JP4754418B2 - Hydrodynamic bearing device - Google Patents

Hydrodynamic bearing device Download PDF

Info

Publication number
JP4754418B2
JP4754418B2 JP2006182315A JP2006182315A JP4754418B2 JP 4754418 B2 JP4754418 B2 JP 4754418B2 JP 2006182315 A JP2006182315 A JP 2006182315A JP 2006182315 A JP2006182315 A JP 2006182315A JP 4754418 B2 JP4754418 B2 JP 4754418B2
Authority
JP
Japan
Prior art keywords
shaft member
peripheral surface
bearing
seal
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006182315A
Other languages
Japanese (ja)
Other versions
JP2008008472A (en
Inventor
一人 清水
政治 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2006182315A priority Critical patent/JP4754418B2/en
Publication of JP2008008472A publication Critical patent/JP2008008472A/en
Application granted granted Critical
Publication of JP4754418B2 publication Critical patent/JP4754418B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Sliding-Contact Bearings (AREA)

Description

本発明は、軸受隙間の潤滑膜で、軸部材を回転可能に支持する流体軸受装置に関する。   The present invention relates to a hydrodynamic bearing device that rotatably supports a shaft member with a lubricating film in a bearing gap.

流体軸受装置は、その高回転精度および静粛性から、情報機器、例えばHDD等の磁気ディスク駆動装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク駆動装置、MD、MO等の光磁気ディスク駆動装置等のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイール、あるいは電気機器の冷却ファン等に使用されるファンモータなどの小型モータ用として好適に使用可能である。   Due to its high rotational accuracy and quietness, the hydrodynamic bearing device is an information device, for example, a magnetic disk drive device such as HDD, an optical disk drive device such as CD-ROM, CD-R / RW, DVD-ROM / RAM, MD, MO, etc. Suitable for small motors such as fan motors used for spindle motors such as magneto-optical disk drive devices, etc., polygon scanner motors for laser beam printers (LBP), color wheels for projectors, cooling fans for electrical equipment, etc. It can be used.

例えば、特許文献1に示されている流体軸受装置(動圧軸受装置)は、軸部材と、軸部材から外径へ突出して設けられ、外周にシール空間を形成するシール部材が設けられている。軸部材とシール部材との固定は、接着、圧入、あるいは接着と圧入の併用等の方法により行われている。   For example, the hydrodynamic bearing device (dynamic pressure bearing device) shown in Patent Document 1 is provided with a shaft member and a seal member that protrudes from the shaft member to the outer diameter and forms a seal space on the outer periphery. . The shaft member and the seal member are fixed by a method such as adhesion, press-fitting, or a combination of adhesion and press-fitting.

特開2005−321089号公報JP 2005-321089 A

しかし、シール部材と軸部材との固定を接着により行う場合、接着剤が完全に固化するまで両部材を固定しておく冶具が必要となる。また、シール部材を軸部材に圧入すると、圧入時に生じる摩耗粉が軸受内部にコンタミとして混入し、軸受性能を低下させる恐れがある。また、接着と圧入とを併用する場合は、両部材の嵌合面に接着剤を介在させることが困難であるため、嵌合面から溢れた接着剤が軸受装置の内部空間に侵入し、軸受性能に悪影響を及ぼす恐れがある。   However, when the sealing member and the shaft member are fixed by bonding, a jig for fixing both members until the adhesive is completely solidified is required. Further, when the seal member is press-fitted into the shaft member, wear powder generated at the time of press-fitting may enter the inside of the bearing as contamination, which may reduce the bearing performance. In addition, when both bonding and press-fitting are used, it is difficult to interpose an adhesive on the mating surfaces of both members. Therefore, the adhesive overflowing from the mating surfaces penetrates into the internal space of the bearing device, and the bearing May adversely affect performance.

本発明の課題は、軸部材の外周面に他部材を簡易且つ強固に固定することができる流体軸受装置を提供することにある。   The subject of this invention is providing the hydrodynamic bearing apparatus which can fix another member to the outer peripheral surface of a shaft member easily and firmly.

前記課題を解決するために、本発明は、軸部材と、軸部材の外周面に固定されたフランジ部と、軸部材の外周面に面するラジアル軸受隙間に生じる潤滑膜で軸部材をラジアル方向に支持するラジアル軸受部と、スラスト軸受隙間に生じる潤滑膜で軸部材をスラスト方向に支持するスラスト軸受部とを備えた流体軸受装置において、軸部材の外周面にフランジ部の内周面を嵌合し、両部材を加締めと接着とで結合したことを特徴とする。   In order to solve the above problems, the present invention provides a shaft member, a flange portion fixed to the outer peripheral surface of the shaft member, and a lubricating film formed in a radial bearing gap facing the outer peripheral surface of the shaft member in the radial direction. In a hydrodynamic bearing device having a radial bearing portion to be supported on a thrust bearing and a thrust bearing portion to support the shaft member in a thrust direction with a lubricating film generated in a thrust bearing gap, the inner peripheral surface of the flange portion is fitted to the outer peripheral surface of the shaft member. The two members are combined by caulking and bonding.

このように、本発明では、軸部材とフランジ部との固定を、加締め及び接着を併用して行う。具体的には、軸部材の外周面にフランジ部の内周面を嵌合し、両部材を加締めることにより仮固定し、さらに両部材間の隙間に接着剤を介在させることにより両部材を固定する。このように軸部材にフランジ部を嵌合するため、挿入時に摩耗粉が生じず、軸受内部にコンタミが混入する恐れがない。また、両部材を加締めて仮固定することにより、その後の工程で両部材を固定する冶具は不要となる。また、両部材の嵌合面のうち、加締められた部分以外の箇所は隙間嵌めの状態であるため、接着剤を容易に介在させることができる。   Thus, in this invention, fixation with a shaft member and a flange part is performed using caulking and adhesion | attachment together. Specifically, the inner peripheral surface of the flange portion is fitted to the outer peripheral surface of the shaft member, and both members are temporarily fixed by caulking, and the adhesive is interposed in the gap between the two members. Fix it. As described above, since the flange portion is fitted to the shaft member, no abrasion powder is generated at the time of insertion, and there is no possibility of contamination inside the bearing. Moreover, the jig which fixes both members by a subsequent process becomes unnecessary by crimping both members and temporarily fixing. Moreover, since the places other than the crimped part among the fitting surfaces of both members are in a gap fitting state, an adhesive can be easily interposed.

両部材の加締めは、例えばフランジ部の内径端で行うことができる。また、加締めによる塑性変形、例えばフランジ部の内径端を加締めることで形成された凹部で、接着剤溜りを形成することができる。   The caulking of both members can be performed, for example, at the inner diameter end of the flange portion. Further, the adhesive pool can be formed by a concave portion formed by plastic deformation by caulking, for example, by caulking the inner diameter end of the flange portion.

フランジ部を加締める場合、フランジ部が中実であると加締めにより変形しにくくなるため、十分に加締められなかったり、予定外の場所が変形する恐れがある。そこで、フランジ部の内周面に予め凹部を形成しておくと、加締めによるフランジ部の変形をこの凹部で吸収することができる。これにより、フランジ部の変形が容易化され、十分な加締めが可能となると共に、加締めによる変形を前記凹部付近に集中させることができる。   When caulking the flange portion, if the flange portion is solid, it is difficult to be deformed by caulking, so that it may not be sufficiently caulked or an unplanned place may be deformed. Therefore, if a concave portion is formed in advance on the inner peripheral surface of the flange portion, deformation of the flange portion due to caulking can be absorbed by this concave portion. As a result, the deformation of the flange portion is facilitated, sufficient caulking is possible, and deformation due to caulking can be concentrated in the vicinity of the recess.

また、例えばフランジ部の軸受内部側の端面に被加締め部を設けると、軸受内部の空間、例えばスラスト軸受隙間に面する部分が変形し、軸受性能が低下する恐れがある。よって、被加締め部は大気開放側の端面に設けることが望ましい。   Further, for example, if a crimped portion is provided on the end surface of the flange portion on the bearing inner side, a space inside the bearing, for example, a portion facing the thrust bearing gap may be deformed, and the bearing performance may be deteriorated. Therefore, it is desirable to provide the to-be-clamped portion on the end surface on the air release side.

このように、本発明によると、軸部材の外周面に他部材を簡易且つ強固に固定することができる流体軸受装置が得られる。   Thus, according to the present invention, a fluid dynamic bearing device capable of easily and firmly fixing other members to the outer peripheral surface of the shaft member is obtained.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施形態に係る動圧軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。この情報機器用スピンドルモータは、HDD等のディスク駆動装置に用いられるもので、動圧軸受装置1と、動圧軸受装置1の軸部材2に取り付けられたロータ(ディスクハブ)3と、例えば半径方向のギャップを介して対向させたステータコイル4aおよびロータマグネット4bと、ブラケット5とを備えている。ステータコイル4aはブラケット5の外周に取り付けられ、ロータマグネット4bは、ディスクハブ3の内周に取り付けられている。ディスクハブ3は、その外周に磁気ディスク等のディスクDを一枚または複数枚保持する。ステータコイル4aに通電すると、ステータコイル4aとロータマグネット4bとの間に発生する電磁力でロータマグネット4bが回転し、それに伴ってディスクハブ3、および軸部材2が一体となって回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 according to a first embodiment of the present invention. This spindle motor for information equipment is used in a disk drive device such as an HDD, and includes a dynamic pressure bearing device 1, a rotor (disk hub) 3 attached to a shaft member 2 of the dynamic pressure bearing device 1, and a radius, for example. A stator coil 4a and a rotor magnet 4b that are opposed to each other with a gap in the direction, and a bracket 5 are provided. The stator coil 4 a is attached to the outer periphery of the bracket 5, and the rotor magnet 4 b is attached to the inner periphery of the disk hub 3. The disk hub 3 holds one or more disks D such as magnetic disks on the outer periphery thereof. When the stator coil 4a is energized, the rotor magnet 4b is rotated by an electromagnetic force generated between the stator coil 4a and the rotor magnet 4b, and the disk hub 3 and the shaft member 2 are rotated together therewith.

図2に、上記スピンドルモータで使用される動圧軸受装置1を示す。この動圧軸受装置1は、軸部材2、及び軸部材2から外径へ突出して設けられたフランジ部としての第1シール部9および第2シール部10と、内周に軸部材2を挿入した軸受部材6とを主要構成部品として構成される。図2に示す実施形態では、軸受部材6はハウジング7と、スリーブ部8とで別体に構成されている。なお、以下では、説明の便宜上、ハウジング7の開口部から軸部材2の端部が突出している側を上側、その軸方向反対側を下側として説明を進める。   FIG. 2 shows a fluid dynamic bearing device 1 used in the spindle motor. The hydrodynamic bearing device 1 includes a shaft member 2, a first seal portion 9 and a second seal portion 10 as flange portions provided so as to protrude from the shaft member 2 to the outer diameter, and the shaft member 2 inserted on the inner periphery. The bearing member 6 is configured as a main component. In the embodiment shown in FIG. 2, the bearing member 6 is composed of a housing 7 and a sleeve portion 8 separately. In the following description, for convenience of description, the description will be given with the side where the end of the shaft member 2 protrudes from the opening of the housing 7 as the upper side and the opposite side in the axial direction as the lower side.

スリーブ部8の内周面8aと軸部材2の外周面2aとの間に第1ラジアル軸受部R1と第2ラジアル軸受部R2とが軸方向に離隔して設けられる。また、スリーブ部8の上側端面8bと第1シール部9の下側端面9bとの間に第1スラスト軸受部T1が設けられ、スリーブ部8の下側端面8cと第2シール部10の上側端面10bとの間に第2スラスト軸受部T2が設けられる。   Between the inner peripheral surface 8a of the sleeve portion 8 and the outer peripheral surface 2a of the shaft member 2, the first radial bearing portion R1 and the second radial bearing portion R2 are provided apart from each other in the axial direction. A first thrust bearing portion T1 is provided between the upper end surface 8b of the sleeve portion 8 and the lower end surface 9b of the first seal portion 9, and the lower end surface 8c of the sleeve portion 8 and the upper side of the second seal portion 10 are provided. A second thrust bearing portion T2 is provided between the end surface 10b.

軸部材2は、ステンレス鋼等の金属材料で形成され、あるいは、金属と樹脂のハイブリッド構造とされる。軸部材2は全体として概ね同径の軸状をなし、その中間部分には、他所よりも僅かに小径に形成した逃げ部2bが形成されると共に、第1および第2シール部9、10の固定位置には、凹部、例えば円周溝2cが形成されている。   The shaft member 2 is made of a metal material such as stainless steel, or has a hybrid structure of metal and resin. The shaft member 2 as a whole has a shaft shape with substantially the same diameter, and an intermediate portion is provided with a relief portion 2b formed with a slightly smaller diameter than the other portions, and the first and second seal portions 9, 10 A recessed portion, for example, a circumferential groove 2c is formed at the fixed position.

ハウジング7は、例えば、樹脂材料を射出成形して円筒状に形成され、その内周面7aは、同径でストレートな円筒面となっている。図1に示すブラケット5の内周面にハウジング7の外周面が圧入、接着、圧入接着等の手段で固定される。   The housing 7 is formed in a cylindrical shape by, for example, injection molding of a resin material, and the inner peripheral surface 7a is a straight cylindrical surface having the same diameter. The outer peripheral surface of the housing 7 is fixed to the inner peripheral surface of the bracket 5 shown in FIG.

ハウジング7を形成する樹脂は主に熱可塑性樹脂であり、例えば、非晶性樹脂として、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSF)、ポリエーテルイミド(PEI)等、結晶性樹脂として、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等を用いることができる。また、上記の樹脂に充填する充填材の種類も特に限定されないが、例えば、充填材として、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、カーボンファイバー、カーボンブラック、黒鉛、カーボンナノマテリアル、金属粉末等の繊維状又は粉末状の導電性充填材を用いることができる。これらの充填材は、単独で用い、あるいは、二種以上を混合して使用しても良い。この実施形態では、ハウジング7を形成する材料として、結晶性樹脂としての液晶ポリマー(LCP)に、導電性充填材としてのカーボンファイバー又はカーボンナノチューブを2〜8wt%配合した樹脂材料を用いている。   The resin forming the housing 7 is mainly a thermoplastic resin. For example, as an amorphous resin, polysulfone (PSF), polyethersulfone (PES), polyphenylsulfone (PPSF), polyetherimide (PEI) As the crystalline resin, liquid crystal polymer (LCP), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), or the like can be used. The type of filler to be filled in the resin is not particularly limited. For example, as the filler, fibrous filler such as glass fiber, whisker-like filler such as potassium titanate, and scaly filler such as mica. A fibrous or powdery conductive filler such as carbon fiber, carbon black, graphite, carbon nanomaterial, or metal powder can be used. These fillers may be used alone or in combination of two or more. In this embodiment, as a material for forming the housing 7, a resin material in which 2 to 8 wt% of a carbon fiber or a carbon nanotube as a conductive filler is mixed with a liquid crystal polymer (LCP) as a crystalline resin is used.

この他、黄銅やアルミニウム合金等の軟質金属材料、その他の金属材料でハウジング7を形成することもできる。   In addition, the housing 7 can also be formed of a soft metal material such as brass or an aluminum alloy, or other metal materials.

スリーブ部8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体で円筒状に形成され、ハウジング7の内周面7aの所定位置に圧入、接着、あるいは圧入接着等の手段で固定される。なお、スリーブ部8は、焼結金属以外にも銅合金等のメタル材料で形成することもできる。   The sleeve portion 8 is formed in a cylindrical shape, for example, a porous body made of sintered metal, particularly a sintered metal porous body mainly composed of copper, and is press-fitted into a predetermined position on the inner peripheral surface 7a of the housing 7. It is fixed by means such as adhesion or press-fit adhesion. In addition, the sleeve part 8 can also be formed with metal materials, such as a copper alloy, besides a sintered metal.

スリーブ部8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面となる上下2つの領域が軸方向に離隔して設けられ、該2つの領域には、例えば図3(a)に示すようなヘリングボーン形状の動圧溝8a1、8a2がそれぞれ形成される。尚、動圧溝8a1、8a2は、図3(a)に示すように軸方向に離隔して形成する他、軸方向に連続して形成してもよい。あるいは、動圧溝8a1、8a2のうち何れか一方のみを形成してもよい。また、スリーブ部8の外周面8dの一箇所又は複数箇所には、軸方向溝8d1が形成される。   The inner peripheral surface 8a of the sleeve portion 8 is provided with two upper and lower regions that are radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2, and are separated in the axial direction. For example, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 as shown in FIG. 3A are formed. The dynamic pressure grooves 8a1 and 8a2 may be formed continuously in the axial direction in addition to being separated in the axial direction as shown in FIG. Alternatively, only one of the dynamic pressure grooves 8a1 and 8a2 may be formed. Further, an axial groove 8d1 is formed at one or a plurality of locations on the outer peripheral surface 8d of the sleeve portion 8.

スリーブ部8の上側端面8bには、第1スラスト軸受部T1のスラスト軸受面となる領域が設けられ、この領域には、例えば図3(b)に示すようなスパイラル形状の動圧溝8b1が形成される。また、スリーブ部8の下側端面8cには、第1スラスト軸受部T1のスラスト軸受面となる領域が設けられ、この領域には、例えば図3(c)に示すようなスパイラル形状の動圧溝8c1が形成される。   The upper end surface 8b of the sleeve portion 8 is provided with a region serving as a thrust bearing surface of the first thrust bearing portion T1, and in this region, for example, a spiral-shaped dynamic pressure groove 8b1 as shown in FIG. It is formed. The lower end surface 8c of the sleeve portion 8 is provided with a region serving as a thrust bearing surface of the first thrust bearing portion T1, and in this region, for example, a spiral-shaped dynamic pressure as shown in FIG. A groove 8c1 is formed.

第1シール部9および第2シール部10は、樹脂材料あるいは金属材料でリング状に形成される。   The first seal portion 9 and the second seal portion 10 are formed in a ring shape from a resin material or a metal material.

第1シール部9の外周面9aは、ハウジング7の上端開口部の内周面7aとの間に所定の容積をもった第1シール空間S1を形成すると共に、第2シール部10の外周面10aは、ハウジング7の下端開口部の内周面7aとの間に所定の容積をもった第2シール空間S2を形成する。この実施形態において、第1シール部9の外周面9aおよび第2シール部10の外周面10aは、それぞれ軸受装置の外部側に向かって漸次拡径したテーパ面状に形成される。そのため、両シール空間S1、S2は、互いに接近する方向に漸次縮小したテーパ形状を呈する。軸部材2の回転時、両シール空間S1、S2内の潤滑油は毛細管力による引き込み作用と、回転時の遠心力による引き込み作用とにより、シール空間が狭くなる方向に向けて引き込まれる。これにより、ハウジング7の内部からの潤滑油の漏れ出しが効果的に防止される。油漏れをより確実に防止するため、ハウジング7の上側端面7bと下側端面7c、第1シール部9の上側端面9c、および第2シール部10の下側端面10cにそれぞれ撥油剤の被膜を形成することもできる。   The outer peripheral surface 9a of the first seal portion 9 forms a first seal space S1 having a predetermined volume with the inner peripheral surface 7a of the upper end opening of the housing 7, and the outer peripheral surface of the second seal portion 10. 10 a forms a second seal space S <b> 2 having a predetermined volume with the inner peripheral surface 7 a of the lower end opening of the housing 7. In this embodiment, the outer peripheral surface 9a of the first seal portion 9 and the outer peripheral surface 10a of the second seal portion 10 are each formed into a tapered surface shape that gradually increases in diameter toward the outside of the bearing device. Therefore, both the seal spaces S1 and S2 have a tapered shape that is gradually reduced in the direction of approaching each other. When the shaft member 2 is rotated, the lubricating oil in both the seal spaces S1 and S2 is drawn in a direction in which the seal space is narrowed by a drawing action by a capillary force and a drawing action by a centrifugal force at the time of rotation. Thereby, the leakage of the lubricating oil from the inside of the housing 7 is effectively prevented. In order to prevent oil leakage more reliably, the upper end surface 7b and the lower end surface 7c of the housing 7, the upper end surface 9c of the first seal portion 9, and the lower end surface 10c of the second seal portion 10 are respectively coated with an oil repellent coating. It can also be formed.

第1および第2シール空間S1、S2は、ハウジング7の内部空間に充満された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有する。想定される温度変化の範囲内では、油面は常時両シール空間S1、S2内にある。これを実現するために、両シール空間S1、S2の容積の総和は、少なくとも内部空間に充満された潤滑油の温度変化に伴う容積変化量よりも大きく設定される。   The first and second seal spaces S <b> 1 and S <b> 2 have a buffer function that absorbs a volume change amount associated with a temperature change of the lubricating oil filled in the internal space of the housing 7. Within the assumed temperature change range, the oil level is always in both seal spaces S1, S2. In order to achieve this, the sum of the volumes of both the seal spaces S1, S2 is set to be larger than at least the volume change amount associated with the temperature change of the lubricating oil filled in the internal space.

以下、第1シール部9の軸部材2への固定方法を、図4を用いて説明する。   Hereinafter, a method of fixing the first seal portion 9 to the shaft member 2 will be described with reference to FIG.

第1シール部9の内周面9dには予め凹部が形成され、本実施形態では、図4(a)に示すような断面矩形の環状溝9d1が形成される。凹部の形状はこれに限らず、断面を半円形等に形成してもよい。あるいは、凹部を円周方向で離隔した複数箇所に設けてもよい。第1シール部9の内周面9dの径は、軸部材2の外径よりも僅かに大きく設定される。   A concave portion is formed in advance on the inner peripheral surface 9d of the first seal portion 9, and in this embodiment, an annular groove 9d1 having a rectangular cross section as shown in FIG. The shape of the recess is not limited to this, and the cross section may be formed in a semicircular shape. Or you may provide a recessed part in the several place spaced apart in the circumferential direction. The diameter of the inner peripheral surface 9 d of the first seal portion 9 is set slightly larger than the outer diameter of the shaft member 2.

まず、第1シール部9を軸部材2の上方から外挿し、第1シール部9の下側端面9bを固定冶具11の上側端面11aと当接させることにより、所定位置に配置する(図4(a)参照)。このとき、第1シール部9の内周面9dと軸部材2の外周面2aとの嵌合は隙間嵌めとなる。よって、例えば圧入する場合のように嵌合面が損傷したり、この損傷による摩耗粉がコンタミとして軸受内部に混入する恐れを回避できる。   First, the first seal portion 9 is extrapolated from above the shaft member 2, and the lower end surface 9b of the first seal portion 9 is brought into contact with the upper end surface 11a of the fixing jig 11 to be arranged at a predetermined position (FIG. 4). (See (a)). At this time, the fitting between the inner peripheral surface 9d of the first seal portion 9 and the outer peripheral surface 2a of the shaft member 2 is a clearance fit. Therefore, for example, it is possible to avoid a possibility that the fitting surface is damaged as in the case of press-fitting, or that wear powder due to this damage is mixed into the bearing as contamination.

次に、第1シール部9を固定冶具11で位置決めした状態で、第1シール部9の上側端面9cの内径端を、加締め冶具12で上方から加締める(図4(b)参照)。この加締め冶具12は柱状に形成され、その下端部の内径側に球面部12aを有すると共に、下端部の外径側にテーパ面12bを有する。この加締めは、全周あるいは円周方向で略等間隔に離隔した複数箇所で行われる。この加締め冶具12の円弧部12aで、第1シール部9の上側端面9cの内径端を加締めることにより凹部9c1(被加締め部)を形成すると同時に、第1シール部9の内周面9dの上端部を塑性変形させて、軸部材2の外周面2aに圧着させる。このとき、加締めによる塑性変形が第1シール部9の内周面9dの環状溝9d1で吸収されるため、第1シール部9の上側端面9cの内径端を容易に塑性変形させることができる。また、加締めによる塑性変形を環状溝9d1付近に集中させることができるため、その他の部分、例えばスラスト軸受隙間に面する第1シール部9の下側端面9bが変形することを防止できる。尚、第1シール部9の内周面9dに設けられる環状溝9d1がなくても、問題なく加締めることができ、且つ加締めによる他の部分の変形も無視できる場合は、この環状溝9d1を省略してもよい。   Next, in a state where the first seal portion 9 is positioned by the fixing jig 11, the inner diameter end of the upper end surface 9c of the first seal portion 9 is caulked from above by the caulking jig 12 (see FIG. 4B). The caulking jig 12 is formed in a columnar shape, and has a spherical surface portion 12a on the inner diameter side of the lower end portion thereof and a tapered surface 12b on the outer diameter side of the lower end portion thereof. This caulking is performed at a plurality of locations separated at substantially equal intervals in the entire circumference or in the circumferential direction. A concave portion 9c1 (a portion to be crimped) is formed by caulking the inner diameter end of the upper end surface 9c of the first seal portion 9 with the arc portion 12a of the caulking jig 12, and at the same time, the inner peripheral surface of the first seal portion 9 The upper end portion of 9d is plastically deformed and crimped to the outer peripheral surface 2a of the shaft member 2. At this time, since plastic deformation due to caulking is absorbed by the annular groove 9d1 of the inner peripheral surface 9d of the first seal portion 9, the inner diameter end of the upper end surface 9c of the first seal portion 9 can be easily plastically deformed. . Further, since plastic deformation due to caulking can be concentrated in the vicinity of the annular groove 9d1, it is possible to prevent other parts, for example, the lower end surface 9b of the first seal portion 9 facing the thrust bearing gap from being deformed. In addition, even if there is no annular groove 9d1 provided on the inner peripheral surface 9d of the first seal portion 9, the annular groove 9d1 can be caulked without any problem and the deformation of other parts due to the caulking can be ignored. May be omitted.

このように、第1シール部9を加締めることにより、軸部材2の外周面2aの所定位置に第1シール部9が仮固定されるため、加締めた後は固定冶具11が不要となる。尚、第1シール部9の上側端面9cの内径端を全周に亘って加締める場合、加締め冶具12を環状に形成してもよい。 Thus, since the 1st seal part 9 is temporarily fixed to the predetermined position of the outer peripheral surface 2a of the shaft member 2 by crimping the 1st seal part 9, the fixing jig 11 becomes unnecessary after crimping. . In addition, when caulking the inner diameter end of the upper end surface 9c of the first seal portion 9 over the entire circumference, the caulking jig 12 may be formed in an annular shape.

第1シール部9と軸部材2とを仮固定した後、軸部材2の外周面2aと第1シール部9の内周面9dとの間に、注入針13で接着剤を注入する(図4(c)参照)。このとき、両部材の嵌合面が隙間嵌めであるため、接着剤を容易に介在させることができる。また、上記の加締めにより第1シール部9の上側端面9cの内径端に形成された凹部9c1を接着剤の注入口とすることができるため、容易に注入することができる。また、シール部9に形成された凹部9c1及び環状溝9d1が接着剤溜りとして機能することにより、第1シール部9と軸部材2との固着力が高められる。さらに、接着剤を注入して両部材の嵌合面の間の隙間を密閉することにより、軸受内部に充満される潤滑剤がこの隙間から漏れ出すことを防止できる。   After temporarily fixing the first seal portion 9 and the shaft member 2, an adhesive is injected with an injection needle 13 between the outer peripheral surface 2a of the shaft member 2 and the inner peripheral surface 9d of the first seal portion 9 (see FIG. 4 (c)). At this time, since the fitting surface of both members is a gap fitting, an adhesive can be easily interposed. Moreover, since the recessed part 9c1 formed in the inner diameter end of the upper end surface 9c of the first seal portion 9 by the above-described caulking can be used as an adhesive injection port, it can be easily injected. Further, the concave portion 9c1 and the annular groove 9d1 formed in the seal portion 9 function as an adhesive reservoir, whereby the adhesion force between the first seal portion 9 and the shaft member 2 is enhanced. Furthermore, by sealing the gap between the fitting surfaces of both members by injecting the adhesive, it is possible to prevent the lubricant filled in the bearing from leaking out of the gap.

ところで、本実施形態では、図2に示すように、第1シール部9の上側端面9cが大気に開放すると共に、下側端面9bがスラスト軸受隙間に面する。もし、スラスト軸受隙間に面する下側端面9bを加締めると、スラスト軸受隙間の隙間幅の精度が低下し、スラスト方向の支持力が低下する恐れがある。上記のように、大気開放側となる上側端面9cを加締めることにより、軸受性能を低下させる恐れを防止することができる。   By the way, in this embodiment, as shown in FIG. 2, while the upper end surface 9c of the 1st seal | sticker part 9 is open | released to air | atmosphere, the lower end surface 9b faces a thrust bearing clearance gap. If the lower end face 9b facing the thrust bearing gap is caulked, the accuracy of the gap width of the thrust bearing gap may be reduced, and the supporting force in the thrust direction may be reduced. As described above, by caulking the upper end surface 9c on the atmosphere opening side, it is possible to prevent the possibility of lowering the bearing performance.

尚、本実施形態では、第2シール部10の軸部材2への固定は、接着、圧入、あるいは溶接等の手段により固定される。例えば第2シール部10を圧入で固定する場合は、上記のように両部材の嵌合面が損傷する恐れがある。しかし、第2シール部10は軸部材2の下端部に固定されるため、圧入ストローク(圧入状態で押し込まれる距離)は比較的短く、両部材はそれほど激しく損傷しない。もちろん、第2シール部10を、第1シール部9と同じ方法で軸部材2に固定してもよい。   In the present embodiment, the second seal portion 10 is fixed to the shaft member 2 by means such as adhesion, press fitting, or welding. For example, when the second seal portion 10 is fixed by press fitting, the fitting surfaces of both members may be damaged as described above. However, since the second seal portion 10 is fixed to the lower end portion of the shaft member 2, the press-fitting stroke (the distance to be pushed in in the press-fitted state) is relatively short, and both members are not damaged so severely. Of course, the second seal portion 10 may be fixed to the shaft member 2 in the same manner as the first seal portion 9.

第1、第2シール部9、10の軸部材2への固定は、これらのうち何れか一方のシール部を軸部材2に固定した後、スリーブ部8を軸部材2に外装し、このスリーブ部8を挟んで他方のシール部を固定する。その後、この組み付け体をハウジング7の内周面7aに挿入し、スリーブ部8の外周面8dをハウジング7の内周面7aに固定する。スリーブ部8のハウジング7に対する固定は、接着、圧入、接着と圧入の併用、溶着(超音波溶着)等の適宜の手段によって行うことができる。このようにして組立が完了するとシール部9、10で密閉されたハウジング7の内部空間に、スリーブ部8の内部気孔も含め、潤滑流体として例えば潤滑油を充満させる。   The first and second seal portions 9 and 10 are fixed to the shaft member 2 by fixing either one of the seal portions to the shaft member 2 and then mounting the sleeve portion 8 on the shaft member 2. The other seal part is fixed with the part 8 interposed therebetween. Thereafter, this assembly is inserted into the inner peripheral surface 7 a of the housing 7, and the outer peripheral surface 8 d of the sleeve portion 8 is fixed to the inner peripheral surface 7 a of the housing 7. The sleeve portion 8 can be fixed to the housing 7 by appropriate means such as adhesion, press-fitting, combined use of adhesion and press-fitting, and welding (ultrasonic welding). When the assembly is completed in this way, the internal space of the housing 7 sealed by the seal portions 9 and 10 is filled with, for example, lubricating oil as a lubricating fluid including the internal pores of the sleeve portion 8.

軸部材2の回転時には、スリーブ部8の内周面8aのラジアル軸受面となる領域(上下2箇所の領域)は、それぞれ軸部材2の外周面2aとラジアル軸受隙間を介して対向する。また、スリーブ部8の上側端面8bのスラスト軸受面となる領域が第1シール部9の下側端面9bと所定のスラスト軸受隙間を介して対向し、スリーブ部8の下側端面8cのスラスト軸受面となる領域は、第2シール部10の上側端面10bと所定のスラスト軸受隙間を介して対向する。そして、軸部の回転に伴い、上記ラジアル軸受隙間に潤滑油の動圧が発生し、軸部材2がラジアル軸受隙間内に形成される潤滑油の油膜によってラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが構成される。同時に、上記スラスト軸受隙間に潤滑油の動圧が発生し、軸部材2およびシール部9、10が上記スラスト軸受隙間内に形成される潤滑油の油膜によってスラスト方向に回転自在に非接触支持される。これにより、軸部材2をスラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが構成される。   When the shaft member 2 rotates, the regions (two upper and lower regions) of the inner peripheral surface 8a of the sleeve portion 8 that are opposed to the outer peripheral surface 2a of the shaft member 2 are opposed to each other via a radial bearing gap. Further, a region serving as a thrust bearing surface of the upper end surface 8b of the sleeve portion 8 faces the lower end surface 9b of the first seal portion 9 via a predetermined thrust bearing gap, and the thrust bearing of the lower end surface 8c of the sleeve portion 8 is formed. The surface area is opposed to the upper end surface 10b of the second seal portion 10 via a predetermined thrust bearing gap. With the rotation of the shaft portion, the dynamic pressure of the lubricating oil is generated in the radial bearing gap, and the shaft member 2 is non-contactably supported in the radial direction by the lubricating oil film formed in the radial bearing gap. The Thus, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are configured. At the same time, the dynamic pressure of the lubricating oil is generated in the thrust bearing gap, and the shaft member 2 and the seal portions 9 and 10 are supported in a non-contact manner so as to be rotatable in the thrust direction by the lubricating oil film formed in the thrust bearing gap. The Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which non-contact-support the shaft member 2 rotatably in a thrust direction are comprised.

また、本実施形態では、スリーブ部8の外周面8dに形成された軸方向溝8d1により、第1スラスト軸受部T1のスラスト軸受隙間の外径端と、第2スラスト軸受部T2のスラスト軸受隙間の外径端とを連通している。これにより、軸受装置の内部に充満された潤滑油の圧力バランスを適正に保つことができるため、局所的な負圧の発生による軸受性能の低下を防止できる。尚、本実施形態では、ラジアル軸受部R1、R2の動圧発生部が、それぞれ軸方向中心に対して上下対称に形成されているが、これらの何れか又は双方を上下非対称形状とすると、ラジアル軸受隙間の潤滑油を強制的に流動させることができる。これによると、ラジアル軸受隙間、スラスト軸受隙間、及び軸方向溝8d1で潤滑油を循環させることができるため、軸受内部における負圧の発生をより効果的に防止できる。また、負圧の発生による問題が生じない場合は、軸方向溝8d1を省略し、スリーブ部8の外周面8dを円筒面とすることができる。   In the present embodiment, the axial groove 8d1 formed in the outer peripheral surface 8d of the sleeve portion 8 causes the outer diameter end of the thrust bearing clearance of the first thrust bearing portion T1 and the thrust bearing clearance of the second thrust bearing portion T2. Is communicated with the outer diameter end. Thereby, since the pressure balance of the lubricating oil filled in the bearing device can be properly maintained, it is possible to prevent a decrease in bearing performance due to the generation of a local negative pressure. In the present embodiment, the dynamic pressure generating portions of the radial bearing portions R1 and R2 are formed vertically symmetrical with respect to the center in the axial direction. The lubricating oil in the bearing gap can be forced to flow. According to this, since the lubricating oil can be circulated through the radial bearing gap, the thrust bearing gap, and the axial groove 8d1, generation of negative pressure inside the bearing can be more effectively prevented. Further, when the problem due to the generation of the negative pressure does not occur, the axial groove 8d1 can be omitted, and the outer peripheral surface 8d of the sleeve portion 8 can be a cylindrical surface.

本発明は、上記の実施形態に限られない。以下、本発明の他の実施形態を示す。尚、以下の説明において、上記の実施形態と同様の構成、機能を有する部位には同じ符合を付し、説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, other embodiments of the present invention will be described. In the following description, parts having the same configuration and function as those of the above embodiment are given the same reference numerals, and the description thereof is omitted.

図5に、本発明の第2の実施形態に係る動圧軸受装置1を示す。この動圧軸受装置1では、ハウジング7の下側の開口部が蓋部材14で閉塞されると共に、軸部材2の下端に鍔状部2dが設けられる。蓋部材14は、金属材料あるいは樹脂材料で略円盤状に形成される。蓋部材14は、ハウジング7の大径内周面7dに挿入されると共に、大径内周面7dの上端から内側へ延びた肩面7eに当接して固定される。鍔状部2dの上側端面2d1とスリーブ部8の下側端面8cとの間には、第2のスラスト軸受部T2が形成される。   FIG. 5 shows a fluid dynamic bearing device 1 according to a second embodiment of the present invention. In the hydrodynamic bearing device 1, the lower opening of the housing 7 is closed by the lid member 14, and the hook-shaped portion 2 d is provided at the lower end of the shaft member 2. The lid member 14 is formed in a substantially disc shape from a metal material or a resin material. The lid member 14 is inserted into the large-diameter inner peripheral surface 7d of the housing 7, and is fixed in contact with the shoulder surface 7e extending inward from the upper end of the large-diameter inner peripheral surface 7d. A second thrust bearing portion T2 is formed between the upper end surface 2d1 of the flanged portion 2d and the lower end surface 8c of the sleeve portion 8.

図6に、本発明の第3の実施形態に係る動圧軸受装置1を示す。この動圧軸受装置1では、軸部材2の外周面2aの上端部に、フランジ部としてのディスクハブ3が固定される。ディスクハブ3は、ハウジング7の上側の開口部を覆う円盤部3aと、円盤部3aの外径端から下方へ延びた円筒部3bと、円筒部3bから外径へ突出した鍔部3cと、鍔部3cの上側端面に設けられたディスク搭載面3dとを備える。円盤部3aの下側端面3a1とハウジング7の上端面7bとの間には、第1のスラスト軸受部T1が形成される。ハウジング7の外周面上方には、上方へ向けて漸次拡径したテーパ面7fが設けられ、このテーパ面7fと円筒部3bの内周面3b1との間に、上方へ向けて隙間幅が漸次縮小したシール空間Sが形成される。円筒部3bの外周部には、ヨーク16を介してロータマグネット4bが取り付けられる。ハウジング7の外周面下方に設けられた円筒面7gは、ブラケット5の内周に固定される。   FIG. 6 shows a fluid dynamic bearing device 1 according to a third embodiment of the present invention. In this dynamic pressure bearing device 1, a disk hub 3 as a flange portion is fixed to the upper end portion of the outer peripheral surface 2 a of the shaft member 2. The disk hub 3 includes a disk portion 3a that covers the upper opening of the housing 7, a cylindrical portion 3b that extends downward from the outer diameter end of the disk portion 3a, and a flange portion 3c that protrudes from the cylindrical portion 3b to the outer diameter. And a disk mounting surface 3d provided on the upper end surface of the flange portion 3c. A first thrust bearing portion T1 is formed between the lower end surface 3a1 of the disk portion 3a and the upper end surface 7b of the housing 7. A tapered surface 7f that gradually increases in diameter upward is provided above the outer peripheral surface of the housing 7, and a gap width gradually increases upward between the tapered surface 7f and the inner peripheral surface 3b1 of the cylindrical portion 3b. A reduced seal space S is formed. A rotor magnet 4b is attached to the outer peripheral portion of the cylindrical portion 3b via a yoke 16. A cylindrical surface 7 g provided below the outer peripheral surface of the housing 7 is fixed to the inner periphery of the bracket 5.

ディスクハブ3と軸部材2との固定は次のようにして行われる。すなわち、円盤部3aの内周面3a3に予め環状溝3a30を設け、軸部材2の所定位置において円盤部3aの上側端面3a2の内径端を上方より加締めることにより、凹部3a20を形成すると共に、両部材を仮固定する。その後、凹部3a20から両部材の間の隙間に接着剤を注入し、両部材を固定する。   The disk hub 3 and the shaft member 2 are fixed as follows. That is, an annular groove 3a30 is provided in advance on the inner circumferential surface 3a3 of the disk portion 3a, and the inner diameter end of the upper end surface 3a2 of the disk portion 3a is caulked from above at a predetermined position of the shaft member 2, thereby forming the recess 3a20. Both members are temporarily fixed. Thereafter, an adhesive is injected into the gap between the two members from the recess 3a20 to fix the two members.

以上の実施形態では、フランジ部を加締めることにより、フランジ部と軸部材とを仮固定する例が示されているが、これに限らず、例えば軸部材を加締めることにより、両部材を仮固定してもよい。   In the above embodiment, an example in which the flange portion and the shaft member are temporarily fixed by caulking the flange portion is shown. However, the present invention is not limited thereto, and for example, both the members are temporarily secured by caulking the shaft member. It may be fixed.

また、以上の実施形態では、フランジ部を加締めた後に、両部材の間に接着剤を注入する場合を示しているが、これとは逆に、両部材の間に接着剤を介在させてから、フランジ部を加締めることもできる。   In the above embodiment, the case where the adhesive is injected between the two members after the flange portion has been crimped is shown. On the contrary, the adhesive is interposed between the two members. From the above, the flange portion can be crimped.

また、以上の実施形態では、ラジアル軸受部R1、R2を、ヘリングボーン形状の動圧溝8a1、8a2で潤滑油に動圧作用を発生させる構成を示しているが、これに限らず、例えばスパイラル形状の動圧溝や、ステップ軸受、あるいは多円弧軸受を形成してもよい。   In the above embodiment, the radial bearing portions R1 and R2 are configured to generate a dynamic pressure action on the lubricating oil by the herringbone-shaped dynamic pressure grooves 8a1 and 8a2. However, the present invention is not limited to this. A shaped dynamic pressure groove, a step bearing, or a multi-arc bearing may be formed.

また、スラスト軸受部T1、T2を、スパイラル形状の動圧溝8b1、8c1で潤滑油に動圧作用を発生させる構成を示しているが、これに限らず、例えばヘリングボーン形状の動圧溝や、ステップ軸受、あるいは波型軸受(ステップ軸受が波型形状になったもの)を形成してもよい。   In addition, the thrust bearing portions T1 and T2 are configured to generate a dynamic pressure action on the lubricating oil by the spiral-shaped dynamic pressure grooves 8b1 and 8c1, but the present invention is not limited thereto, and for example, a herringbone-shaped dynamic pressure groove or A step bearing or a corrugated bearing (a corrugated step bearing) may be formed.

さらに、上記の実施形態では、第1および第2ラジアル軸受部R1、R2の動圧溝8a1、8a2をスリーブ部8の内周面8aに形成する場合を例示したが、これをラジアル軸受隙間を介して対向する面、すなわち軸部材2の外周面2aに形成することもできる。さらに、第1および第2スラスト軸受部T1、T2の動圧溝8b1、8c1をスリーブ部の両端面8b、8c、あるいはハウジング7の上端面7bに形成する場合を例示したが、これらの面とスラスト軸受隙間を介して対向する面、すなわち第1シール部9の下側端面9bや第2シール部10の上側端面10b、鍔状部2dの上側端面2d1、あるいはディスクハブ3の円盤部3aの下側端面3a1に形成することもできる。   Furthermore, in the above embodiment, the case where the dynamic pressure grooves 8a1 and 8a2 of the first and second radial bearing portions R1 and R2 are formed in the inner peripheral surface 8a of the sleeve portion 8 is exemplified. It can also form in the surface which opposes, ie, the outer peripheral surface 2a of the shaft member 2. FIG. Further, the case where the dynamic pressure grooves 8b1 and 8c1 of the first and second thrust bearing portions T1 and T2 are formed on both end surfaces 8b and 8c of the sleeve portion or the upper end surface 7b of the housing 7 is illustrated. The surface facing through the thrust bearing gap, that is, the lower end surface 9b of the first seal portion 9, the upper end surface 10b of the second seal portion 10, the upper end surface 2d1 of the bowl-shaped portion 2d, or the disk portion 3a of the disc hub 3 It can also be formed on the lower end surface 3a1.

また、上記の実施形態では、動圧軸受装置1の内部空間に充満される潤滑流体として潤滑油が使用されているが、これに限らず、例えば空気等の気体や、潤滑グリース、磁性流体等を使用することもできる。   In the above embodiment, the lubricating oil is used as the lubricating fluid that fills the internal space of the hydrodynamic bearing device 1. However, the present invention is not limited to this. For example, a gas such as air, lubricating grease, magnetic fluid, etc. Can also be used.

また、本発明の動圧軸受装置は、上記のようにHDD等のディスク駆動装置に用いられるスピンドルモータに限らず、光ディスクの光磁気ディスク駆動用のスピンドルモータ等、高速回転下で使用される情報機器用の小型モータ、レーザビームプリンタのポリゴンスキャナモータ等における回転軸支持用、あるいは電気機器の冷却ファン用のファンモータとしても好適に使用することができる。   Further, the hydrodynamic bearing device of the present invention is not limited to the spindle motor used in the disk drive device such as the HDD as described above, but is used for information used under high-speed rotation, such as a spindle motor for driving a magneto-optical disk of an optical disk. It can also be suitably used as a fan motor for rotating shaft support in a small motor for equipment, a polygon scanner motor of a laser beam printer, or a cooling fan for electrical equipment.

動圧軸受装置1を組み込んだスピンドルモータを示す断面図である。It is sectional drawing which shows the spindle motor incorporating the dynamic pressure bearing apparatus. 本発明の第1の実施形態に係る動圧軸受装置1を示す断面図である。1 is a cross-sectional view showing a fluid dynamic bearing device 1 according to a first embodiment of the present invention. スリーブ部8の(a)軸方向断面図、(b)上面図、及び(c)下面図である。(A) Axial direction sectional view of sleeve part 8, (b) Top view, (c) Bottom view. 第1シール部9と軸部材2との固定工程を示す断面図である。FIG. 6 is a cross-sectional view showing a fixing process between the first seal portion 9 and the shaft member 2. 本発明の第2の実施形態に係る動圧軸受装置1を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus 1 which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る動圧軸受装置1を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus 1 which concerns on the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
6 軸受部材
7 ハウジング
8 スリーブ部
9 第1シール部(フランジ部)
9c1 凹部(被加締め部)
9d1 環状溝(凹部)
10 第2シール部
11 固定冶具
12 加締め冶具
13 注入針
R1、R2 ラジアル軸受部
S1、S2 シール空間
T1、T2 スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 6 Bearing member 7 Housing 8 Sleeve part 9 1st seal part (flange part)
9c1 Concave part (Casting part)
9d1 annular groove (concave)
DESCRIPTION OF SYMBOLS 10 2nd seal part 11 Fixing jig 12 Clamping jig 13 Injection needle R1, R2 Radial bearing part S1, S2 Seal space T1, T2 Thrust bearing part

Claims (4)

軸部材と、軸部材の外周面に固定されたフランジ部と、軸部材の外周面に面するラジアル軸受隙間に生じる潤滑膜で軸部材をラジアル方向に支持するラジアル軸受部と、スラスト軸受隙間に生じる潤滑膜で軸部材をスラスト方向に支持するスラスト軸受部とを備えた流体軸受装置において、
軸部材の外周面にフランジ部の内周面を嵌合し、両部材を加締めと接着とで結合し、被加締め部の塑性変形を、予めフランジ部の内周面に形成した凹部で吸収した流体軸受装置。
A shaft member, a flange portion fixed to the outer peripheral surface of the shaft member, a radial bearing portion that supports the shaft member in the radial direction with a lubricating film generated in a radial bearing gap facing the outer peripheral surface of the shaft member, and a thrust bearing clearance In a hydrodynamic bearing device including a thrust bearing portion that supports a shaft member in a thrust direction with a generated lubricating film,
The inner peripheral surface of the flange portion is fitted to the outer peripheral surface of the shaft member, both the members are joined by caulking and bonding, and the plastic deformation of the to-be-clamped portion is a recess formed in advance on the inner peripheral surface of the flange portion. Absorbed hydrodynamic bearing device.
被加締め部をフランジ部の内径端に設けた請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a portion to be crimped is provided at an inner diameter end of the flange portion. 前記加締めによる塑性変形で接着剤溜りを形成した請求項1又は2記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein an adhesive reservoir is formed by plastic deformation by the caulking. フランジ部の大気開放側の端面に被加締め部を設けた請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a crimped portion is provided on an end surface of the flange portion on the air release side.
JP2006182315A 2006-06-30 2006-06-30 Hydrodynamic bearing device Expired - Fee Related JP4754418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006182315A JP4754418B2 (en) 2006-06-30 2006-06-30 Hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006182315A JP4754418B2 (en) 2006-06-30 2006-06-30 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2008008472A JP2008008472A (en) 2008-01-17
JP4754418B2 true JP4754418B2 (en) 2011-08-24

Family

ID=39066863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006182315A Expired - Fee Related JP4754418B2 (en) 2006-06-30 2006-06-30 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4754418B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5838734B2 (en) * 2010-12-27 2016-01-06 日本電産株式会社 Spindle motor, disk drive device, and spindle motor manufacturing method
US9190880B2 (en) 2010-12-27 2015-11-17 Nidec Corporation Spindle motor, and disk drive apparatus including the spindle motor
CN103683631A (en) * 2012-09-25 2014-03-26 日本电产株式会社 Spindle motor and disk drive apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4033029B2 (en) * 2003-04-15 2008-01-16 松下電器産業株式会社 Processing method of thrust dynamic pressure bearing device
JP4754794B2 (en) * 2003-09-12 2011-08-24 ミネベア株式会社 Fluid bearing unit, spindle motor having the fluid bearing unit, and recording disk drive
JP2005321089A (en) * 2004-04-09 2005-11-17 Ntn Corp Dynamic pressure bearing device
JP2006136180A (en) * 2004-11-09 2006-05-25 Matsushita Electric Ind Co Ltd Spindle motor

Also Published As

Publication number Publication date
JP2008008472A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP5274820B2 (en) Hydrodynamic bearing device
JP2005321089A (en) Dynamic pressure bearing device
JP4738868B2 (en) Hydrodynamic bearing device
JP5318344B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP4916673B2 (en) Hydrodynamic bearing device
JP4762757B2 (en) Hydrodynamic bearing device
JP2005282779A (en) Fluid bearing device
JP2005090653A (en) Fluid bearing device
JP4754418B2 (en) Hydrodynamic bearing device
JP2007051717A (en) Manufacturing method of dynamic pressure bearing device
JP5133131B2 (en) Hydrodynamic bearing device
US8197141B2 (en) Fluid dynamic bearing device
JP4855117B2 (en) Hydrodynamic bearing device
JP2007071312A (en) Dynamic pressure bearing device
JP4828908B2 (en) Hydrodynamic bearing device
JP2008075687A (en) Fluid bearing device
JP5101122B2 (en) Hydrodynamic bearing device
JP5122205B2 (en) Method for assembling hydrodynamic bearing device
JP2008069835A (en) Dynamic pressure bearing device
JP2006300178A (en) Fluid bearing device
JP4937524B2 (en) Hydrodynamic bearing device
JP2008064123A (en) Fluid bearing device, and its manufacturing method
JP2008128446A (en) Fluid bearing device
JP2006200584A (en) Dynamic pressure bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4754418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees