JP5143435B2 - Manufacturing method of shaft member for hydrodynamic bearing device, and shaft member manufactured by the method - Google Patents

Manufacturing method of shaft member for hydrodynamic bearing device, and shaft member manufactured by the method Download PDF

Info

Publication number
JP5143435B2
JP5143435B2 JP2007018183A JP2007018183A JP5143435B2 JP 5143435 B2 JP5143435 B2 JP 5143435B2 JP 2007018183 A JP2007018183 A JP 2007018183A JP 2007018183 A JP2007018183 A JP 2007018183A JP 5143435 B2 JP5143435 B2 JP 5143435B2
Authority
JP
Japan
Prior art keywords
flange portion
jig
shaft
press
fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007018183A
Other languages
Japanese (ja)
Other versions
JP2008185101A (en
Inventor
仁彦 尾藤
一人 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2007018183A priority Critical patent/JP5143435B2/en
Priority to US12/518,298 priority patent/US8240918B2/en
Priority to CN200780044223.6A priority patent/CN101542143B/en
Priority to PCT/JP2007/074301 priority patent/WO2008075675A1/en
Priority to KR1020097011023A priority patent/KR101395072B1/en
Publication of JP2008185101A publication Critical patent/JP2008185101A/en
Application granted granted Critical
Publication of JP5143435B2 publication Critical patent/JP5143435B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

本発明は、流体軸受装置用軸部材の製造方法、およびその方法により製造された軸部材に関する。   The present invention relates to a method for manufacturing a shaft member for a hydrodynamic bearing device, and a shaft member manufactured by the method.

流体軸受装置は、軸受隙間に形成される流体の膜で軸部材を相対回転自在に支持するものである。この種の軸受装置は、特に高速回転時における回転精度、静粛性等に優れており、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として好適に使用される。好適な用途の具体例としては、例えばHDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等におけるスピンドルモータ用の軸受装置や、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイールモータ、ファンモータなどのモータ用軸受装置を挙げることができる。   The hydrodynamic bearing device supports a shaft member in a relatively rotatable manner with a fluid film formed in a bearing gap. This type of bearing device is particularly excellent in rotational accuracy, quietness, etc. during high-speed rotation, and is suitably used as a bearing device for motors mounted on various electrical devices including information devices. Specific examples of suitable applications include spindle motors in magnetic disk devices such as HDD, optical disk devices such as CD-ROM, CD-R / RW, and DVD-ROM / RAM, and magneto-optical disk devices such as MD and MO. And a bearing device for a motor such as a polygon scanner motor of a laser beam printer (LBP), a color wheel motor of a projector, and a fan motor.

通常、この種の流体軸受装置においては、軸部材の軸部が軸受スリーブ等の内周に挿入され、対向する軸受スリーブの内周面との間にラジアル軸受部を構成するものが知られている。また、軸部の一端にフランジ部を設け、このフランジ部の端面とこれに対向する面(例えば軸受スリーブの端面)との間にスラスト軸受部を構成するものが知られている(例えば、特許文献1を参照)。   Usually, in this type of hydrodynamic bearing device, it is known that the shaft portion of the shaft member is inserted into the inner periphery of a bearing sleeve or the like and forms a radial bearing portion between the inner peripheral surface of the opposing bearing sleeve. Yes. Further, there is known a structure in which a flange portion is provided at one end of a shaft portion, and a thrust bearing portion is formed between an end surface of the flange portion and a surface facing the flange portion (for example, an end surface of a bearing sleeve). Reference 1).

このように、軸部の外周面はラジアル軸受部を構成し、また、フランジ部の端面はスラスト軸受部を構成することから、これらの面は高精度に仕上げておく必要がある。同時に、ラジアル軸受部とスラスト軸受部とを共に構成する場合、個々の面精度だけでなく、これらの間の形状精度、すなわち軸部の外周面とフランジ部の端面との間の直角度が重要となる。   Thus, since the outer peripheral surface of the shaft portion constitutes a radial bearing portion and the end surface of the flange portion constitutes a thrust bearing portion, these surfaces need to be finished with high accuracy. At the same time, when the radial bearing part and the thrust bearing part are both configured, not only the individual surface accuracy but also the shape accuracy between them, that is, the perpendicularity between the outer peripheral surface of the shaft portion and the end surface of the flange portion is important. It becomes.

互いに別体の軸部とフランジ部とを低コストに一体化する方法として、例えば固定軸に環状のスラストプレートを圧入固定する手段が提案されている(特許文献2を参照)。   As a method for integrating the shaft portion and the flange portion which are separate from each other at low cost, for example, means for press-fitting and fixing an annular thrust plate to the fixed shaft has been proposed (see Patent Document 2).

また、軸部とフランジ部とを高精度に圧入固定する手段として、シャフト保持面とリング当接面との間の直角度を予め高精度に加工したガイド部材を用いると共に、圧入開始時に互いに当接するシャフト部材(軸部)の下端外周にR部を、リング部材(フランジ部)の孔の上端内周縁に面取り部をそれぞれ設けたものを用いて圧入固定を行うものが提案されている(特許文献3を参照)。この場合、まずシャフト部材の下端に設けたR部がリング部材の孔の面取り部に接触し、その作用によりリング部材が水平方向に移動してシャフト部材とリング部材の同軸を合わせた状態で圧入が行われるようになっている。
特開2003−239951号公報 特開2000−324753号公報 特開2001−287124号公報
In addition, as a means for press-fitting and fixing the shaft portion and the flange portion with high accuracy, a guide member in which the perpendicularity between the shaft holding surface and the ring contact surface is processed with high accuracy in advance is used, and at the start of press-fitting, they are mutually applied. There has been proposed one that performs press-fitting and fixing using an R portion provided on the outer periphery of the lower end of the shaft member (shaft portion) in contact and a chamfered portion provided on the inner periphery of the upper end of the hole of the ring member (flange portion) (patent) Reference 3). In this case, the R portion provided at the lower end of the shaft member first contacts the chamfered portion of the hole of the ring member, and the ring member moves in the horizontal direction by the action, so that the shaft member and the ring member are coaxially fitted and press-fitted. Is to be done.
JP 2003-239951 A JP 2000-324753 A JP 2001-287124 A

上述のように、圧入により軸部とフランジ部との一体化を図る場合、軸受面間の形状精度(直角度)を高めるのであれば、圧入寸法(軸方向の圧入長さ)を大きくとればよい。しかしながら、最近の小型化に対する要請が強まる状況では軸部材の軸方向寸法の縮小は避け難く、圧入寸法の増大は非常に困難である。   As described above, when integrating the shaft portion and the flange portion by press-fitting, if the shape accuracy (perpendicularity) between the bearing surfaces is increased, the press-fitting dimension (the press-fitting length in the axial direction) should be increased. Good. However, in recent situations where demands for downsizing are intensifying, it is unavoidable to reduce the axial dimension of the shaft member, and it is very difficult to increase the press-fit dimension.

また、この種の軸部材が量産品となることを考慮すれば、別々に製造される軸部やフランジ部の寸法上のばらつきはある程度許容せざるを得ない。このことを前提とした場合、特許文献3のように、シャフト保持面とリング当接面との間の直角度を予め高精度に加工したガイド部材を用いて圧入を行ったとしても、軸部のフランジ部に対する位置や姿勢を高精度に維持した状態で圧入することは難しい。   In addition, considering that this type of shaft member is a mass-produced product, dimensional variations of shaft portions and flange portions manufactured separately must be allowed to some extent. Assuming this, even if the press-fitting is performed using a guide member in which the perpendicularity between the shaft holding surface and the ring contact surface is processed with high accuracy in advance as in Patent Document 3, the shaft portion It is difficult to press-fit in a state where the position and posture with respect to the flange portion are maintained with high accuracy.

また、圧入は互いの部材の変形を伴ってなされるものであるから、圧入開始時には高精度に位置決めされていても、圧入がなされるに従い、その位置関係が崩れる場合も少なくない。特許文献3に記載のガイド部材は、ばねを介して駆動機構(ねじ軸)に連結されているため、軸部の圧入が始まっても、ガイド部材はフランジ部と当接した位置よりも下降しないように構成されている。しかしながら、このガイド部材は、単に圧入開始時の軸部に対するフランジ部の位置決めをなすものに過ぎず、圧入開始後の位置関係のずれを防止し、又は修復することを意図したものではない。   In addition, since the press-fitting is performed with the deformation of the members, even if the press-fitting is positioned with high accuracy, the positional relationship often collapses as the press-fitting is performed. Since the guide member described in Patent Document 3 is connected to a drive mechanism (screw shaft) via a spring, the guide member does not descend below the position in contact with the flange portion even when press-fitting of the shaft portion starts. It is configured as follows. However, this guide member is merely for positioning the flange portion with respect to the shaft portion at the start of press-fitting, and is not intended to prevent or repair the positional relationship after press-fitting starts.

以上の事情に鑑み、本発明では、軸受面の精度、および軸受面間の形状精度に優れた流体軸受装置用の軸部材を低コストに量産することを技術的課題とする。   In view of the above circumstances, an object of the present invention is to mass-produce a shaft member for a hydrodynamic bearing device excellent in bearing surface accuracy and shape accuracy between bearing surfaces at low cost.

前記課題を解決するため、本発明は、軸部と、軸部の一端に圧入固定されるフランジ部とを備え、軸部の外周面と、この外周面に対向する面との間にラジアル軸受隙間を形成すると共に、フランジ部の端面と、この端面に対向する面との間にスラスト軸受隙間を形成し、ラジアル軸受隙間およびスラスト軸受隙間に形成される流体の膜で回転支持される流体軸受装置用軸部材の製造方法において、軸部を内周面に挿入した状態で保持する第1の治具と、第1の治具との間でフランジ部をその厚み方向に挟持することで保持する第2の治具と、軸部の他端と当接し、軸部をフランジ部に向けて押込む押圧部材と、第1の治具と押圧部材との間に配設される第3の治具と、第1の治具と第3の治具との間に配設され、第3の治具が押圧部材からフランジ部の側に向けた負荷を受けた際、この負荷を圧縮を伴って第1の治具に伝達する弾性体とを備え、押圧部材を当接させて軸部をフランジ部の側に押下げることでフランジ部に設けた孔に対する軸部圧入を開始し、軸部のフランジ部に対する圧入姿勢が安定化した段階で、押圧部材を第3の治具に当接させてさらに押込むことで、フランジ部に設けた孔に対する軸部の圧入を進行させると共に、第1の治具と第2の治具とでフランジ部を挟持圧縮して、軸部に対するフランジ部の姿勢を矯正するための矯正力をフランジ部に付与することを特徴とする流体軸受装置用軸部材の製造方法を提供する。 In order to solve the above-mentioned problems, the present invention includes a shaft portion and a flange portion that is press-fitted and fixed to one end of the shaft portion, and a radial bearing between the outer peripheral surface of the shaft portion and a surface facing the outer peripheral surface. A hydrodynamic bearing that forms a gap and forms a thrust bearing gap between an end face of the flange portion and a face facing the end face, and is supported by a film of fluid formed in the radial bearing gap and the thrust bearing gap. In the manufacturing method of the shaft member for an apparatus , the flange portion is held in the thickness direction between the first jig that holds the shaft portion inserted in the inner peripheral surface and the first jig. A second jig that contacts the other end of the shaft portion, presses the shaft portion toward the flange portion, and a third jig disposed between the first jig and the pressing member. The jig is disposed between the jig, the first jig, and the third jig. And an elastic body that transmits the load to the first jig with compression when receiving a load directed toward the flange portion, and presses the shaft portion toward the flange portion by contacting the pressing member. start the press-fitting of the shaft part relative to the hole provided in the flange portion by lowering, at the stage of press-fitting position against the flange portion of the shaft portion is stabilized, further the pressing member is brought into contact with the third jig press As a result, the insertion of the shaft portion into the hole provided in the flange portion is advanced, and the flange portion is sandwiched and compressed by the first jig and the second jig, thereby correcting the posture of the flange portion with respect to the shaft portion. method for producing a fluid bearing device for a shaft member, wherein the Turkey be imparted to the flange portion corrective force to provide.

また、前記課題を解決するため、本発明は、軸部と、軸部の一端に圧入固定されるフランジ部とを備え、軸部の外周面と、この外周面に対向する面との間にラジアル軸受隙間を形成すると共に、フランジ部の端面と、この端面に対向する面との間にスラスト軸受隙間を形成し、ラジアル軸受隙間およびスラスト軸受隙間に形成される流体の膜で回転支持される流体軸受装置用軸部材の製造方法において、軸部を内周面に挿入した状態で保持する第1の治具と、第1の治具との間でフランジ部をその厚み方向に挟持することで保持する第2の治具と、軸部の他端と当接し、軸部をフランジ部に向けて押込む第1の押圧部材と、第1の治具の他端と当接し、第1の治具を負フランジ部に向けて押込む第2の押圧部材とを備え、第1の押圧部材を当接させて軸部をフランジ部の側に押下げることでフランジ部に設けた孔に対する軸部圧入を開始し、軸部のフランジ部に対する圧入姿勢が安定化した段階で、第2の押圧部材を第1の治具に当接させて押込むことで、フランジ部に設けた孔に対する軸部の圧入を進行させると共に、第1の治具と第2の治具とでフランジ部を挟持圧縮して、軸部に対するフランジ部の姿勢を矯正するための矯正力をフランジ部に付与することを特徴とする流体軸受装置用軸部材の製造方法を提供する。 In order to solve the above-mentioned problem, the present invention includes a shaft portion and a flange portion that is press-fitted and fixed to one end of the shaft portion, and between the outer peripheral surface of the shaft portion and a surface facing the outer peripheral surface. A radial bearing gap is formed, and a thrust bearing gap is formed between the end surface of the flange portion and a surface opposite to the end surface, and is rotationally supported by a fluid film formed in the radial bearing gap and the thrust bearing gap. In the method for manufacturing a shaft member for a hydrodynamic bearing device , the flange portion is sandwiched in the thickness direction between the first jig and the first jig that hold the shaft portion inserted in the inner peripheral surface. The second jig held in contact with the other end of the shaft portion, the first pressing member that pushes the shaft portion toward the flange portion, and the other end of the first jig, And a second pressing member that pushes the jig toward the negative flange portion. Is allowed to start the press-fitting of the shaft part relative to the hole provided in the flange portion by pressing down on the side of the flange portion of the shaft portion, at the stage of press-fitting position against the flange portion of the shaft portion is stabilized, the second pressing By pressing the member in contact with the first jig, the press-fitting of the shaft part into the hole provided in the flange part is advanced, and the flange part is sandwiched between the first jig and the second jig. Provided is a method for manufacturing a shaft member for a hydrodynamic bearing device, wherein the shaft member is compressed to apply a correcting force to the flange portion to correct the posture of the flange portion with respect to the shaft portion.

上述のように、本発明は、圧入過程、又は圧入完了状態にある軸部およびフランジ部に対して矯正を行うことを特徴とする。すなわち、圧入開始時を避けて、ある程度圧入が進行した段階又は圧入が完了した段階において矯正を行うことで、圧入により生じた変形や姿勢の歪みなどを適宜矯正することができる。そのため、軸部やフランジ部に設けられた軸受面の精度に優れ、また軸部の軸受面とフランジ部の軸受面との直角度に優れた流体軸受装置用軸部材を低コストで製造することが可能となる。   As described above, the present invention is characterized by correcting the shaft portion and the flange portion in the press-fitting process or in the press-fitting completion state. That is, by performing correction at a stage where the press-fitting has progressed to a certain degree or at a stage where the press-fitting is completed, avoiding the start of press-fitting, it is possible to appropriately correct the deformation caused by the press-fitting or the distortion of the posture. Therefore, it is possible to manufacture a shaft member for a hydrodynamic bearing device that is excellent in accuracy of the bearing surface provided in the shaft portion and the flange portion and excellent in the perpendicularity between the bearing surface of the shaft portion and the bearing surface of the flange portion at low cost. Is possible.

また、圧入完了後に矯正力を付与するのであれば、圧入に用いる機構と、矯正に用いる機構とを別々にすることができる。これによれば、圧入力により制限を受けることなく、矯正に適した大きさの矯正力(例えば圧入に要する負荷と同等かそれよりも大きな負荷)をフランジ部等に付与することができ、負荷形態の自由度を高めることが可能となる。   Further, if the correction force is applied after completion of press-fitting, the mechanism used for press-fitting and the mechanism used for correction can be made separate. According to this, a correction force having a magnitude suitable for correction (for example, a load equal to or larger than the load required for press-fitting) can be applied to the flange portion and the like without being limited by the pressure input, It becomes possible to increase the degree of freedom of form.

また、圧入の過程で矯正力を付与するようにすれば、同一工程中で圧入と矯正とを行うことができ、これにより、工程数の削減を図ることができる。また、装置の構成次第で、軸部の圧入に供する駆動系統(駆動機構)を、フランジ部等の矯正に用いる駆動系統として使用(兼用)することができ、駆動系統が1つで済む。そのため、必要となる設備の簡略化を図ることが可能となる。また、かかる方法であれば、圧入途中に、軸部に対するフランジ部の姿勢を矯正することとなるため、圧入により生じた変形(適正な位置からの歪み)が小さい状態で矯正することができる。従い、圧入完了後に付与する場合と比べて小さい矯正力でもって矯正を行うことができる。   Further, if the correction force is applied in the press-fitting process, the press-fitting and the correction can be performed in the same process, and thereby the number of processes can be reduced. Further, depending on the configuration of the apparatus, a drive system (drive mechanism) used for press-fitting the shaft portion can be used (shared) as a drive system used for correcting the flange portion and the like, and only one drive system is required. Therefore, it becomes possible to simplify the necessary facilities. Further, according to such a method, the posture of the flange portion with respect to the shaft portion is corrected during the press-fitting, so that the deformation (distortion from an appropriate position) caused by the press-fitting can be corrected in a small state. Accordingly, the correction can be performed with a correction force that is smaller than that applied when the press-fitting is completed.

また、上述のように、2つの押圧部材を用いて軸部の圧入途中でフランジ部に矯正力を付与する場合、例えば圧入の進行に伴い、フランジ部に付与される矯正力を徐々に高めることで、軸部に対するフランジ部の姿勢を矯正することも可能である。矯正力を伴って圧入を行う場合、矯正態様やその大きさにもよるが、圧入に要する力が増大する場合もあり得る。これに対して、上述のように、フランジ部への矯正力を徐々に高めながら圧入を行うようにすれば、圧入に要する力を全体的に小さくすることができる。 Further, as described above, when the correction force is applied to the flange portion during the press-fitting of the shaft portion using the two pressing members , for example , the correction force applied to the flange portion is gradually increased as the press-fitting progresses. Thus, it is possible to correct the posture of the flange portion with respect to the shaft portion. When press-fitting is performed with correction force, the force required for press-fitting may increase depending on the correction mode and the size. On the other hand, as described above, if the press-fitting is performed while gradually increasing the correction force to the flange portion, the force required for the press-fitting can be reduced as a whole.

上述の製造方法によって得られた軸部材であれば、軸受面精度および軸受面間の直角度に優れ、また量産性も良好であることから、軸受隙間を高精度に管理することが必要な流体軸受装置用の軸部材として、あるいはこの軸部材を備えた流体軸受装置として好適に提供可能である。   The shaft member obtained by the above-described manufacturing method has excellent bearing surface accuracy and perpendicularity between the bearing surfaces, and also has good mass productivity. Therefore, it is necessary to manage the bearing gap with high accuracy. It can be suitably provided as a shaft member for a bearing device or as a fluid dynamic bearing device provided with this shaft member.

以上のように、本発明によれば、軸受面の精度、および軸受面間の形状精度に優れた流体軸受装置用の軸部材を低コストに量産することが可能となる。   As described above, according to the present invention, it is possible to mass-produce a shaft member for a hydrodynamic bearing device having excellent bearing surface accuracy and shape accuracy between bearing surfaces at low cost.

以下、本発明の第1実施形態を図1〜図5に基づき説明する。なお、以下の説明における『上下』方向は、単に各図における構成要素間の位置関係を容易に理解するために規定したものに過ぎず、流体軸受装置の設置方向や使用態様等を特定するものではない。後述する他の構成、あるいは軸部材の製造工程における説明に関しても同様である。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. In the following description, the “up and down” direction is merely defined for easy understanding of the positional relationship between the components in each figure, and specifies the installation direction and usage mode of the hydrodynamic bearing device. is not. The same applies to the description of other configurations described later or the manufacturing process of the shaft member.

図1は、本発明の第1実施形態に係る流体軸受装置1を具備したスピンドルモータの断面図を示す。このスピンドルモータは、例えば磁気ディスクを備えたHDD用として用いられるもので、ハブ3を取り付けた軸部材2をラジアル方向に非接触支持する流体軸受装置1と、例えば半径方向のギャップを介して対向させたステータコイル4aおよびロータマグネット4bとからなる駆動部4と、ブラケット5とを備えている。ステータコイル4aはブラケット5に固定され、ロータマグネット4bはハブ3に固定される。流体軸受装置1のハウジング7は、ブラケット5の内周に固定される。また、同図に示すように、ハブ3にはディスク6(図1では2枚)が保持される。このように構成されたスピンドルモータにおいて、ステータコイル4aに通電すると、ステータコイル4aとロータマグネット4bとの間に発生する励磁力でロータマグネット4bが回転し、これに伴って、ハブ3に保持されたディスク6が軸部材2と一体に回転する。   FIG. 1 is a sectional view of a spindle motor equipped with a hydrodynamic bearing device 1 according to a first embodiment of the present invention. This spindle motor is used, for example, for an HDD having a magnetic disk, and is opposed to the hydrodynamic bearing device 1 that supports the shaft member 2 to which the hub 3 is attached in the radial direction in a non-contact manner, for example, via a radial gap. And a bracket 5. The drive unit 4 includes a stator coil 4 a and a rotor magnet 4 b. The stator coil 4 a is fixed to the bracket 5, and the rotor magnet 4 b is fixed to the hub 3. The housing 7 of the hydrodynamic bearing device 1 is fixed to the inner periphery of the bracket 5. Further, as shown in the figure, the hub 3 holds the disks 6 (two in FIG. 1). In the spindle motor configured as described above, when the stator coil 4a is energized, the rotor magnet 4b is rotated by the exciting force generated between the stator coil 4a and the rotor magnet 4b, and accordingly, is held by the hub 3. The disc 6 rotates integrally with the shaft member 2.

図2は、流体軸受装置1を示している。この流体軸受装置1は、ハウジング7と、ハウジング7の内周に固定される軸受スリーブ8と、ハウジング7の一端を閉塞する蓋部材9と、ハウジング7の他端開口側に配設されるシール部材10と、ハウジング7と軸受スリーブ8、およびシール部材10に対して相対回転する軸部材2とを主に備える。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a housing 7, a bearing sleeve 8 fixed to the inner periphery of the housing 7, a lid member 9 that closes one end of the housing 7, and a seal disposed on the other end opening side of the housing 7. It mainly includes a member 10, a housing 7, a bearing sleeve 8, and a shaft member 2 that rotates relative to the seal member 10.

