JP2000291648A - Dynamic pressure-type bearing unit - Google Patents

Dynamic pressure-type bearing unit

Info

Publication number
JP2000291648A
JP2000291648A JP11097919A JP9791999A JP2000291648A JP 2000291648 A JP2000291648 A JP 2000291648A JP 11097919 A JP11097919 A JP 11097919A JP 9791999 A JP9791999 A JP 9791999A JP 2000291648 A JP2000291648 A JP 2000291648A
Authority
JP
Japan
Prior art keywords
bearing
thrust
dynamic pressure
shaft
shaft member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11097919A
Other languages
Japanese (ja)
Other versions
JP3774080B2 (en
JP2000291648A5 (en
Inventor
Tsuguto Nakaseki
嗣人 中関
Kazuo Okamura
一男 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP09791999A priority Critical patent/JP3774080B2/en
Priority to US09/539,617 priority patent/US6390681B1/en
Priority to KR1020000017652A priority patent/KR100696238B1/en
Publication of JP2000291648A publication Critical patent/JP2000291648A/en
Publication of JP2000291648A5 publication Critical patent/JP2000291648A5/ja
Application granted granted Critical
Publication of JP3774080B2 publication Critical patent/JP3774080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the accuracy (perpendicularity) between a shaft and a flange part. SOLUTION: In a dynamic pressure-type bearing unit comprising a shaft member 2 consisting of a shaft 2a and a flange part 2b, a radial bearing part 10 radially supporting the shaft member 2, and a thrust bearing part 11 for supporting the flange part 2b of the shaft member 2 in the thrust direction, and capable of supporting the shaft member 2 by the radial bearing part 10 and the thrust bearing part 11 by their dynamic pressure action in a non-contact state, the shaft 2a and the flange part 2b are integrated. On this occasion, a dynamic pressure groove of the thrust bearing part 11 is formed on an upper surface of a thrust supporting part 13 opposite to an end surface of a bearing 7 and the flange part 2b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、動圧型軸受ユニッ
トに関する。この軸受ユニットは、特に情報機器、例え
ばHDD、FDD等の磁気ディスク装置、CD−RO
M、DVD−ROM等の光ディスク装置、MD、MO等
の光磁気ディスク装置などのスピンドルモータ、あるい
はレーザビームプリンタ(LBP)のポリゴンスキャナ
モータなどのスピンドル支持用として好適なものであ
る。
The present invention relates to a dynamic pressure type bearing unit. This bearing unit is used especially for information equipment, for example, a magnetic disk device such as HDD and FDD, a CD-RO
It is suitable for supporting a spindle motor such as an optical disk device such as an M or DVD-ROM, a magneto-optical disk device such as an MD or MO, or a spindle scanner motor such as a laser beam printer (LBP) polygon scanner motor.

【0002】[0002]

【従来の技術】上記各種情報機器のスピンドルモータに
は、高回転精度の他、高速化、低コスト化、低騒音化な
どが求められている。これらの要求性能を決定づける構
成要素の一つに当該モータのスピンドルを支持する軸受
があり、近年では、この種の軸受として、上記要求性能
に優れた特性を有する動圧型軸受の使用が検討され、あ
るいは実際に使用されている。
2. Description of the Related Art Spindle motors for various information devices are required to have high rotational accuracy, high speed, low cost, low noise, and the like. One of the components that determine these required performances is a bearing that supports the spindle of the motor.In recent years, as this type of bearing, the use of a dynamic pressure bearing having characteristics excellent in the required performance has been studied. Or they are actually used.

【0003】図5はこの種のスピンドルモータの一例
で、軸受ユニット21で回転自在に支持された軸部材22
(軸22aと、軸22aへの装着によりフランジ部となるス
ラスト円盤22bとで構成される)を、軸受部材27に固定
したモータステータ4と、軸部材22に装着したモータロ
ータ5との間に生じる励磁力で回転駆動する構造であ
る。軸受ユニット21には、軸部材22をラジアル方向で支
持するラジアル軸受部30とスラスト円盤22bをスラスト
方向で支持するスラスト軸受部31とが設けられ、これら
の軸受部30、31は何れも軸受面に動圧発生用の溝(動圧
溝)を有する動圧型軸受とされる。ラジアル軸受部30の
動圧溝は、軸受部材27の内周面に形成され、スラスト軸
受部31の動圧溝は、軸部材22の下端に固定したスラスト
円盤22bの両端面にそれぞれ形成される。軸受部材27の
底部には、スラスト円盤22bの厚さにスラスト軸受隙間
の幅(t=10〜20μm程度)分を加算した段差が設
けられ、この段差部分にバックメタル33を組み込むこと
によって、スラスト円盤22bの軸方向両側に上記所定幅
のスラスト軸受隙間Cs1、Cs2が形成される(t=Cs1
+Cs2)。
FIG. 5 shows an example of this type of spindle motor. A shaft member 22 rotatably supported by a bearing unit 21 is shown in FIG.
(Consisting of a shaft 22a and a thrust disk 22b that becomes a flange when mounted on the shaft 22a) is generated between the motor stator 4 fixed to the bearing member 27 and the motor rotor 5 mounted on the shaft member 22. This is a structure that is driven to rotate by an exciting force. The bearing unit 21 is provided with a radial bearing portion 30 for supporting the shaft member 22 in the radial direction and a thrust bearing portion 31 for supporting the thrust disk 22b in the thrust direction. A dynamic pressure bearing having a groove for generating dynamic pressure (dynamic pressure groove). The dynamic pressure grooves of the radial bearing portion 30 are formed on the inner peripheral surface of the bearing member 27, and the dynamic pressure grooves of the thrust bearing portion 31 are formed on both end surfaces of the thrust disk 22b fixed to the lower end of the shaft member 22. . At the bottom of the bearing member 27, a step is formed by adding the width of the thrust bearing gap (t = about 10 to 20 μm) to the thickness of the thrust disk 22b. Thrust bearing gaps Cs1 and Cs2 having the above-mentioned predetermined width are formed on both axial sides of the disk 22b.
+ Cs2).

【0004】この軸受ユニット21は、軸受部材27にスラ
スト円盤22bとバックメタル33とを組み込んだ後、軸受
部材27の内径部にその内径よりラジアル軸受隙間Cr分
だけ小径の軸22aを挿入し、さらに軸22a先端をスラス
ト円盤22bの内径部に圧入することによって組立てられ
る。
In this bearing unit 21, after a thrust disk 22b and a back metal 33 are assembled in a bearing member 27, a shaft 22a having a diameter smaller than the inner diameter by an amount corresponding to a radial bearing gap Cr is inserted into the inner diameter of the bearing member 27. Further, the shaft 22a is assembled by pressing the tip of the shaft 22a into the inner diameter of the thrust disk 22b.

【0005】[0005]

【発明が解決しようとする課題】上記軸受ユニット21に
おいて、軸22aとスラスト円盤22bとの直角度の精度が
悪いと、スラスト軸受隙間Cs1、Cs2内でスラスト円盤
22bがその対向面と接触し、軸受性能を悪化させるおそ
れがある。従って、組立工程では、軸22aをスラスト円
盤22bに精度よく圧入する必要があるが、圧入では必要
な精度(直角度2μm程度)を得ることが難しい。ま
た、直角度を測定しようとしても、軸22aやスラスト円
盤22bは既にユニット内に組み込まれているから、その
精度測定や確認は一般に困難であり、仮に可能であって
も煩雑な作業を要して組立コストの増大等を招く。
In the bearing unit 21, if the accuracy of the perpendicularity between the shaft 22a and the thrust disk 22b is poor, the thrust disk in the thrust bearing gaps Cs1, Cs2.
22b may come into contact with the facing surface and deteriorate the bearing performance. Therefore, in the assembling process, it is necessary to press-fit the shaft 22a into the thrust disk 22b with high accuracy. Further, even if it is attempted to measure the perpendicularity, since the shaft 22a and the thrust disk 22b are already incorporated in the unit, it is generally difficult to measure and confirm the accuracy of the shaft 22a and the thrust disk 22b. This leads to an increase in assembly costs.

【0006】そこで、本発明は、軸とスラスト円盤との
間の精度(直角度等)を低コストに向上させ得る動圧型
軸受ユニットの提供を目的とする。
Accordingly, an object of the present invention is to provide a dynamic pressure bearing unit which can improve the accuracy (squareness and the like) between a shaft and a thrust disk at low cost.

【0007】[0007]

【課題を解決するための手段】上記目的の達成のため、
本発明にかかる動圧型軸受ユニットでは、軸およびフラ
ンジ部からなる軸部材と、軸部材をラジアル方向で支持
するラジアル軸受部と、軸部材のフランジ部をスラスト
方向で支持するスラスト軸受部とを有し、ラジアル軸受
部およびスラスト軸受部がそれぞれ動圧作用で軸部材を
非接触支持するものにおいて、軸とフランジ部を一体に
構成した。
In order to achieve the above object,
The dynamic pressure bearing unit according to the present invention includes a shaft member including a shaft and a flange portion, a radial bearing portion that supports the shaft member in the radial direction, and a thrust bearing portion that supports the flange portion of the shaft member in the thrust direction. The radial bearing and the thrust bearing each support the shaft member in a non-contact manner by a dynamic pressure action, and the shaft and the flange are integrally formed.

【0008】このように軸部材を一体構造とすると、軸
とフランジ部間の直角度等の精度を容易に確保すること
ができ、しかも軸受ユニットへの組込み前に直角度が測
定可能となるので、精度測定やその確認作業も容易なも
のとなる。
[0008] When the shaft member is formed as an integral structure as described above, the accuracy of the perpendicularity between the shaft and the flange portion can be easily secured, and the perpendicularity can be measured before assembling into the bearing unit. In addition, accuracy measurement and its confirmation work are also easy.

【0009】この動圧型軸受ユニットのラジアル軸受
は、軸部材の外周側に軸受部材を配置し、軸部材の外周
面とこれに対向する軸受部材との間にラジアル軸受部の
ラジアル軸受隙間を形成することにより構成される。
In the radial bearing of this dynamic pressure type bearing unit, a bearing member is arranged on the outer peripheral side of a shaft member, and a radial bearing gap of a radial bearing portion is formed between the outer peripheral surface of the shaft member and the bearing member facing the shaft member. It is constituted by doing.

【0010】スラスト軸受部は、フランジ部の両側に2
つのスラスト軸受隙間を有するものとする。この場合、
フランジ部の一方の端面と、これに対向する軸受部材
(例えばその端面)とでスラスト軸受部の一方の(第一
の)スラスト軸受隙間を構成することができる。また、
フランジ部の他方の端面に対向させてスラスト支持部を
設け、このスラスト支持部とフランジ部の他方の端面と
で他方の(第二の)スラスト軸受隙間を構成することが
できる。
[0010] The thrust bearing portion is provided on both sides of the flange portion.
It has three thrust bearing gaps. in this case,
One (first) thrust bearing gap of the thrust bearing portion can be constituted by one end surface of the flange portion and a bearing member (for example, the end surface) opposed thereto. Also,
A thrust support portion is provided to face the other end surface of the flange portion, and the other (second) thrust bearing gap can be formed by the thrust support portion and the other end surface of the flange portion.

【0011】スラスト軸受部の動圧溝は、軸受部材およ
びスラスト支持部の何れか一方(スラスト負荷の方向に
より決まる)、または双方に設けるのが望ましい。
The dynamic pressure groove of the thrust bearing is desirably provided on one of the bearing member and the thrust support (determined by the direction of the thrust load) or on both.

【0012】軸受部材の一端側は、シール部材で密封し
ておくのがよい。
One end of the bearing member is preferably sealed with a seal member.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態を図1乃
至図4に基いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0014】図1は、本発明にかかる動圧型軸受ユニッ
ト1を備える情報機器用スピンドルモータの断面図で、
一例としてHDD(ハードディスクドライブ)スピンド
ルモータを示している。このスピンドルモータは、軸部
材2を回転自在に支持する軸受ユニット1と、軸部材2
に取付けられ、磁気ディスクDを一又は複数枚保持する
ディスクハブ3と、半径方向のギャップを介して対向さ
せたモータステータ4およびモータロータ5とを有す
る。ステータ4は、軸受ユニット1を保持するケーシン
グ9の円筒状外周部に取付けられ、ロータ5はディスク
ハブ3の内周面に取付けられている。ステータ4に通電
すると、ステータ4とロータ5との間の励磁力でロータ
5が回転し、ディスクハブ3および軸部材2が回転す
る。
FIG. 1 is a sectional view of a spindle motor for information equipment provided with a dynamic pressure type bearing unit 1 according to the present invention.
As an example, an HDD (hard disk drive) spindle motor is shown. The spindle motor includes a bearing unit 1 that rotatably supports a shaft member 2 and a shaft member 2.
And a disk hub 3 holding one or more magnetic disks D, and a motor stator 4 and a motor rotor 5 opposed to each other via a radial gap. The stator 4 is attached to a cylindrical outer peripheral portion of a casing 9 that holds the bearing unit 1, and the rotor 5 is attached to an inner peripheral surface of the disk hub 3. When the stator 4 is energized, the rotor 5 rotates by the exciting force between the stator 4 and the rotor 5, and the disk hub 3 and the shaft member 2 rotate.

【0015】図1および図2に示すように、軸受ユニッ
ト1は、軸部材2と、有底円筒状のいわゆる袋型ハウジ
ング6と、ハウジング6の内周面に固定された厚肉円筒
状の軸受部材7と、軸受部材7の一端側(ハウジング6
の開口側をいう)を密封するシールワッシャ等のシール
部材8とを主な構成要素とする。軸部材2は、軸2aと軸
2aの下端部に設けられたフランジ部2bとからなり、かつ
軸2aを軸受部材7の内周部に、フランジ部2bを軸受部材
7とハウジング6の底部との間に収容して配置される。
As shown in FIGS. 1 and 2, the bearing unit 1 includes a shaft member 2, a so-called bag-shaped housing 6 having a bottomed cylindrical shape, and a thick-walled cylindrical shape fixed to the inner peripheral surface of the housing 6. Bearing member 7 and one end of bearing member 7 (housing 6
And a sealing member 8 such as a seal washer for sealing the main member. The shaft member 2 includes a shaft 2a and a shaft.
And a flange 2b provided at the lower end of the housing 2a. The shaft 2a is arranged on the inner periphery of the bearing member 7, and the flange 2b is accommodated between the bearing member 7 and the bottom of the housing 6. .

【0016】軸受部材7は、例えば銅や真鍮等の軟質金
属等で形成される。軸受部材7の内周面には、動圧溝を
有するラジアル軸受面10aが形成され、これより軸部材
2と軸受部材7の相対回転時(本実施形態では軸部材2
の回転時)には、ラジアル軸受面10aと軸2aの外周面と
の間のラジアル軸受隙間Crに動圧が発生し、軸2aをラ
ジアル方向で非接触支持するラジアル軸受部10が構成さ
れる。なお、図中のラジアル軸受隙間Crの幅は誇張し
て描かれている(後述のスラスト軸受隙間Cs1、Cs2に
ついても同様)。
The bearing member 7 is made of, for example, a soft metal such as copper or brass. A radial bearing surface 10 a having a dynamic pressure groove is formed on the inner peripheral surface of the bearing member 7.
At the time of rotation), a dynamic pressure is generated in the radial bearing gap Cr between the radial bearing surface 10a and the outer peripheral surface of the shaft 2a, and the radial bearing portion 10 that supports the shaft 2a in a non-contact manner in the radial direction is configured. . The width of the radial bearing gap Cr in the figure is exaggerated (the same applies to thrust bearing gaps Cs1 and Cs2 described later).

【0017】軸受部材7は軟質金属等だけでなく、例え
ば焼結金属によっても成形することもできる。その場合
の動圧溝は圧縮成形、すなわち、コアロッドの外周面に
ラジアル軸受面10aの動圧溝形状(図3(a)参照)に
対応した凹凸形状の溝型を形成し、コアロッドの外周に
焼結金属を供給して焼結金属を圧迫し、焼結金属の内周
部に溝型形状に対応した動圧溝を転写することによっ
て、低コストにかつ高精度に成形することができる。こ
の場合、焼結金属の脱型は、圧迫力を解除することによ
る焼結金属のスプリングバックを利用して簡単に行え
る。このように軸受部材7の素材として焼結金属を用い
る場合、軸受部材7に潤滑油や潤滑グリースを含浸させ
た動圧型含油軸受として使用することができる。
The bearing member 7 can be formed not only of a soft metal or the like but also of, for example, a sintered metal. In this case, the dynamic pressure groove is compression-molded, that is, a concave / convex groove shape corresponding to the dynamic pressure groove shape of the radial bearing surface 10a (see FIG. 3A) is formed on the outer peripheral surface of the core rod. By supplying the sintered metal and pressing the sintered metal, and transferring the dynamic pressure groove corresponding to the groove shape to the inner peripheral portion of the sintered metal, the molding can be performed at low cost and with high precision. In this case, the release of the sintered metal can be easily performed using the springback of the sintered metal by releasing the pressing force. When a sintered metal is used as the material of the bearing member 7 as described above, the bearing member 7 can be used as a dynamic pressure type oil-impregnated bearing in which lubricating oil or lubricating grease is impregnated.

【0018】フランジ部2bの軸方向両側には、軸方向の
隙間であるスラスト軸受隙間Cs1、Cs2が設けられる。
スラスト軸受隙間Cs1は、フランジ部2bの上端面2b1と
これに対向する軸受部材7の端面との間に形成され、他
方のスラスト軸受隙間Cs2は、フランジ部2bの下端面2
b2と、これに対向するスラスト支持部13の上面との間に
形成される。本実施形態は、スラスト支持部13をハウジ
ング6と一体に形成し、かつスラスト支持部13をハウジ
ング6の他端開口を封口する底部とした構造を例示して
いる。一方のスラスト軸受隙間Cs1を臨む軸受部材7の
下端面、および他方のスラスト軸受隙間Cs2を臨むスラ
スト支持部13の上面には、それぞれ動圧溝を有するスラ
スト軸受面11a、11bが形成され、これより上記回転時
には、スラスト軸受隙間Cs1、Cs2に動圧が発生し、フ
ランジ部2bをスラスト方向両側から非接触支持するスラ
スト軸受部11が構成される。
Thrust bearing gaps Cs1 and Cs2, which are gaps in the axial direction, are provided on both axial sides of the flange portion 2b.
The thrust bearing gap Cs1 is formed between the upper end face 2b1 of the flange 2b and the end face of the bearing member 7 facing the same, and the other thrust bearing gap Cs2 is formed at the lower end face 2 of the flange 2b.
It is formed between b2 and the upper surface of the thrust support portion 13 opposed thereto. This embodiment exemplifies a structure in which the thrust support portion 13 is formed integrally with the housing 6 and the thrust support portion 13 is a bottom portion that seals the opening at the other end of the housing 6. Thrust bearing surfaces 11a and 11b each having a dynamic pressure groove are formed on the lower end surface of the bearing member 7 facing one thrust bearing clearance Cs1 and the upper surface of the thrust support portion 13 facing the other thrust bearing clearance Cs2. Further, at the time of the rotation, a dynamic pressure is generated in the thrust bearing gaps Cs1 and Cs2, and the thrust bearing portion 11 that non-contactly supports the flange portion 2b from both sides in the thrust direction is configured.

【0019】上記ラジアル軸受面10aおよびスラスト軸
受面11a、11bの動圧溝形状は任意に選択することがで
き、公知のへリングボーン型、スパイラル型、ステップ
型、多円弧型等の何れかを選択し、あるいはこれらを適
宜組合わせて使用することができる。図3は動圧溝形状
の一例としてへリングボーン型を示すもので、同図
(A)はラジアル軸受面10aを、同図(B)は、スラス
ト支持部13に設けられたスラスト軸受面11bを示す。図
示のように、ラジアル軸受面10aは、一方に傾斜する動
圧溝14が形成された第1の溝領域m1と、第1の溝領域m1
から軸方向に離隔し、他方に傾斜する動圧溝14が配列さ
れた第2の溝領域m2と、2つの溝領域間m1、m2間に位置
する環状の平滑部nとを備え、平滑部nと動圧溝13間の
背の部分15とは同一レベルにある。スラスト軸受面11b
の動圧溝16は、半径方向のほぼ中心部に屈曲部分を有す
るほぼV字状をなしている。
The shape of the hydrodynamic grooves of the radial bearing surface 10a and the thrust bearing surfaces 11a and 11b can be arbitrarily selected, and may be any of well-known herringbone type, spiral type, step type, multi-arc type and the like. They can be selected or used in appropriate combination. 3A and 3B show a herringbone type as an example of a dynamic pressure groove shape. FIG. 3A shows a radial bearing surface 10a, and FIG. 3B shows a thrust bearing surface 11b provided on a thrust support portion 13. Is shown. As shown in the figure, the radial bearing surface 10a has a first groove region m1 having a hydrodynamic groove 14 inclined on one side, and a first groove region m1.
A second groove region m2 in which the dynamic pressure grooves 14 inclined in the other direction are arranged in the axial direction, and an annular smooth portion n located between the two groove regions m1 and m2. n and the back part 15 between the dynamic pressure grooves 13 are at the same level. Thrust bearing surface 11b
The dynamic pressure groove 16 has a substantially V-shape having a bent portion substantially at the center in the radial direction.

【0020】上記軸受ユニット1は、ハウジング6内に
フランジ部2bを下にして軸部材2を挿入し、さらに所定
幅(10〜20μm程度)のスラスト軸受隙間Cs1、C
s2が形成されるようにハウジング6内周部の所定位置
に、軸受部材7を圧入あるいは接着することにより組立
てられる。そして、この軸受ユニット1をケーシング9
の円筒状内周部に圧入あるいは接着し、さらにロータ5
やディスクハブ3からなるアッセンブリ(モータロー
タ)を軸2aの上端に圧入することにより、図1に示すス
ピンドルモータが組立てられる。
In the bearing unit 1, the shaft member 2 is inserted into the housing 6 with the flange portion 2b facing down, and the thrust bearing gaps Cs1, Cs of a predetermined width (about 10 to 20 μm) are further inserted.
The bearing member 7 is assembled by press-fitting or bonding it to a predetermined position on the inner peripheral portion of the housing 6 so that s2 is formed. Then, this bearing unit 1 is
Is press-fitted or adhered to the cylindrical inner peripheral portion of
The spindle motor shown in FIG. 1 is assembled by press-fitting an assembly (motor rotor) including the disk hub 3 into the upper end of the shaft 2a.

【0021】本発明では、軸部材2の軸2aとフランジ部
2bとが例えば鍛造あるいは機械加工等によって一体に形
成される。このように軸部材2を一体構造とすると、軸
2aとフランジ部2b間の直角度等の精度を容易に高めるこ
とができ、しかも軸受ユニットへの組込み前に直角度が
測定可能となるので、精度測定やその確認も簡単に行え
る。また、モータロータを最後に取付けることができる
ので、軸受ユニット1への注油が容易となり、さらには
スピンドルユニットとしての取扱いが可能となり、取扱
いが容易となる利点も得られる。なお、軸部材2は、軸
2aとフランジ部2bとを溶接により一体化した後、所定の
精度に仕上げることによっても製造可能である。
In the present invention, the shaft 2a of the shaft member 2 and the flange portion
2b are integrally formed by, for example, forging or machining. When the shaft member 2 has an integral structure as described above, the shaft
Accuracy such as the perpendicularity between the flange 2a and the flange portion 2b can be easily increased, and the perpendicularity can be measured before assembling into the bearing unit, so that precision measurement and confirmation thereof can be easily performed. In addition, since the motor rotor can be mounted last, lubrication to the bearing unit 1 becomes easy, and further, handling as a spindle unit becomes possible, and there is an advantage that handling becomes easy. The shaft member 2 is a shaft
It is also possible to manufacture by integrating the 2a and the flange portion 2b by welding and then finishing them to predetermined accuracy.

【0022】上述のように、軸2aにはモータロータが圧
入されるので、軸部材2の材質としては高硬度の鉄系材
料で形成するのが望ましい。一方、鉄系材料では、従来
のようにフランジ部2bの端面に動圧溝を塑性加工や機械
加工で形成することが難しくなるため、加工コストが高
騰するが、その場合でも上記のように動圧溝をフランジ
部2bではなく、軸受部材7の端面やスラスト支持部13に
設けるようにすれば、この種の問題を解消することがで
きる。すなわち、軸受部材7やスラスト支持部13を軟質
金属や焼結金属(塑性加工や機械加工の容易な材料)で
形成することができ、加工コストの低減化を図ることが
できる。例えば、軟質金属を使用する場合はプレス加工
等により、焼結金属を使用する場合はラジアル軸受面10
aと同様の圧縮成形により、動圧溝16付きのスラスト軸
受面11a、11bを形成することができる。なお、加工コ
ストが特に問題にならない場合は、フランジ部2bの両端
面に上記スラスト軸受面11a、11bを形成することもで
きる。
As described above, since the motor rotor is press-fitted into the shaft 2a, the material of the shaft member 2 is desirably formed of a high-hardness iron-based material. On the other hand, in the case of an iron-based material, it is difficult to form a dynamic pressure groove on the end face of the flange portion 2b by plastic working or machining as in the conventional case, so that the processing cost rises. If the pressure grooves are provided not on the flange portion 2b but on the end face of the bearing member 7 or the thrust support portion 13, this kind of problem can be solved. That is, the bearing member 7 and the thrust support portion 13 can be formed of a soft metal or a sintered metal (a material that is easy to perform plastic working or machining), and the working cost can be reduced. For example, when a soft metal is used, press working is performed.When a sintered metal is used, a radial bearing surface 10 is used.
By the same compression molding as in a, the thrust bearing surfaces 11a and 11b with the dynamic pressure grooves 16 can be formed. If the processing cost is not a problem, the thrust bearing surfaces 11a and 11b can be formed on both end surfaces of the flange portion 2b.

【0023】図4に本発明の他の実施形態を示す。この
軸受ユニット1は、図5に示す構成に対応するもので、
図1のハウジング6と軸受部材7とを一体化して単体の
軸受部材7’とし、当該軸受部材7’の底部開口を別部
材のスラスト支持部13(例えば従来と同様のバックメタ
ル33)で封口した構造を示す。その他の実質的な構成は
図1乃至図3と同様である。この場合も軸部材2は一体
構造とされ、スラスト軸受面11a、11bはそれぞれ軸受
部材7’の端面およびスラスト支持部13に設けることが
できる。
FIG. 4 shows another embodiment of the present invention. This bearing unit 1 corresponds to the configuration shown in FIG.
The housing 6 and the bearing member 7 of FIG. 1 are integrated into a single bearing member 7 ′, and the bottom opening of the bearing member 7 ′ is closed by a separate thrust support 13 (for example, a back metal 33 similar to the conventional one). The following shows the structure. Other substantial configurations are the same as those in FIGS. Also in this case, the shaft member 2 has an integral structure, and the thrust bearing surfaces 11a and 11b can be provided on the end surface of the bearing member 7 'and the thrust support portion 13, respectively.

【0024】[0024]

【発明の効果】このように本発明では、軸部材を一体構
造としているので、軸とフランジ部間の直角度等の精度
を容易に高めることができ、しかもその精度測定や確認
も簡単に行える。従って、情報機器用スピンドルモータ
用として好適な高精度で安価な軸受ユニットを提供する
ことができる。
As described above, in the present invention, since the shaft member has an integral structure, the accuracy such as the perpendicularity between the shaft and the flange portion can be easily increased, and the accuracy can be easily measured and confirmed. . Therefore, a high-precision and inexpensive bearing unit suitable for use in a spindle motor for information equipment can be provided.

【0025】また、スラスト軸受部の動圧溝を、軸受部
材およびスラスト支持部の何れか一方、または双方に設
けるようにすれば、軸部材を鉄系等の硬質材料で形成し
た場合でも、軸受部材やスラスト支持部を、動圧溝を加
工しやすい軟質金属や焼結金属等で形成することによ
り、スラスト軸受面の加工コストを低減化することがで
きる。
Further, if the dynamic pressure groove of the thrust bearing portion is provided in one or both of the bearing member and the thrust support portion, even if the shaft member is formed of a hard material such as iron, By forming the member and the thrust support portion with a soft metal, a sintered metal, or the like in which the dynamic pressure grooves are easily processed, the processing cost of the thrust bearing surface can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる動圧型軸受ユニットを有する情
報機器用スピンドルモータの断面図である。
FIG. 1 is a sectional view of a spindle motor for information equipment having a dynamic pressure bearing unit according to the present invention.

【図2】図1の要部拡大断面図である。FIG. 2 is an enlarged sectional view of a main part of FIG.

【図3】(A)図は軸受部材の断面図、(B)図はスラ
スト軸受部の平面図である
3A is a sectional view of a bearing member, and FIG. 3B is a plan view of a thrust bearing portion.

【図4】本発明の他の実施形態を示す断面図である。FIG. 4 is a cross-sectional view showing another embodiment of the present invention.

【図5】従来の情報機器用スピンドルモータの断面図で
ある。
FIG. 5 is a sectional view of a conventional spindle motor for information equipment.

【符号の説明】[Explanation of symbols]

1 動圧型軸受ユニット 2 軸部材 2a 軸 2b フランジ部 7 軸受部材 7’ 軸受部材 8 シール部材 10 ラジアル軸受部 10a ラジアル軸受面 11 スラスト軸受部 11a スラスト軸受面 11b スラスト軸受面 13 スラスト支持部 14 動圧溝 16 動圧溝 Cr ラジアル軸受隙間 Cs1 スラスト軸受隙間 Cs2 スラスト軸受隙間 DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing unit 2 Shaft member 2a Shaft 2b Flange part 7 Bearing member 7 'Bearing member 8 Seal member 10 Radial bearing part 10a Radial bearing surface 11 Thrust bearing part 11a Thrust bearing surface 11b Thrust bearing surface 13 Thrust support part 14 Dynamic pressure Groove 16 Dynamic pressure groove Cr Radial bearing clearance Cs1 Thrust bearing clearance Cs2 Thrust bearing clearance

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 軸およびフランジ部からなる軸部材と、
軸部材をラジアル方向で支持するラジアル軸受部と、軸
部材のフランジ部をスラスト方向で支持するスラスト軸
受部とを有し、ラジアル軸受部およびスラスト軸受部が
それぞれ動圧作用で軸部材を非接触支持するものにおい
て、 軸とフランジ部を一体に構成したことを特徴とする動圧
型軸受ユニット。
1. A shaft member comprising a shaft and a flange portion,
It has a radial bearing part that supports the shaft member in the radial direction, and a thrust bearing part that supports the flange part of the shaft member in the thrust direction. The radial bearing part and the thrust bearing part do not contact the shaft member by dynamic pressure action. A dynamic pressure bearing unit, wherein a shaft and a flange portion are integrally formed.
【請求項2】 軸部材の外周側に軸受部材を配置し、軸
部材の外周面とこれに対向する軸受部材との間に上記ラ
ジアル軸受部のラジアル軸受隙間を形成した請求項1記
載の動圧型軸受ユニット。
2. The dynamic bearing according to claim 1, wherein a bearing member is disposed on an outer peripheral side of the shaft member, and a radial bearing gap of the radial bearing portion is formed between the outer peripheral surface of the shaft member and the bearing member facing the bearing member. Pressure bearing unit.
【請求項3】 スラスト軸受部が、フランジ部の両側に
2つのスラスト軸受隙間を有するものである請求項1ま
たは2記載の動圧型軸受ユニット。
3. The dynamic pressure type bearing unit according to claim 1, wherein the thrust bearing portion has two thrust bearing gaps on both sides of the flange portion.
【請求項4】 フランジ部の一方の端面と、これに対向
する軸受部材とで上記スラスト軸受部の一方のスラスト
軸受隙間を構成した請求項1乃至3何れか記載の動圧型
軸受ユニット。
4. The dynamic pressure type bearing unit according to claim 1, wherein one end face of the flange portion and a bearing member facing the flange portion constitute one thrust bearing gap of the thrust bearing portion.
【請求項5】 フランジ部の他方の端面に対向させてス
ラスト支持部を設け、このスラスト支持部とフランジ部
の他方の端面とで上記スラスト軸受部の他方のスラスト
軸受隙間を構成した請求項3または4記載の動圧型軸受
ユニット。
5. A thrust support portion is provided to face the other end surface of the flange portion, and the thrust support portion and the other end surface of the flange portion constitute the other thrust bearing gap of the thrust bearing portion. Or the dynamic pressure bearing unit according to 4.
【請求項6】 スラスト軸受部の動圧溝を軸受部材に設
けた請求項4記載の動圧型軸受ユニット。
6. The dynamic pressure bearing unit according to claim 4, wherein a dynamic pressure groove of the thrust bearing portion is provided in the bearing member.
【請求項7】 スラスト軸受部の動圧溝をスラスト支持
部に設けた請求項4乃至6何れか記載の動圧型軸受ユニ
ット。
7. The dynamic pressure bearing unit according to claim 4, wherein a dynamic pressure groove of the thrust bearing portion is provided in the thrust support portion.
【請求項8】 軸受部材の一端側をシール部材で密封し
た請求項2乃至7何れか記載の動圧型軸受ユニット。
8. The dynamic pressure bearing unit according to claim 2, wherein one end of the bearing member is sealed with a seal member.
JP09791999A 1999-04-05 1999-04-05 Hydrodynamic bearing unit Expired - Lifetime JP3774080B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP09791999A JP3774080B2 (en) 1999-04-05 1999-04-05 Hydrodynamic bearing unit
US09/539,617 US6390681B1 (en) 1999-04-05 2000-03-31 Dynamic pressure bearing-unit
KR1020000017652A KR100696238B1 (en) 1999-04-05 2000-04-04 Dynamic pressure bearing-unit and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09791999A JP3774080B2 (en) 1999-04-05 1999-04-05 Hydrodynamic bearing unit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004219149A Division JP2004308918A (en) 2004-07-27 2004-07-27 Hydrodynamic bearing unit

Publications (3)

Publication Number Publication Date
JP2000291648A true JP2000291648A (en) 2000-10-20
JP2000291648A5 JP2000291648A5 (en) 2005-05-26
JP3774080B2 JP3774080B2 (en) 2006-05-10

Family

ID=14205117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09791999A Expired - Lifetime JP3774080B2 (en) 1999-04-05 1999-04-05 Hydrodynamic bearing unit

Country Status (1)

Country Link
JP (1) JP3774080B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181033A (en) * 2000-12-12 2002-06-26 Ntn Corp Dynamic pressure type bearing unit
GB2379335A (en) * 2001-08-29 2003-03-05 Sunonwealth Electr Mach Ind Co Supporting structure for a rotor
JP2004347126A (en) * 2004-07-28 2004-12-09 Ntn Corp Dynamic pressure bearing unit
WO2005008088A1 (en) * 2003-07-23 2005-01-27 Ntn Corporation Fluid bearing device
WO2005028892A1 (en) * 2003-09-18 2005-03-31 Ntn Corporation Fluid bearing device
WO2006126337A1 (en) * 2005-05-24 2006-11-30 Ntn Corporation Fluid bearing and motor equipped with same
JP2007285414A (en) * 2006-04-17 2007-11-01 Ntn Corp Dynamic pressure bearing device
CN100458196C (en) * 2002-09-26 2009-02-04 Ntn株式会社 Hydrodynamic bearing device
US7798721B2 (en) 2004-03-30 2010-09-21 Ntn Corporation Fluid dynamic bearing device
US8177433B2 (en) 2004-08-03 2012-05-15 Ntn Corporation Hydrodynamic bearing unit
KR101148242B1 (en) * 2010-08-26 2012-07-03 삼성전기주식회사 Spindle Motor
US8388226B2 (en) 2004-08-03 2013-03-05 Ntn Corporation Dynamic bearing device
TWI425153B (en) * 2011-08-12 2014-02-01 Topmag Technology Co Ltd High lubrication performance of the bearing components
US8734018B2 (en) 2006-03-27 2014-05-27 Ntn Corporation Fluid dynamic bearing device and method of manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101779047B (en) 2007-08-20 2014-07-02 Ntn株式会社 Fluid bearing device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181033A (en) * 2000-12-12 2002-06-26 Ntn Corp Dynamic pressure type bearing unit
GB2379335B (en) * 2001-08-29 2005-09-07 Sunonwealth Electr Mach Ind Co Supporting structure for a rotor
GB2379335A (en) * 2001-08-29 2003-03-05 Sunonwealth Electr Mach Ind Co Supporting structure for a rotor
CN100458196C (en) * 2002-09-26 2009-02-04 Ntn株式会社 Hydrodynamic bearing device
US7985025B2 (en) 2002-09-26 2011-07-26 Ntn Corporation Hydrodynamic bearing device
WO2005008088A1 (en) * 2003-07-23 2005-01-27 Ntn Corporation Fluid bearing device
JP2005042838A (en) * 2003-07-23 2005-02-17 Ntn Corp Fluid bearing device
US8079760B2 (en) 2003-07-23 2011-12-20 Ntn Corporation Fluid bearing device
KR101081805B1 (en) 2003-07-23 2011-11-09 엔티엔 가부시키가이샤 fluid bearing device
CN100400912C (en) * 2003-07-23 2008-07-09 Ntn株式会社 Fluid bearing device
US7690845B2 (en) 2003-07-23 2010-04-06 Ntn Corporation Fluid bearing device
WO2005028892A1 (en) * 2003-09-18 2005-03-31 Ntn Corporation Fluid bearing device
CN100400914C (en) * 2003-09-18 2008-07-09 Ntn株式会社 Fluid bearing device
US7625124B2 (en) 2003-09-18 2009-12-01 Ntn Corporation Fluid bearing device
US7798721B2 (en) 2004-03-30 2010-09-21 Ntn Corporation Fluid dynamic bearing device
JP2004347126A (en) * 2004-07-28 2004-12-09 Ntn Corp Dynamic pressure bearing unit
US8177433B2 (en) 2004-08-03 2012-05-15 Ntn Corporation Hydrodynamic bearing unit
US8388226B2 (en) 2004-08-03 2013-03-05 Ntn Corporation Dynamic bearing device
JP2006329275A (en) * 2005-05-24 2006-12-07 Ntn Corp Fluid bearing device and motor equipped with the same
WO2006126337A1 (en) * 2005-05-24 2006-11-30 Ntn Corporation Fluid bearing and motor equipped with same
US8734018B2 (en) 2006-03-27 2014-05-27 Ntn Corporation Fluid dynamic bearing device and method of manufacturing the same
JP2007285414A (en) * 2006-04-17 2007-11-01 Ntn Corp Dynamic pressure bearing device
KR101148242B1 (en) * 2010-08-26 2012-07-03 삼성전기주식회사 Spindle Motor
TWI425153B (en) * 2011-08-12 2014-02-01 Topmag Technology Co Ltd High lubrication performance of the bearing components

Also Published As

Publication number Publication date
JP3774080B2 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
US6390681B1 (en) Dynamic pressure bearing-unit
US7466050B2 (en) Brushless motor and method of manufacturing the same
JP3893021B2 (en) Hydrodynamic bearing unit
JP3774080B2 (en) Hydrodynamic bearing unit
JP3981564B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2002061641A (en) Dynamic pressure type bearing device
JP3983435B2 (en) Hydrodynamic bearing unit
JP4226559B2 (en) Method for manufacturing hydrodynamic bearing device
JP3998915B2 (en) Manufacturing method of hydrodynamic bearing unit
JP4661014B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND SPINDLE MOTOR HAVING THE DYNAMIC PRESSURE BEARING DEVICE
JP2003314538A (en) Manufacturing method for fluid dynamic bearing unit
JP4152707B2 (en) Hydrodynamic bearing device
JP2005163903A (en) Dynamic bearing device
JP3773721B2 (en) Hydrodynamic bearing
JP2001124059A (en) Dynamic pressure bearing unit
JP2004308918A (en) Hydrodynamic bearing unit
JP3578810B2 (en) Spindle motor
JP2003314533A (en) Fluid bearing device
JPH11190340A (en) Dynamic pressure type bearing device
JP4832736B2 (en) Hydrodynamic bearing unit
JP2004176815A (en) Liquid bearing device
JP2000220633A (en) Dynamic pressure type bearing device and its manufacture
JP4233771B2 (en) Hydrodynamic bearing unit
JP2002061647A (en) Dynamic pressure type bearing unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term