JP2003314538A - Manufacturing method for fluid dynamic bearing unit - Google Patents

Manufacturing method for fluid dynamic bearing unit

Info

Publication number
JP2003314538A
JP2003314538A JP2002123637A JP2002123637A JP2003314538A JP 2003314538 A JP2003314538 A JP 2003314538A JP 2002123637 A JP2002123637 A JP 2002123637A JP 2002123637 A JP2002123637 A JP 2002123637A JP 2003314538 A JP2003314538 A JP 2003314538A
Authority
JP
Japan
Prior art keywords
bearing
thrust
housing
end surface
dynamic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002123637A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Yamashita
信好 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2002123637A priority Critical patent/JP2003314538A/en
Publication of JP2003314538A publication Critical patent/JP2003314538A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To simply form a gap of a thrust bearing at high accuracy. <P>SOLUTION: A bearing sleeve 8 is pushed downward together with a bearing member 2, a lower end face 8c of the bearing sleeve 8 is brought in contact with an upper end face 2b1 of a flange 2b, and a lower end face 2b2 of the flange 2b is simultaneously brought in contact with a spacer T. Thus, the bearing sleeve 8 is fixed on a housing 7. The thickness δ (δ=δ1+δ2) of the spacer T is equivalent to the total amount of a gap (δ1) of a thrust bearing for a first thrust bearing portion and a gap (δ2) of a thrust bearing for a second thrust bearing portion. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、軸受隙間に生じる
潤滑油の動圧作用で回転部材を非接触支持する動圧軸受
装置の製造方法に関する。この軸受装置は、情報機器、
例えばHDD、FDD等の磁気ディスク装置、CD−R
OM、CD−R/RW、DVD−ROM/RAM等の光
ディスク装置、MD、MO等の光磁気ディスク装置など
のスピンドルモータ、レーザビームプリンタ(LBP)
のポリゴンスキャナモータ、あるいは電気機器、例えば
軸流ファンなどの小型モータ用として好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a dynamic pressure bearing device which supports a rotary member in a non-contact manner by the dynamic pressure action of lubricating oil generated in a bearing gap. This bearing device is used for information equipment,
For example, magnetic disk devices such as HDD and FDD, CD-R
Optical disk devices such as OM, CD-R / RW, DVD-ROM / RAM, spindle motors such as magneto-optical disk devices such as MD and MO, laser beam printer (LBP)
It is suitable for use as a polygon scanner motor or an electric device, for example, a small motor such as an axial fan.

【0002】[0002]

【従来の技術】上記各種モータには、高回転精度の他、
高速化、低コスト化、低騒音化などが求められている。
これらの要求性能を決定づける構成要素の一つに当該モ
ータのスピンドルを支持する軸受があり、近年では、こ
の種の軸受として、上記要求性能に優れた特性を有する
動圧軸受の使用が検討され、あるいは実際に使用されて
いる。
2. Description of the Related Art In addition to high rotation accuracy,
Higher speed, lower cost and lower noise are required.
One of the components that determines the required performance is a bearing that supports the spindle of the motor.In recent years, as a bearing of this type, the use of a dynamic pressure bearing having excellent characteristics in the required performance has been studied, Or actually used.

【0003】例えば、HDD等のディスク装置のスピン
ドルモータに組込まれる動圧軸受装置では、軸部材をラ
ジアル方向に回転自在に非接触支持するラジアル軸受部
と、軸部材をスラスト方向に回転自在に非接触支持する
スラスト軸受部とが設けられ、これら軸受部として、軸
受面に動圧発生用の溝(動圧溝)を有する動圧軸受が用
いられる。ラジアル軸受部の動圧溝は、軸受スリーブの
内周面又は軸部材の外周面に形成され、スラスト軸受部
の動圧溝は、フランジ部を備えた軸部材を用いる場合、
そのフランジ部の両端面、又は、これに対向する面(軸
受スリーブの端面や、ハウジングの底部に配設されるス
ラスト部材の端面等)にそれぞれ形成される。通常、軸
受スリーブはハウジングの内周の所定位置に固定され、
ハウジングに対する軸受スリーブの位置決めは専用の治
具を用いて行う場合が多い。さらに、ハウジングの内部
空間に注油した潤滑油が外部に漏れるのを防止するた
め、ハウジングの開口部にシール部材を配設する場合が
多い。
For example, in a dynamic pressure bearing device incorporated in a spindle motor of a disk device such as an HDD, a radial bearing portion that rotatably supports a shaft member in a radial direction in a non-contact manner, and a shaft bearing member is rotatably supported in a thrust direction. A thrust bearing portion that supports in contact is provided, and as these bearing portions, a dynamic pressure bearing having a groove (dynamic pressure groove) for generating dynamic pressure on the bearing surface is used. The dynamic pressure groove of the radial bearing portion is formed on the inner peripheral surface of the bearing sleeve or the outer peripheral surface of the shaft member, and the dynamic pressure groove of the thrust bearing portion uses a shaft member having a flange portion,
It is formed on both end surfaces of the flange portion or on a surface (an end surface of the bearing sleeve, an end surface of a thrust member disposed at the bottom of the housing, etc.) opposed to the flange surface. Usually, the bearing sleeve is fixed in place on the inner circumference of the housing,
Positioning of the bearing sleeve with respect to the housing is often performed using a dedicated jig. Further, in order to prevent the lubricating oil injected into the inner space of the housing from leaking to the outside, a seal member is often arranged in the opening of the housing.

【0004】[0004]

【発明が解決しようとする課題】上記構成の動圧軸受装
置は、ハウジング、軸受スリーブ、軸部材、スラスト部
材、及びシール部材といった部品で構成され、情報機器
の益々の高性能化に伴って必要とされる高い軸受性能を
確保すべく、各部品の加工精度や組立精度を高める努力
がなされている。特に、スラスト軸受隙間の大きさは、
軸部材のフランジ部の軸方向寸法や両端面の面精度、ス
ラスト軸受面となる軸受スリーブおよびスラスト部材の
端面の面精度といった部品精度と、軸受スリーブとスラ
スト部材との間の軸方向スペースといった組立精度の影
響を受けることから、所望値に管理するのが難しく、そ
のために、必要以上に高精度な部品加工や複雑な組立作
業を強いられているのが実状である。一方、情報機器の
低価格化の傾向に伴い、この種の動圧軸受装置に対する
コスト低減の要求も益々厳しくなっている。
The hydrodynamic bearing device having the above-mentioned structure is composed of parts such as a housing, a bearing sleeve, a shaft member, a thrust member, and a seal member, and is required as the performance of information equipment becomes higher and higher. Efforts are being made to improve the processing accuracy and assembly accuracy of each part in order to ensure the high bearing performance that is said. Especially, the size of the thrust bearing gap is
Assembly accuracy such as axial dimension of flange part of shaft member, surface accuracy of both end surfaces, surface accuracy of bearing sleeve and thrust member end surface which are thrust bearing surfaces, and axial space between bearing sleeve and thrust member Since it is affected by accuracy, it is difficult to control the value to a desired value, and for this reason, it is inevitably required to process parts with high accuracy or perform complicated assembly work more than necessary. On the other hand, as the price of information equipment has become lower, demands for cost reduction of this type of dynamic bearing device have become more and more strict.

【0005】本発明の課題は、この種の動圧軸受装置に
おけるスラスト軸受隙間を簡易かつ精度良く設定するこ
とができる方法を提供することである。
An object of the present invention is to provide a method capable of easily and accurately setting the thrust bearing gap in this type of dynamic pressure bearing device.

【0006】本発明の他の課題は、動圧軸受装置の製造
コストを低減することである。
Another object of the present invention is to reduce the manufacturing cost of a dynamic pressure bearing device.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、ハウジングと、ハウジングの内周に固定
された軸受スリーブと、軸部およびフランジ部を有する
軸部材と、ハウジングに固定されたスラスト部材と、軸
受スリーブの内周面と軸部の外周面との間に設けられ、
ラジアル軸受隙間に生じる潤滑油の動圧作用で軸部をラ
ジアル方向に非接触支持するラジアル軸受部と、軸受ス
リーブの端面及びスラスト部材の端面とこれらに対向す
るフランジ部の端面との間に設けられ、スラスト軸受隙
間に生じる潤滑油の動圧作用でフランジ部をスラスト方
向に非接触支持するスラスト軸受部とを備えた動圧軸受
装置の製造方法であって、スラスト軸受部のスラスト軸
受隙間に相当する厚さをもったスペーサを、スラスト軸
受部を構成する部材の表面間に介装して、スラスト軸受
隙間を所定寸法に設定する構成を提供する。
In order to solve the above problems, the present invention provides a housing, a bearing sleeve fixed to the inner circumference of the housing, a shaft member having a shaft portion and a flange portion, and a housing fixed to the housing. Provided between the thrust member and the inner peripheral surface of the bearing sleeve and the outer peripheral surface of the shaft portion,
Provided between the radial bearing part that supports the shaft part in the radial direction in a non-contact manner by the dynamic pressure of the lubricating oil generated in the radial bearing gap, and the end face of the bearing sleeve and the end face of the thrust member and the end face of the flange part facing them. And a thrust bearing portion for supporting the flange portion in the thrust direction in a non-contact manner by the dynamic pressure action of the lubricating oil generated in the thrust bearing gap. Provided is a structure in which a spacer having a corresponding thickness is interposed between the surfaces of the members constituting the thrust bearing portion to set the thrust bearing gap to a predetermined size.

【0008】例えば、ハウジングに対する軸受スリーブ
の位置決めを専用の治具で行う場合、各部品を最終的に
組立み合わせたとき、スラスト軸受隙間が、スラスト面
(フランジ部の両端面、軸受スリーブおよびスラスト部
材の端面)における平面度等の面精度の影響を受ける。
これに対して、本発明の構成では、スラスト軸受隙間に
相当する厚さをもったスペーサをスラスト面間に介装し
てスラスト軸受隙間を設定するので、スラスト軸受隙間
がスラスト面の面精度の影響を受けない。そのため、ス
ラスト軸受隙間を簡易かつ精度良く形成することができ
る。しかも、スラスト軸受隙間を精度良く形成するため
に、必要以上に高精度な部品加工や複雑な組立作業を行
う必要がないので、動圧軸受装置の製造コスト低減にも
なる。
For example, when the bearing sleeve is positioned with respect to the housing by a dedicated jig, when the components are finally assembled together, the thrust bearing gap is such that the thrust surfaces (both end surfaces of the flange portion, the bearing sleeve and the thrust surface). It is affected by surface accuracy such as flatness at the end surface of the member.
On the other hand, in the configuration of the present invention, the spacer having a thickness corresponding to the thrust bearing gap is interposed between the thrust faces to set the thrust bearing gap, so that the thrust bearing gap has a surface accuracy of the thrust face. Not affected. Therefore, the thrust bearing gap can be formed easily and accurately. In addition, since it is not necessary to process parts with higher precision or perform complicated assembly work in order to accurately form the thrust bearing gap, it is possible to reduce the manufacturing cost of the dynamic pressure bearing device.

【0009】上記構成において、スペーサは、例えば、
スラスト部材の端面とこれに対向するフランジ部の端面
との間に介装することができる。
In the above structure, the spacer is, for example,
It can be interposed between the end surface of the thrust member and the end surface of the flange portion facing the end surface.

【0010】また、上記構成において、スペーサは、ス
ラスト軸受隙間を所定寸法に設定した後、ハウジングの
外部に取り出す。取り出したスペーサは、例えば、他の
動圧軸受装置におけるスラスト軸受隙間の設定に再利用
することもできる。
Further, in the above structure, the spacer is taken out of the housing after setting the thrust bearing gap to a predetermined size. The taken out spacer can be reused, for example, for setting a thrust bearing gap in another dynamic pressure bearing device.

【0011】上記構成において、ハウジングは、金属製
又は樹脂製(樹脂の射出成形品等)とすることができ
る。ハウジングを金属製とする場合、アルミ合金等のダ
イキャスト品、金属板等のプレス加工品(絞り成形品
等)、真ちゅう等の金属材の機械加工品(旋削加工品
等)、金属粉末の射出成形品等を用いることができる。
In the above structure, the housing can be made of metal or resin (such as a resin injection molded product). When the housing is made of metal, die-cast products such as aluminum alloys, pressed products such as metal plates (drawing products), machined products of metal materials such as brass (turning products), injection of metal powder A molded product or the like can be used.

【0012】また、軸受スリーブをハウジングに固定す
る手段として、エポキシ系接着剤等による接着、圧入、
レーザビーム溶接(ハウジングの外径側から軸受スリー
ブの固定部位にレーザビームを照射する。あるいは、軸
受スリーブの固定部位に直接レーザビームを照射す
る。)、高周波パルス接合、加締め等を採用することが
できる。
Also, as means for fixing the bearing sleeve to the housing, adhesion with epoxy adhesive or the like, press fitting,
Laser beam welding (irradiating the laser beam to the fixed part of the bearing sleeve from the outer diameter side of the housing, or irradiating the laser beam directly to the fixed part of the bearing sleeve), high-frequency pulse bonding, crimping, etc. You can

【0013】また、スラスト部材をハウジングに固定す
る手段として、接着、圧入+接着、レーザビーム溶接
(ハウジングの外径側からスラスト部材の固定部位にレ
ーザビームを照射する。あるいは、スラスト部材の固定
部位に直接レーザビームを照射する。)、高周波パルス
接合、加締め等を採用することができる。
As means for fixing the thrust member to the housing, adhesion, press-fitting + adhesion, laser beam welding (irradiating the laser beam to the fixed portion of the thrust member from the outer diameter side of the housing. Alternatively, the fixed portion of the thrust member) Directly irradiate the laser beam), high frequency pulse bonding, crimping, etc. can be adopted.

【0014】上記構成において、軸受スリーブの他端面
の側に、ハウジングの内部空間をシールするシール手段
を設けることができる。このシール手段は、シール部材
をハウジングに固定することによって形成することがで
きる。この場合、シール部材の固定手段として、エポキ
シ系接着剤等による接着、圧入、レーザビーム溶接(ハ
ウジングの外径側からシール部材の固定部位にレーザビ
ームを照射する。あるいは、シール部材の固定部位に直
接レーザビームを照射する。)、高周波パルス接合、加
締め等を採用することができる。
In the above structure, a sealing means for sealing the inner space of the housing can be provided on the other end surface side of the bearing sleeve. This sealing means can be formed by fixing the sealing member to the housing. In this case, as means for fixing the seal member, adhesion with epoxy adhesive or the like, press-fitting, laser beam welding (irradiating the laser beam from the outer diameter side of the housing to the fixed portion of the seal member. Direct laser beam irradiation), high frequency pulse bonding, crimping, etc. can be adopted.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態について
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0016】図1は、この実施形態に係る動圧軸受装置
1を組み込んだ情報機器用スピンドルモータの一構成例
を示している。このスピンドルモータは、HDD等のデ
ィスク駆動装置に用いられるもので、軸部材2を回転自
在に非接触支持する動圧軸受装置1と、軸部材2に装着
されたディスクハブ3と、例えば半径方向のギャップを
介して対向させたモータステータ4およびモータロータ
5とを備えている。ステータ4はケーシング6の外周に
取付けられ、ロータ5はディスクハブ3の内周に取付け
られる。動圧軸受装置1のハウジング7は、ケーシング
6の内周に装着される。ディスクハブ3には、磁気ディ
スク等のディスクDが一又は複数枚保持される。ステー
タ4に通電すると、ステータ4とロータ5との間の励磁
力でロータ5が回転し、それによって、ディスクハブ3
および軸部材2が一体となって回転する。
FIG. 1 shows an example of the configuration of a spindle motor for information equipment in which a dynamic pressure bearing device 1 according to this embodiment is incorporated. This spindle motor is used in a disk drive device such as an HDD, and includes a dynamic pressure bearing device 1 that rotatably supports a shaft member 2 in a non-contact manner, a disk hub 3 mounted on the shaft member 2, and a radial direction, for example. And a motor stator 4 and a motor rotor 5 that are opposed to each other through the gap. The stator 4 is attached to the outer circumference of the casing 6, and the rotor 5 is attached to the inner circumference of the disc hub 3. The housing 7 of the hydrodynamic bearing device 1 is mounted on the inner circumference of the casing 6. The disk hub 3 holds one or a plurality of disks D such as magnetic disks. When the stator 4 is energized, the exciting force between the stator 4 and the rotor 5 causes the rotor 5 to rotate, whereby the disk hub 3
And the shaft member 2 rotates integrally.

【0017】図2は、動圧軸受装置1を示している。こ
の動圧軸受装置1は、ハウジング7と、軸部材2と、軸
受スリーブ8と、スラスト部材9と、シール部材10と
を構成部品して構成される。
FIG. 2 shows a hydrodynamic bearing device 1. The hydrodynamic bearing device 1 is composed of a housing 7, a shaft member 2, a bearing sleeve 8, a thrust member 9, and a seal member 10 as constituent parts.

【0018】軸受スリーブ8の内周面8aと軸部材2の
軸部2aの外周面2a1との間に第1ラジアル軸受部R
1と第2ラジアル軸受部R2とが軸方向に離隔して設け
られる。また、軸受スリーブ8の下側端面8cと軸部材
2のフランジ部2bの上側端面2b1との間に第1スラ
スト軸受部S1が設けられ、スラスト部材9の端面9a
とフランジ部2bの下側端面2b2との間に第2スラス
ト軸受部S2が設けられる。尚、説明の便宜上、スラス
ト部材9の側を下側、スラスト部材9と反対の側を上側
として説明を進める。
A first radial bearing portion R is provided between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a of the shaft member 2.
The first radial bearing portion R2 and the first radial bearing portion R2 are axially separated from each other. Further, a first thrust bearing portion S1 is provided between the lower end surface 8c of the bearing sleeve 8 and the upper end surface 2b1 of the flange portion 2b of the shaft member 2, and the end surface 9a of the thrust member 9 is provided.
The second thrust bearing portion S2 is provided between the lower end surface 2b2 and the flange portion 2b. For convenience of description, the description will proceed with the side of the thrust member 9 as the lower side and the side opposite to the thrust member 9 as the upper side.

【0019】ハウジング7は、例えば、真ちゅう等の金
属材で、両端が開口した円筒状に形成される。
The housing 7 is made of a metal material such as brass, for example, and is formed in a cylindrical shape with both ends open.

【0020】軸部材2は、例えば、ステンレス鋼等の金
属材で形成され、軸部2aと、軸部2aの下端に一体又
は別体に設けられたフランジ部2bとを備えている。
The shaft member 2 is formed of, for example, a metal material such as stainless steel, and has a shaft portion 2a and a flange portion 2b integrally or separately provided at the lower end of the shaft portion 2a.

【0021】軸受スリーブ8は、例えば、焼結金属から
なる多孔質体、特に銅を主成分とする燒結金属の多孔質
体で円筒状に形成され、接着、圧入、レーザビーム溶
接、高周波パルス接合等の適宜の手段により、ハウジン
グ7の内周の所定位置に固定される。
The bearing sleeve 8 is made of, for example, a porous body made of a sintered metal, particularly a porous body of a sintered metal containing copper as a main component, and is formed into a cylindrical shape. Adhesion, press-fitting, laser beam welding, and high frequency pulse welding are used. It is fixed to a predetermined position on the inner circumference of the housing 7 by an appropriate means such as.

【0022】この焼結金属で形成された軸受スリーブ8
の内周面8aには、第1ラジアル軸受部R1と第2ラジ
アル軸受部R2のラジアル軸受面となる上下2つの領域
が軸方向に離隔して設けられ、該2つの領域には、例え
ば図3(a)に示すようなヘリングボーン形状の動圧溝
8a1、8a2がそれぞれ形成される。尚、動圧溝の形
状として、スパイラル形状や軸方向溝形状等を採用して
も良い。
Bearing sleeve 8 made of this sintered metal
The inner peripheral surface 8a is provided with two upper and lower regions, which are the radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2, axially separated from each other. Herringbone-shaped dynamic pressure grooves 8a1 and 8a2 as shown in FIG. 3 (a) are respectively formed. The dynamic pressure groove may have a spiral shape, an axial groove shape, or the like.

【0023】また、第1スラスト軸受部S1のスラスト
軸受面となる、軸受スリーブ8の下側端面8cには、例
えば図3(b)に示すようなスパイラル形状の動圧溝8
c1が形成される。尚、動圧溝の形状として、ヘリング
ボーン形状や放射溝形状等を採用しても良い。
The lower end surface 8c of the bearing sleeve 8 which is the thrust bearing surface of the first thrust bearing portion S1 has a spiral dynamic pressure groove 8 as shown in FIG. 3B, for example.
c1 is formed. As the shape of the dynamic pressure groove, a herringbone shape or a radial groove shape may be adopted.

【0024】スラスト部材9は、例えば、真ちゅう等の
金属材で円盤状に形成され、接着、レーザビーム溶接、
高周波パルス接合等の適宜の手段により、ハウジング7
の下端部の端面に固定される。第2スラスト軸受部S2
のスラスト軸受面となる、スラスト部材9の端面9aに
は、例えば図4に示すようなヘリングボーン形状の動圧
溝9a1が形成される。尚、動圧溝の形状として、スパ
イラル形状や放射溝形状等を採用しても良い。
The thrust member 9 is formed of a metal material such as brass in a disk shape, and is used for adhesion, laser beam welding,
The housing 7 is formed by an appropriate means such as high frequency pulse bonding.
Is fixed to the end face of the lower end of the. Second thrust bearing portion S2
A herringbone-shaped dynamic pressure groove 9a1 as shown in FIG. 4, for example, is formed on the end surface 9a of the thrust member 9 which serves as the thrust bearing surface. The dynamic pressure groove may have a spiral shape, a radial groove shape, or the like.

【0025】シール部材10は、例えば、真ちゅう等の
金属材で環状に形成され、接着、圧入、レーザビーム溶
接、高周波パルス接合等の適宜の手段により、ハウジン
グ7の開口部7aの内周に固定される。シール部材10
の内周面10aは、軸部材2の軸部2aの外周面2a1
とシール空間(シール隙間)を介して対向する。また、
シール部材10の下側端面は、軸受スリーブ8の上側端
面8bと当接する。
The seal member 10 is made of, for example, a metal material such as brass in an annular shape, and is fixed to the inner periphery of the opening 7a of the housing 7 by appropriate means such as bonding, press fitting, laser beam welding, and high frequency pulse bonding. To be done. Seal member 10
The inner peripheral surface 10a of the shaft member 2 is an outer peripheral surface 2a1 of the shaft portion 2a of the shaft member 2.
And the seal space (seal gap). Also,
The lower end surface of the seal member 10 contacts the upper end surface 8b of the bearing sleeve 8.

【0026】軸部材2の軸部2aは軸受スリーブ8の内
周面8aに挿入され、フランジ部2bは軸受スリーブ8
の下側端面8cとスラスト部材9の端面9aとの間の空
間部に収容される。また、シール部材10で密封された
ハウジング7の内部空間には潤滑油が給油される。
The shaft portion 2a of the shaft member 2 is inserted in the inner peripheral surface 8a of the bearing sleeve 8, and the flange portion 2b is formed in the bearing sleeve 8.
It is housed in the space between the lower end surface 8c and the end surface 9a of the thrust member 9. Lubricating oil is supplied to the internal space of the housing 7 sealed by the seal member 10.

【0027】軸部材2の回転時、軸受スリーブ8の内周
面8aのラジアル軸受面となる領域(上下2箇所の領
域)は、それぞれ、軸部2aの外周面2a1とラジアル
軸受隙間を介して対向する。また、軸受スリーブ8の下
側端面8cのスラスト軸受面となる領域はフランジ部2
bの上側端面2b1とスラスト軸受隙間を介して対向
し、スラスト部材9の端面9aのスラスト軸受面となる
領域はフランジ部2bの下側端面2b2とスラスト軸受
隙間を介して対向する。そして、軸部材2の回転に伴
い、上記ラジアル軸受隙間に潤滑油の動圧が発生し、軸
部材2の軸部2aが上記ラジアル軸受隙間内に形成され
る潤滑油の油膜によってラジアル方向に回転自在に非接
触支持される。これにより、軸部材2をラジアル方向に
回転自在に非接触支持する第1ラジアル軸受部R1と第
2ラジアル軸受部R2とが構成される。同時に、上記ス
ラスト軸受隙間に潤滑油の動圧が発生し、軸部材2のフ
ランジ部2bが上記スラスト軸受隙間内に形成される潤
滑油の油膜によって両スラスト方向に回転自在に非接触
支持される。これにより、軸部材2をスラスト方向に回
転自在に非接触支持する第1スラスト軸受部S1と第2
スラスト軸受部S2とが構成される。
When the shaft member 2 is rotated, the areas of the inner peripheral surface 8a of the bearing sleeve 8 which serve as the radial bearing surfaces (upper and lower two areas) respectively pass through the outer peripheral surface 2a1 of the shaft portion 2a and the radial bearing gap. opposite. Further, the region of the lower end surface 8c of the bearing sleeve 8 serving as the thrust bearing surface is the flange portion 2
The upper end surface 2b1 of b is opposed to the lower end surface 2b2 of the flange portion 2b via the thrust bearing clearance, and the area of the end surface 9a of the thrust member 9 which is the thrust bearing surface is opposed to the lower end surface 2b2 of the flange portion 2b. Then, as the shaft member 2 rotates, a dynamic pressure of the lubricating oil is generated in the radial bearing gap, and the shaft portion 2a of the shaft member 2 is rotated in the radial direction by the oil film of the lubricating oil formed in the radial bearing gap. Freely supported by non-contact. As a result, a first radial bearing portion R1 and a second radial bearing portion R2 that rotatably support the shaft member 2 in the radial direction in a non-contact manner are configured. At the same time, a dynamic pressure of the lubricating oil is generated in the thrust bearing gap, and the flange portion 2b of the shaft member 2 is rotatably supported in both thrust directions in a non-contact manner by the oil film of the lubricating oil formed in the thrust bearing gap. . As a result, the first thrust bearing portion S1 and the second thrust bearing portion S1 which rotatably support the shaft member 2 in the thrust direction in a non-contact manner.
The thrust bearing portion S2 is configured.

【0028】この動圧軸受装置1は、例えば、図5〜図
9に示すような態様で組立てる。
This dynamic pressure bearing device 1 is assembled, for example, in the manner as shown in FIGS.

【0029】まず、図5に示すように、ハウジング7の
下端部の端面にスラスト部材9を装着し、その端面9a
にスペーサTを装着する。スペーサTは、例えば、金属
の薄板材や樹脂の薄シート材で形成され、その厚さδ
は、第1スラスト軸受部S1のスラスト軸受隙間(大き
さをδ1とする。)と第2スラスト軸受部S2のスラス
ト軸受隙間(大きさをδ2とする。)の合計量に相当す
る寸法になっている(δ=δ1+δ2)。尚、同図で
は、スペーサTの厚さδをかなり誇張して示している。
First, as shown in FIG. 5, the thrust member 9 is attached to the end face of the lower end of the housing 7, and the end face 9a thereof is attached.
Attach the spacer T to. The spacer T is formed of, for example, a thin metal plate material or a thin resin sheet material, and has a thickness δ.
Is a dimension corresponding to the total amount of the thrust bearing gap of the first thrust bearing part S1 (the size is δ1) and the thrust bearing gap of the second thrust bearing part S2 (the size is δ2). (Δ = δ1 + δ2). In the figure, the thickness δ of the spacer T is greatly exaggerated.

【0030】つぎに、軸部材2に軸受スリーブ8を装着
し、ハウジング7の内周に挿入する。尚、軸受スリーブ
8はハウジング7に内周に圧入しても良い。
Next, the bearing sleeve 8 is mounted on the shaft member 2 and inserted into the inner circumference of the housing 7. The bearing sleeve 8 may be press-fitted into the housing 7 on the inner circumference.

【0031】そして、図6に示すように、軸受スリーブ
8を軸部材2と伴に下方に推し進めて、軸受スリーブ8
の下側端面8cをフランジ部2bの上側端面2b1に当
接させ、同時に、フランジ部2bの下側端面2b2をス
ペーサTに当接させる。これにより、スペーサTが、フ
ランジ部2bの下側端面2b2とスラスト部材9の端面
9aとの間に介装される。そして、この状態で、軸受ス
リーブ8をハウジング7に固定する。
Then, as shown in FIG. 6, the bearing sleeve 8 is pushed downward together with the shaft member 2, and the bearing sleeve 8
The lower end surface 8c is brought into contact with the upper end surface 2b1 of the flange portion 2b, and at the same time, the lower end surface 2b2 of the flange portion 2b is brought into contact with the spacer T. Thereby, the spacer T is interposed between the lower end surface 2b2 of the flange portion 2b and the end surface 9a of the thrust member 9. Then, in this state, the bearing sleeve 8 is fixed to the housing 7.

【0032】つぎに、図7に示すように、ハウジング7
の開口部7aの内周にシール部材10を挿入(又は圧
入)して、軸受スリーブ8の上側端面8bに当接させ
る。そして、この状態で、シール部材10をハウジング
7に固定する。
Next, as shown in FIG. 7, the housing 7
The seal member 10 is inserted (or press-fitted) into the inner periphery of the opening 7a of the above, and brought into contact with the upper end surface 8b of the bearing sleeve 8. Then, in this state, the seal member 10 is fixed to the housing 7.

【0033】その後、図8に示すように、スラスト部材
9をハウジング7から一旦外し、さらに、スペーサTを
ハウジング7の外部に取り出す。
After that, as shown in FIG. 8, the thrust member 9 is once removed from the housing 7, and the spacer T is taken out of the housing 7.

【0034】つぎに、図9に示すように、スラスト部材
9をハウジング7の下端部の端面に再び装着して、該部
位に固定する。そうすると、フランジ部2bが、軸受ス
リーブ8の下側端面8cとスラスト部材9の端面9aと
の間に形成される軸方向スペースにスペーサTの厚さδ
と等しい軸方向隙間をもって介装された状態となり、そ
の軸方向隙間δが、第1スラスト軸受部S1のスラスト
軸受隙間(δ1)と第2スラスト軸受部S2のスラスト
軸受隙間(δ2)との合計量(δ=δ1+δ2)とな
る。
Next, as shown in FIG. 9, the thrust member 9 is reattached to the end face of the lower end of the housing 7 and fixed to this portion. Then, the flange portion 2b has a thickness δ of the spacer T in the axial space formed between the lower end surface 8c of the bearing sleeve 8 and the end surface 9a of the thrust member 9.
And the axial gap δ is the sum of the thrust bearing gap (δ1) of the first thrust bearing portion S1 and the thrust bearing gap (δ2) of the second thrust bearing portion S2. The quantity (δ = δ1 + δ2).

【0035】上記の方法によれば、動圧軸受装置1の各
構成部品をスペーサTを介装しつつ実際に組み合わせて
スラスト軸受隙間を形成するので、スペーサTの厚さδ
(δ=δ1+δ2)を管理するだけで、スラスト面(8
c、9a、2b1、2b2)の面精度、フランジ部2b
の軸方向寸法精度等の影響を受けることなく、スラスト
軸受隙間を簡易かつ精度良く形成することができる。
According to the above method, the thrust bearing gap is formed by actually combining the respective components of the dynamic pressure bearing device 1 with the spacer T interposed therebetween, so that the thickness T of the spacer T is δ.
Just by managing (δ = δ1 + δ2), thrust surface (8
c, 9a, 2b1, 2b2) surface accuracy, flange portion 2b
It is possible to easily and accurately form the thrust bearing gap without being affected by the axial dimensional accuracy and the like.

【0036】図10は、他の実施形態に係る動圧軸受装
置1’を示している。この動圧軸受装置1’が図2に示
す動圧軸受装置1と異なる点は、スラスト部材9がハウ
ジング7の下端部の内周に固定されている点、シール部
材10がハウジング7の開口部7aの端面に固定されて
いる点である。
FIG. 10 shows a dynamic pressure bearing device 1'according to another embodiment. This dynamic pressure bearing device 1 ′ differs from the dynamic pressure bearing device 1 shown in FIG. 2 in that the thrust member 9 is fixed to the inner periphery of the lower end portion of the housing 7, and the seal member 10 is the opening portion of the housing 7. It is a point fixed to the end face of 7a.

【0037】この動圧軸受装置31は、例えば、以下に
説明するような態様で組立てる。
The dynamic pressure bearing device 31 is assembled, for example, in the manner described below.

【0038】まず、ハウジング7の開口部7aの端面に
シール部材10を装着する。そして、軸受スリーブ8を
ハウジング7の内周に挿入して、その上側端面8bをシ
ール部材10に当接させ、さらに、軸部材2と、上述し
た実施形態で用いたのと同様のスペーサT(図示省略)
とを順次装着する。つぎに、スラスト部材9をハウジン
グ7の下端部の内周に挿入(又は圧入)し、軸受スリー
ブ8の側に推し進めて、フランジ部2bの上側端面2b
1を軸受スリーブ8の下側端面8cに当接させ、同時
に、スペーサTをフランジ部2bの下側端面2b2とス
ラスト部材9の端面9aとに当接させる。そして、この
状態で、スラスト部材9をハウジング7に固定する。
First, the seal member 10 is attached to the end surface of the opening 7a of the housing 7. Then, the bearing sleeve 8 is inserted into the inner circumference of the housing 7, the upper end surface 8b thereof is brought into contact with the seal member 10, and further, the shaft member 2 and the spacer T (the same as that used in the above-described embodiment. (Not shown)
Wear and. Next, the thrust member 9 is inserted (or press-fitted) into the inner periphery of the lower end portion of the housing 7, and is pushed toward the bearing sleeve 8 side, so that the upper end surface 2b of the flange portion 2b.
1 is brought into contact with the lower end surface 8c of the bearing sleeve 8, and at the same time, the spacer T is brought into contact with the lower end surface 2b2 of the flange portion 2b and the end surface 9a of the thrust member 9. Then, in this state, the thrust member 9 is fixed to the housing 7.

【0039】その後、シール部材10、軸受スリーブ
8、及び軸部材2を一旦外し、さらに、スペーサTをハ
ウジング7の外部に取り出す。
After that, the seal member 10, the bearing sleeve 8 and the shaft member 2 are once removed, and the spacer T is taken out of the housing 7.

【0040】つぎに、軸部材2に軸受スリーブ8を装着
し、ハウジング7の内周に挿入する。そして、軸受スリ
ーブ8の上側端面8bの位置をハウジング7の開口部7
aの端面に合わせ、その位置で軸受スリーブ8をハウジ
ングに固定し、さらに、シール部材10をハウジング7
の開口部7aの端面に固定する。そうすると、フランジ
部2bが、軸受スリーブ8の下側端面8cとスラスト部
材9の端面9aとの間に形成される軸方向スペースにス
ペーサTの厚さδと等しい軸方向隙間をもって介装され
た状態となり、その軸方向隙間δが、第1スラスト軸受
部S1のスラスト軸受隙間(δ1)と第2スラスト軸受
部S2のスラスト軸受隙間(δ2)との合計量(δ=δ
1+δ2)となる。
Next, the bearing sleeve 8 is attached to the shaft member 2 and inserted into the inner circumference of the housing 7. The position of the upper end surface 8b of the bearing sleeve 8 is set to the opening 7 of the housing 7.
The bearing sleeve 8 is fixed to the housing at that position, and the seal member 10 is attached to the housing 7.
It is fixed to the end face of the opening 7a. Then, the flange portion 2b is interposed in the axial space formed between the lower end surface 8c of the bearing sleeve 8 and the end surface 9a of the thrust member 9 with an axial gap equal to the thickness δ of the spacer T. Therefore, the axial gap δ is the total amount (δ = δ) of the thrust bearing gap (δ1) of the first thrust bearing portion S1 and the thrust bearing gap (δ2) of the second thrust bearing portion S2.
1 + δ2).

【0041】[0041]

【発明の効果】本発明によれば、この種の動圧軸受装置
において、部品精度の影響を受けることなく、スラスト
軸受隙間を簡易かつ精度良く設定することができる。
According to the present invention, in this type of dynamic pressure bearing device, the thrust bearing gap can be set easily and accurately without being affected by the precision of the parts.

【0042】また、スラスト軸受隙間を精度良く形成す
るために、必要以上に高精度な部品加工や複雑な組立作
業を行う必要がないので、動圧軸受装置の製造コスト低
減にもなる。
Further, since it is not necessary to process the parts with higher precision than necessary or to perform complicated assembling work in order to form the thrust bearing gap with high accuracy, the manufacturing cost of the dynamic pressure bearing device can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係る動圧軸受装置を有する
スピンドルモータの断面図である。
FIG. 1 is a sectional view of a spindle motor having a dynamic pressure bearing device according to an embodiment of the present invention.

【図2】本発明の実施形態に係る動圧軸受装置を示す断
面図である。
FIG. 2 is a cross-sectional view showing a dynamic pressure bearing device according to an embodiment of the present invention.

【図3】軸受スリーブの断面図{図3(a)}、下側端
面を示す図{図3(b)}である。
FIG. 3 is a cross-sectional view of the bearing sleeve {FIG. 3 (a)} and a view showing the lower end surface {FIG. 3 (b)}.

【図4】スラスト部材の端面を示す平面図である。FIG. 4 is a plan view showing an end surface of a thrust member.

【図5】図2に示す動圧軸受装置の組立工程を示す断面
図である。
5 is a cross-sectional view showing an assembly process of the dynamic pressure bearing device shown in FIG.

【図6】図2に示す動圧軸受装置の組立工程を示す断面
図である。
FIG. 6 is a cross-sectional view showing an assembly process of the dynamic pressure bearing device shown in FIG.

【図7】図2に示す動圧軸受装置の組立工程を示す断面
図である。
7 is a cross-sectional view showing an assembly process of the dynamic pressure bearing device shown in FIG.

【図8】図2に示す動圧軸受装置の組立工程を示す断面
図である。
8 is a cross-sectional view showing an assembly process of the dynamic pressure bearing device shown in FIG.

【図9】図2に示す動圧軸受装置の組立工程を示す断面
図である。
9 is a cross-sectional view showing an assembly process of the dynamic pressure bearing device shown in FIG.

【図10】本発明の他の実施形態に係る動圧軸受装置を
示す断面図である。
FIG. 10 is a cross-sectional view showing a dynamic pressure bearing device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、1’ 動圧軸受装置 2 軸部材 2a 軸部 2b フランジ部 2b1 上側端面 2b2 下側端面 7 ハウジング 8 軸受スリーブ 8a 内周面 8c 下側端面 9 スラスト部材 9a 端面 10 シール部材 R1 第1ラジアル軸受部 R2 第2ラジアル軸受部 S1 第1スラスト軸受部 S2 第2スラスト軸受部 1, 1'dynamic bearing device 2 shaft members 2a Shaft 2b Flange part 2b1 Upper end face 2b2 Lower end face 7 housing 8 Bearing sleeve 8a Inner surface 8c Lower end face 9 Thrust member 9a end face 10 Seal member R1 1st radial bearing part R2 2nd radial bearing S1 First thrust bearing part S2 Second thrust bearing part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ハウジングと、該ハウジングの内周に固
定された軸受スリーブと、軸部およびフランジ部を有す
る軸部材と、前記ハウジングに固定されたスラスト部材
と、前記軸受スリーブの内周面と前記軸部の外周面との
間に設けられ、ラジアル軸受隙間に生じる潤滑油の動圧
作用で前記軸部をラジアル方向に非接触支持するラジア
ル軸受部と、前記軸受スリーブの端面及び前記スラスト
部材の端面とこれらに対向する前記フランジ部の端面と
の間に設けられ、スラスト軸受隙間に生じる潤滑油の動
圧作用で前記フランジ部をスラスト方向に非接触支持す
るスラスト軸受部とを備えた動圧軸受装置、の製造方法
であって、 前記スラスト軸受部のスラスト軸受隙間に相当する厚さ
をもったスペーサを、前記スラスト軸受部を構成する部
材の表面間に介装して、前記スラスト軸受隙間を所定寸
法に設定することを特徴とする動圧軸受装置の製造方
法。
1. A housing, a bearing sleeve fixed to an inner circumference of the housing, a shaft member having a shaft portion and a flange portion, a thrust member fixed to the housing, and an inner peripheral surface of the bearing sleeve. A radial bearing portion that is provided between the outer peripheral surface of the shaft portion and non-contactly supports the shaft portion in the radial direction by a dynamic pressure action of lubricating oil generated in a radial bearing gap, an end surface of the bearing sleeve, and the thrust member. And a thrust bearing portion that is provided between the end surface of the flange portion and the end surface of the flange portion that faces them, and that supports the flange portion in the thrust direction in a non-contact manner by the dynamic pressure action of the lubricating oil generated in the thrust bearing gap. A method for manufacturing a pressure bearing device, comprising: a spacer having a thickness corresponding to a thrust bearing gap of the thrust bearing portion; And interposed between, the manufacturing method of the dynamic pressure bearing apparatus characterized by setting the thrust bearing gap to a predetermined size.
【請求項2】 前記スペーサを、前記スラスト部材の端
面とこれに対向する前記フランジ部の端面との間に介装
することを特徴とする請求項1記載の動圧軸受装置の製
造方法。
2. The method of manufacturing a dynamic pressure bearing device according to claim 1, wherein the spacer is interposed between an end surface of the thrust member and an end surface of the flange portion facing the end surface.
【請求項3】 前記スラスト軸受隙間を所定寸法に設定
した後、前記スペーサを前記ハウジングの外部に取り出
すことを特徴とする請求項1又は2記載の動圧軸受装置
の製造方法。
3. The method of manufacturing a dynamic pressure bearing device according to claim 1, wherein the spacer is taken out of the housing after the thrust bearing gap is set to a predetermined dimension.
JP2002123637A 2002-04-25 2002-04-25 Manufacturing method for fluid dynamic bearing unit Withdrawn JP2003314538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002123637A JP2003314538A (en) 2002-04-25 2002-04-25 Manufacturing method for fluid dynamic bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002123637A JP2003314538A (en) 2002-04-25 2002-04-25 Manufacturing method for fluid dynamic bearing unit

Publications (1)

Publication Number Publication Date
JP2003314538A true JP2003314538A (en) 2003-11-06

Family

ID=29538869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002123637A Withdrawn JP2003314538A (en) 2002-04-25 2002-04-25 Manufacturing method for fluid dynamic bearing unit

Country Status (1)

Country Link
JP (1) JP2003314538A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061913A1 (en) * 2003-12-24 2005-07-07 Ntn Corporation Fluid bearing device
JP2006064041A (en) * 2004-08-25 2006-03-09 Sony Corp Dynamic pressure fluid bearing unit and its manufacturing method, laser welding device, and motor and electronic apparatus having this dynamic pressure fluid bearing unit
JP2008164022A (en) * 2006-12-27 2008-07-17 Ntn Corp Dynamic pressure bearing device and its manufacturing method
JP2008286367A (en) * 2007-05-21 2008-11-27 Alphana Technology Kk Bearing device and motor provided with same
US20090285514A1 (en) * 2006-03-24 2009-11-19 Ntn Corporation Fluid dynamic bearing device
KR101077391B1 (en) * 2009-07-15 2011-10-26 삼성전기주식회사 Hydrodynamic bearing device
WO2016080137A1 (en) * 2014-11-20 2016-05-26 Ntn株式会社 Manufacturing method for fluid dynamic bearing devices

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061913A1 (en) * 2003-12-24 2005-07-07 Ntn Corporation Fluid bearing device
US8826541B2 (en) 2003-12-24 2014-09-09 Ntn Corporation Method for manufacturing a fluid bearing device
JP2006064041A (en) * 2004-08-25 2006-03-09 Sony Corp Dynamic pressure fluid bearing unit and its manufacturing method, laser welding device, and motor and electronic apparatus having this dynamic pressure fluid bearing unit
US8562219B2 (en) 2006-03-24 2013-10-22 Ntn Corporation Fluid dynamic bearing device
US20090285514A1 (en) * 2006-03-24 2009-11-19 Ntn Corporation Fluid dynamic bearing device
US8215843B2 (en) * 2006-03-24 2012-07-10 Ntn Corporation Fluid dynamic bearing device
JP2008164022A (en) * 2006-12-27 2008-07-17 Ntn Corp Dynamic pressure bearing device and its manufacturing method
JP4647585B2 (en) * 2006-12-27 2011-03-09 Ntn株式会社 Hydrodynamic bearing device and manufacturing method thereof
JP2008286367A (en) * 2007-05-21 2008-11-27 Alphana Technology Kk Bearing device and motor provided with same
KR101077391B1 (en) * 2009-07-15 2011-10-26 삼성전기주식회사 Hydrodynamic bearing device
WO2016080137A1 (en) * 2014-11-20 2016-05-26 Ntn株式会社 Manufacturing method for fluid dynamic bearing devices
JP2016098891A (en) * 2014-11-20 2016-05-30 Ntn株式会社 Manufacturing method of fluid dynamic pressure bearing device
CN107002762A (en) * 2014-11-20 2017-08-01 Ntn株式会社 The manufacture method of fluid dynamic-pressure bearing device
US9964144B2 (en) 2014-11-20 2018-05-08 Ntn Corporation Manufacturing method for fluid dynamic bearing devices
CN107002762B (en) * 2014-11-20 2019-05-28 Ntn株式会社 The manufacturing method of fluid dynamic-pressure bearing device

Similar Documents

Publication Publication Date Title
JP4216509B2 (en) Method for manufacturing hydrodynamic bearing device
JP3981564B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP3893021B2 (en) Hydrodynamic bearing unit
JP2007024146A (en) Dynamic pressure bearing device
JP2007263228A (en) Dynamic pressure bearing device
WO2004029471A1 (en) Hydrodynamic bearing device
KR20100014973A (en) Method of producing dynamic pressure bearing
JP3774080B2 (en) Hydrodynamic bearing unit
JP3723428B2 (en) Hydrodynamic bearing motor
JP2003307221A (en) Method of manufacturing dynamic pressure bearing device
JP2003314538A (en) Manufacturing method for fluid dynamic bearing unit
JP4226559B2 (en) Method for manufacturing hydrodynamic bearing device
JP2004190786A (en) Dynamic-pressure bearing device and manufacturing method therefor
JP2006258123A (en) Dynamic pressure bearing device
JP3782918B2 (en) Hydrodynamic bearing unit
JP2002276649A (en) Dynamic pressure type bearing unit
JP2003269444A (en) Dynamic pressure bearing device and manufacturing method thereof
JP2006200582A (en) Dynamic pressure bearing device
JP5143435B2 (en) Manufacturing method of shaft member for hydrodynamic bearing device, and shaft member manufactured by the method
JP4554324B2 (en) Hydrodynamic bearing device
JP2005337341A (en) Dynamic pressure bearing device and motor using the same
JP2005130699A (en) Spindle motor of disk unit
JP2005090582A (en) Dynamic pressure bearing device
JP4515151B2 (en) Hydrodynamic bearing device
JP4731852B2 (en) Hydrodynamic bearing unit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705