ハウジング7は、例えば真ちゅう等の金属材料や樹脂材料で筒状に形成され、その軸方向両端を開口した形態をなす。ハウジング7の内周面7aには、軸受スリーブ8の外周面8cが、例えば接着(隙間接着や圧入接着を含む)、圧入、溶着(超音波溶着やレーザ溶着を含む)など適宜の手段で固定される。また、内周面7aの下端には、内周面7aよりも大径であって、後述する蓋部材9を固定するための固定面7bが形成される。   The housing 7 is formed in a cylindrical shape with a metal material such as brass or a resin material, for example, and has a shape in which both ends in the axial direction are opened. The outer peripheral surface 8c of the bearing sleeve 8 is fixed to the inner peripheral surface 7a of the housing 7 by an appropriate means such as adhesion (including gap adhesion and press-fit adhesion), press-fitting, and welding (including ultrasonic welding and laser welding). Is done. A fixing surface 7b is formed at the lower end of the inner peripheral surface 7a and has a diameter larger than that of the inner peripheral surface 7a and for fixing a lid member 9 described later.

軸受スリーブ8は、例えば焼結金属からなる多孔質体で円筒状に形成される。この実施形態では、軸受スリーブ8は、銅を主成分とする焼結金属の多孔質体で円筒状に形成され、ハウジング7の内周面7aに接着固定される。ここで、軸受スリーブ8は、樹脂やセラミック等の非金属材料からなる多孔質体で形成することもでき、また焼結金属等の多孔質体以外にも、内部空孔を持たない、あるいは潤滑油の出入りができない程度の大きさの空孔を有する構造の材料で形成することもできる。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body made of sintered metal, for example. In this embodiment, the bearing sleeve 8 is made of a sintered metal porous body mainly composed of copper and formed in a cylindrical shape, and is bonded and fixed to the inner peripheral surface 7 a of the housing 7. Here, the bearing sleeve 8 can also be formed of a porous body made of a non-metallic material such as resin or ceramic, and has no internal pores or lubrication other than the porous body such as sintered metal. It can also be formed of a material having a structure with pores of such a size that oil cannot enter and exit.

軸受スリーブ8の内周面8aの全面又は一部円筒領域には、ラジアル動圧発生部として
複数の動圧溝を配列した領域が形成される。この実施形態では、例えば図3に示すように、互いに傾斜角の異なる複数の動圧溝8a1、8a2をヘリングボーン形状に配列した領域が、軸方向に離隔して2ヶ所に形成される。なお、この実施形態では、軸受内部における潤滑油の循環を意図的に作り出す目的で、一方(ここでは上側)の動圧溝8a1、8a2形成領域を、軸方向非対称に形成している。図3に例示の形態で説明すると、軸方向中心mより上側(シール部材10側)の動圧溝8a1形成領域の軸方向寸法X1が、下側の動圧溝8a2形成領域の軸方向寸法X2よりも大きくなるように形成されている。
A region in which a plurality of dynamic pressure grooves are arranged as a radial dynamic pressure generating portion is formed on the entire inner surface or a part of the cylindrical region of the inner peripheral surface 8 a of the bearing sleeve 8. In this embodiment, for example, as shown in FIG. 3, regions in which a plurality of dynamic pressure grooves 8a1 and 8a2 having different inclination angles are arranged in a herringbone shape are formed at two locations separated in the axial direction. In this embodiment, for the purpose of intentionally creating circulation of the lubricating oil inside the bearing, one (here, the upper side) dynamic pressure grooves 8a1 and 8a2 forming regions are formed asymmetrically in the axial direction. In the form illustrated in FIG. 3, the axial dimension X 1 of the dynamic pressure groove 8 a 1 formation area above the axial center m (the seal member 10 side) is the axial dimension of the lower dynamic pressure groove 8 a 2 formation area. It is formed to be larger than X 2.

軸受スリーブ8の下端面8bの全面または一部環状領域には、例えば図4に示すように、スラスト動圧発生部として、複数の動圧溝8b1をスパイラル形状に配列した領域が形成される。この動圧溝8b1形成領域は、完成品の状態では後述するフランジ部22の上端面22aと対向し、軸部材2の回転時、上端面22aとの間に後述する第1スラスト軸受部T1のスラスト軸受隙間を形成する(図2を参照)。   For example, as shown in FIG. 4, an area where a plurality of dynamic pressure grooves 8 b 1 are arranged in a spiral shape is formed as a thrust dynamic pressure generating portion on the entire lower surface 8 b of the bearing sleeve 8 or a partial annular region. This dynamic pressure groove 8b1 formation region is opposed to an upper end surface 22a of a flange portion 22 described later in the state of a finished product, and the first thrust bearing portion T1 described later is formed between the upper end surface 22a and the shaft member 2 when rotating. A thrust bearing gap is formed (see FIG. 2).

軸受スリーブ8の外周面8cには、軸方向に向けて延びる複数の軸方向溝8c1が形成されている。これら軸方向溝8c1は、主に流体軸受装置1の使用時、軸受内部空間内で潤滑油の過不足が生じた場合などに、かかる状態を早急に適正な状態に回復するための役割を果たす。   A plurality of axial grooves 8 c 1 extending in the axial direction are formed on the outer peripheral surface 8 c of the bearing sleeve 8. These axial grooves 8c1 play a role in quickly recovering such a state to an appropriate state when the hydrodynamic bearing device 1 is used, such as when an excess or deficiency of lubricating oil occurs in the bearing internal space. .

ハウジング7の下端側を閉塞する蓋部材9は、例えば金属材料あるいは樹脂材料で形成され、ハウジング7の内周下端に設けられた固定面7bに固定される。固定手段には、軸受スリーブ8の場合と同じく、接着、圧入、溶接、溶着など任意の手段が使用可能である。   The lid member 9 that closes the lower end side of the housing 7 is formed of, for example, a metal material or a resin material, and is fixed to a fixing surface 7 b provided at the inner peripheral lower end of the housing 7. As the fixing means, as in the case of the bearing sleeve 8, any means such as adhesion, press-fitting, welding, and welding can be used.

蓋部材9の上端面9aの全面又は一部環状領域には、スラスト動圧発生部として、例えば図4と同様の配列態様(スパイラルの方向は逆)をなす動圧溝形成領域が形成される。この動圧溝形成領域は、完成品の状態ではフランジ部22の下端面22bと対向し、軸部材2の回転時、下端面22bとの間に後述する第2スラスト軸受部T2のスラスト軸受隙間を形成する(図2を参照)。   On the entire upper surface 9a of the lid member 9 or a partial annular region, a dynamic pressure groove forming region is formed as a thrust dynamic pressure generating portion, for example, having the same arrangement mode as in FIG. . This dynamic pressure groove forming region faces the lower end surface 22b of the flange portion 22 in the finished product state, and a thrust bearing gap of a second thrust bearing portion T2 described later between the lower end surface 22b when the shaft member 2 rotates. (See FIG. 2).

シール手段としてのシール部材10は、この実施形態ではハウジング7と別体に金属材料あるいは樹脂材料で形成され、ハウジング7の上端内周に圧入、接着、溶着、溶接等任意の手段で固定される。   In this embodiment, the sealing member 10 as a sealing means is formed of a metal material or a resin material separately from the housing 7, and is fixed to the inner periphery of the upper end of the housing 7 by any means such as press-fitting, bonding, welding, and welding. .

シール部材10の内周にはテーパ形状をなすシール面10aが形成されており、このシール面10aと、後述する軸部21の外周面との間にシール空間Sが形成される。潤滑油を流体軸受装置1内部に充満させた状態では、潤滑油の油面は常時シール空間Sの範囲内に維持される。   A taper-shaped seal surface 10a is formed on the inner periphery of the seal member 10, and a seal space S is formed between the seal surface 10a and an outer peripheral surface of a shaft portion 21 described later. In a state where the lubricating oil is filled in the hydrodynamic bearing device 1, the oil level of the lubricating oil is always maintained within the range of the seal space S.

軸部材(流体軸受装置用軸部材)2は、軸部21と、軸部21の下端に圧入固定される環状のフランジ部22とで構成される。この実施形態では、図2に示すように、軸部21の外周に、軸受スリーブ8の内周面8aに設けられた動圧溝8a1、8a2形成領域と対向するラジアル軸受面21aが軸方向に離隔して2ヶ所設けられる。これらラジアル軸受面21a、21a間には、ラジアル軸受面21aより小径のヌスミ部21bが設けられる。なお、軸部21は強度や摺動特性を考慮して、SUS鋼など比較的硬い材料で形成されるのに対し、フランジ部22は真ちゅうなど、主に加工性を考慮して比較的軟質の材料で形成されるのがよいが、別にこの組み合わせに限ることなく、各部材の材料を任意に選定することも可能である。   The shaft member (fluid bearing device shaft member) 2 includes a shaft portion 21 and an annular flange portion 22 that is press-fitted and fixed to the lower end of the shaft portion 21. In this embodiment, as shown in FIG. 2, a radial bearing surface 21 a facing the dynamic pressure grooves 8 a 1, 8 a 2 forming region provided on the inner peripheral surface 8 a of the bearing sleeve 8 is provided on the outer periphery of the shaft portion 21 in the axial direction. Two places are provided apart. Between the radial bearing surfaces 21a and 21a, a pussie portion 21b having a smaller diameter than the radial bearing surface 21a is provided. The shaft portion 21 is formed of a relatively hard material such as SUS steel in consideration of strength and sliding characteristics, whereas the flange portion 22 is relatively soft such as brass mainly considering workability. Although it is good to form with a material, it is also possible to select the material of each member arbitrarily, without restricting to this combination separately.

上述の構成部品を組立てた後、軸受内部空間に潤滑油を充填することで、完成品としての流体軸受装置1を得る。ここで、流体軸受装置1内部に充満される潤滑油としては、種々のものが使用可能であるが、HDD等のディスク駆動装置用の動圧軸受装置に提供される潤滑油には、その使用時あるいは輸送時における温度変化を考慮して、低蒸発率及び低粘度性に優れたエステル系潤滑油、例えばジオクチルセバケート(DOS)、ジオクチルアゼレート(DOZ)等が好適に使用可能である。   After assembling the above-described components, the bearing internal space is filled with lubricating oil to obtain the hydrodynamic bearing device 1 as a finished product. Here, as the lubricating oil filled in the hydrodynamic bearing device 1, various types can be used. However, the lubricating oil provided to the hydrodynamic bearing device for a disk drive device such as an HDD is used as the lubricating oil. Considering temperature changes during transportation or transportation, ester-based lubricating oils excellent in low evaporation rate and low viscosity, such as dioctyl sebacate (DOS), dioctyl azelate (DOZ), etc. can be suitably used.

上記構成の流体軸受装置1において、軸部材2の回転時、軸受スリーブ8の双方の動圧溝8a1、8a2形成領域は、軸部21のラジアル軸受面21a、21aとラジアル軸受隙間を介して対向する。そして、軸部材2の回転に伴い、上下何れの動圧溝8a1、8a2形成領域においても潤滑油が動圧溝8a1、8a2の軸方向中心mに向けて押し込まれ、その圧力が上昇する。このような動圧溝8a1、8a2の動圧作用によって、軸部材2を回転自在にラジアル方向に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とがそれぞれ軸方向に離隔して2ヶ所に構成される。   In the hydrodynamic bearing device 1 configured as described above, when the shaft member 2 rotates, the dynamic pressure grooves 8a1 and 8a2 forming regions of the bearing sleeve 8 face the radial bearing surfaces 21a and 21a of the shaft portion 21 via the radial bearing gap. To do. As the shaft member 2 rotates, the lubricating oil is pushed toward the axial center m of the dynamic pressure grooves 8a1 and 8a2 in any of the upper and lower dynamic pressure grooves 8a1 and 8a2 formation regions, and the pressure rises. By such dynamic pressure action of the dynamic pressure grooves 8a1 and 8a2, the first radial bearing portion R1 and the second radial bearing portion R2 that rotatably support the shaft member 2 in the radial direction are separated from each other in the axial direction. It is configured in two places.

これと同時に、軸受スリーブ8の下端面8bに設けた動圧溝8b1形成領域とこれに対向するフランジ部22の上端面22aとの間のスラスト軸受隙間、および蓋部材9の上端面9aに設けた動圧溝形成領域とこれに対向するフランジ部22の下端面22bとの間のスラスト軸受隙間に、動圧溝の動圧作用により潤滑油の油膜がそれぞれ形成される。そして、これら油膜の圧力によって、軸部材2をスラスト方向に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とがそれぞれ構成される。   At the same time, the thrust bearing gap between the region where the dynamic pressure groove 8b1 is formed on the lower end surface 8b of the bearing sleeve 8 and the upper end surface 22a of the flange 22 opposite to this region, and the upper end surface 9a of the lid member 9 are provided. An oil film of lubricating oil is formed in the thrust bearing gap between the dynamic pressure groove forming region and the lower end surface 22b of the flange portion 22 facing this region by the dynamic pressure action of the dynamic pressure groove. The first thrust bearing portion T1 and the second thrust bearing portion T2 that support the shaft member 2 in the thrust direction in a non-contact manner are constituted by the pressure of these oil films.

以下、軸部材2の製造工程の一例を図5に基づき説明する。   Hereinafter, an example of the manufacturing process of the shaft member 2 will be described with reference to FIG.

上記構成の軸部材2は、フランジ部22に設けた孔22cに軸部21の下部を圧入する工程と、圧入完了後、軸部21に対するフランジ部22の姿勢を矯正する工程とを経て形成される。   The shaft member 2 having the above-described configuration is formed through a step of press-fitting the lower portion of the shaft portion 21 into the hole 22c provided in the flange portion 22 and a step of correcting the posture of the flange portion 22 with respect to the shaft portion 21 after completion of the press-fitting. The

図5(a)〜図5(c)は、軸部21のフランジ部22に対する圧入工程および矯正工程の一例を概念的に示すものである。例えば図5(a)は、圧入前における軸部21およびフランジ部22の配置関係を示すもので、軸部21が、第1の治具31の筒状内周面31a内部に挿入され、保持されている。また、フランジ部22が、第1の治具31の下端面31bと、第1の治具31の下方に位置する第2の治具32の上端面32aとの間に保持されている。   FIG. 5A to FIG. 5C conceptually show an example of a press-fitting process and a correction process with respect to the flange part 22 of the shaft part 21. For example, FIG. 5A shows the arrangement relationship between the shaft portion 21 and the flange portion 22 before press-fitting, and the shaft portion 21 is inserted into the cylindrical inner peripheral surface 31a of the first jig 31 and held. Has been. Further, the flange portion 22 is held between the lower end surface 31 b of the first jig 31 and the upper end surface 32 a of the second jig 32 positioned below the first jig 31.

ここで、第1の治具31に設けられた筒状内周面31aと下端面31b、および第2の治具32に設けられた上端面32aは、何れも軸部材2の軸受面と当接し、かつこれら軸受面の面精度や形状精度を矯正するものである。そのため、筒状内周面31aや下端面31b、および上端面32aに対し高精度に仕上げ加工が施されていることが肝要となる。   Here, the cylindrical inner peripheral surface 31 a and the lower end surface 31 b provided on the first jig 31 and the upper end surface 32 a provided on the second jig 32 are all in contact with the bearing surface of the shaft member 2. The surface accuracy and shape accuracy of these bearing surfaces are corrected. Therefore, it is important that the cylindrical inner peripheral surface 31a, the lower end surface 31b, and the upper end surface 32a are finished with high accuracy.

また、この種の軸部材2においては、ラジアル軸受面21aとスラスト軸受面(上端面22a)との間の直角度が軸受性能を左右する点に鑑み、筒状内周面31aと下端面31bとの間の直角度を予め高精度に加工することで高めておくことが望ましい。フランジ部22を軸方向に拘束する下端面31bと上端面32aとの間で高い平行度が得られるように双方の治具31、32を高精度に加工、配置しておくことはもちろんである。一例として、筒状内周面31aの内径寸法は、圧入すべき軸部21の外径より3μm〜7μm大きくなるよう加工される。また、筒状内周面31aと下端面31b、および筒状内周面31aと上端面32aとの間の直角度が3μm以下となるよう加工されると共に、これら治具31、32が配設される。   Further, in this type of shaft member 2, in view of the fact that the perpendicularity between the radial bearing surface 21a and the thrust bearing surface (upper end surface 22a) affects the bearing performance, the cylindrical inner peripheral surface 31a and the lower end surface 31b It is desirable to increase the squareness between the two by machining with high accuracy in advance. Of course, both jigs 31 and 32 are processed and arranged with high precision so that a high degree of parallelism is obtained between the lower end surface 31b and the upper end surface 32a that restrain the flange portion 22 in the axial direction. . As an example, the inner diameter dimension of the cylindrical inner peripheral surface 31a is processed to be 3 μm to 7 μm larger than the outer diameter of the shaft portion 21 to be press-fitted. Further, the cylindrical inner peripheral surface 31a and the lower end surface 31b, and the perpendicular angle between the cylindrical inner peripheral surface 31a and the upper end surface 32a are processed to be 3 μm or less, and these jigs 31 and 32 are disposed. Is done.

圧入前の状態において、軸部21の外径寸法は、フランジ部22の孔22cの内径寸法よりも大きく設定されており、軸部21の外径寸法から孔22cの内径寸法を差し引いた値が実質的な圧入代となる。ここでは、例えば圧入代の直径量が10μm以上30μm以下となるよう、好ましくは15μm以上20μm以下となるよう各部材の寸法設定が行われる。なお、この実施形態では、軸部21の圧入側端部、およびフランジ部22の孔22cの圧入側端部にそれぞれ面取り部21d、22dが形成されている。図5(a)に示すように、圧入前の段階では、軸部21に設けた面取り部21dが、フランジ部22に設けた面取り部22dと当接するようになっている。   In the state before press-fitting, the outer diameter size of the shaft portion 21 is set larger than the inner diameter size of the hole 22c of the flange portion 22, and a value obtained by subtracting the inner diameter size of the hole 22c from the outer diameter size of the shaft portion 21 is obtained. This is a substantial press-fitting allowance. Here, for example, the dimension of each member is set so that the diameter of the press-fitting allowance is 10 μm or more and 30 μm or less, preferably 15 μm or more and 20 μm or less. In this embodiment, chamfered portions 21 d and 22 d are formed at the press-fit side end of the shaft portion 21 and the press-fit side end of the hole 22 c of the flange portion 22, respectively. As shown in FIG. 5A, the chamfered portion 21d provided on the shaft portion 21 comes into contact with the chamfered portion 22d provided on the flange portion 22 before the press-fitting.

上述の如く、軸部21とフランジ部22を第1の治具31および第2の治具32内に設置した状態から、適当な駆動機構で第1の押圧部材33を下降させ、軸部21を押圧する(図5(b)を参照)。これにより、軸部21のフランジ部22に対する圧入を開始する。なお、軸部21の押圧時、互いに当接する軸部21の面取り部21dと、フランジ部22の面取り部22dとの相互作用により、軸部21に対するフランジ部22の同軸合わせ(主に水平方向)が行われる。   As described above, the shaft portion 21 and the flange portion 22 are placed in the first jig 31 and the second jig 32, and the first pressing member 33 is lowered by an appropriate drive mechanism, and the shaft portion 21 is moved. Is pressed (see FIG. 5B). As a result, press-fitting of the shaft portion 21 into the flange portion 22 is started. When the shaft portion 21 is pressed, the flange portion 22 is coaxially aligned with the shaft portion 21 (mainly in the horizontal direction) due to the interaction between the chamfered portion 21d of the shaft portion 21 and the chamfered portion 22d of the flange portion 22 that are in contact with each other. Is done.

このようにして、第1の押圧部材33を押し下げることで、軸部21をフランジ部22の孔22cに対して圧入していき、軸部21の圧入が完了した時点で第1の押圧部材33の下降を停止する。この実施形態でいえば、図5(b)に示すように、軸部21の下端面21cがフランジ部22の下端面22bと同一高さに到るまで圧入した時点で、第1の押圧部材33による押圧(圧入)を停止する。   Thus, by pressing down the first pressing member 33, the shaft portion 21 is press-fitted into the hole 22c of the flange portion 22, and when the press-fitting of the shaft portion 21 is completed, the first pressing member 33 is pressed. Stops descending. In this embodiment, as shown in FIG. 5B, when the lower end surface 21c of the shaft portion 21 is press-fitted until it reaches the same height as the lower end surface 22b of the flange portion 22, the first pressing member. The pressing (press fitting) by 33 is stopped.

そして、圧入完了後、第1の押圧部材33に代えて、第2の押圧部材34を第1の治具31および軸部21の上方に配置し、この第2の押圧部材34を下降させる。これにより、第1の治具31を押圧し、第1の治具31の下端面31bと第2の治具32の上端面32aとでフランジ部22を圧縮する(図5(c)を参照)。かかる圧縮作業を、軸部21を第1の治具31の筒状内周面31aに保持した状態で行うことで、軸部21に対するフランジ部22の姿勢が治具31、32の形状に倣って矯正される。具体的には、ラジアル軸受面21a、21aとスラスト軸受面を有する両端面22a、22bとの間の直角度がそれぞれ改善(例えば5μm以下に改善)される。また、同時に、フランジ部22の両端面22a、22bが矯正され、これらの面精度および形状精度(ここでは平行度)が改善される。   Then, after the press-fitting is completed, the second pressing member 34 is disposed above the first jig 31 and the shaft portion 21 instead of the first pressing member 33, and the second pressing member 34 is lowered. Accordingly, the first jig 31 is pressed, and the flange portion 22 is compressed by the lower end surface 31b of the first jig 31 and the upper end surface 32a of the second jig 32 (see FIG. 5C). ). By performing the compression work in a state where the shaft portion 21 is held on the cylindrical inner peripheral surface 31a of the first jig 31, the posture of the flange portion 22 with respect to the shaft portion 21 follows the shape of the jigs 31 and 32. Will be corrected. Specifically, the perpendicularity between the radial bearing surfaces 21a and 21a and both end surfaces 22a and 22b having thrust bearing surfaces is improved (for example, improved to 5 μm or less). At the same time, both end surfaces 22a and 22b of the flange portion 22 are corrected, and the surface accuracy and shape accuracy (parallelism here) are improved.

このように、フランジ部22に対して軸部21を圧入した後、治具31、32により矯正力を付与して、軸部21に対するフランジ部22の姿勢を矯正することで、圧入により生じた変形や姿勢の歪みなどを適宜矯正することができる。特に、この実施形態のように、フランジ部22に対して矯正力を付与することで、材質や形状の違いから比較的変形を生じやすいフランジ部22の両端面22a、22bを効果的に矯正することができる。以上より、軸部21やフランジ部22に設けられたラジアル軸受面21a、スラスト軸受面(両端面22a、22b)の精度に優れ、またこれら軸受面間の直角度に優れた軸部材2を得ることができる。   Thus, after press-fitting the shaft portion 21 into the flange portion 22, the correcting force is applied by the jigs 31 and 32, and the posture of the flange portion 22 with respect to the shaft portion 21 is corrected to cause the press-fit. Deformation and posture distortion can be corrected as appropriate. In particular, as in this embodiment, by applying a correction force to the flange portion 22, both end faces 22a and 22b of the flange portion 22 that are relatively susceptible to deformation due to differences in material and shape are effectively corrected. be able to. As described above, the shaft member 2 excellent in accuracy of the radial bearing surface 21a and the thrust bearing surfaces (both end surfaces 22a and 22b) provided in the shaft portion 21 and the flange portion 22 and excellent in the perpendicularity between these bearing surfaces is obtained. be able to.

また、この実施形態では、圧入完了後に、軸部21に対するフランジ部22の姿勢を矯正することとした。このように、圧入完了後に矯正を行うのであれば、圧入に用いる機構と、矯正に用いる機構(特に駆動機構)とを別々にすることができるため、例えば、第1の押圧部材33による負荷よりも大きな負荷(矯正力)をフランジ部22に付与することができる。これにより、矯正力の大きさを自由に調整することが可能となり、圧入態様やそのサイズに応じた適切な矯正力を軸部21やフランジ部22に付与することができる。   In this embodiment, the posture of the flange portion 22 relative to the shaft portion 21 is corrected after the press-fitting is completed. In this way, if correction is performed after completion of press-fitting, the mechanism used for press-fitting and the mechanism used for correction (particularly the drive mechanism) can be made separate. For example, from the load caused by the first pressing member 33 Also, a large load (correction force) can be applied to the flange portion 22. Thereby, it is possible to freely adjust the magnitude of the correction force, and an appropriate correction force according to the press-fitting mode and the size can be applied to the shaft portion 21 and the flange portion 22.

また、この実施形態では、フランジ部22の圧入領域又はその近傍に対して矯正力を加えることで矯正を行うようにした。既述の如く、圧入は少なくとも何れか一方の部材の変形を伴ってなされるものであり、特に圧入領域では局所的な塑性変形を生じ易い。そのため、圧入領域又はその近傍となる、フランジ部22の内周縁を含む両端面22a、22b全体を、第1の治具31および第2の治具32で圧縮することで、より効果的に矯正を行うことができ、フランジ部22自体の変形、および軸部21に対するフランジ部22の固定姿勢を高精度に矯正することが可能となる。   In this embodiment, the correction is performed by applying a correction force to the press-fitted region of the flange portion 22 or the vicinity thereof. As described above, press-fitting is performed with deformation of at least one of the members, and local plastic deformation is likely to occur particularly in the press-fitted region. Therefore, the entire end surfaces 22a and 22b including the inner peripheral edge of the flange portion 22 that are in the press-fitted region or the vicinity thereof are compressed more effectively by compressing with the first jig 31 and the second jig 32. Thus, the deformation of the flange portion 22 itself and the fixing posture of the flange portion 22 with respect to the shaft portion 21 can be corrected with high accuracy.

また、この実施形態のように、圧入完了後に矯正を行うのであれば、矯正力の付与方向およびこの工程に係る構成は任意である。例えば図示の如く、軸部21とフランジ部22とを保持する第1の治具31を押圧することで、フランジ部22の矯正を実施可能である他、第2の治具32もしくはこれに対応する治具を、第1の治具31に保持されたフランジ部22に対して押し付ける(押圧する)ことによっても矯正を図ることができる。   If correction is performed after completion of press-fitting as in this embodiment, the direction in which the correction force is applied and the configuration related to this step are arbitrary. For example, as shown in the drawing, by pressing the first jig 31 that holds the shaft portion 21 and the flange portion 22, the flange portion 22 can be corrected and the second jig 32 or corresponding to this. Correction can also be achieved by pressing (pressing) the jig to be pressed against the flange portion 22 held by the first jig 31.

以上、本発明の第1実施形態に係る軸部材2の構成および製造工程を説明したが、もちろん、これに限定されることなく、上記以外の構成および工程を採ることも可能である。   As mentioned above, although the structure and manufacturing process of the shaft member 2 which concern on 1st Embodiment of this invention were demonstrated, of course, it is possible to take a structure and process other than the above, without being limited to this.

例えば第1実施形態では、軸部21に対するフランジ部22の姿勢に係る矯正を、軸部21の圧入完了後に行う場合を説明したが、これ以外の段階、例えば圧入の過程で軸部21およびフランジ部22に対する矯正を行うこともできる。   For example, in the first embodiment, a case has been described in which correction related to the posture of the flange portion 22 with respect to the shaft portion 21 is performed after completion of press-fitting of the shaft portion 21, but the shaft portion 21 and the flange in other stages, for example, the press-fitting process. Correction for the portion 22 can also be performed.

図6はその一例に係る圧入工程を概念的に示すものである。この例(第2実施形態)では、図6(a)に示すように、軸部21を保持する第1の治具41と、軸部21をフランジ部22の側に向けて押し込む押圧部材45との間に、第3の治具43が配設されている。この治具43は、下方に位置する第1の治具41との間に弾性体44(Oリングなどの他、ばね等も含む)を介設してなり、第3の治具43が押圧部材45から下向きの負荷を受けた場合、この負荷を弾性体44を介して第1の治具41に伝達するようになっている。また、この場合、弾性体44が負荷に応じて圧縮することで、第3の治具43の下方への変位を吸収するようになっている。 FIG. 6 conceptually shows the press-fitting process according to the example. In this example (second embodiment), as shown in FIG. 6A, a first jig 41 that holds the shaft portion 21 and a pressing member 45 that pushes the shaft portion 21 toward the flange portion 22. The third jig 43 is disposed between the two. The jig 43 is provided with an elastic body 44 (including an O-ring and the like, a spring, etc.) between the first jig 41 located below and the third jig 43 is pressed. When a downward load is received from the member 45, this load is transmitted to the first jig 41 via the elastic body 44 . In this case, the elastic body 44 is compressed according to the load, so that the downward displacement of the third jig 43 is absorbed.

フランジ部22の下端面22bと当接する第2の治具42は、この例ではフランジ部22の外周を覆っており、圧入時、第1の治具41との間で、フランジ部22の移動を拘束するようになっている。この場合、軸部21とフランジ部22とに設けた面取り部21d、22dが機能するよう、すなわち若干の水平方向への位置合せは可能な程度の隙間をフランジ部22との間に設けている(第3実施形態においても同じ)。ラジアル軸受面21a、21aやスラスト軸受面(両端面22a、22b)と当接する第1の治具41の筒状内周面41aと下端面41b、および第2の治具42の上端面42aには何れも高精度に仕上げ加工がなされている。具体的な加工精度としては、第1実施形態と同様の数値を挙げることができる。 The second jig 42 that contacts the lower end surface 22b of the flange portion 22 covers the outer periphery of the flange portion 22 in this example, and the flange portion 22 moves between the first jig 41 during press-fitting. Is to be restrained. In this case, the chamfered portions 21d and 22d provided in the shaft portion 21 and the flange portion 22 function, that is, a gap is provided between the flange portion 22 so as to allow a slight horizontal alignment. (The same applies to the third embodiment). On the cylindrical inner peripheral surface 41a and the lower end surface 41b of the first jig 41 and the upper end surface 42a of the second jig 42 which are in contact with the radial bearing surfaces 21a and 21a and the thrust bearing surfaces (both end surfaces 22a and 22b). Both are finished with high precision. As specific processing accuracy, the same numerical values as in the first embodiment can be cited.

上記構成の装置を用いた場合、軸部21とフランジ部22との固定は以下の様にして行われる。   When the apparatus having the above configuration is used, the shaft portion 21 and the flange portion 22 are fixed as follows.

まず、図6(a)に示す状態から、適当な駆動機構により押圧部材45を下降させる。そして、押圧部材45と当接した軸部21を押し下げることで、フランジ部22への圧入を開始する。この段階(圧入開始時)では、第3の治具43よりも軸部21の反圧入側端部が突出した状態にある(図6(a)を参照)。 First, from the state shown in FIG. 6A, the pressing member 45 is lowered by an appropriate drive mechanism. Then, by pressing down the shaft portion 21 in contact with the pressing member 45, press-fitting into the flange portion 22 is started. At this stage (at the start of press-fitting), the opposite press-fitting side end portion of the shaft portion 21 protrudes from the third jig 43 (see FIG. 6A).

このようにして圧入を開始した後、軸部21が、所定長さ分圧入された段階(例えば、フランジ部22に対する軸部21の圧入姿勢が安定化した段階)で、押圧部材45を第3の治具43に当接させる(図6(b)に示す段階)。そして、さらに押圧部材45を下降させ、第3の治具43を下方に押圧することで、弾性体44を介して、第1の治具41に下向きの負荷が伝達される。従い、フランジ部22の両端面22a、22bを、第1の治具41と第2の治具42とで圧縮しながら、軸部21の圧入が進行する。 After the press-fitting is started in this manner, the pressing member 45 is moved to the third position when the shaft portion 21 is press-fitted by a predetermined length (for example, when the press-fit posture of the shaft portion 21 with respect to the flange portion 22 is stabilized). Is brought into contact with the jig 43 (step shown in FIG. 6B). Then, the downward load is transmitted to the first jig 41 via the elastic body 44 by further lowering the pressing member 45 and pressing the third jig 43 downward. Accordingly, the press-fitting of the shaft portion 21 proceeds while compressing the both end faces 22a, 22b of the flange portion 22 with the first jig 41 and the second jig 42.

このようにして、押圧部材45を押し下げることで、軸部21をフランジ部22の孔22cに対して圧入していき、同時に、フランジ部22に対して所定の大きさの矯正力(ここでは弾性体44の弾性復元力)を付与することで、軸部21に対するフランジ部22の姿勢を矯正する。そして、フランジ部22に軸部21の圧入が完了した時点で押圧部材45の下降を停止する。図6(c)は、軸部21の下端面21cがフランジ部22の下端面22bと同一高さに到った時点で軸部21の押込みを停止した状態を示している。ここで、得られる圧入品(軸部材2)の、軸部21のラジアル軸受面21aとフランジ部22の双方の端面22a、22b間の直角度はそれぞれ5μm以下に矯正されている。 In this way, by pressing down the pressing member 45, the shaft portion 21 is press-fitted into the hole 22c of the flange portion 22, and at the same time, a corrective force (here, elastic) is applied to the flange portion 22. The posture of the flange portion 22 relative to the shaft portion 21 is corrected by applying the elastic restoring force of the body 44 . Then, the downward movement of the pressing member 45 is stopped when the press-fitting of the shaft portion 21 into the flange portion 22 is completed. FIG. 6C shows a state in which the pushing of the shaft portion 21 is stopped when the lower end surface 21 c of the shaft portion 21 reaches the same height as the lower end surface 22 b of the flange portion 22. Here, the perpendicularity between the end face 22a, 22b of both the radial bearing surface 21a of the axial part 21 and the flange part 22 of the press-fit goods (shaft member 2) obtained is each corrected to 5 micrometers or less.

このように、フランジ部22に対して軸部21を圧入を開始し、ある程度圧入が進行した段階で、軸部21に対するフランジ部22の姿勢を矯正することで、圧入により生じた変形や姿勢の歪みなどを適宜矯正しながら、圧入を実施することができる。特に、この実施形態のように、圧入途中に矯正を開始し、かつフランジ部22への矯正力を徐々に高めながら圧入を行うことで、圧入によりフランジ部22に生じた変形、又は本来在るべき姿勢からの歪みが小さい状態で順次矯正することができる。そのため、矯正に要する負荷が全体として小さくて済む。   In this way, press-fitting of the shaft portion 21 into the flange portion 22 is started, and when the press-fitting has progressed to some extent, the posture of the flange portion 22 with respect to the shaft portion 21 is corrected, so that deformation or posture caused by the press-fitting is corrected. The press-fitting can be performed while appropriately correcting the distortion. In particular, as in this embodiment, by starting the correction during the press-fitting and performing the press-fitting while gradually increasing the correction force to the flange part 22, the deformation generated in the flange part 22 due to the press-fitting or originally exists. Corrections can be made sequentially with little distortion from the desired posture. Therefore, the load required for correction is small as a whole.

また、かかる方法(構成)であれば、単一の押圧部材45で圧入および矯正を実施することができる。そのため、圧入力や矯正力の付与に供する駆動機構(駆動系統)が単一のもので済み、設備コストの低減化が可能となる。また、互いに連動する一連の治具41〜45でもって圧入および矯正を実施することができるので、生産性の面でも好ましい。   Further, with this method (configuration), press-fitting and correction can be performed with a single pressing member 45. Therefore, a single drive mechanism (drive system) for applying pressure input and correction force is sufficient, and the equipment cost can be reduced. Moreover, since press-fitting and correction can be carried out with a series of jigs 41 to 45 interlocking with each other, it is also preferable in terms of productivity.

以上、第1および第2実施形態に係る流体軸受装置用軸部材2の製造方法を説明したが、もちろんこれら以外の圧入固定手段を採ることも可能である。   The method for manufacturing the shaft member 2 for a hydrodynamic bearing device according to the first and second embodiments has been described above. Of course, press-fitting and fixing means other than these can be employed.

図7はその一例(第3実施形態)に係る軸部材2の製造方法を概念的に示すものである。同図に係る圧入固定装置は、第1の治具51と第2の治具52、および第1の押圧部材53と第2の押圧部材54とを備える点で、第1実施形態に係る圧入固定装置と同一の構成をなす一方、矯正開始時期が第1実施形態と異なる。   FIG. 7 conceptually shows a method for manufacturing the shaft member 2 according to one example (third embodiment). The press-fitting and fixing device according to the figure includes a first jig 51 and a second jig 52, and a press-fit according to the first embodiment in that it includes a first pressing member 53 and a second pressing member 54. While having the same configuration as the fixing device, the correction start time is different from that of the first embodiment.

すなわち、図7(a)に示すように、軸部21およびフランジ部22を治具51、52で保持した状態から、一の駆動機構により第1の押圧部材53を下降させ、この押圧部材53と当接した軸部21を押し下げる。これにより、軸部21のフランジ部22への圧入を開始する。この段階(圧入開始時)では、第1の治具51よりも軸部21の反圧入側端部が突出した状態にある(図7(a)を参照)。 That is, as shown in FIG. 7A, the first pressing member 53 is lowered by one drive mechanism from the state where the shaft portion 21 and the flange portion 22 are held by the jigs 51 and 52, and the pressing member 53. The shaft portion 21 in contact with is pushed down. As a result, press-fitting of the shaft portion 21 into the flange portion 22 is started. At this stage (at the start of press-fitting), the opposite press-fitting side end portion of the shaft portion 21 protrudes from the first jig 51 (see FIG. 7A).

そして、ある程度圧入が進行した段階で、第1の押圧部材53に供する駆動機構とは別の駆動機構を用いて第2の押圧部材54を下降させ、第1の治具51と当接させる(図7(b)に示す状態)。この実施形態では、第2の押圧部材54は、第1の押圧部材53の外周に位置し、双方の押圧部材53、54を別個独立して上下動させることができるように構成されている。   Then, when the press-fitting has progressed to some extent, the second pressing member 54 is lowered using a driving mechanism different from the driving mechanism used for the first pressing member 53 and brought into contact with the first jig 51 ( The state shown in FIG. In this embodiment, the 2nd press member 54 is located in the outer periphery of the 1st press member 53, and it is comprised so that both the press members 53 and 54 can be moved up and down separately independently.

そして、さらに第2の押圧部材54を下降させていき、第1の治具51を下方に押圧することで、フランジ部22の両端面22a、22bが第2の治具52との間で圧縮され、これと同時に軸部21の圧入が進行する。   Then, the second pressing member 54 is further lowered, and the first jig 51 is pressed downward, so that both end faces 22 a and 22 b of the flange portion 22 are compressed between the second jig 52 and the second jig 52. At the same time, the press-fitting of the shaft portion 21 proceeds.

このようにして、第2の押圧部材54を第1の押圧部材53とは別に独立して押し下げることで、軸部21をフランジ部22の孔22cに対して圧入すると共に、軸部21に対するフランジ部22の姿勢を矯正する。そして、フランジ部22に軸部21の圧入が完了した時点で第1の押圧部材53の下降を停止する。   In this manner, the second pressing member 54 is pushed down independently of the first pressing member 53, so that the shaft portion 21 is press-fitted into the hole 22 c of the flange portion 22 and the flange with respect to the shaft portion 21 is also inserted. The posture of the unit 22 is corrected. Then, when the press-fitting of the shaft portion 21 into the flange portion 22 is completed, the lowering of the first pressing member 53 is stopped.

このように、フランジ部22に対する軸部21の圧入を開始し、ある程度圧入が進行した段階で、軸部21に対するフランジ部22の姿勢を矯正することで、圧入により生じた変形や姿勢の歪みなどを適宜矯正しながら、圧入を実施することができる。また、この実施形態のように、圧入に用いる押圧部材(第1の押圧部材53)および駆動機構と、矯正に用いる押圧部材(第2の押圧部材54)および駆動機構とを別々にすれば、第1の押圧部材53による圧入力に制約を受けることなく、適当な大きさの負荷(矯正力)をフランジ部22に付与することができる。   Thus, when the press-fitting of the shaft portion 21 to the flange portion 22 is started and the press-fitting has progressed to some extent, the posture of the flange portion 22 with respect to the shaft portion 21 is corrected, so that deformation caused by the press-fit, distortion of the posture, etc. The press-fitting can be performed while appropriately correcting the above. Further, as in this embodiment, if the pressing member (first pressing member 53) and the driving mechanism used for press-fitting, and the pressing member (second pressing member 54) and the driving mechanism used for correction are separately provided, An appropriate load (correcting force) can be applied to the flange portion 22 without being restricted by the pressure input by the first pressing member 53.

また、上記実施形態(第1〜第3実施形態)では、ラジアル軸受面21aとほぼ同寸法の軸部21の端部をフランジ部22の孔22cに圧入する場合を説明したが、軸部21を、例えば当該圧入箇所を小径とした、いわゆる段付軸とすることも可能である。この場合、軸部21の段差面がフランジ部22の上端面22aと当接する位置まで圧入することで、容易に圧入位置を把握、管理することができる。   Moreover, although the said embodiment (1st-3rd embodiment) demonstrated the case where the edge part of the axial part 21 of the same dimension as the radial bearing surface 21a was press-fit in the hole 22c of the flange part 22, the axial part 21 was demonstrated. For example, a so-called stepped shaft having a small diameter at the press-fitted portion can be used. In this case, the press-fitting position can be easily grasped and managed by press-fitting to the position where the stepped surface of the shaft part 21 contacts the upper end surface 22 a of the flange part 22.

また、上記実施形態では、所定の圧入代をもって軸部21の端部をフランジ部22の孔22cに圧入する場合を説明したが、例えば接着を伴った圧入(圧入接着)に対しても、本発明を適用することができる。圧入接着であれば、接着剤により固定力を補うことができるので、圧入のみの場合と比べて、圧入代を小さくすることも可能である。あるいは、接着剤は、圧入時、一種の潤滑剤としても機能するため、圧入代を大きくとる場合であっても接着剤を予め供給しておくことで、圧入時の摩擦力を低減して小さい負荷で圧入することができる。また、図示のように、軸部21の導入側端部に面取り部21dを設けておけば、接着を伴って圧入した場合、当該圧入領域に予め供給された接着剤がフランジ部22の下端面22b側に押し出される。そのため、軸部21に設けた面取り部21dを一種の接着剤溜りとして機能させることができる。   In the above embodiment, the case where the end portion of the shaft portion 21 is press-fitted into the hole 22c of the flange portion 22 with a predetermined press-fitting allowance has been described. The invention can be applied. In the case of press-fitting adhesion, the fixing force can be supplemented by an adhesive, so that the press-fitting allowance can be reduced as compared with the case of press-fitting only. Alternatively, since the adhesive also functions as a kind of lubricant at the time of press-fitting, even if the press-fitting allowance is made large, by supplying the adhesive in advance, the frictional force at the time of press-fitting is reduced and small Can be press-fitted with a load. Further, as shown in the drawing, if a chamfered portion 21d is provided at the introduction side end portion of the shaft portion 21, the adhesive supplied in advance to the press-fitted region when the press-fitting is performed with bonding is performed on the lower end surface of the flange portion 22. It is pushed out to the 22b side. Therefore, the chamfered portion 21d provided on the shaft portion 21 can function as a kind of adhesive reservoir.

また、上記実施形態では、軸部21を保持、拘束した状態で、フランジ部22を治具(第1の治具31、41、51と第2の治具32、42、52)で挟持押圧することで、矯正力を付与する場合を説明したが、矯正力の付与態様はこれに限定されない。すなわち、上述の治具以外でフランジ部22に矯正力を付与することで、又は、半径方向の矯正力(フランジ部22を外周から縮径させる向きの力)を単独であるいは軸方向の矯正力を組み合わせて付与することで矯正を図るものでもよい。また、矯正力を軸部21に付与することで姿勢(直角度)の矯正を図ることもでき、軸部21とフランジ部22の双方に矯正力を付与することもできる。   In the above embodiment, the flange portion 22 is clamped and pressed by jigs (first jigs 31, 41, 51 and second jigs 32, 42, 52) while holding and restraining the shaft part 21. Thus, the case where the correction force is applied has been described, but the correction force application mode is not limited to this. That is, by applying a correction force to the flange portion 22 other than the above-mentioned jig, or a radial correction force (a force in a direction to reduce the diameter of the flange portion 22 from the outer periphery) alone or in the axial direction. Correction may be achieved by combining and giving. Further, the posture (perpendicularity) can be corrected by applying the correction force to the shaft portion 21, and the correction force can be applied to both the shaft portion 21 and the flange portion 22.

なお、以上の説明で用いた圧入固定装置は、あくまでも一例であり、本発明に係る軸部材2の製造方法を体現できる限りにおいて任意の構成を採ることが可能である。   The press-fitting device used in the above description is merely an example, and any configuration can be adopted as long as the manufacturing method of the shaft member 2 according to the present invention can be embodied.

また、本発明は、上記の構成に限らず、他の構成をなす流体軸受装置にも適用可能である。   Further, the present invention is not limited to the above-described configuration, and can be applied to a hydrodynamic bearing device having another configuration.

例えば上記実施形態では、軸部21の外周面をラジアル軸受面21aとして、フランジ部22の上端面22aおよび下端面22bをそれぞれスラスト軸受面として使用した場合を説明したが、これに限る必要はない。例えば、双方の端面22a、22bのうち、上端面22aのみ、あるいは下端面22bのみをスラスト軸受面として使用する構成の流体軸受装置用の軸部材に、本発明を適用することもできる。   For example, in the above embodiment, the case where the outer peripheral surface of the shaft portion 21 is used as the radial bearing surface 21a and the upper end surface 22a and the lower end surface 22b of the flange portion 22 are used as the thrust bearing surfaces, respectively, is not limited to this. . For example, the present invention can also be applied to a shaft member for a hydrodynamic bearing device that uses only the upper end surface 22a or only the lower end surface 22b as a thrust bearing surface of both end surfaces 22a and 22b.

図8は他の構成例に係る流体軸受装置101の断面図を示している。この流体軸受装置101の特徴点(図2に係る流体軸受装置1との主な相違点)は以下の通りである。すなわち、流体軸受装置101において、軸部21の上端(フランジ部22とは反対側)に固定されたハブ103は、ハウジング107の開口側(上側)に位置する円盤部103aと、円盤部103aの外周部から軸方向下方に延びた筒状部103bとを主に有する。また、ハウジング107の上端面107cには、例えば図4に示す配列態様をなす動圧溝形成領域(スパイラルの向きは逆)が設けられ、向かい合う円盤部103aの下端面103a1との間に第2スラスト軸受部T2のスラスト軸受隙間を形成する。   FIG. 8 shows a cross-sectional view of a hydrodynamic bearing device 101 according to another configuration example. Features of the hydrodynamic bearing device 101 (main differences from the hydrodynamic bearing device 1 according to FIG. 2) are as follows. That is, in the hydrodynamic bearing device 101, the hub 103 fixed to the upper end (the side opposite to the flange portion 22) of the shaft portion 21 includes a disc portion 103a located on the opening side (upper side) of the housing 107, and the disc portion 103a. It mainly has a cylindrical portion 103b extending downward in the axial direction from the outer peripheral portion. In addition, the upper end surface 107c of the housing 107 is provided with a dynamic pressure groove forming region (for example, the direction of the spiral is reversed) having the arrangement shown in FIG. 4, for example, and a second gap is formed between the lower end surface 103a1 of the opposing disk portions 103a. A thrust bearing gap of the thrust bearing portion T2 is formed.

ハウジング107の外周には、上方に向かって漸次拡径するテーパ状のシール面107dが形成される。このテーパ状のシール面107dは、筒状部103bの内周面103b1との間に、ハウジング107の閉塞側(下方)から開口側(上方)に向けて半径方向寸法が漸次縮小した環状のシール空間Sを形成する。なお、図9中、ハウジング107の内周面107aと固定面107bは、それぞれ図2中のハウジング7の内周面7aおよび固定面7bに対応している。これ以外の構成は、図2に係る構成に準じるので説明を省略する。   On the outer periphery of the housing 107, a tapered sealing surface 107d that gradually increases in diameter upward is formed. The tapered seal surface 107d is an annular seal having a radial dimension gradually reduced from the closed side (downward) to the open side (upward) of the housing 107 between the inner peripheral surface 103b1 of the cylindrical portion 103b. A space S is formed. In FIG. 9, the inner peripheral surface 107a and the fixed surface 107b of the housing 107 correspond to the inner peripheral surface 7a and the fixed surface 7b of the housing 7 in FIG. Since the other configuration conforms to the configuration shown in FIG.

このように、フランジ部22の上端面22aのみをスラスト軸受面として使用する場合であっても、圧入完了後あるいは圧入過程で、軸部21とフランジ部22の一方又は双方に矯正力を付与するようにすれば、高い固定強度を有すると共に、軸受面の面精度に優れ、かつラジアル軸受面21aとスラスト軸受面(上端面22a)との間で高い直角度を有する軸部材2を得ることができる。   As described above, even when only the upper end surface 22a of the flange portion 22 is used as the thrust bearing surface, a correction force is applied to one or both of the shaft portion 21 and the flange portion 22 after the press-fitting is completed or in the press-fitting process. By doing so, it is possible to obtain the shaft member 2 having high fixing strength, excellent surface accuracy of the bearing surface, and a high squareness between the radial bearing surface 21a and the thrust bearing surface (upper end surface 22a). it can.

なお、以上の実施形態では何れも、ハウジング7、107と、軸受スリーブ8とを別体としたが、これら流体軸受装置1、101の固定側を構成する部品群から選択される2以上の部品同士を、アセンブリ可能な範囲において一体化(同一材料で一体に形成、あるいは一方の部品をインサートして他方の部品を型成形)することも可能である。例えば図2に示す構成でいえば、ハウジング7と軸受スリーブ8、ハウジング7と蓋部材9、ハウジング7とシール部材10との間で一体化が可能である。ハウジング7と軸受スリーブ8、およびシール部材10を一体化することも可能である。また、図8に示す構成でいえば、ハウジング107と軸受スリーブ8、あるいはハウジング107と蓋部材9との間で一体化が可能である。   In each of the above embodiments, the housings 7 and 107 and the bearing sleeve 8 are separated from each other. However, two or more parts selected from a group of parts constituting the fixed side of the fluid dynamic bearing devices 1 and 101 are used. It is also possible to integrate them as far as they can be assembled (integrally formed from the same material, or insert one part and mold the other part). For example, in the configuration shown in FIG. 2, the housing 7 and the bearing sleeve 8, the housing 7 and the lid member 9, and the housing 7 and the seal member 10 can be integrated. It is also possible to integrate the housing 7, the bearing sleeve 8, and the seal member 10. Further, in the configuration shown in FIG. 8, the housing 107 and the bearing sleeve 8 or the housing 107 and the lid member 9 can be integrated.

また、以上の実施形態では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、へリングボーン形状やスパイラル形状の動圧溝により潤滑油の動圧作用を発生させる構成を例示しているが、本発明はこれに限定されるものではない。   In the above embodiment, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are exemplified by the configuration in which the dynamic pressure action of the lubricating oil is generated by the dynamic pressure grooves having a herringbone shape or a spiral shape. However, the present invention is not limited to this.

例えば、ラジアル軸受部R1、R2として、図示は省略するが、軸方向の溝を円周方向の複数箇所に形成した、いわゆるステップ状の動圧発生部、あるいは、円周方向に複数の円弧面を配列し、対向する軸部21の外周面(ラジアル軸受面21a)との間に、くさび状の半径方向隙間(軸受隙間)を形成した、いわゆる多円弧軸受を採用してもよい。   For example, although not shown as radial bearing portions R1 and R2, a so-called step-like dynamic pressure generating portion in which axial grooves are formed at a plurality of locations in the circumferential direction, or a plurality of circular arc surfaces in the circumferential direction. And a so-called multi-arc bearing in which a wedge-shaped radial gap (bearing gap) is formed between the outer peripheral surface (radial bearing surface 21a) of the opposed shaft portion 21.

あるいは、ラジアル軸受面となる軸受スリーブ8の内周面8aを、動圧発生部としての動圧溝や円弧面等を設けない真円状内周面とし、この内周面と対向する真円状の外周面(ラジアル軸受面21a)とで、いわゆる真円軸受を構成することができる。   Alternatively, the inner peripheral surface 8a of the bearing sleeve 8 serving as a radial bearing surface is a perfect circular inner peripheral surface not provided with a dynamic pressure groove or arc surface as a dynamic pressure generating portion, and is a perfect circle facing the inner peripheral surface. A so-called perfect circle bearing can be configured with the outer peripheral surface (radial bearing surface 21a).

また、スラスト軸受部T1、T2の一方又は双方は、同じく図示は省略するが、スラスト軸受面となる領域に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、あるいは波型軸受(端面が調和波形などの波型になったもの)等で構成することもできる。   One or both of the thrust bearing portions T1 and T2 are also not shown in the figure, but a plurality of radial groove-shaped dynamic pressure grooves are provided at predetermined intervals in the circumferential direction in a region that becomes a thrust bearing surface. It can also be configured by a step bearing or a corrugated bearing (having a corrugated waveform such as an end face).

また、以上の実施形態では、動圧発生部を何れも固定側(ハウジング107や軸受スリーブ8、蓋部材9など)に設けた場合を説明したが、その一部あるいは全てを回転側(軸部21やフランジ部22、ハブ103など)に設けることも可能である。具体的には、軸部21の外周面(ラジアル軸受面21a)やフランジ部22の両端面22a、22b、およびハブ103の下端面103a1のうち、1ヶ所以上に既述の動圧発生部を設けることが可能である。また、例えばフランジ部22の側に、図4に例示する動圧発生部を設けるのであれば、図5で例示の第1の治具31の下端面31bや第2の治具32の上端面32aに、予め当該動圧発生部に対応する型を設けておき、フランジ部22への矯正力付与と共に、フランジ部22の両端面22a、22bに型に対応する動圧発生部を成形することも可能である。   Further, in the above embodiment, the case where all the dynamic pressure generating parts are provided on the fixed side (housing 107, bearing sleeve 8, lid member 9, etc.) has been described. 21, flange portion 22, hub 103, etc.). Specifically, the dynamic pressure generating portion described above is provided at one or more of the outer peripheral surface (radial bearing surface 21 a) of the shaft portion 21, both end surfaces 22 a and 22 b of the flange portion 22, and the lower end surface 103 a 1 of the hub 103. It is possible to provide. For example, if the dynamic pressure generating portion illustrated in FIG. 4 is provided on the flange portion 22 side, the lower end surface 31b of the first jig 31 illustrated in FIG. 5 and the upper end surface of the second jig 32 are illustrated. A mold corresponding to the dynamic pressure generating portion is provided in advance in 32 a, and a dynamic pressure generating portion corresponding to the mold is formed on both end faces 22 a and 22 b of the flange portion 22 along with applying a correction force to the flange portion 22. Is also possible.

また、以上の実施形態では、流体軸受装置1、101の内部に充満し、ラジアル軸受隙間やスラスト軸受隙間に流体膜を形成するための流体として潤滑油を例示したが、これ以外にも流体膜を形成可能な流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。   Further, in the above embodiment, the lubricating oil is exemplified as the fluid for filling the fluid bearing devices 1 and 101 and forming the fluid film in the radial bearing gap or the thrust bearing gap. For example, a fluid such as air, a fluid lubricant such as a magnetic fluid, or a lubricating grease can be used.

本発明の第1実施形態に係る流体軸受装置を備えたスピンドルモータの断面図である。It is sectional drawing of the spindle motor provided with the hydrodynamic bearing apparatus which concerns on 1st Embodiment of this invention. 流体軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus. 軸受スリーブの断面図である。It is sectional drawing of a bearing sleeve. 軸受スリーブのフランジ部と対向する端面の平面図である。It is a top view of the end surface facing the flange part of a bearing sleeve. 第1実施形態に係る軸部材の製造方法を概念的に示す図であり、(a)は圧入前における軸部およびフランジ部の配置関係を示す断面図、(b)は圧入完了時における軸部およびフランジ部の配置関係を示す断面図、(c)は圧入完了後、フランジ部に矯正力を付与する段階における軸部およびフランジ部の配置関係を示す断面図である。It is a figure which shows notionally the manufacturing method of the shaft member which concerns on 1st Embodiment, (a) is sectional drawing which shows the arrangement | positioning relationship between the shaft part and a flange part before press-fit, (b) is a shaft part at the time of press-fit completion Sectional drawing which shows the arrangement | positioning relationship of a flange part and (c) is sectional drawing which shows the arrangement | positioning relationship of the axial part and flange part in the step which provides the correction force to a flange part after completion of press-fitting. 第2実施形態に係る軸部材の製造方法を概念的に示す図であり、(a)は圧入前における軸部およびフランジ部の配置関係を示す断面図、(b)は圧入途中における軸部およびフランジ部の配置関係を示す断面図、(c)は圧入完了時における軸部およびフランジ部の配置関係を示す断面図である。It is a figure which shows notionally the manufacturing method of the shaft member which concerns on 2nd Embodiment, (a) is sectional drawing which shows the arrangement | positioning relationship of the shaft part and flange part before press injection, (b) is the shaft part in the middle of press injection, and Sectional drawing which shows the arrangement | positioning relationship of a flange part, (c) is sectional drawing which shows the arrangement | positioning relationship of the axial part and flange part at the time of press-fit completion. 第3実施形態に係る軸部材の製造方法を概念的に示す図であり、(a)は圧入前における軸部およびフランジ部の配置関係を示す断面図、(b)は圧入途中における軸部およびフランジ部の配置関係を示す断面図である。It is a figure which shows notionally the manufacturing method of the shaft member which concerns on 3rd Embodiment, (a) is sectional drawing which shows the arrangement | positioning relationship between the shaft part and a flange part before press injection, (b) is the shaft part in the middle of press injection, and It is sectional drawing which shows the arrangement | positioning relationship of a flange part. 他の構成例に係る流体軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus which concerns on the other structural example.

符号の説明Explanation of symbols

1、101 流体軸受装置
2 流体軸受装置用軸部材
7 ハウジング
8 軸受スリーブ
21 軸部
21a ラジアル軸受面
22 フランジ部
22c 孔
31、41、51 第1の治具
31a、41a、51a 筒状内周面
31b、41b、51b 下端面
31、42、52 第2の治具
32a、42a、52a 上端面
33、34、45、53、54 押圧部材
43 弾性体
44 第3の治具
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1,101 Fluid bearing apparatus 2 Shaft member 7 for fluid bearing apparatuses 7 Housing 8 Bearing sleeve 21 Shaft part 21a Radial bearing surface 22 Flange part 22c Hole 31,41,51 1st jig | tool 31a, 41a, 51a Cylindrical inner peripheral surface 31b, 41b, 51b Lower end surface 31, 42, 52 Second jig 32a, 42a, 52a Upper end surface 33, 34, 45, 53, 54 Press member 43 Elastic body 44 Third jig R1, R2 Radial bearing portion T1, T2 Thrust bearing part S Seal space

Claims (4)

軸部と、軸部の一端に圧入固定されるフランジ部とを備え、軸部の外周面と、この外周面に対向する面との間にラジアル軸受隙間を形成すると共に、フランジ部の端面と、この端面に対向する面との間にスラスト軸受隙間を形成し、ラジアル軸受隙間およびスラスト軸受隙間に形成される流体の膜で回転支持される流体軸受装置用軸部材の製造方法において、
軸部を内周面に挿入した状態で保持する第1の治具と、第1の治具との間でフランジ部をその厚み方向に挟持することで保持する第2の治具と、軸部の他端と当接し、軸部をフランジ部に向けて押込む押圧部材と、第1の治具と押圧部材との間に配設される第3の治具と、第1の治具と第3の治具との間に配設され、第3の治具が押圧部材からフランジ部の側に向けた負荷を受けた際、この負荷を圧縮を伴って第1の治具に伝達する弾性体とを備え、
押圧部材を当接させて軸部をフランジ部の側に押下げることでフランジ部に設けた孔に対する軸部圧入を開始し、軸部のフランジ部に対する圧入姿勢が安定化した段階で、押圧部材を第3の治具に当接させてさらに押込むことで、フランジ部に設けた孔に対する軸部の圧入を進行させると共に、第1の治具と第2の治具とでフランジ部を挟持圧縮して、軸部に対するフランジ部の姿勢を矯正するための矯正力をフランジ部に付与することを特徴とする流体軸受装置用軸部材の製造方法。
A shaft portion, and a flange portion that is press-fitted and fixed to one end of the shaft portion. A radial bearing gap is formed between the outer peripheral surface of the shaft portion and a surface facing the outer peripheral surface, and an end surface of the flange portion In the method of manufacturing a shaft member for a hydrodynamic bearing device, a thrust bearing gap is formed between the end face and a surface facing the end face, and the rotary bearing is rotated by a fluid film formed in the radial bearing gap and the thrust bearing gap.
A first jig for holding the shaft portion inserted in the inner peripheral surface; a second jig for holding the flange portion in the thickness direction between the first jig and the shaft; A pressing member that contacts the other end of the portion and pushes the shaft portion toward the flange portion, a third jig disposed between the first jig and the pressing member, and a first jig And when the third jig receives a load from the pressing member toward the flange, the load is transmitted to the first jig with compression. And an elastic body that
Start the press-fitting of the shaft portion against the shaft by the pressing member is brought into contact hole provided in the flange portion by pressing down on the side of the flange portion, at the stage of press-fitting position against the flange portion of the shaft portion is stabilized Then, the pressing member is brought into contact with the third jig and further pressed to advance the press-fitting of the shaft portion into the hole provided in the flange portion, and the flange is formed by the first jig and the second jig. parts by sandwiching compressing method of the fluid bearing device for a shaft member, characterized in that the correction force for correcting the orientation of the flange portion with respect to the shaft portion imparts to the flange portion.
軸部と、軸部の一端に圧入固定されるフランジ部とを備え、軸部の外周面と、この外周面に対向する面との間にラジアル軸受隙間を形成すると共に、フランジ部の端面と、この端面に対向する面との間にスラスト軸受隙間を形成し、ラジアル軸受隙間およびスラスト軸受隙間に形成される流体の膜で回転支持される流体軸受装置用軸部材の製造方法において、A shaft portion, and a flange portion that is press-fitted and fixed to one end of the shaft portion. A radial bearing gap is formed between the outer peripheral surface of the shaft portion and a surface facing the outer peripheral surface, and an end surface of the flange portion In the method of manufacturing a shaft member for a hydrodynamic bearing device, a thrust bearing gap is formed between the end face and a surface facing the end face, and the rotary bearing is rotated by a fluid film formed in the radial bearing gap and the thrust bearing gap.
軸部を内周面に挿入した状態で保持する第1の治具と、第1の治具との間でフランジ部をその厚み方向に挟持することで保持する第2の治具と、軸部の他端と当接し、軸部をフランジ部に向けて押込む第1の押圧部材と、第1の治具の他端と当接し、第1の治具を負フランジ部に向けて押込む第2の押圧部材とを備え、A first jig for holding the shaft portion inserted in the inner peripheral surface; a second jig for holding the flange portion in the thickness direction between the first jig and the shaft; A first pressing member that abuts against the other end of the first portion and pushes the shaft portion toward the flange portion, abuts against the other end of the first jig, and pushes the first jig toward the negative flange portion. A second pressing member to be inserted,
第1の押圧部材を当接させて軸部をフランジ部の側に押下げることでフランジ部に設けた孔に対する軸部の圧入を開始し、軸部のフランジ部に対する圧入姿勢が安定化した段階で、第2の押圧部材を第1の治具に当接させて押込むことで、フランジ部に設けた孔に対する軸部の圧入を進行させると共に、第1の治具と第2の治具とでフランジ部を挟持圧縮して、軸部に対するフランジ部の姿勢を矯正するための矯正力をフランジ部に付与することを特徴とする流体軸受装置用軸部材の製造方法。The first pressing member is brought into contact and the shaft portion is pushed down to the flange portion side to start the press-fitting of the shaft portion into the hole provided in the flange portion, and the press-fit posture of the shaft portion with respect to the flange portion is stabilized. Then, by pressing the second pressing member in contact with the first jig, the press-fitting of the shaft part into the hole provided in the flange part is advanced, and the first jig and the second jig A method of manufacturing a shaft member for a hydrodynamic bearing device, wherein the flange portion is sandwiched and compressed to apply a correction force to the flange portion to correct the posture of the flange portion relative to the shaft portion.
圧入の進行に伴い、フランジ部に付与される矯正力を徐々に高める請求項2に記載の流体軸受装置用軸部材の製造方法。 The method for manufacturing a shaft member for a hydrodynamic bearing device according to claim 2, wherein the correction force applied to the flange portion is gradually increased as the press-fitting progresses. 請求項1〜3の何れかに記載の方法で製造された流体軸受装置用軸部材。   A shaft member for a hydrodynamic bearing device manufactured by the method according to claim 1.
JP2007018183A 2006-12-20 2007-01-29 Manufacturing method of shaft member for hydrodynamic bearing device, and shaft member manufactured by the method Expired - Fee Related JP5143435B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007018183A JP5143435B2 (en) 2007-01-29 2007-01-29 Manufacturing method of shaft member for hydrodynamic bearing device, and shaft member manufactured by the method
US12/518,298 US8240918B2 (en) 2006-12-20 2007-12-18 Shaft member for fluid bearing device and method of producing the same
CN200780044223.6A CN101542143B (en) 2006-12-20 2007-12-18 Shaft member for fluid bearing device and method of producing the same
PCT/JP2007/074301 WO2008075675A1 (en) 2006-12-20 2007-12-18 Shaft member for fluid bearing device and method of producing the same
KR1020097011023A KR101395072B1 (en) 2006-12-20 2007-12-18 Shaft member for fluid bearing device and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007018183A JP5143435B2 (en) 2007-01-29 2007-01-29 Manufacturing method of shaft member for hydrodynamic bearing device, and shaft member manufactured by the method

Publications (2)

Publication Number Publication Date
JP2008185101A JP2008185101A (en) 2008-08-14
JP5143435B2 true JP5143435B2 (en) 2013-02-13

Family

ID=39728289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007018183A Expired - Fee Related JP5143435B2 (en) 2006-12-20 2007-01-29 Manufacturing method of shaft member for hydrodynamic bearing device, and shaft member manufactured by the method

Country Status (1)

Country Link
JP (1) JP5143435B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036475A (en) * 2011-08-03 2013-02-21 Ntn Corp Fluid dynamic bearing device and motor having the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314425A (en) * 1999-04-30 2000-11-14 Matsushita Electric Ind Co Ltd Flange for bearing device with dynamic pressure groove and machining and assembling method therefor
JP4024143B2 (en) * 2002-12-25 2007-12-19 松下電器産業株式会社 Method for manufacturing hydrodynamic bearing member
JP4353696B2 (en) * 2002-12-25 2009-10-28 パナソニック株式会社 Fluid bearing member manufacturing method, fluid bearing member, and hard disk drive
JP2006300147A (en) * 2005-04-18 2006-11-02 Matsushita Electric Ind Co Ltd Dynamic pressure fluid bearing member and its manufacturing method

Also Published As

Publication number Publication date
JP2008185101A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
EP2541084B1 (en) Fluid dynamic bearing device
JP2007263228A (en) Dynamic pressure bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
US9964144B2 (en) Manufacturing method for fluid dynamic bearing devices
JP2007211839A (en) Fluid dynamic pressure bearing mechanism, spindle motor using this mechanism, recording disk driving device and method of manufacturing fluid dynamic pressure bearing mechanism
JP2008175384A (en) Shaft member for fluid bearing device, and its manufacturing method
US8297844B2 (en) Fluid dynamic bearing device
JP5143435B2 (en) Manufacturing method of shaft member for hydrodynamic bearing device, and shaft member manufactured by the method
JP2009168147A (en) Dynamic pressure bearing device and its manufacturing method
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
KR101499718B1 (en) Spindle motor and hard disk drive including the same
JP2003314538A (en) Manufacturing method for fluid dynamic bearing unit
JP2009024810A (en) Fluid bearing device and method of producing the same
JP2009014121A (en) Dynamic pressure bearing device and its manufacturing method
JP5172213B2 (en) Hydrodynamic bearing device and method for manufacturing shaft member thereof
JP2008275132A (en) Fluid bearing device
JP2008298235A (en) Fluid bearing device and its assembling method
JP4739030B2 (en) Hydrodynamic bearing device
JP4498932B2 (en) Hydrodynamic bearing device
JP2008164110A (en) Fluid bearing device shaft member and its manufacturing method
JP2013053692A (en) Fluid dynamic pressure bearing device and method of manufacturing the same
JP5064083B2 (en) Method for manufacturing hydrodynamic bearing device
JP2009008110A (en) Fluid bearing device
JP2011247279A (en) Fluid dynamic pressure bearing device and method of manufacturing the same
JP2008164109A (en) Shaft member for fluid bearing device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5143435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees