b1 of the outer diameter protruding portion 12b is connected to the flange portion 10c. The lower end surface 10c1 is pressed. As a result, the adhesive 13 previously applied to the lower end surface 10c1 is spread from the application region to the periphery, and, for example, as shown in FIG. 8, the gate mark 18 (gate removal) is caused by the adhesive 13 extruded to the outer diameter side. A part of the trace 19) is sealed. Therefore, in this embodiment, a part of the inner diameter side of the gate removal trace 19 as the gate trace 18 is between the adhesive fixing surfaces (the upper end surface 12b1 and the lower end surface 10c1) of the hub portion 10 and the yoke 12. Sealed (closed) by the agent 13, and the remaining part (outer diameter side) is sealed (closed) by the adhesive 13 extruded from the adhesive fixing surface.

この状態で加熱し、接着剤13を固化させることで、ハブ部10とヨーク12との接着固定作業が完了する。   By heating in this state and solidifying the adhesive 13, the adhesive fixing work between the hub portion 10 and the yoke 12 is completed.

このように、ハブ部10のゲート跡18を、ハブ部10の下端面10c1に塗布された接着剤13によって閉塞した状態で接着固定を行うことで、言い換えると、ハブ部10の射出成形時、ハブ部10とヨーク12との接着固定面となる領域、あるいは上記接着固定面と同一平面上でかつ接着剤13が行き渡る領域にハブ部10のゲート17を設けておくことで、ゲート跡18(ゲート除去跡19)が外部空間(外気)に対して密封された状態となる。これにより、ゲート除去跡19の除去加工面から充填剤等がコンタミとして流体軸受装置1内部や周辺に脱落、付着する事態を避けて、流体軸受装置1およびモータ周辺の清浄度を高めることができる。   In this way, by adhering and fixing the gate trace 18 of the hub part 10 with the adhesive 13 applied to the lower end surface 10c1 of the hub part 10, in other words, at the time of injection molding of the hub part 10, By providing the gate 17 of the hub portion 10 in a region serving as an adhesive fixing surface between the hub portion 10 and the yoke 12, or in an area on the same plane as the adhesive fixing surface and where the adhesive 13 is spread, a gate mark 18 ( The gate removal trace 19) is sealed against the external space (outside air). Thereby, it is possible to avoid the situation where the filler and the like fall off and adhere to the inside and the periphery of the fluid bearing device 1 as contamination from the removal processing surface of the gate removal trace 19, and the cleanliness around the fluid bearing device 1 and the motor can be improved. .

また、ゲート跡18の閉塞作業が、ハブ部10とヨーク12との接着固定と同時に行われるので、ゲート跡18を閉塞するのにヨーク12や接着剤13以外のものは不要であり、また上記接着固定工程の前後で別途ゲート跡18を閉塞するための工程を追加する必要はない。そのため、コスト増加を招くことなくハブ部10(流体軸受装置1)を製造することができる。   Further, since the closing operation of the gate trace 18 is performed at the same time as the fixing of the hub portion 10 and the yoke 12, nothing other than the yoke 12 or the adhesive 13 is required to close the gate trace 18. There is no need to add a separate process for closing the gate trace 18 before and after the adhesion fixing process. Therefore, the hub portion 10 (fluid bearing device 1) can be manufactured without increasing the cost.

また、この実施形態では、キャビティ16の、ディスク搭載面10dの近傍に対応する箇所にゲート17を設けたので、例えばゲート17をキャビティ16の筒状部10b表面に対応する箇所に設ける場合等と比べて、ハブ部10の成形性、特にディスク搭載面10dを有する鍔部10cの成形性を向上させることができる。これにより、ディスク搭載面10dの成形精度(平面度など)を高めたハブ部10を得ることができる。   Further, in this embodiment, since the gate 17 is provided at a position corresponding to the vicinity of the disk mounting surface 10d of the cavity 16, for example, when the gate 17 is provided at a position corresponding to the surface of the cylindrical portion 10b of the cavity 16 or the like. In comparison, the moldability of the hub portion 10, particularly the moldability of the flange portion 10c having the disk mounting surface 10d can be improved. Thereby, the hub part 10 which raised the shaping | molding precision (flatness etc.) of the disk mounting surface 10d can be obtained.

流体軸受装置1内部に充満される潤滑油としては、種々のものが使用可能であるが、HDD等のディスク駆動装置用の流体軸受装置に提供される潤滑油には、その使用時あるいは輸送時における温度変化を考慮して、低蒸発率及び低粘度性に優れたエステル系潤滑油、例えばジオクチルセバケート(DOS)、ジオクチルアゼレート(DOZ)等が好適に使用可能である。   Various types of lubricating oil can be used as the fluid filled in the hydrodynamic bearing device 1, but the lubricating oil provided to the hydrodynamic bearing device for a disk drive device such as an HDD may be used at the time of use or transportation. Considering the temperature change in the above, an ester-based lubricating oil excellent in low evaporation rate and low viscosity, such as dioctyl sebacate (DOS), dioctyl azelate (DOZ), etc. can be suitably used.

上記構成の流体軸受装置1において、軸部材2の回転時、スリーブ部8の内周面8aに形成された動圧溝8a1、8a2形成領域は、対向する軸部材2の外周面2aとの間にラジアル軸受隙間を形成する。そして、軸部材2の回転に伴い、上記ラジアル軸受隙間の潤滑油が動圧溝8a1、8a2の軸方向中心側に押し込まれ、その圧力が上昇する。このように、動圧溝8a1、8a2によって生じる潤滑油の動圧作用によって、軸部材2をラジアル方向に非接触支持する第一ラジアル軸受部R1と第二ラジアル軸受部R2とがそれぞれ構成される。   In the hydrodynamic bearing device 1 configured as described above, when the shaft member 2 rotates, the dynamic pressure grooves 8a1 and 8a2 forming regions formed in the inner peripheral surface 8a of the sleeve portion 8 are between the outer peripheral surface 2a of the opposing shaft member 2. A radial bearing gap is formed in As the shaft member 2 rotates, the lubricating oil in the radial bearing gap is pushed toward the axial center of the dynamic pressure grooves 8a1 and 8a2, and the pressure rises. As described above, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner in the radial direction are configured by the dynamic pressure action of the lubricating oil generated by the dynamic pressure grooves 8a1 and 8a2. .

これと同時に、スリーブ部8の下端面8b(動圧溝8b1形成領域)とこれに対向するフランジ部2bの上端面2b1との間のスラスト軸受隙間、およびハウジング部9の上端面9aに形成される動圧溝9a1形成領域とこれに対向するハブ部10の下端面10a1との間のスラスト軸受隙間に形成される潤滑油膜の圧力が、動圧溝8b1、9a1の動圧作用により高められる。そして、これら油膜の圧力によって、回転部材3(ハブ部10)をスラスト方向に非接触支持する第一スラスト軸受部T1と第二スラスト軸受部T2とがそれぞれ構成される。   At the same time, a thrust bearing gap between the lower end surface 8b of the sleeve portion 8 (region where the dynamic pressure groove 8b1 is formed) and the upper end surface 2b1 of the flange portion 2b facing the lower end surface 8b and the upper end surface 9a of the housing portion 9 are formed. The pressure of the lubricating oil film formed in the thrust bearing gap between the region where the dynamic pressure groove 9a1 is formed and the lower end surface 10a1 of the hub portion 10 opposite to the region is increased by the dynamic pressure action of the dynamic pressure grooves 8b1 and 9a1. The first thrust bearing portion T1 and the second thrust bearing portion T2 that support the rotating member 3 (hub portion 10) in a non-contact manner in the thrust direction are configured by the pressure of these oil films.

以上、本発明の一実施形態を説明したが、本発明は、この実施形態に限定されることなく、他の構成に係る流体軸受装置に適用することもできる。   Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and can also be applied to a hydrodynamic bearing device according to another configuration.

上記実施形態では、ゲート跡18(ゲート除去跡19)を、鍔部10cの下端面10c1の外径端付近に設けた場合を説明したが、このゲート跡18は、ヨーク12によって閉塞され、あるいはヨーク12とハブ部10との接着固定面に供給された接着剤13で閉塞される限り、ハブ部10の任意箇所に設けることができる。   In the above embodiment, the case where the gate trace 18 (gate removal trace 19) is provided near the outer diameter end of the lower end surface 10c1 of the flange portion 10c has been described. However, the gate trace 18 is blocked by the yoke 12, or As long as it is blocked by the adhesive 13 supplied to the adhesive fixing surface between the yoke 12 and the hub portion 10, it can be provided at an arbitrary location of the hub portion 10.

例えば図2に示すハブ部10で言えば、鍔部10cの下端面10c1、およびヨーク12の内筒部12aと対向する筒状部10bの外周面10b2の略全域にゲート跡18(言い換えれば、キャビティ16の下端面10c1や外周面10b2に対応する箇所にゲート17)を設けることができる。   For example, in the hub portion 10 shown in FIG. 2, the gate trace 18 (in other words, the entire area of the outer peripheral surface 10 b 2 of the cylindrical portion 10 b facing the inner cylindrical portion 12 a of the yoke 12 and the lower end surface 10 c 1 of the flange 12 c). A gate 17) can be provided at a position corresponding to the lower end surface 10c1 and the outer peripheral surface 10b2 of the cavity 16.

あるいは、ゲート跡18が接着剤13によって直接的に封止されていない場合であっても、その周囲に接着剤13でハブ部10とヨーク12とを接着固定する領域があり、この接着剤13でゲート跡18が外気(外部空間)から間接的に密封された状態になっていればよい。例えば図9はその一例を示すもので、ゲート跡18が、ハブ部10の筒状部10bと鍔部10cとの付け根付近に設けられると共に、その外径側では、鍔部10cの下端面10c1とヨーク12の外径突出部12bの上端面12b1とが接着剤13で接着固定される。また、ゲート跡18の下方では、筒状部10bの外周面10b2と内筒部12aの内周面12a1とが接着剤13で接着固定されている。   Alternatively, even when the gate mark 18 is not directly sealed with the adhesive 13, there is a region around which the hub portion 10 and the yoke 12 are bonded and fixed with the adhesive 13. Thus, the gate trace 18 may be in a state of being indirectly sealed from the outside air (external space). For example, FIG. 9 shows an example, and the gate mark 18 is provided near the base of the cylindrical portion 10b and the flange portion 10c of the hub portion 10, and on the outer diameter side, the lower end surface 10c1 of the flange portion 10c. And the upper end surface 12 b 1 of the outer diameter protrusion 12 b of the yoke 12 are bonded and fixed with an adhesive 13. Further, below the gate mark 18, the outer peripheral surface 10 b 2 of the cylindrical portion 10 b and the inner peripheral surface 12 a 1 of the inner cylindrical portion 12 a are bonded and fixed with an adhesive 13.

また、上記実施形態では、ヨーク12にゲート跡18が接触する等してヨーク12とハブ部10とヨーク12との接着固定が適切に行われない場合を考慮して、ゲート跡18の除去加工を行ったが、ゲート跡18が、ハブ部10とヨーク12との接着固定を妨げない位置に形成されるのでれば、特に除去加工を行わなくても構わない。   Further, in the above embodiment, the gate trace 18 is removed in consideration of the case where the gate trace 18 contacts the yoke 12 and the yoke 12, the hub portion 10, and the yoke 12 are not properly fixed to each other. However, as long as the gate trace 18 is formed at a position that does not hinder the adhesion and fixation between the hub portion 10 and the yoke 12, no particular removal process is required.

また、上記実施形態では、金属製の軸部材2をインサート部品とする樹脂の射出成形で、軸部材2と一体にハブ部10を射出成形した場合を説明したが、例えばハブ部10のみを樹脂で射出成形した後、ハブ部10とは別体に形成した金属製の軸部材2の端部をハブ部10中央に設けた孔に圧入することで一体化することもできる。あるいは、軸部材2を樹脂製とし、ハブ部10と軸部材2とを共に樹脂の射出成形で一体に形成することもできる。   Moreover, in the said embodiment, although the case where the hub part 10 was injection-molded integrally with the shaft member 2 by injection molding of resin which used the metal shaft member 2 as an insert part, for example, only the hub part 10 was resin-made. After the injection molding, the end portion of the metal shaft member 2 formed separately from the hub portion 10 can be integrated by being press-fitted into a hole provided in the center of the hub portion 10. Alternatively, the shaft member 2 can be made of resin, and the hub portion 10 and the shaft member 2 can be integrally formed by resin injection molding.

また、上記実施形態では、フランジ部2bの上端面2b1とスリーブ部8の下端面8bとの間、およびハブ部10とハウジング部9との間にそれぞれスラスト軸受部T1、T2を設けた場合を説明したが、本発明は、スラスト軸受部T1、T2の形成箇所に関係なく適用可能である。すなわち、ハブ部10の下端面10a1がスラスト軸受隙間を形成するか否かは問題とならず、例えば図示は省略するが、スラスト軸受部T1、T2が共にフランジ部2bの両端面とこれらの面に対向する面との間に形成されたものであってもよい。   In the above embodiment, the thrust bearing portions T1 and T2 are provided between the upper end surface 2b1 of the flange portion 2b and the lower end surface 8b of the sleeve portion 8 and between the hub portion 10 and the housing portion 9, respectively. As described above, the present invention is applicable regardless of the locations where the thrust bearing portions T1 and T2 are formed. That is, it does not matter whether or not the lower end surface 10a1 of the hub portion 10 forms a thrust bearing gap. For example, although illustration is omitted, both the thrust bearing portions T1 and T2 have both end surfaces of the flange portion 2b and these surfaces. It may be formed between the surface and the opposite surface.

また、ハブ部10や軸部材2を除く流体軸受装置1の構成部品に関しても、上記実施形態に限定される必要はない。例えば図示は省略するが、ハウジング部9とスリーブ部8とを同一材料で一体に形成(軸受部材7を単一品化)する等、各構成部品間の一体化を図ったものについても本発明を適用することができる。   Further, the components of the hydrodynamic bearing device 1 excluding the hub portion 10 and the shaft member 2 need not be limited to the above embodiment. For example, although not shown in the drawings, the present invention is also applied to those in which the housing part 9 and the sleeve part 8 are integrally formed of the same material (the bearing member 7 is made into a single product) so as to be integrated between the respective components. Can be applied.

また、以上の実施形態では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、へリングボーン形状やスパイラル形状の動圧溝により潤滑油の動圧作用を発生させる構成を例示しているが、本発明はこれに限定されるものではない。   In the above embodiment, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are exemplified by the configuration in which the dynamic pressure action of the lubricating oil is generated by the dynamic pressure grooves having a herringbone shape or a spiral shape. However, the present invention is not limited to this.

例えば、ラジアル軸受部R1、R2として、図示は省略するが、軸方向の溝を円周方向の複数箇所に形成した、いわゆるステップ状の動圧発生部、あるいは、円周方向に複数の円弧面を配列し、対向する軸部材2の真円状外周面2aとの間に、くさび状の径方向隙間(軸受隙間)を形成した、いわゆる多円弧軸受を採用してもよい。   For example, although not shown as radial bearing portions R1 and R2, a so-called step-like dynamic pressure generating portion in which axial grooves are formed at a plurality of locations in the circumferential direction, or a plurality of circular arc surfaces in the circumferential direction. A so-called multi-arc bearing in which wedge-shaped radial gaps (bearing gaps) are formed between the shaft member 2 and the opposite circular outer peripheral surface 2a may be employed.

あるいは、スリーブ部8の内周面8aを、動圧発生部としての動圧溝や円弧面等を設けない真円外周面とし、この内周面8aと対向する軸部材2の真円状外周面2aとで、いわゆる真円軸受を構成することができる。   Alternatively, the inner peripheral surface 8a of the sleeve portion 8 is a perfect circular outer peripheral surface not provided with a dynamic pressure groove or a circular arc surface as a dynamic pressure generating portion, and the perfect outer periphery of the shaft member 2 facing the inner peripheral surface 8a. A so-called perfect circle bearing can be constituted by the surface 2a.

また、第一スラスト軸受部T1と第二スラスト軸受部T2の一方又は双方は、同じく図示は省略するが、動圧発生部が形成される領域(例えばスリーブ部8の下端面8b、ハウジング部9の上端面9a)に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、あるいは波型軸受(ステップ型が波型になったもの)等で構成することもできる。   In addition, one or both of the first thrust bearing portion T1 and the second thrust bearing portion T2 are also omitted in the drawing, but the region where the dynamic pressure generating portion is formed (for example, the lower end surface 8b of the sleeve portion 8 and the housing portion 9). Is formed of a so-called step bearing or corrugated bearing (in which the step shape is a corrugated shape) in which a plurality of radial groove-shaped dynamic pressure grooves are provided at predetermined intervals in the circumferential direction. You can also.

また、以上の実施形態では、スリーブ部8の側にラジアル動圧発生部(動圧溝8a1、8a2)が、また、スリーブ部8やハウジング部9の側にスラスト動圧発生部(動圧溝8b1、9a1)がそれぞれ形成される場合を説明したが、これら動圧発生部が形成される領域は、例えばこれらに対向する軸部材2の外周面2aやフランジ部2bの上端面2b1、あるいはハブ部10の下端面10a1の側に設けることもできる。   In the above embodiment, the radial dynamic pressure generating portion (dynamic pressure grooves 8a1 and 8a2) is provided on the sleeve portion 8 side, and the thrust dynamic pressure generating portion (dynamic pressure groove is provided on the sleeve portion 8 and housing portion 9 side. 8b1 and 9a1) have been described. The regions where the dynamic pressure generating portions are formed are, for example, the outer peripheral surface 2a of the shaft member 2 and the upper end surface 2b1 of the flange portion 2b, or the hub. It can also be provided on the lower end surface 10a1 side of the portion 10.

また、以上の説明では、流体軸受装置1の内部に充満し、ラジアル軸受隙間や、スラスト軸受隙間に動圧作用を生じる流体として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧作用を発生可能な流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。   In the above description, the lubricating oil is exemplified as the fluid that fills the inside of the hydrodynamic bearing device 1 and generates a dynamic pressure action in the radial bearing gap or the thrust bearing gap. A fluid capable of generating a pressure action, for example, a gas such as air, a fluid lubricant such as a magnetic fluid, or lubricating grease may be used.

本発明の一実施形態に係る流体軸受装置を組込んだスピンドルモータの断面図である。It is sectional drawing of the spindle motor incorporating the hydrodynamic bearing apparatus which concerns on one Embodiment of this invention. 流体軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus. スリーブ部の縦断面図である。It is a longitudinal cross-sectional view of a sleeve part. スリーブ部の下端面面である。It is the lower end surface of a sleeve part. ハウジング部を矢印Aの方向から見た端面図である。FIG. 6 is an end view of the housing portion as viewed from the direction of arrow A. ハブ部の射出成形工程を概念的に示す図である。It is a figure which shows notionally the injection molding process of a hub part. ハブ部のゲート跡周辺を示す拡大断面図である。It is an expanded sectional view showing the gate mark circumference of a hub part. ハブ部とヨークとの接着固定面周辺を示す拡大断面図である。It is an expanded sectional view showing the adhesion fixed surface periphery of a hub part and a yoke. 他形態に係るゲート跡の周辺を示す拡大断面図である。It is an expanded sectional view showing the circumference of the gate mark concerning other forms.

符号の説明Explanation of symbols

1 流体軸受装置
2 軸部材
3 回転部材
4 ステータコイル
5 ロータマグネット
6 ブラケット
7 軸受部材
8 スリーブ部
8a1、8a2、8b1 動圧溝
9 ハウジング部
9a1 動圧溝
10 ハブ部
10c 鍔部
10c1 下端面
12 ヨーク
13 接着剤
14、15 成形型
16 キャビティ
17 ゲート
18 ゲート跡
19 ゲート除去跡
S シール空間
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Fluid dynamic bearing apparatus 2 Shaft member 3 Rotating member 4 Stator coil 5 Rotor magnet 6 Bracket 7 Bearing member 8 Sleeve part 8a1, 8a2, 8b1 Dynamic pressure groove 9 Housing part 9a1 Dynamic pressure groove 10 Hub part 10c Gutter part 10c1 Lower end surface 12 Yoke 13 Adhesives 14, 15 Mold 16 Cavity 17 Gate 18 Gate mark 19 Gate removal mark S Seal space R1, R2 Radial bearing part T1, T2 Thrust bearing part

Claims (3)

軸部材と、該軸部材に一体又は別体に設けられるハブ部と、前記軸部材の外周面が臨むラジアル軸受隙間に生じる流体の潤滑膜で前記軸部材をラジアル方向に相対回転自在に支持するラジアル軸受部と、磁性体からなり、前記ハブ部に接着固定されるヨークとを備えた流体軸受装置において、
前記ハブ部は樹脂で射出成形され、該射出成形により前記ハブ部に形成されるゲート跡が、前記ハブ部と前記ヨークとの接着固定面に供給された接着剤で閉塞されていることを特徴とする流体軸受装置。
A shaft member, a hub portion provided integrally or separately with the shaft member, and a fluid lubricating film formed in a radial bearing gap facing the outer peripheral surface of the shaft member support the shaft member so as to be relatively rotatable in the radial direction. In a hydrodynamic bearing device including a radial bearing portion and a yoke made of a magnetic material and bonded and fixed to the hub portion,
The hub portion is injection-molded with resin, and a gate mark formed on the hub portion by the injection molding is closed with an adhesive supplied to an adhesive fixing surface between the hub portion and the yoke. Fluid bearing device.
前記ゲート跡は、前記ヨークとの接着固定面にある請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the gate mark is on an adhesive fixing surface with the yoke. 軸部材と、該軸部材に一体又は別体に設けられるハブ部と、前記軸部材の外周面が臨むラジアル軸受隙間に生じる流体の潤滑膜で前記軸部材をラジアル方向に相対回転自在に支持するラジアル軸受部と、磁性体からなり、前記ハブ部に接着固定されるヨークとを備えた流体軸受装置の製造方法において、
前記ハブ部を樹脂で射出成形する射出成形工程と、該射出成形工程で成形された前記ハブ部に前記ヨークを接着固定する接着固定工程とを含み、
前記接着固定工程において、前記ハブ部の射出成形により形成されたゲート跡を、前記ハブ部と前記ヨークとの接着固定面に供給される接着剤で閉塞した状態で該接着剤を固化させることを特徴とする流体軸受装置の製造方法。
A shaft member, a hub portion provided integrally or separately with the shaft member, and a lubricating film of fluid generated in a radial bearing gap facing the outer peripheral surface of the shaft member are supported so as to be relatively rotatable in the radial direction. In a method of manufacturing a hydrodynamic bearing device including a radial bearing portion and a yoke made of a magnetic material and bonded and fixed to the hub portion,
An injection molding step of injection molding the hub portion with a resin, and an adhesive fixing step of adhesively fixing the yoke to the hub portion molded in the injection molding step,
In the bonding and fixing step, the gate mark formed by injection molding of the hub portion is solidified in a state where the gate mark is closed with an adhesive supplied to the bonding and fixing surface of the hub portion and the yoke. A method for manufacturing a hydrodynamic bearing device.
JP2005267144A 2005-09-14 2005-09-14 Fluid bearing device and manufacturing method therefor Withdrawn JP2007082339A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005267144A JP2007082339A (en) 2005-09-14 2005-09-14 Fluid bearing device and manufacturing method therefor
PCT/JP2006/317961 WO2007032299A1 (en) 2005-09-14 2006-09-11 Fluid bearing device, method of manufacturing the same, and disk drive device
CN2006800337790A CN101263644B (en) 2005-09-14 2006-09-11 Fluid bearing device and manufacturing method therefor
KR1020087003608A KR20080046635A (en) 2005-09-14 2006-09-11 Fluid bearing device, method of manufacturing the same, and disk drive device
US12/066,597 US8107190B2 (en) 2005-09-14 2006-09-11 Fluid bearing device, method of manufacturing the same, and disk drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005267144A JP2007082339A (en) 2005-09-14 2005-09-14 Fluid bearing device and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2007082339A true JP2007082339A (en) 2007-03-29

Family

ID=37942021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005267144A Withdrawn JP2007082339A (en) 2005-09-14 2005-09-14 Fluid bearing device and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP2007082339A (en)
CN (1) CN101263644B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103317139B (en) * 2013-05-24 2016-04-27 江苏精研科技股份有限公司 Shaping fan of a metal dust shot and preparation method thereof
CN106321650B (en) * 2015-07-03 2020-03-03 中西金属工业株式会社 Protective cover having sensor holding portion, bearing device having the protective cover, and method for manufacturing the protective cover
CN110057498B (en) * 2019-05-10 2020-11-20 中国航发航空科技股份有限公司 Device for balance test of booster-stage rotor of engine fan

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3569761B2 (en) * 2000-05-10 2004-09-29 株式会社日立グローバルストレージテクノロジーズ Magnetic recording device

Also Published As

Publication number Publication date
CN101263644A (en) 2008-09-10
CN101263644B (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP4531584B2 (en) Fluid dynamic bearing device and motor provided with the same
US8107190B2 (en) Fluid bearing device, method of manufacturing the same, and disk drive device
US20100226601A1 (en) Fluid dynamic bearing device
JP2007263228A (en) Dynamic pressure bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP4672379B2 (en) Hydrodynamic bearing device
JP5095111B2 (en) Hydrodynamic bearing device
JP2008069805A (en) Dynamic pressure bearing device
JP2008130208A (en) Hydrodynamic bearing device and its manufacturing method
WO2010044327A1 (en) Fluid bearing device
JP2007082339A (en) Fluid bearing device and manufacturing method therefor
JP2005337490A (en) Dynamic pressure bearing device
JP2008144847A (en) Dynamic pressure bearing device
JP2007267503A (en) Dynamic pressure bearing apparatus
JP5133156B2 (en) Fluid dynamic bearing device
JP5335304B2 (en) Fluid dynamic bearing device
JP4588561B2 (en) Hydrodynamic bearing device
JP2007100904A (en) Fluid bearing device and its manufacturing method
JP5122205B2 (en) Method for assembling hydrodynamic bearing device
JP2011163516A (en) Fluid dynamic bearing unit and method for manufacturing the same
JP2008069835A (en) Dynamic pressure bearing device
JP2008075687A (en) Fluid bearing device
JP2008128446A (en) Fluid bearing device
JP2007255646A (en) Fluid bearing device
JP2007263309A (en) Fluid bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202