JP5122205B2 - Method for assembling hydrodynamic bearing device - Google Patents

Method for assembling hydrodynamic bearing device Download PDF

Info

Publication number
JP5122205B2
JP5122205B2 JP2007199527A JP2007199527A JP5122205B2 JP 5122205 B2 JP5122205 B2 JP 5122205B2 JP 2007199527 A JP2007199527 A JP 2007199527A JP 2007199527 A JP2007199527 A JP 2007199527A JP 5122205 B2 JP5122205 B2 JP 5122205B2
Authority
JP
Japan
Prior art keywords
shaft member
housing
peripheral surface
outer peripheral
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007199527A
Other languages
Japanese (ja)
Other versions
JP2009036254A (en
Inventor
仁彦 尾藤
功 古森
栗村  哲弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2007199527A priority Critical patent/JP5122205B2/en
Priority to PCT/JP2008/063055 priority patent/WO2009016983A1/en
Priority to US12/665,384 priority patent/US8454239B2/en
Priority to CN2008801007246A priority patent/CN101765718B/en
Priority to KR1020097026355A priority patent/KR101439924B1/en
Publication of JP2009036254A publication Critical patent/JP2009036254A/en
Application granted granted Critical
Publication of JP5122205B2 publication Critical patent/JP5122205B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、軸受隙間に生じる流体膜で、軸部材を回転可能に支持する流体軸受装置の組立方法に関する。   The present invention relates to a method for assembling a hydrodynamic bearing device that rotatably supports a shaft member with a fluid film generated in a bearing gap.

流体軸受装置は、その高回転精度および静粛性から、情報機器、例えばHDD等の磁気ディスク駆動装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク駆動装置、MD、MO等の光磁気ディスク駆動装置等のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ用、プロジェクタのカラーホイールのモータ用、あるいは電気機器の冷却等に使用されるファンモータなどの小型モータ用として好適に使用可能である。   Due to its high rotational accuracy and quietness, the hydrodynamic bearing device is an information device, for example, a magnetic disk drive device such as HDD, an optical disk drive device such as CD-ROM, CD-R / RW, DVD-ROM / RAM, MD, MO, etc. For spindle motors such as magneto-optical disk drive devices, etc., for polygon scanner motors of laser beam printers (LBP), for motors for color wheels of projectors, or for small motors such as fan motors used for cooling electrical equipment, etc. Can be preferably used.

例えば、特許文献1に示されている流体軸受装置は、軸部材を段付き状とすると共に、ハウジング開口部内周に環状のシール部を設け、このシール部を軸部材の段部(肩面)と軸方向で係合させることにより、軸部材の抜け止めを行っている。   For example, in the hydrodynamic bearing device disclosed in Patent Document 1, the shaft member has a stepped shape, and an annular seal portion is provided on the inner periphery of the housing opening, and this seal portion is formed on the step portion (shoulder surface) of the shaft member. The shaft member is prevented from coming off by being engaged with each other in the axial direction.

特開2005−113987号公報JP-A-2005-113987

この流体軸受装置では、シール部と軸部材の肩面との間に形成された軸方向隙間の分だけ軸部材の軸方向の移動が許容される。この軸方向隙間が大きすぎると、軸部材の軸方向移動量(ストローク量)が過大となり、軸部材に装着されるHDDのディスク等に軸方向のガタツキが生じ、ディスクの読み取り精度を悪化させたり、ディスクとヘッドとの干渉を招く恐れがある。従って、シール部と軸部材の肩面との間に形成される軸方向隙間は高精度に設定する必要がある。   In this hydrodynamic bearing device, the shaft member is allowed to move in the axial direction by the amount of the axial clearance formed between the seal portion and the shoulder surface of the shaft member. If this axial clearance is too large, the axial movement (stroke amount) of the shaft member will be excessive, causing an axial backlash in the HDD disk or the like attached to the shaft member, which will deteriorate the disk reading accuracy. There is a risk of interference between the disk and the head. Therefore, the axial gap formed between the seal portion and the shoulder surface of the shaft member needs to be set with high accuracy.

しかしながら、上記の流体軸受装置では、ハウジングの内周に固定されたスリーブ部と当接させることによりシール部の位置決めを行っているため、シール部のハウジングへの固定精度はスリーブ部の軸方向寸法の加工精度に依存する。従って、軸部材のストローク量を精度良く管理するためには、スリーブ部を高精度に加工する必要があり、加工コストの高騰を招くこととなる。   However, in the above hydrodynamic bearing device, since the seal portion is positioned by being brought into contact with the sleeve portion fixed to the inner periphery of the housing, the accuracy of fixing the seal portion to the housing is the axial dimension of the sleeve portion. Depends on the machining accuracy. Therefore, in order to manage the stroke amount of the shaft member with high accuracy, it is necessary to process the sleeve portion with high accuracy, resulting in an increase in processing cost.

本発明の課題は、軸部材のストローク量を高精度かつ低コストに管理することのできる流体軸受装置の組立方法を提供することにある。   The subject of this invention is providing the assembly method of the hydrodynamic bearing apparatus which can manage the stroke amount of a shaft member with high precision and low cost.

上記の課題を解決するために、本発明は、小径外周面、大径外周面、これらの間に形成された肩面、及び、軸方向一方の端部に形成された球面状凸部を有する軸部材と、筒状の側部、及び、側部の軸方向一方の端部を閉塞し、軸部材の球面状凸部を接触支持する底部を有するハウジングと、ハウジングの側部の内周に設けられ、内周に軸部材が挿入されたスリーブ部と、ハウジングの内周に固定され、軸部材の小径外周面との間に軸受内部の潤滑流体の外部への漏れ出しを防止するシール空間を形成すると共に、軸部材の肩面と軸方向で係合して軸部材の抜け止めを行うシール部と、軸部材の大径外周面とスリーブ部の内周面との間に形成されるラジアル軸受隙間とを備え、シール部とスリーブ部とを軸方向で離反させ、シール部とスリーブ部との間の軸方向隙間がシール部と軸部材の肩面との間の軸方向隙間よりも大きい流体軸受装置の組立方法であって、ハウジングの内周にスリーブ部、軸部材、及びシール部を収容し、軸部材の球面状凸部をハウジングの底部に当接させると共に、シール部と軸部材の肩面とを当接させるステップと、軸部材の肩面でシール部をハウジング開口側へ移動させることにより、シール部と軸部材の肩面との間の軸方向隙間を設定するステップとを有することを特徴とする。 In order to solve the above problems, the present invention has a small-diameter outer peripheral surface, a large-diameter outer peripheral surface, a shoulder surface formed therebetween , and a spherical convex portion formed at one end in the axial direction. A shaft member, a cylindrical side portion, and a housing having a bottom portion that closes one end in the axial direction of the side portion and contacts and supports the spherical convex portion of the shaft member, and an inner periphery of the side portion of the housing A seal space provided between the sleeve portion with the shaft member inserted in the inner periphery and the inner periphery of the housing, and preventing leakage of the lubricating fluid inside the bearing to the outside between the small-diameter outer surface of the shaft member And a seal portion that engages with the shoulder surface of the shaft member in the axial direction to prevent the shaft member from coming off, and is formed between the large-diameter outer peripheral surface of the shaft member and the inner peripheral surface of the sleeve portion. and a radial bearing gap, the sealing portion and the sleeve portion is moved away in the axial direction, the seal portion and the sleeve Axial clearance is a method of assembling a large fluid bearing device than the axial clearance between the shoulder surface of the sealing portion and the shaft member, the sleeve portion on the inner periphery of the housing, the shaft member, and the seal portion between the A step of bringing the spherical convex portion of the shaft member into contact with the bottom portion of the housing and bringing the seal portion into contact with the shoulder surface of the shaft member; and the seal portion on the shoulder surface of the shaft member toward the housing opening side And a step of setting an axial clearance between the seal portion and the shoulder surface of the shaft member by moving the seal member.

このように、本発明の流体軸受装置の組立方法では、軸部材のストローク量となるシール部と軸部材の肩面との間の軸方向隙間を、スリーブ部を基準として設定するのではなく、シール部をハウジングに対して軸方向に移動させることにより設定する。これにより、スリーブ部の形状精度によらずに軸部材のストローク量を管理することができるため、スリーブ部の加工精度が緩和され、加工コストの低減が図られる。   Thus, in the method of assembling the hydrodynamic bearing device of the present invention, the axial gap between the seal portion and the shoulder surface of the shaft member, which is the stroke amount of the shaft member, is not set on the basis of the sleeve portion, It is set by moving the seal part in the axial direction relative to the housing. Thereby, since the stroke amount of the shaft member can be managed regardless of the shape accuracy of the sleeve portion, the processing accuracy of the sleeve portion is relaxed, and the processing cost can be reduced.

上記のように、本発明では、シール部の移動による前記軸方向隙間の設定、ハウジングの内周に軸部材及びシール部を収容し、シール部を軸部材の肩面と当接させた後、軸部材でシール部を所定量だけハウジングの開口側へ移動させることにより行う。 As described above, in the present invention, the setting of the axial clearance due to movement of the sealing portion, it houses the shaft member and the seal portion inner periphery of the housing, after the seal portion is in contact with the shoulder surface of the shaft member Then, the seal member is moved by a predetermined amount toward the opening side of the housing by the shaft member.

この流体軸受装置において、軸部材の小径外周面、大径外周面、及び肩面を一体加工すると、これらの面の直角度や同軸度等を精度良く加工することができる。従って、大径外周面が面するラジアル軸受隙間や小径外周面が面するシール空間を精度良く設定することができ、優れた軸受性能やシール機能を得ることができる。   In this hydrodynamic bearing device, when the small-diameter outer peripheral surface, the large-diameter outer peripheral surface, and the shoulder surface of the shaft member are integrally processed, the perpendicularity and coaxiality of these surfaces can be processed with high accuracy. Therefore, the radial bearing gap facing the large-diameter outer peripheral surface and the seal space facing the small-diameter outer peripheral surface can be set with high accuracy, and excellent bearing performance and sealing function can be obtained.

また、軸部材は、軸部と、軸部の外周面に固定したスリーブ部とで形成することができる。このとき、スリーブ部の端面で軸部材の肩面が構成される。これにより、軸部材を構成する軸部及びスリーブ部の形状を単純化することが可能となり、各部材の加工コストの低減が図られる。また、このように軸部材を軸部及びスリーブ部で構成する場合、軸部をインサート部品としてスリーブ部を型成形すれば、軸部とスリーブ部の組み付け工程が不要となるため、軸部材の製造コストをさらに低減することができる。   The shaft member can be formed of a shaft portion and a sleeve portion fixed to the outer peripheral surface of the shaft portion. At this time, the shoulder surface of the shaft member is formed by the end surface of the sleeve portion. Thereby, it becomes possible to simplify the shape of the shaft part and sleeve part which comprise a shaft member, and the reduction of the processing cost of each member is achieved. In addition, when the shaft member is composed of the shaft portion and the sleeve portion in this way, if the shaft portion is used as an insert part and the sleeve portion is molded, the assembly process of the shaft portion and the sleeve portion becomes unnecessary. Cost can be further reduced.

シール部をハウジングに対して移動させる際、シール部とハウジングとの嵌合面に潤滑剤を介在させておくと、シール部をスムーズに移動させることができ、より高精度な隙間設定が可能となる。このとき、潤滑剤として接着剤を用いると、上記の効果に加えて、シール部とハウジングとの固定強度を向上させることができる。   When the seal part is moved relative to the housing, if the lubricant is interposed on the mating surface between the seal part and the housing, the seal part can be moved smoothly and a more accurate clearance can be set. Become. At this time, when an adhesive is used as the lubricant, in addition to the above effects, the fixing strength between the seal portion and the housing can be improved.

また、シール部を位置決めした後、シール部とハウジングとの嵌合面の大気開放側を接着封止することにより、シール部とハウジングとの嵌合面から軸受内部の潤滑流体が外部へ漏れ出すことを確実に防止できる。   In addition, after positioning the seal portion, the atmosphere opening side of the fitting surface between the seal portion and the housing is adhesively sealed, so that the lubricating fluid inside the bearing leaks out from the fitting surface between the seal portion and the housing. Can be surely prevented.

以上のように、本発明の組立方法によると、軸部材のストローク量を高精度かつ低コストに管理することができる。   As described above, according to the assembling method of the present invention, the stroke amount of the shaft member can be managed with high accuracy and at low cost.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係る流体軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、ディスクハブ3を取付けた軸部材2を回転自在に支持する流体軸受装置1と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、モータブラケット6とを備えている。ステータコイル4はモータブラケット6の外周に取付けられ、ロータマグネット5はディスクハブ3の内周に取付けられている。流体軸受装置1のハウジング7は、モータブラケット6の内周に固定される。ディスクハブ3には、磁気ディスク等のディスク状情報記録媒体(以下、単にディスクという。)Dが1又は複数枚(図1では2枚)保持される。このように構成されたスピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する電磁力でロータマグネット5が回転し、これに伴って、ディスクハブ3およびディスクハブ3に保持されたディスクDが軸部材2と一体に回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a hydrodynamic bearing device 1 according to an embodiment of the present invention. This spindle motor is used in a disk drive device such as an HDD, and is a stator that is opposed to a hydrodynamic bearing device 1 that rotatably supports a shaft member 2 to which a disk hub 3 is attached, for example, via a radial gap. A coil 4 and a rotor magnet 5 and a motor bracket 6 are provided. The stator coil 4 is attached to the outer periphery of the motor bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is fixed to the inner periphery of the motor bracket 6. The disk hub 3 holds one or more (two in FIG. 1) disk-shaped information recording media (hereinafter simply referred to as disks) D such as magnetic disks. In the spindle motor configured as described above, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force generated between the stator coil 4 and the rotor magnet 5. The disk D held by the hub 3 rotates integrally with the shaft member 2.

流体軸受装置1は、図2に示すように、軸部材2と、内周に軸部材2を挿入したスリーブ部8と、スリーブ部8を外周から保持した有底筒状のハウジング7と、ハウジング7の開口部に設けられたシール部9とを主に備える。尚、以下の説明において、軸方向でハウジング7の開口側を上側、閉口側を下側とする。   As shown in FIG. 2, the hydrodynamic bearing device 1 includes a shaft member 2, a sleeve portion 8 in which the shaft member 2 is inserted on the inner periphery, a bottomed cylindrical housing 7 that holds the sleeve portion 8 from the outer periphery, 7 is mainly provided with a seal portion 9 provided in the opening portion. In the following description, the opening side of the housing 7 is the upper side and the closing side is the lower side in the axial direction.

軸部材2は、大径外周面2aと、小径外周面2bと、これらの間に形成された肩面2cと、下端部に形成された球面状凸部2dとを有し、例えばSUS鋼などの金属材料の旋削加工により一体加工される。大径外周面2aはスリーブ部8の内周面8aとの間にラジアル軸受隙間を形成し、小径外周面2bはシール部9の内周面9aとの間にシール空間Sを形成する。   The shaft member 2 has a large-diameter outer peripheral surface 2a, a small-diameter outer peripheral surface 2b, a shoulder surface 2c formed therebetween, and a spherical convex portion 2d formed at the lower end portion, such as SUS steel. It is integrally processed by turning the metal material. The large-diameter outer peripheral surface 2 a forms a radial bearing gap with the inner peripheral surface 8 a of the sleeve portion 8, and the small-diameter outer peripheral surface 2 b forms a seal space S with the inner peripheral surface 9 a of the seal portion 9.

スリーブ部8は、例えば銅を主成分とする焼結金属の多孔質体で円筒状に形成される。この他、スリーブ部8を他の金属や樹脂、あるいはセラミック等で形成することも可能である。   The sleeve portion 8 is formed in a cylindrical shape, for example, from a sintered metal porous body mainly composed of copper. In addition, the sleeve portion 8 can be formed of another metal, resin, ceramic, or the like.

スリーブ部8の内周面8aの全面又は一部円筒領域には、ラジアル動圧発生部として、例えば図3に示すように、複数の動圧溝G1、G2をヘリングボーン形状に配列した領域が軸方向に離隔して2箇所形成される。この動圧溝G1、G2の形成領域(図2に点線で示す)は、ラジアル軸受面として軸部材2の大径外周面2aと対向し、軸部材2の回転時には、大径外周面2aとの間に後述するラジアル軸受部R1、R2のラジアル軸受隙間を形成する。また、上側の動圧溝G1は、上下の傾斜溝間に形成された環状の平滑部に対して軸方向非対称に形成されており、環状平滑部より上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている(X1>X2)。   On the entire surface of the inner peripheral surface 8a of the sleeve portion 8 or a partial cylindrical region, as a radial dynamic pressure generating portion, for example, as shown in FIG. Two places are formed apart in the axial direction. The formation regions (shown by dotted lines in FIG. 2) of the dynamic pressure grooves G1 and G2 are opposed to the large-diameter outer peripheral surface 2a of the shaft member 2 as radial bearing surfaces, and when the shaft member 2 rotates, the large-diameter outer peripheral surface 2a A radial bearing gap is formed between the radial bearing portions R1 and R2 described later. The upper dynamic pressure groove G1 is formed axially asymmetric with respect to the annular smooth portion formed between the upper and lower inclined grooves, and the axial dimension X1 of the upper region from the annular smooth portion is the lower region. Is larger than the axial dimension X2 (X1> X2).

スリーブ部8の外周面8dには、軸方向に延びる溝8d1が軸方向全長に亘って1又は複数本形成される。また、スリーブ部8の下側端面8cには、径方向に延びる溝8c1が1又は複数本形成される。これら軸方向溝8d1及び径方向溝8c1は、スリーブ部8をハウジング7の内周に固定した状態では、対向するハウジング7の内周面7a1及び内底面7b1との間に潤滑油の連通経路を構成する(図2を参照)。これら軸方向溝8d1及び径方向溝8c1は、例えばスリーブ部8本体をなす圧粉体の成形型に予め軸方向溝8d1及び径方向溝8c1に対応する箇所を設けておくことで、スリーブ部8本体の圧粉体成形と同時に成形することができる。   On the outer peripheral surface 8d of the sleeve portion 8, one or a plurality of grooves 8d1 extending in the axial direction are formed over the entire length in the axial direction. One or more grooves 8c1 extending in the radial direction are formed on the lower end surface 8c of the sleeve portion 8. The axial groove 8d1 and the radial groove 8c1 provide a communication path for the lubricating oil between the inner peripheral surface 7a1 and the inner bottom surface 7b1 of the opposing housing 7 in a state where the sleeve portion 8 is fixed to the inner periphery of the housing 7. Configure (see FIG. 2). The axial groove 8d1 and the radial groove 8c1 are formed by providing portions corresponding to the axial groove 8d1 and the radial groove 8c1 in advance in a green compact forming die that forms the body of the sleeve portion 8, for example. It can be molded simultaneously with the green compact molding of the main body.

ハウジング7は、液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等の結晶性樹脂、あるいはポリフェニルサルフォン(PPSU)、ポリエーテルサルフォン(PES)、ポリエーテルイミド(PEI)等の非晶性樹脂をベース樹脂とする樹脂組成物で射出成形され、有底筒状に形成される。本実施形態では、図2に示すように、側部7aと、側部7aの下端部を閉塞する底部7bとが一体に成形される。ハウジング7を形成する上記樹脂組成物としては、例えば、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカ状充填材、マイカ等の鱗片状充填材、カーボン繊維、カーボンブラック、黒鉛、カーボンナノマテリアル、各種金属粉等の繊維状または粉末状の導電性充填材を、目的に応じて上記ベース樹脂に適量配合したものが使用可能である。   The housing 7 is made of a crystalline resin such as liquid crystal polymer (LCP), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), or polyphenylsulfone (PPSU), polyethersulfone (PES), polyetherimide ( It is injection molded with a resin composition having an amorphous resin such as PEI) as a base resin, and is formed into a bottomed cylindrical shape. In this embodiment, as shown in FIG. 2, the side part 7a and the bottom part 7b which obstruct | occludes the lower end part of the side part 7a are shape | molded integrally. Examples of the resin composition forming the housing 7 include fibrous fillers such as glass fibers, whisker-like fillers such as potassium titanate, scaly fillers such as mica, carbon fibers, carbon black, graphite, carbon A material in which an appropriate amount of a fibrous or powdery conductive filler such as nanomaterials or various metal powders is blended with the base resin according to the purpose can be used.

ハウジング7の射出材料は上記に限らず、例えば、マグネシウム合金やアルミニウム合金等の低融点金属材料が使用可能である。また、金属紛とバインダーの混合物で射出成形した後、脱脂・焼結するいわゆるMIM成形や、金属材料、例えば真ちゅう等の軟質金属のプレス成形でハウジング7を形成することもできる。また、ハウジング底部7bは、必ずしも側部7aと一体にする必要はなく、側部7aと別体に形成することもできる。   The injection material of the housing 7 is not limited to the above, and for example, a low melting point metal material such as a magnesium alloy or an aluminum alloy can be used. Alternatively, the housing 7 can be formed by so-called MIM molding in which degreasing and sintering are performed after injection molding with a mixture of a metal powder and a binder, or press molding of a soft metal such as a metal material such as brass. The housing bottom 7b is not necessarily integrated with the side 7a, and can be formed separately from the side 7a.

ハウジング7の内周面7a1には、スリーブ部8の外周面8dが、例えば接着(ルーズ接着や圧入接着を含む)、圧入、溶着等の適宜の手段で固定される。   The outer peripheral surface 8d of the sleeve portion 8 is fixed to the inner peripheral surface 7a1 of the housing 7 by an appropriate means such as bonding (including loose bonding or press-fitting bonding), press-fitting, or welding.

ハウジング7の内底面7b1は、軸部材2の下端部の球面状凸部2dを接触支持するスラスト受けTとして機能する。本実施形態では、このようにハウジング7に直接スラスト受けTを形成しているが、これに限らず、例えば金属材料等で別途形成したスラストワッシャをハウジング7の内底面7b1に配置し、このスラストワッシャでスラスト受けTを構成しても良い。この場合、ハウジング7は軸部材2と接触摺動することがなくなるため、ハウジング7に耐摩耗性が不要となり、ハウジング7の材料選択の幅が広がる。   The inner bottom surface 7 b 1 of the housing 7 functions as a thrust receiver T that contacts and supports the spherical convex portion 2 d at the lower end portion of the shaft member 2. In the present embodiment, the thrust receiver T is formed directly on the housing 7 as described above. However, the present invention is not limited to this. For example, a thrust washer separately formed of a metal material or the like is disposed on the inner bottom surface 7b1 of the housing 7, The thrust receiver T may be configured with a washer. In this case, since the housing 7 does not slide in contact with the shaft member 2, the housing 7 does not need wear resistance, and the range of material selection for the housing 7 is widened.

シール部9は、金属材料や樹脂材料で環状に形成され、ハウジング7の側部7aの上端部内周に例えば圧入により固定される。シール部9の内周面9aは、上方へ向けて漸次拡径したテーパ面状に形成される。シール部9をハウジング7の内周に固定した状態で、シール部9の内周面9aは軸部材2の小径外周面2bと対向し、これらの間に下方へ向けて半径方向寸法が漸次縮小する環状のシール空間Sが形成される。シール部9で密封されたハウジング7の内部空間には、潤滑流体として例えば潤滑油が注油され、ハウジング7内が潤滑油で満たされる(図2中の散点領域)。この状態で、潤滑油の油面はシール空間Sの範囲内に維持される。このとき、図2の拡大図で示すように、シール部9の下側端面9bの内周チャンファ9b1と軸部材2の小径外周面2bとの間の空間や、スリーブ部8の上側端面8bの内周チャンファ8b1と軸部材2の大径外周面2aとの間の空間も潤滑油で満たされる。   The seal portion 9 is formed in a ring shape from a metal material or a resin material, and is fixed to the inner periphery of the upper end portion of the side portion 7a of the housing 7 by, for example, press fitting. The inner peripheral surface 9a of the seal portion 9 is formed in a tapered surface shape whose diameter is gradually increased upward. In a state where the seal portion 9 is fixed to the inner periphery of the housing 7, the inner peripheral surface 9a of the seal portion 9 faces the small-diameter outer peripheral surface 2b of the shaft member 2, and the radial dimension gradually decreases downward therebetween. An annular seal space S is formed. Lubricating oil, for example, is injected into the internal space of the housing 7 sealed by the seal portion 9 as a lubricating fluid, and the inside of the housing 7 is filled with the lubricating oil (a dotted area in FIG. 2). In this state, the oil level of the lubricating oil is maintained within the range of the seal space S. At this time, as shown in the enlarged view of FIG. 2, the space between the inner peripheral chamfer 9 b 1 of the lower end surface 9 b of the seal portion 9 and the small-diameter outer peripheral surface 2 b of the shaft member 2 or the upper end surface 8 b of the sleeve portion 8. The space between the inner peripheral chamfer 8b1 and the large-diameter outer peripheral surface 2a of the shaft member 2 is also filled with lubricating oil.

シール部9の下側端面9bと軸部材2の肩面2cとの間には軸方向隙間Lが形成され、この軸方向隙間Lが軸部材2のストローク量となる。本実施形態のように、流体軸受装置1をHDDのスピンドルモータ用として使用する場合は、ディスクとヘッドとの干渉を防止するために、軸方向隙間Lを30μm以下、好ましくは20μm以下に設定することが望ましい。さらに、軸方向隙間Lは、シール空間Sのうち最も小さい径方向寸法L’と同じかそれよりも小さく設定することが望ましい(L≦L’)。これにより、軸方向隙間Lにおいて、シール空間Sと同等かそれよりも大きな毛細管力が得られるため、潤滑油の外部への漏れ出しをより確実に防止することができる。また、図2に示すように、軸部材2の肩面2cはスリーブ部8の上側端面8bよりも軸方向上方に位置しているため、シール部9の下側端面9bとスリーブ部8の上側端面8bとの間には、前記軸方向隙間Lよりも大きな軸方向隙間L’’が形成される。   An axial gap L is formed between the lower end surface 9 b of the seal portion 9 and the shoulder surface 2 c of the shaft member 2, and this axial gap L becomes the stroke amount of the shaft member 2. When the hydrodynamic bearing device 1 is used for an HDD spindle motor as in this embodiment, the axial gap L is set to 30 μm or less, preferably 20 μm or less, in order to prevent interference between the disk and the head. It is desirable. Furthermore, it is desirable that the axial clearance L is set to be equal to or smaller than the smallest radial dimension L ′ in the seal space S (L ≦ L ′). As a result, a capillary force equal to or greater than that of the seal space S can be obtained in the axial gap L, so that leakage of the lubricating oil to the outside can be prevented more reliably. As shown in FIG. 2, the shoulder surface 2 c of the shaft member 2 is positioned axially above the upper end surface 8 b of the sleeve portion 8, so that the lower end surface 9 b of the seal portion 9 and the upper side of the sleeve portion 8 are An axial gap L ″ larger than the axial gap L is formed between the end face 8b.

上記構成の流体軸受装置1において、軸部材2の回転時、スリーブ部8のラジアル軸受面(内周面8aの動圧溝G1、G2形成領域)は、軸部材2の大径外周面2aとラジアル軸受隙間を介して対向する。軸部材2の回転に伴い、上記ラジアル軸受隙間の潤滑油が動圧溝G1、G2の軸方向中心の環状平滑部側に押し込まれ、その圧力が上昇する。このような動圧溝G1、G2の動圧作用によって、軸部材2をラジアル方向に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが構成される。   In the hydrodynamic bearing device 1 configured as described above, when the shaft member 2 rotates, the radial bearing surface of the sleeve portion 8 (the dynamic pressure grooves G1 and G2 formation region of the inner peripheral surface 8a) is the same as the large-diameter outer peripheral surface 2a of the shaft member 2. Opposes through radial bearing gap. As the shaft member 2 rotates, the lubricating oil in the radial bearing gap is pushed toward the annular smooth portion at the axial center of the dynamic pressure grooves G1, G2, and the pressure rises. Due to the dynamic pressure action of the dynamic pressure grooves G1 and G2, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner in the radial direction are configured.

同時に、軸部材2の下端に設けられた球面状凸部2dとスラスト受けTとしてのハウジング7の内底面7b1とが接触摺動することにより、軸部材2がスラスト方向に接触支持される。   At the same time, the spherical convex portion 2d provided at the lower end of the shaft member 2 and the inner bottom surface 7b1 of the housing 7 as the thrust receiver T slide in contact with each other, so that the shaft member 2 is contacted and supported in the thrust direction.

また、スリーブ部8の外周面8dに形成された軸方向溝8d1、及び下側端面8cに形成された径方向溝8c1により、スリーブ部8とハウジング7との間に連通経路が形成される。この連通経路の一端は、シール部9とスリーブ部8との間の軸方向隙間L’’に開口し、他端はスラスト受けT(ハウジング7の内底面7b1)と軸部材2の球面状凸部2dとの間の空間Pに開口する。これにより、ハウジング閉塞側に形成された前記空間Pが、前記連通経路、軸方向隙間L’’及びLを介してシール空間Sと連通するため、前記空間Pに満たされた潤滑油に局部的な負圧が発生する事態が回避され、気泡の生成による軸受性能の低下を防止することができる。   A communication path is formed between the sleeve portion 8 and the housing 7 by the axial groove 8d1 formed on the outer peripheral surface 8d of the sleeve portion 8 and the radial groove 8c1 formed on the lower end surface 8c. One end of this communication path opens into an axial gap L ″ between the seal portion 9 and the sleeve portion 8, and the other end is a spherical projection of the thrust receiver T (inner bottom surface 7 b 1 of the housing 7) and the shaft member 2. It opens to the space P between the parts 2d. As a result, the space P formed on the housing closing side communicates with the seal space S via the communication path, the axial gaps L ″ and L, so that the lubricating oil filled in the space P is locally localized. A situation in which a negative pressure is generated can be avoided, and a decrease in bearing performance due to the generation of bubbles can be prevented.

また、この実施形態では、第1ラジアル軸受部R1の動圧溝G1は、軸方向中間部の環状平滑部に対して軸方向非対称(X1>X2)に形成されているため(図3参照)、軸部材2の回転時、動圧溝G1による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。そして、この引き込み力の差圧によって、スリーブ部8の内周面8aと軸部材2の大径外周面2aとの間の隙間に満たされた潤滑油が下方に流動し、ハウジング7の閉塞側の空間P→径方向溝8c1→軸方向溝8d1→軸方向隙間L’’という経路を循環して、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。このように、軸受内部の潤滑油を強制的に流動循環させることで、潤滑油に局部的な負圧が発生する事態をより効果的に防止することができる。尚、潤滑油を上記経路と逆向きに循環させたい場合は、例えば動圧溝G1のアンバランスを図3に示す例とは反対向き、すなわちX1<X2となるように形成すればよい。また、上記のように軸受内部の潤滑油を強制的に循環させる必要がない場合は、動圧溝G1、G2の双方をそれぞれ軸方向対称に形成してもよい。   Further, in this embodiment, the dynamic pressure groove G1 of the first radial bearing portion R1 is formed axially asymmetric (X1> X2) with respect to the annular smooth portion at the axially intermediate portion (see FIG. 3). When the shaft member 2 rotates, the pulling force (pumping force) of the lubricating oil by the dynamic pressure groove G1 is relatively larger in the upper region than in the lower region. Then, due to the differential pressure of the pulling force, the lubricating oil filled in the gap between the inner peripheral surface 8a of the sleeve portion 8 and the large-diameter outer peripheral surface 2a of the shaft member 2 flows downward, and the closed side of the housing 7 The space P → the radial groove 8c1 → the axial groove 8d1 → the axial gap L ″ is circulated and drawn into the radial bearing gap of the first radial bearing portion R1 again. In this way, by forcibly flowing and circulating the lubricating oil inside the bearing, a situation in which a local negative pressure is generated in the lubricating oil can be more effectively prevented. In order to circulate the lubricating oil in the direction opposite to the above path, for example, the imbalance of the dynamic pressure groove G1 may be formed in the direction opposite to the example shown in FIG. 3, that is, X1 <X2. Further, when it is not necessary to forcibly circulate the lubricating oil inside the bearing as described above, both the dynamic pressure grooves G1 and G2 may be formed symmetrically in the axial direction.

以下、本発明に係る流体軸受装置の組立方法の一実施形態を、シール部9の組み付け方法を中心に図4を用いて説明する。   Hereinafter, an embodiment of a method for assembling a hydrodynamic bearing device according to the present invention will be described with reference to FIG.

まず、図4(a)に示すように、ハウジング7の内周にスリーブ部8及び軸部材2を収容し、ハウジング7の内底面7b1にスリーブ部8の下側端面8c及び軸部材2の下端の球面状凸部2dを当接させる。この状態で、軸部材2の肩面2cがスリーブ部8の上側端面8bよりも上方(ハウジング開口側)に位置するように、軸部材2の大径外周面2a及びスリーブ部8の軸方向寸法を予め設計しておく。   First, as shown in FIG. 4A, the sleeve portion 8 and the shaft member 2 are accommodated on the inner periphery of the housing 7, and the lower end surface 8 c of the sleeve portion 8 and the lower end of the shaft member 2 are placed on the inner bottom surface 7 b 1 of the housing 7. The spherical convex portion 2d is brought into contact. In this state, the axial dimension of the large-diameter outer peripheral surface 2a of the shaft member 2 and the sleeve portion 8 is such that the shoulder surface 2c of the shaft member 2 is positioned above the upper end surface 8b of the sleeve portion 8 (housing opening side). Is designed in advance.

次いで、図4(b)に示すように、シール部9をハウジング7の内周面7a1に上方から挿入し、下側端面9bを軸部材2の肩面2cに当接させる。その後、図4(b)に矢印で示すように軸部材2をハウジング7に対して引き上げることにより、軸部材2の肩面2cと係合したシール部9を、図2に示す軸方向隙間Lの分だけハウジング7に対して上方へ移動させる。この状態で、シール部9をハウジング7の内周面7a1に固定することにより、軸方向隙間Lが設定される。シール部9とハウジング7は、例えば圧入により固定され、この場合、軸部材2を所定量だけ引き上げた時点でシール部9の位置決め及び固定が完了する。このとき、両者の嵌合面に潤滑剤を介在させておくと、シール部9をハウジング7に対してスムーズに移動させることができ、より高精度に軸方向隙間Lを設定することができる。この潤滑剤として接着剤を使用すれば、上記の効果に加えて、両者の固定強度が高めることができる。さらに、シール部9を位置決めした後、シール部9とハウジング7との嵌合面の大気開放側、すなわち図2におけるシール部9の上側端面の外周チャンファとハウジング7の内周面7a1とで形成される環状空間を接着封止することにより、シール部9とハウジング7の嵌合面から軸受内部の潤滑流体が外部へ漏れ出すことを確実に防止できる。   Next, as shown in FIG. 4B, the seal portion 9 is inserted into the inner peripheral surface 7 a 1 of the housing 7 from above, and the lower end surface 9 b is brought into contact with the shoulder surface 2 c of the shaft member 2. Thereafter, as shown by an arrow in FIG. 4B, the shaft member 2 is pulled up with respect to the housing 7 so that the seal portion 9 engaged with the shoulder surface 2c of the shaft member 2 is removed from the axial gap L shown in FIG. Is moved upward with respect to the housing 7. In this state, the axial clearance L is set by fixing the seal portion 9 to the inner peripheral surface 7a1 of the housing 7. The seal portion 9 and the housing 7 are fixed by, for example, press-fitting. In this case, the positioning and fixing of the seal portion 9 are completed when the shaft member 2 is pulled up by a predetermined amount. At this time, if a lubricant is interposed between both the fitting surfaces, the seal portion 9 can be smoothly moved with respect to the housing 7, and the axial gap L can be set with higher accuracy. If an adhesive is used as the lubricant, in addition to the above effects, both fixing strengths can be increased. Further, after positioning the seal portion 9, it is formed by the air release side of the fitting surface between the seal portion 9 and the housing 7, that is, the outer peripheral chamfer on the upper end surface of the seal portion 9 and the inner peripheral surface 7a1 of the housing 7 in FIG. By adhering and sealing the annular space to be formed, it is possible to reliably prevent the lubricating fluid inside the bearing from leaking out from the fitting surface between the seal portion 9 and the housing 7.

この方法によると、軸部材2の許容ストローク量となる軸方向隙間Lを、軸部材2の引き上げ量により高精度に設定することができる。すなわち、軸部材2のストローク量を、スリーブ部8の加工精度ではなく、軸部材2の引き上げ量により直接的に管理することができる。従って、軸部材2のストローク量を精度良く管理できると共に、スリーブ部8の加工精度が緩和され、製造コストを低減できる。   According to this method, the axial gap L, which is the allowable stroke amount of the shaft member 2, can be set with high accuracy by the lifting amount of the shaft member 2. That is, the stroke amount of the shaft member 2 can be directly managed not by the processing accuracy of the sleeve portion 8 but by the lift amount of the shaft member 2. Therefore, the stroke amount of the shaft member 2 can be managed with high accuracy, the processing accuracy of the sleeve portion 8 can be relaxed, and the manufacturing cost can be reduced.

本発明の組立方法は上記の実施形態に限られない。尚、以下の説明において、上記の実施形態と同様の構成、機能を有する部位には同一の符号を付し、説明を省略する。   The assembly method of the present invention is not limited to the above embodiment. In the following description, parts having the same configuration and function as those of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.

図5に、参考例にかかるシール部9の位置決め方法を示す。まず、図5(a)に示すように、ハウジング7の内周にスリーブ部8及び軸部材2を収容し、シール部9をハウジング7の内周の基準位置(例えば、シール部9の上側端面9cがハウジング7の上端面7cと面一になる位置)に配する。このとき、シール部9とスリーブ部8との間には、図2に示す軸方向隙間L''よりも大きい隙間が設けられる。 FIG. 5 shows a method for positioning the seal portion 9 according to the reference example . First, as shown in FIG. 5A, the sleeve portion 8 and the shaft member 2 are accommodated in the inner periphery of the housing 7, and the seal portion 9 is moved to the reference position of the inner periphery of the housing 7 (for example, the upper end surface of the seal portion 9). 9c is arranged at a position that is flush with the upper end surface 7c of the housing 7. At this time, a gap larger than the axial gap L ″ shown in FIG. 2 is provided between the seal portion 9 and the sleeve portion 8.

次いで、シール部9を下方へ所定量だけ押込む。例えば、図5(b)に示すように、基部10a、及び円筒部10bを有する押込み部材10により、シール部9を下方(矢印方向)へ押込む。基部10aには、押込み量を規定する基準面10a1が形成され、円筒部10bは、内周が軸部材2の小径外周面2bと嵌合すると共に、その下側端面10b1がシール部9の上側端面9cを押込む押込み面となる。そして、図5(c)に示すように、押込み部材10の基準面10a1が軸部材2の上端部2b2に当接した時点で、押込みが完了する。この場合、軸部材2の小径外周面2bの軸方向寸法をY1、押し込み部材10の基準面10a1と押込み面10b1との軸方向間隔をY2、シール部9の軸方向寸法をY3としたとき、Y1とY2+Y3との差が軸方向隙間Lとなる(L=Y1−(Y2+Y3))。従って、Y1、Y2、及びY3を精度良く設定することにより、軸部材2のストローク量を高精度に管理することができる。   Next, the seal portion 9 is pushed downward by a predetermined amount. For example, as shown in FIG. 5B, the seal portion 9 is pushed downward (in the direction of the arrow) by the pushing member 10 having the base portion 10a and the cylindrical portion 10b. The base portion 10a is provided with a reference surface 10a1 that defines the amount of pushing, and the cylindrical portion 10b has an inner periphery fitted to the small-diameter outer peripheral surface 2b of the shaft member 2 and a lower end surface 10b1 that is an upper side of the seal portion 9. It becomes a pushing surface which pushes in the end surface 9c. Then, as shown in FIG. 5C, the pushing operation is completed when the reference surface 10 a 1 of the pushing member 10 comes into contact with the upper end portion 2 b 2 of the shaft member 2. In this case, when the axial dimension of the small-diameter outer peripheral surface 2b of the shaft member 2 is Y1, the axial distance between the reference surface 10a1 of the pushing member 10 and the pushing surface 10b1 is Y2, and the axial dimension of the seal portion 9 is Y3, The difference between Y1 and Y2 + Y3 is the axial gap L (L = Y1- (Y2 + Y3)). Therefore, the stroke amount of the shaft member 2 can be managed with high accuracy by setting Y1, Y2, and Y3 with high accuracy.

また、本発明の組立方法が適用される流体軸受装置の構成は上記に限られない。図6に、参考例に係る流体軸受装置21を示す。上記の実施形態では、軸部材2を一体品としているが、流体軸受装置21では、軸部材2を、円筒状の軸部20とスリーブ部8とで構成している。この軸部材2は、軸部20の外周面20aとスリーブ部8の内周面8aとを、圧入、接着、圧入接着等の適宜の手段で固定することにより形成される。この軸部材2では、スリーブ部8の上側端面8bが軸部材2の肩面2cを、スリーブ部8の外周面8dが軸部材2の大径外周面2aを、軸部20の外周面20aが軸部材2の小径外周面2bをそれぞれ構成し、球面状凸部2dは軸部20の下端部に形成される。 The configuration of the hydrodynamic bearing device to which the assembling method of the present invention is applied is not limited to the above . FIG. 6 shows a hydrodynamic bearing device 21 according to a reference example . In the above embodiment, the shaft member 2 is an integral product. However, in the hydrodynamic bearing device 21, the shaft member 2 is composed of a cylindrical shaft portion 20 and a sleeve portion 8. The shaft member 2 is formed by fixing the outer peripheral surface 20a of the shaft portion 20 and the inner peripheral surface 8a of the sleeve portion 8 by appropriate means such as press-fitting, bonding, and press-fitting adhesion. In this shaft member 2, the upper end surface 8 b of the sleeve portion 8 is the shoulder surface 2 c of the shaft member 2, the outer peripheral surface 8 d of the sleeve portion 8 is the large-diameter outer peripheral surface 2 a of the shaft member 2, and the outer peripheral surface 20 a of the shaft portion 20 is. The small-diameter outer peripheral surface 2 b of the shaft member 2 is configured, and the spherical convex portion 2 d is formed at the lower end portion of the shaft portion 20.

この軸部材2の大径外周面2a(スリーブ部8の外周面8d)には、上下に離隔した2箇所にラジアル動圧発生部としての動圧溝G1、G2が形成され(図6に点線で示す)、ハウジング7の内周面7a1との間にラジアル軸受隙間を形成する。また、軸部材2の肩面2c(スリーブ部8の上側端面8b)とシール部9の下側端面9bとの間には、軸部材2のストローク量となる軸方向隙間Lが形成される(図6拡大図参照)。スリーブ部8の内周面8aには軸方向溝8a1が形成され、軸部20の外周面20aとの間に連通経路を形成する。この連通経路が、ハウジング7の閉塞側に形成された空間P、詳しくは、軸部20の下端部に形成された球面状凸部2d及びスリーブ部8の下側端面8cと、ハウジング7の内底面7b1との間に形成された空間Pを、シール空間Sと連通する。   On the large-diameter outer peripheral surface 2a of the shaft member 2 (the outer peripheral surface 8d of the sleeve portion 8), dynamic pressure grooves G1 and G2 serving as radial dynamic pressure generating portions are formed at two locations separated vertically (dotted line in FIG. 6). And a radial bearing gap is formed between the housing 7 and the inner peripheral surface 7a1. Further, an axial gap L serving as a stroke amount of the shaft member 2 is formed between the shoulder surface 2c of the shaft member 2 (the upper end surface 8b of the sleeve portion 8) and the lower end surface 9b of the seal portion 9 ( (See enlarged view of FIG. 6). An axial groove 8 a 1 is formed on the inner peripheral surface 8 a of the sleeve portion 8, and a communication path is formed with the outer peripheral surface 20 a of the shaft portion 20. This communication path is a space P formed on the closed side of the housing 7, more specifically, the spherical convex portion 2 d and the lower end surface 8 c of the sleeve portion 8 formed on the lower end portion of the shaft portion 20, and the inside of the housing 7. A space P formed between the bottom surface 7b1 and the seal space S is communicated.

このように、軸部材2を軸部20とスリーブ部8とで構成することにより、図2に示す軸部材2のような段付状の加工が不要となるため、各部材の加工コストを低減することができる。また、スリーブ部8の外周面8dで軸部材2の大径外周面2aを構成することにより、図2に示す流体軸受装置1と比べ、大径外周面2aが面するラジアル軸受隙間を大径化し、ラジアル軸受部R1、R2を拡大することができるため、ラジアル方向の軸受性能を高めることができる。   In this way, by configuring the shaft member 2 with the shaft portion 20 and the sleeve portion 8, the stepped processing as in the shaft member 2 shown in FIG. 2 is not required, so the processing cost of each member is reduced. can do. Further, by forming the large-diameter outer peripheral surface 2a of the shaft member 2 with the outer peripheral surface 8d of the sleeve portion 8, the radial bearing gap facing the large-diameter outer peripheral surface 2a is larger in diameter than the hydrodynamic bearing device 1 shown in FIG. Since the radial bearing portions R1 and R2 can be enlarged, the bearing performance in the radial direction can be improved.

図7に、参考例に係る流体軸受装置31を示す。この流体軸受装置1では、軸部材2のスラスト方向の支持を非接触支持としている点で、図7に示す実施形態と構成を異にする。詳しくは、スリーブ部8の下側端面8cとハウジング7の内底面7b1との間にスラスト軸受隙間を形成し、軸部材2の回転時には、スリーブ部8の下側端面8cに形成されたスパイラル形状やステップ形状等の動圧溝G3がスラスト軸受隙間の潤滑油に動圧作用を発生させ、軸部材2をスラスト方向に指示するスラスト軸受部Tが構成される。この場合、シール部9の下側端面9bと軸部材2の肩面2c(スリーブ部8の上側端面8b)との間の軸方向隙間Lは、スラスト軸受部Tのスラスト軸受隙間よりも大きくなるように設定される。 FIG. 7 shows a hydrodynamic bearing device 31 according to a reference example . This hydrodynamic bearing device 1 differs from the embodiment shown in FIG. 7 in that the support in the thrust direction of the shaft member 2 is non-contact support. Specifically, a thrust bearing gap is formed between the lower end surface 8c of the sleeve portion 8 and the inner bottom surface 7b1 of the housing 7, and when the shaft member 2 rotates, the spiral shape formed on the lower end surface 8c of the sleeve portion 8 is formed. A dynamic pressure groove G3 having a step shape or the like generates a dynamic pressure action on the lubricating oil in the thrust bearing gap, thereby forming a thrust bearing portion T that directs the shaft member 2 in the thrust direction. In this case, the axial clearance L between the lower end surface 9b of the seal portion 9 and the shoulder surface 2c of the shaft member 2 (the upper end surface 8b of the sleeve portion 8) is larger than the thrust bearing clearance of the thrust bearing portion T. Is set as follows.

図6及び図7に示すように、軸部材2を軸部20とスリーブ部8とで構成する場合、上記のようにこれらを別途形成した上で固定する他、軸部20をインサート部品としてスリーブ部8を型成形してもよい。これにより、軸部20とスリーブ部8との組み付け工程が不要となり、軸部材2の製造工程を簡略化することができる。   As shown in FIGS. 6 and 7, when the shaft member 2 is composed of the shaft portion 20 and the sleeve portion 8, they are separately formed and fixed as described above, and the shaft portion 20 is used as an insert part. The part 8 may be molded. Thereby, the assembly process of the axial part 20 and the sleeve part 8 becomes unnecessary, and the manufacturing process of the axial member 2 can be simplified.

また、図2に示す実施形態では、ハウジング7とスリーブ部8とが別体に形成されているが、これらを一体に形成してもよい。例えば、ハウジング7及びスリーブ部8を射出成形により一体に形成すれば、製造工程を省くことができるため、低コスト化を図ることができる。   In the embodiment shown in FIG. 2, the housing 7 and the sleeve portion 8 are formed separately, but they may be formed integrally. For example, if the housing 7 and the sleeve portion 8 are integrally formed by injection molding, the manufacturing process can be omitted, so that the cost can be reduced.

また、以上の実施形態では、ラジアル軸受隙間の潤滑流体に動圧作用を発生させる動圧発生部として、スリーブ部8の内周面8aにヘリングボーン形状の動圧溝G1、G2が形成されているが、これに限らず、例えばスパイラル形状の動圧溝やステップ軸受、あるいは多円弧軸受を採用してもよい。あるいは、スリーブ部8の内周面8a及び軸部材2の大径外周面2aを共に円筒面状に形成し、いわゆる真円軸受を構成してもよい。   Further, in the above embodiment, herringbone-shaped dynamic pressure grooves G1 and G2 are formed on the inner peripheral surface 8a of the sleeve portion 8 as a dynamic pressure generating portion for generating a dynamic pressure action on the lubricating fluid in the radial bearing gap. However, the present invention is not limited to this, and for example, a spiral dynamic pressure groove, a step bearing, or a multi-arc bearing may be employed. Alternatively, both the inner peripheral surface 8a of the sleeve portion 8 and the large-diameter outer peripheral surface 2a of the shaft member 2 may be formed into a cylindrical surface shape to constitute a so-called circular bearing.

また、以上の実施形態では、スリーブ部8の内周面8aに動圧溝G1、G2を形成しているが、この面と軸受隙間を介して対向する軸部材2の大径外周面2aに動圧溝を形成してもよい。   Further, in the above embodiment, the dynamic pressure grooves G1 and G2 are formed on the inner peripheral surface 8a of the sleeve portion 8, but the large-diameter outer peripheral surface 2a of the shaft member 2 facing this surface through a bearing gap is formed. A dynamic pressure groove may be formed.

また、以上の実施形態では、ラジアル軸受部R1、R2が軸方向で離隔して設けられているが、これらを軸方向で連続的に設けてもよい。あるいは、これらの何れか一方のみを設けてもよい。   Further, in the above embodiment, the radial bearing portions R1 and R2 are provided separately in the axial direction, but these may be provided continuously in the axial direction. Alternatively, only one of these may be provided.

また、以上の実施形態では、流体軸受装置1の内部に充満し、ラジアル軸受隙間に動圧作用を生じる流体として潤滑油を例示したが、それ以外にも各軸受隙間に動圧作用を発生可能な流体、例えば空気等の気体や、磁性流体、あるいは潤滑グリース等を使用することもできる。   Further, in the above embodiment, the lubricating oil is exemplified as the fluid that fills the inside of the hydrodynamic bearing device 1 and generates the dynamic pressure action in the radial bearing gap. However, other than that, the dynamic pressure action can be generated in each bearing gap. A simple fluid such as a gas such as air, a magnetic fluid, or lubricating grease can also be used.

また、本発明の動圧軸受装置は、上記のようにHDD等のディスク駆動装置に用いられるスピンドルモータに限らず、光ディスクの光磁気ディスク駆動用のスピンドルモータ等、高速回転下で使用される情報機器用の小型モータ、レーザビームプリンタのポリゴンスキャナモータ等における回転軸支持用、あるいは電気機器の冷却ファン用のファンモータとしても好適に使用することができる。   Further, the hydrodynamic bearing device of the present invention is not limited to the spindle motor used in the disk drive device such as the HDD as described above, but is used for information used under high-speed rotation, such as a spindle motor for driving a magneto-optical disk of an optical disk. It can also be suitably used as a fan motor for rotating shaft support in a small motor for equipment, a polygon scanner motor of a laser beam printer, or a cooling fan for electrical equipment.

流体軸受装置を組み込んだHDD用スピンドルモータを示す断面図である。It is sectional drawing which shows the spindle motor for HDD incorporating the hydrodynamic bearing apparatus. 流体軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus. スリーブ部の断面図である。It is sectional drawing of a sleeve part. (a)、(b)は、本発明にかかる組立方法を示す断面図である。(A), (b) is sectional drawing which shows the assembly method concerning this invention. (a)〜(c)は、参考例にかかる組立方法を示す断面図である。(A)-(c) is sectional drawing which shows the assembly method concerning a reference example . 参考例にかかる流体軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus concerning a reference example . 参考例にかかる流体軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus concerning a reference example .

符号の説明Explanation of symbols

1 流体軸受装置
2 軸部材
2a 大径外周面
2b 小径外周面
2c 肩面
2d 球面状凸部
7 ハウジング
8 スリーブ部
9 シール部
L 軸方向隙間
G1、G2 動圧溝
R1、R2 ラジアル軸受部
T スラスト受け(スラスト軸受部)
S シール空間
DESCRIPTION OF SYMBOLS 1 Fluid dynamic bearing apparatus 2 Shaft member 2a Large diameter outer peripheral surface 2b Small diameter outer peripheral surface 2c Shoulder surface 2d Spherical convex part 7 Housing 8 Sleeve part 9 Seal part L Axial direction gap G1, G2 Dynamic pressure groove R1, R2 Radial bearing part T Thrust Receiver (thrust bearing)
S Seal space

Claims (5)

小径外周面、大径外周面、これらの間に形成された肩面、及び、軸方向一方の端部に形成された球面状凸部を有する軸部材と、筒状の側部、及び、側部の軸方向一方の端部を閉塞し、軸部材の球面状凸部を接触支持する底部を有するハウジングと、ハウジングの側部の内周に設けられ、内周に軸部材が挿入されたスリーブ部と、ハウジングの内周に固定され、軸部材の小径外周面との間に軸受内部の潤滑流体の外部への漏れ出しを防止するシール空間を形成すると共に、軸部材の肩面と軸方向で係合して軸部材の抜け止めを行うシール部と、軸部材の大径外周面とスリーブ部の内周面との間に形成されるラジアル軸受隙間とを備え、シール部とスリーブ部とを軸方向で離反させ、シール部とスリーブ部との間の軸方向隙間が、シール部と軸部材の肩面との間の軸方向隙間よりも大きい流体軸受装置の組立方法であって、
ハウジングの内周にスリーブ部、軸部材、及びシール部を収容し、軸部材の球面状凸部をハウジングの底部に当接させると共に、シール部と軸部材の肩面とを当接させるステップと、軸部材の肩面でシール部をハウジング開口側へ移動させることにより、シール部と軸部材の肩面との間の軸方向隙間を設定するステップとを有することを特徴とする流体軸受装置の組立方法。
A small diameter outer peripheral surface, a large diameter outer peripheral surface, a shoulder surface formed between them, a shaft member having a spherical convex portion formed at one end in the axial direction , a cylindrical side portion, and a side A housing having a bottom portion that closes one end of the shaft in the axial direction and that contacts and supports the spherical convex portion of the shaft member, and a sleeve that is provided on the inner periphery of the side portion of the housing and into which the shaft member is inserted A seal space that is fixed to the inner periphery of the housing and the small-diameter outer peripheral surface of the shaft member and prevents leakage of the lubricating fluid inside the bearing to the outside, and the shoulder surface of the shaft member and the axial direction A seal portion that engages with the shaft member to prevent the shaft member from coming off, and a radial bearing gap formed between the large-diameter outer peripheral surface of the shaft member and the inner peripheral surface of the sleeve portion. The axial gap between the seal part and the sleeve part is separated from the seal part and the shaft part. A method of assembling a large fluid bearing device than the axial clearance between the shoulder surface,
Housing a sleeve portion, a shaft member, and a seal portion on the inner periphery of the housing, bringing the spherical convex portion of the shaft member into contact with the bottom portion of the housing, and bringing the seal portion into contact with the shoulder surface of the shaft member; And a step of setting an axial clearance between the seal portion and the shoulder surface of the shaft member by moving the seal portion to the housing opening side on the shoulder surface of the shaft member. Assembly method.
小径外周面、大径外周面、及び肩面が一体加工された軸部材を用いる請求項1記載の流体軸受装置の組立方法。   The method of assembling a hydrodynamic bearing device according to claim 1, wherein a shaft member in which a small-diameter outer peripheral surface, a large-diameter outer peripheral surface, and a shoulder surface are integrally processed is used. シール部とハウジングとの嵌合面に潤滑剤を介在させた状態でシール部を移動させる請求項1記載の流体軸受装置の組立方法。   2. The method of assembling a hydrodynamic bearing device according to claim 1, wherein the seal portion is moved in a state in which a lubricant is interposed on a fitting surface between the seal portion and the housing. 潤滑剤が接着剤である請求項記載の流体軸受装置の組立方法。 4. The method for assembling a hydrodynamic bearing device according to claim 3 , wherein the lubricant is an adhesive. シール部を位置決めした後、シール部とハウジングとの嵌合面の大気開放側を接着封止する請求項1記載の流体軸受装置の組立方法。   2. The method of assembling a hydrodynamic bearing device according to claim 1, wherein after the seal portion is positioned, the atmosphere opening side of the fitting surface between the seal portion and the housing is bonded and sealed.
JP2007199527A 2007-07-31 2007-07-31 Method for assembling hydrodynamic bearing device Expired - Fee Related JP5122205B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007199527A JP5122205B2 (en) 2007-07-31 2007-07-31 Method for assembling hydrodynamic bearing device
PCT/JP2008/063055 WO2009016983A1 (en) 2007-07-31 2008-07-18 Fluid dynamic bearing device and its assembling method
US12/665,384 US8454239B2 (en) 2007-07-31 2008-07-18 Fluid dynamic bearing device and assembling method thereof
CN2008801007246A CN101765718B (en) 2007-07-31 2008-07-18 Fluid dynamic bearing device and its assembling method
KR1020097026355A KR101439924B1 (en) 2007-07-31 2008-07-18 Fluid dynamic bearing device and its assembling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007199527A JP5122205B2 (en) 2007-07-31 2007-07-31 Method for assembling hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2009036254A JP2009036254A (en) 2009-02-19
JP5122205B2 true JP5122205B2 (en) 2013-01-16

Family

ID=40438351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007199527A Expired - Fee Related JP5122205B2 (en) 2007-07-31 2007-07-31 Method for assembling hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP5122205B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629816A (en) * 2012-03-30 2012-08-08 常州市美特精密电机有限公司 Magnetic steel assembly of idle speed stepper motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4216509B2 (en) * 2002-02-20 2009-01-28 Ntn株式会社 Method for manufacturing hydrodynamic bearing device
JP2005226780A (en) * 2004-02-13 2005-08-25 Sony Corp Bearing unit, motor with bearing unit, and electronic device
TWM270282U (en) * 2004-11-26 2005-07-11 Hon Hai Prec Ind Co Ltd Hydrodynamic bearing assembly
JP2007154959A (en) * 2005-12-02 2007-06-21 Matsushita Electric Ind Co Ltd Dynamic fluid bearing device and its manufacturing method
JP2008185179A (en) * 2007-01-31 2008-08-14 Matsushita Electric Ind Co Ltd Fluid bearing device, spindle motor equipped with it, and recording and reproducing device

Also Published As

Publication number Publication date
JP2009036254A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
KR101439924B1 (en) Fluid dynamic bearing device and its assembling method
JP5274820B2 (en) Hydrodynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2007024146A (en) Dynamic pressure bearing device
JP5095111B2 (en) Hydrodynamic bearing device
JP2008130208A (en) Hydrodynamic bearing device and its manufacturing method
JP4916673B2 (en) Hydrodynamic bearing device
KR101321383B1 (en) Fluid bearing device
JP5122205B2 (en) Method for assembling hydrodynamic bearing device
JP2009228873A (en) Fluid bearing device
JP4754418B2 (en) Hydrodynamic bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP5231095B2 (en) Hydrodynamic bearing device
JP2008190711A (en) Manufacturing process for hydrodynamic bearing unit
JP2007071312A (en) Dynamic pressure bearing device
JP4828908B2 (en) Hydrodynamic bearing device
JP5133156B2 (en) Fluid dynamic bearing device
JP2006258123A (en) Dynamic pressure bearing device
JP4588561B2 (en) Hydrodynamic bearing device
JP2008075687A (en) Fluid bearing device
JP4949216B2 (en) Hydrodynamic bearing device
JP5188942B2 (en) Fluid dynamic bearing device
JP2007255646A (en) Fluid bearing device
JP4937524B2 (en) Hydrodynamic bearing device
JP2008128446A (en) Fluid bearing device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5122205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees