JP2009168147A - Dynamic pressure bearing device and its manufacturing method - Google Patents

Dynamic pressure bearing device and its manufacturing method Download PDF

Info

Publication number
JP2009168147A
JP2009168147A JP2008006869A JP2008006869A JP2009168147A JP 2009168147 A JP2009168147 A JP 2009168147A JP 2008006869 A JP2008006869 A JP 2008006869A JP 2008006869 A JP2008006869 A JP 2008006869A JP 2009168147 A JP2009168147 A JP 2009168147A
Authority
JP
Japan
Prior art keywords
housing
bearing
bearing sleeve
diameter portion
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008006869A
Other languages
Japanese (ja)
Inventor
Kazuto Shimizu
一人 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008006869A priority Critical patent/JP2009168147A/en
Publication of JP2009168147A publication Critical patent/JP2009168147A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately set clearance dimensions of a thrust bearing clearance and a radial bearing clearance formed in both sides of a flange portion. <P>SOLUTION: This dynamic pressure bearing device is provided with: a shaft member 2 having a shaft portion 2a and the flange portion 2b; a housing 7 having a bottom 7b closing a lower end and an inner periphery on which a bearing sleeve 8 is fixed; a first thrust bearing clearance formed between the flange portion 2b and the bearing sleeve 8; and a second thrust bearing clearance formed between the flange portion 2b and the bottom 7b of the housing 7. When the dynamic pressure bearing device is manufactured, a small diameter portion 9 for temporary fixation is arranged around the inner periphery of the housing 7, and the bearing sleeve 8 is pushed to a position where the bearing sleeve 8 abuts on the flange portion 2b and the flange portion 2b abuts on the bottom 7b of the housing 7 while pressure-fitting the bearing sleeve 8 into the small diameter portion 9. The bearing sleeve 8 is relatively moved from this abutting position to a direction separating from the bottom 7b while maintaining the pressure-fitting state, thereby setting the total δ of both the thrust bearing clearances to predetermined dimensions. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は動圧軸受装置およびその製造方法に関する。   The present invention relates to a hydrodynamic bearing device and a manufacturing method thereof.

動圧軸受装置は、軸受隙間に生じる流体の動圧作用で軸部材を相対回転自在に支持するものである。この種の軸受装置は、特に高速回転時における回転精度、静粛性等に優れており、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として好適に使用される。具体的には、HDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等におけるスピンドルモータ用の軸受装置として、あるいはレーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイールモータ、ファンモータなどのモータ用軸受装置として好適に使用される。   The hydrodynamic bearing device supports a shaft member so as to be relatively rotatable by a hydrodynamic action of a fluid generated in a bearing gap. This type of bearing device is particularly excellent in rotational accuracy, quietness, etc. during high-speed rotation, and is suitably used as a bearing device for motors mounted on various electrical devices including information devices. Specifically, as a bearing device for a spindle motor in magnetic disk devices such as HDD, optical disk devices such as CD-ROM, CD-R / RW, DVD-ROM / RAM, magneto-optical disk devices such as MD and MO, etc. Alternatively, it is preferably used as a bearing device for a motor such as a polygon scanner motor of a laser beam printer (LBP), a color wheel motor of a projector, or a fan motor.

例えば、HDD等のスピンドルモータに組み込まれる動圧軸受装置では、軸部材をラジアル方向に支持するラジアル軸受部、および、軸部材をスラスト方向に支持するスラスト軸受部を動圧軸受で構成する場合がある。この種の動圧軸受装置におけるスラスト軸受部として、例えば、軸部の一端に設けたフランジ部の一端面と、この一端面とスラスト方向に対向するハウジングの底部の一端面との間に第1スラスト軸受隙間を形成すると共に、フランジ部の他端面と、この他端面とスラスト方向で対向する軸受スリーブの一端面との間に第2スラスト軸受隙間を形成したものが知られている。   For example, in a hydrodynamic bearing device incorporated in a spindle motor such as an HDD, a radial bearing portion that supports a shaft member in the radial direction and a thrust bearing portion that supports the shaft member in a thrust direction may be configured by a hydrodynamic bearing. is there. As a thrust bearing portion in this type of hydrodynamic bearing device, for example, a first portion is provided between one end surface of a flange portion provided at one end of a shaft portion and one end surface of the bottom portion of the housing facing the one end surface in the thrust direction. It is known that a thrust bearing gap is formed and a second thrust bearing gap is formed between the other end face of the flange portion and one end face of the bearing sleeve facing the other end face in the thrust direction.

これらスラスト軸受隙間を高精度に管理するための手段として、例えば、特開2003−239974号公報(特許文献1)には、有底筒状をなすハウジングの内底面を基準として、軸受スリーブのハウジングに対する位置を設定することにより、第1スラスト軸受隙間および第2スラスト軸受隙間を所定の大きさに設定する手段が開示されている。詳細には、ハウジングの内底面にフランジ部の一端面を当接させると共に、フランジ部の他端面に軸受スリーブの一端面を当接させ、この位置から、軸受スリーブを、第1スラスト軸受隙間と第2スラスト軸受隙間との合計量に相当する寸法だけ、ハウジングに対して軸方向に移動させることにより、双方のスラスト軸受隙間の総和を所定寸法に設定する手段が開示されている。   As means for managing these thrust bearing gaps with high accuracy, for example, Japanese Patent Application Laid-Open No. 2003-239974 (Patent Document 1) discloses a housing for a bearing sleeve based on the inner bottom surface of a bottomed cylindrical housing. A means for setting the first thrust bearing gap and the second thrust bearing gap to a predetermined size by setting the position with respect to is disclosed. Specifically, one end surface of the flange portion is brought into contact with the inner bottom surface of the housing, and one end surface of the bearing sleeve is brought into contact with the other end surface of the flange portion. From this position, the bearing sleeve is connected to the first thrust bearing gap. A means is disclosed in which the sum of the thrust bearing gaps is set to a predetermined dimension by moving in the axial direction relative to the housing by a dimension corresponding to the total amount with the second thrust bearing gap.

また、スラスト軸受隙間を高精度に管理するための他の手段として、例えば特開2006−71029号公報(特許文献2)には、フランジ部との間にスラスト軸受隙間を形成する軸受スリーブの一端面と当接し、かつ所定の軸方向寸法を有する段部をハウジングに設けた動圧軸受装置が開示されている。そして、この軸受装置の隙間出しの方法として、軸受スリーブの一端面がハウジングの内周に設けた段部の端面と当接するまで軸受スリーブをハウジングの内周に押し込むことで、軸受スリーブのハウジングに対する軸方向固定位置を設定し、これにより、スラスト軸受隙間を、段部の軸方向寸法とフランジ部の軸方向幅との差として管理する方法が開示されている。
特開2003−239974号公報 特開2006−71029号公報
Further, as another means for managing the thrust bearing gap with high accuracy, for example, Japanese Patent Application Laid-Open No. 2006-71029 (Patent Document 2) discloses a bearing sleeve that forms a thrust bearing gap with a flange portion. A hydrodynamic bearing device is disclosed in which a housing is provided with a stepped portion that abuts an end surface and has a predetermined axial dimension. Then, as a method of gap clearance of this bearing device, the bearing sleeve is pushed into the inner periphery of the housing until the one end surface of the bearing sleeve comes into contact with the end surface of the step portion provided on the inner periphery of the housing. A method is disclosed in which an axial fixed position is set, whereby the thrust bearing gap is managed as the difference between the axial dimension of the stepped portion and the axial width of the flange portion.
JP 2003-239974 A JP 2006-71029 A

ところで、この種のスラスト軸受隙間の設定に際しては、ハウジングに対して適正な姿勢(例えば同軸度など)を保ったまま軸受スリーブを移動できるようにしておく必要がある。そのため、上記特許文献1や2にも記載の通り、ハウジングの内周に軸受スリーブを圧入しながら上述の隙間出し作業を実施するのが通常である。しかしながら、圧入を伴って軸受スリーブを位置決めする場合、その締め代の大きさにもよるが、圧入により軸受スリーブの内径が変化する(その多くは内径が縮小する)事態を招くことがある。通常、ラジアル軸受隙間は、数μm〜数十μmと非常に小さいため、圧入による僅かな内径寸法の変化であってもラジアル軸受隙間に影響を及ぼし、当該軸受性能の低下を招くおそれがある。   By the way, when setting this kind of thrust bearing gap, it is necessary to be able to move the bearing sleeve while maintaining an appropriate posture (for example, coaxiality) with respect to the housing. For this reason, as described in Patent Documents 1 and 2, it is usual to carry out the above-described clearance operation while press-fitting a bearing sleeve into the inner periphery of the housing. However, when positioning the bearing sleeve with press fitting, depending on the size of the tightening allowance, the inner diameter of the bearing sleeve may change due to the press fitting (most of which the inner diameter is reduced). Usually, the radial bearing gap is as small as several μm to several tens of μm. Therefore, even a slight change in the inner diameter due to press-fitting may affect the radial bearing gap and cause a decrease in the bearing performance.

ここで、上記特許文献1および2に開示の動圧軸受装置は何れも、円筒状のハウジングに同じく円筒状の軸受スリーブを圧入することから、かかる圧入はハウジングの内周面全面にわたって実施されるものと考えられる。これでは、軸受スリーブをハウジングに固定した状態では軸受スリーブの内径が縮小し、ラジアル軸受隙間の減少を招く。また、何れの上記特許文献に関しても、圧入に伴う軸受スリーブの内径の縮小について配慮がなされていない。   Here, since both of the hydrodynamic bearing devices disclosed in Patent Documents 1 and 2 press-fit a cylindrical bearing sleeve into the cylindrical housing, the press-fitting is performed over the entire inner peripheral surface of the housing. It is considered a thing. In this case, when the bearing sleeve is fixed to the housing, the inner diameter of the bearing sleeve is reduced, and the radial bearing gap is reduced. In addition, in any of the above patent documents, no consideration is given to the reduction of the inner diameter of the bearing sleeve due to press fitting.

上述の問題は、特にHDDをはじめとする情報機器に動圧軸受装置を適用する場合に顕著となる。すなわち、HDDなどの分野では、最近の容量増加に伴い、そのディスク枚数やサイズが増大する傾向にある。そのため、これらディスクを回転支持すべき動圧軸受装置にも回転重量の増加に対応して例えばハウジング等を樹脂製から金属製とすることで、圧入による軸受スリーブ内周面の変形が大きくなる。また、高容量化に伴い軸を含む回転体の重量が増加することで、軸受スリーブの抜け強度を向上させる必要が生じ、当該強度向上のためには、締め代の増加が必須となる。このような理由からも軸受スリーブ内周面、特にラジアル軸受面の変形が大きくなる。   The above-described problem is particularly noticeable when the hydrodynamic bearing device is applied to information equipment such as an HDD. That is, in the field of HDD and the like, the number and size of the disks tend to increase with the recent increase in capacity. For this reason, in the hydrodynamic bearing device that should support the rotation of the disk, for example, by changing the housing from resin to metal in response to the increase in the rotation weight, the deformation of the inner peripheral surface of the bearing sleeve due to press fitting increases. Further, as the capacity increases, the weight of the rotating body including the shaft increases, so that it is necessary to improve the pull-out strength of the bearing sleeve, and in order to improve the strength, it is essential to increase the tightening allowance. For these reasons, the deformation of the inner peripheral surface of the bearing sleeve, particularly the radial bearing surface, is increased.

以上の事情に鑑み、本発明では、この種の動圧軸受装置において、フランジ部の両側に形成される双方のスラスト軸受隙間のみならず、ラジアル軸受隙間についてもその隙間寸法を高精度に設定することを技術的課題とする。   In view of the above circumstances, according to the present invention, in this type of hydrodynamic bearing device, not only the thrust bearing gaps formed on both sides of the flange portion but also the radial bearing gaps are set with high accuracy. This is a technical issue.

前記課題の解決は、本発明の一の側面に係る動圧軸受装置によって達成される。すなわち、この動圧軸受装置は、軸部およびフランジ部を有する軸部材と、軸部を内周に挿通した軸受スリーブと、軸方向一端を閉塞する底部を有し、軸受スリーブを内周に固定したハウジングと、互いに軸方向に対峙するフランジ部の一端面と軸受スリーブの一端面との間に形成される第1スラスト軸受隙間と、互いに軸方向に対峙するフランジ部の他端面とハウジングの底部の一端面との間に形成される第2スラスト軸受隙間とを備え、第1および第2スラスト軸受隙間がそれぞれ所定の大きさに設定されている動圧軸受装置において、軸受スリーブは2種類の固定手段によりハウジングに固定されており、一方の固定手段は、ハウジングの内周に設けられた仮固定用の小径部で構成され、この小径部は圧入により軸受スリーブをハウジングに仮固定するための部位である点をもって特徴づけられる。なお、ここでいう『仮固定』とは、軸受スリーブが、軸方向への所定の負荷を受けて軸方向に移動でき、かつ、軸方向への負荷を解除した状態ではハウジングの所定の軸方向位置に保持できる状態を意味する。また、『仮固定用の小径部』とは、上述の『仮固定』の状態を実現可能な程度の圧入代を軸受スリーブに付与するための小径部を意味する。   The solution to the above-described problem is achieved by a fluid dynamic bearing device according to one aspect of the present invention. That is, this hydrodynamic bearing device has a shaft member having a shaft portion and a flange portion, a bearing sleeve having the shaft portion inserted into the inner periphery, and a bottom portion closing one end in the axial direction, and fixing the bearing sleeve to the inner periphery. The first thrust bearing gap formed between one end surface of the flange portion facing the axial direction and the one end surface of the bearing sleeve, the other end surface of the flange portion facing the axial direction, and the bottom portion of the housing. And a second thrust bearing gap formed between the first end face and the first and second thrust bearing gaps, each of which is set to a predetermined size. The fixing means is fixed to the housing, and one fixing means is constituted by a small diameter portion for temporary fixing provided on the inner periphery of the housing, and the small diameter portion presses the bearing sleeve into the housing. It characterized with respect a part for temporarily fixing the grayed. Here, “temporarily fixed” means that the bearing sleeve can move in the axial direction under a predetermined load in the axial direction, and in the state where the load in the axial direction is released, the predetermined axial direction of the housing. It means a state that can be held in position. Further, the “small diameter portion for temporary fixing” means a small diameter portion for imparting a press-fitting allowance to the bearing sleeve to such an extent that the above-described “temporary fixing” state can be realized.

このような構成によれば、他方の固定手段により固定される前の段階、すなわち仮固定のみの段階で軸受スリーブのハウジングに対する軸方向の固定位置を決定することができる。また、その際、軸受スリーブをハウジングの内周面全面にわたって圧入する場合と比べてその圧入面積が小さくなるので、圧入時の抵抗を低減することができる。これにより、軸受スリーブを所定の方向に移動させるのに要する荷重を小さくすることができ、その際の位置決め精度を高めてスラスト軸受隙間を高精度に設定することができる。また、圧入に伴う軸受スリーブの内周面の変形を抑えて、特に軸受スリーブの内周に設けられるラジアル軸受面の変形を小さく抑えて、軸部との間で所定のラジアル軸受隙間を確保することができる。   According to such a configuration, the axial fixing position of the bearing sleeve with respect to the housing can be determined at a stage before being fixed by the other fixing means, that is, only at the stage of temporary fixing. Further, at that time, since the press-fitting area of the bearing sleeve is reduced as compared with the case where the bearing sleeve is press-fitted all over the inner peripheral surface of the housing, the resistance during press-fitting can be reduced. As a result, the load required to move the bearing sleeve in a predetermined direction can be reduced, the positioning accuracy at that time can be increased, and the thrust bearing gap can be set with high accuracy. Also, the deformation of the inner peripheral surface of the bearing sleeve due to the press-fitting is suppressed, and particularly the deformation of the radial bearing surface provided on the inner periphery of the bearing sleeve is suppressed to a small extent, and a predetermined radial bearing gap is secured between the shaft portion. be able to.

また、前記課題の解決は、本発明の一の側面に係る動圧軸受装置の製造方法によっても達成される。すなわち、この動圧軸受装置の製造方法は、軸部およびフランジ部を有する軸部材と、軸部を内周に挿通した軸受スリーブと、軸方向一端を閉塞する底部を有し、軸受スリーブを内周に固定したハウジングと、互いに軸方向に対峙するフランジ部の一端面と軸受スリーブの一端面との間に形成される第1スラスト軸受隙間と、互いに軸方向に対峙するフランジ部の他端面とハウジングの底部の一端面との間に形成される第2スラスト軸受隙間とを備えた動圧軸受装置の製造方法において、ハウジングの内周に仮固定用の小径部を設け、この小径部に軸受スリーブを圧入し、第1および第2スラスト軸受隙間の合計量を所定の大きさに設定するよう圧入状態の軸受スリーブをハウジングに対する固定位置まで移動させる点をもって特徴づけられる。   Moreover, the solution of the above-described problem can be achieved by a method for manufacturing a hydrodynamic bearing device according to one aspect of the present invention. That is, the method for manufacturing the hydrodynamic bearing device includes a shaft member having a shaft portion and a flange portion, a bearing sleeve having the shaft portion inserted into the inner periphery, and a bottom portion that closes one end in the axial direction. A housing fixed to the periphery, a first thrust bearing gap formed between one end surface of the flange portion facing each other in the axial direction and one end surface of the bearing sleeve, and the other end surface of the flange portion facing each other in the axial direction In a method of manufacturing a hydrodynamic bearing device having a second thrust bearing gap formed between one end surface of a bottom portion of a housing, a small-diameter portion for temporary fixing is provided on the inner periphery of the housing, and a bearing is provided at the small-diameter portion. The sleeve is press-fit, and the bearing sleeve in the press-fit state is moved to a fixed position with respect to the housing so as to set the total amount of the first and second thrust bearing gaps to a predetermined size. .

このような製造方法によれば、既に述べた本発明の一の側面に係る動圧軸受装置についての事項と、同一の事項が当てはまり、故に当該軸受装置による作用効果と同一の作用効果を得ることができる。   According to such a manufacturing method, the same matters as the matters regarding the hydrodynamic bearing device according to one aspect of the present invention already described apply, and therefore, the same effects as the effects of the bearing devices can be obtained. Can do.

また、上述の方法を採用する場合、軸受スリーブのハウジングに対する固定位置への移動態様としては以下の手段が好適である。すなわち、軸受スリーブをフランジ部に当接させると共にフランジ部をハウジングの底部に当接させ、然る後に、圧入状態を維持して軸受スリーブを底部から離隔する向きに移動させることで、軸受スリーブを固定位置に移動させるようにするのが好ましい。   Further, when the above-described method is employed, the following means is suitable as a movement mode of the bearing sleeve to the fixed position with respect to the housing. That is, the bearing sleeve is brought into contact with the flange portion and the flange portion is brought into contact with the bottom portion of the housing, and then the bearing sleeve is moved away from the bottom portion while maintaining the press-fitted state. It is preferable to move to a fixed position.

このように軸受スリーブを移動させることで、動圧軸受装置の各構成部品の寸法のばらつきの影響を受けることなく各々のスラスト軸受隙間を高精度かつ確実に設定することができる。もちろん、既に述べた本発明の一の側面に係る動圧軸受装置に関しても同様の事項が当てはまるため、上述の方法で位置決めされた動圧軸受装置のスラスト軸受隙間は高精度かつ確実に設定されたものとなる。   By moving the bearing sleeve in this way, each thrust bearing gap can be set with high accuracy and reliability without being affected by variations in the dimensions of the components of the hydrodynamic bearing device. Of course, the same applies to the hydrodynamic bearing device according to one aspect of the present invention described above, so the thrust bearing gap of the hydrodynamic bearing device positioned by the above-described method was set with high accuracy and reliability. It will be a thing.

また、上記構成に係る動圧軸受装置においては、仮固定用の小径部と軸受スリーブとの圧入領域が、軸受スリーブの内周に設けたラジアル軸受面と相互に軸方向にずれた位置に形成されていることが好ましい。   In the hydrodynamic bearing device according to the above configuration, the press-fitting region between the temporary fixing small-diameter portion and the bearing sleeve is formed at a position offset in the axial direction from the radial bearing surface provided on the inner periphery of the bearing sleeve. It is preferable that

このように、ラジアル軸受面から軸方向に外れた位置に軸受スリーブと小径部との圧入領域を設けるようにすれば、小径部に圧入された軸受スリーブの内周面のうちラジアル軸受面以外の領域が優先的に内径側に変形する。そのため、ラジアル軸受面の内径寸法の変化を最小限に抑えて、ラジアル軸受隙間を高精度に管理することができる。   As described above, if a press-fitting region between the bearing sleeve and the small diameter portion is provided at a position that is axially deviated from the radial bearing surface, the inner peripheral surface of the bearing sleeve press-fitted into the small diameter portion other than the radial bearing surface. The region preferentially deforms toward the inner diameter side. Therefore, the radial bearing gap can be managed with high accuracy while minimizing the change in the inner diameter of the radial bearing surface.

なお、圧入領域の形成位置に係る上記構成は、例えば、仮固定用の小径部を、スラスト軸受隙間の合計量が所定の大きさに設定された状態で、小径部が軸受スリーブの内周に設けたラジアル軸受面と小径部とが相互に軸方向にずれるように予めハウジングの所定位置に形成しておくことで得ることができる。言い換えると、スラスト軸受隙間の合計量が所定の大きさに設定された状態で、小径部の内径側の空間にラジアル軸受面が全く含まれないような位置に小径部を形成しておくことで得ることができる。   Note that the above configuration relating to the position where the press-fit region is formed includes, for example, a case where the small-diameter portion for temporarily fixing the small-diameter portion on the inner periphery of the bearing sleeve in a state where the total amount of the thrust bearing gap is set to a predetermined size. The radial bearing surface provided and the small diameter portion can be obtained by forming in advance at a predetermined position of the housing so that they are displaced in the axial direction. In other words, with the total amount of the thrust bearing gap set to a predetermined size, the small diameter portion is formed at a position where no radial bearing surface is included in the inner diameter side space of the small diameter portion. Obtainable.

上述のように、軸受スリーブをハウジングに仮固定した場合、圧入により仮固定された部分以外を、他方の固定手段、例えばレーザ溶接等で固定することで、軸受スリーブのハウジングに対する固定強度を高めることができるが、かかる場合には、ハウジングの内周面と軸受スリーブとの間に相当量の隙間が残る。この隙間は、動圧軸受装置における潤滑油等の保持量の増加につながるだけでなく、当該隙間の存在により軸受の振動特性が悪化するおそれがあることから極力避けるべき空間となる。このような観点から、ハウジングの内周面と軸受スリーブの外周面との隙間が接着剤で満たされ、これにより軸受スリーブがハウジングに固定されていることが好ましい。すなわち、他方の固定手段として接着を用い、これにより軸受スリーブをハウジングに固定していることが好ましい。   As described above, when the bearing sleeve is temporarily fixed to the housing, the fixing strength of the bearing sleeve with respect to the housing is increased by fixing the portion other than the portion temporarily fixed by press-fitting with the other fixing means, for example, laser welding. In such a case, however, a considerable amount of gap remains between the inner peripheral surface of the housing and the bearing sleeve. This gap not only leads to an increase in the amount of lubricating oil or the like retained in the hydrodynamic bearing device, but also becomes a space to be avoided as much as possible because the presence of the gap may deteriorate the vibration characteristics of the bearing. From such a viewpoint, it is preferable that the gap between the inner peripheral surface of the housing and the outer peripheral surface of the bearing sleeve is filled with an adhesive, and thereby the bearing sleeve is fixed to the housing. That is, it is preferable to use adhesive as the other fixing means, thereby fixing the bearing sleeve to the housing.

このように、ハウジングと軸受スリーブとの隙間を接着隙間として使用すれば、接着剤の供給により振動特性に悪影響を及ぼす空間を除去することができる。また、ハウジングと軸受スリーブとの接着面積をできる限り大きく取ることができるので、ハウジングと軸受スリーブとの固定強度をさらに高めることができる。以上の点から、ハウジングと軸受スリーブとの隙間は、なるべく接着剤で埋めるようにするとよい。   Thus, if the gap between the housing and the bearing sleeve is used as an adhesive gap, the space that adversely affects the vibration characteristics due to the supply of the adhesive can be removed. Further, since the bonding area between the housing and the bearing sleeve can be as large as possible, the fixing strength between the housing and the bearing sleeve can be further increased. From the above points, the gap between the housing and the bearing sleeve is preferably filled with an adhesive as much as possible.

また、上述の如く接着固定を併用する場合、仮固定用の小径部に、小径部の軸方向開口側から閉塞側に向けて接着剤を流通可能な流通路が設けられていることが好ましい。を設け、この流通路を介して小径部の軸方向閉塞側に接着剤を供給するようにするのが好ましい。   Moreover, when using adhesive fixing together as mentioned above, it is preferable to provide a flow passage through which the adhesive can flow from the axial opening side to the closing side of the small diameter portion in the small diameter portion for temporary fixing. It is preferable to supply the adhesive to the axially closed side of the small diameter portion through this flow passage.

このように、仮固定用の小径部に接着剤の流通路が設けられていれば、軸受スリーブの仮固定時、ハウジングの一端開口側から供給した接着剤が、流通路を介して小径部の軸方向閉塞側にまで行き渡るようになる。従って、小径部の軸方向開口側だけでなく閉塞側に存在するハウジングと軸受スリーブとの隙間にも十分な量の接着剤を供給することができ、上記接着固定による利益を十分に得ることができる。   As described above, if the small-diameter portion for temporary fixing is provided with the flow path of the adhesive, the adhesive supplied from the one end opening side of the housing is temporarily passed through the flow path when the bearing sleeve is temporarily fixed. It reaches to the axial blockage side. Accordingly, a sufficient amount of adhesive can be supplied not only to the axially open side of the small diameter portion but also to the gap between the housing and the bearing sleeve existing on the closed side, and the benefits of the above-described adhesive fixing can be sufficiently obtained. it can.

ここで、仮固定用の小径部はハウジングと一体に形成されていてもよく、ハウジングと別体に形成されていてもよい。もしくは、小径部を有する部材がハウジングと別体に形成され、この別部材をハウジングの内周に固定することでハウジングに仮固定用の小径部が設けられるように構成されていてもよい。   Here, the small-diameter portion for temporary fixing may be formed integrally with the housing, or may be formed separately from the housing. Alternatively, the member having a small diameter portion may be formed separately from the housing, and the separate member may be fixed to the inner periphery of the housing so that the housing has a small diameter portion for temporary fixing.

このように小径部をハウジングと別体に形成することで、ハウジングに要求される特性と、仮固定用の小径部に要求される特性とを分けて考えることができる。具体的には、ハウジングを、動圧軸受装置用ハウジングとして要求される所要の強度を有する材料で形成すると共に、仮固定用の小径部を、軸受スリーブとの圧入仮固定に適した剛性を有する材料で形成することができる。   By forming the small diameter portion separately from the housing in this way, it is possible to separately consider the characteristics required for the housing and the characteristics required for the temporary fixing small diameter portion. Specifically, the housing is made of a material having a required strength required as a housing for a hydrodynamic bearing device, and the small diameter portion for temporary fixing has rigidity suitable for press-fitting temporary fixing with the bearing sleeve. Can be made of material.

また、この場合、仮固定用の小径部をハウジングの内周に射出成形で形成することもできる。   In this case, the small-diameter portion for temporary fixing can be formed by injection molding on the inner periphery of the housing.

この方法によれば、例えば予めハウジングと別体に形成しておいた小径部をハウジングと一体化する場合のように、個々の部品寸法のばらつきを受けずに済むため、成形型の精度を高めておくだけで高精度な内径寸法を有するハウジング内周面および小径部を形成することができる。また、射出成形すべきハウジングをブランク材(未完成品)として粗く形成しておき、このブランク材の内周に樹脂等の溶融材料を射出成形することで仮固定用の小径部を一体に形成した後、小径部を含むハウジングの内周面を高精度に仕上げることも可能である。かかる手段によれば、射出成形型もラフに形成できるため、コスト面でも優位である。なお、小径部の射出成形は、径一定をなすハウジングの内周面に対して行ってもよいが、ハウジングとの固定力増強を図るのであれば、小径部を射出成形するための凹部(大径部)を予めハウジングの内周所定位置に形成しておいてもよい。   According to this method, for example, when a small-diameter portion that has been formed separately from the housing is integrated with the housing, it is not necessary to receive variations in individual component dimensions. It is possible to form a housing inner peripheral surface and a small-diameter portion having a highly accurate inner diameter simply by keeping them. In addition, the housing to be injection-molded is roughly formed as a blank material (unfinished product), and a molten material such as resin is injection-molded on the inner periphery of the blank material to integrally form a small-diameter portion for temporary fixing. After that, the inner peripheral surface of the housing including the small diameter portion can be finished with high accuracy. According to such means, the injection mold can be formed roughly, which is advantageous in terms of cost. The injection molding of the small diameter portion may be performed on the inner peripheral surface of the housing having a constant diameter. However, if the fixing force with the housing is to be increased, a concave portion (large size) for injection molding the small diameter portion is used. The diameter portion) may be formed in advance at a predetermined position on the inner periphery of the housing.

また、ハウジングの半径方向厚みが相当程度有るのであれば、例えば、予め別体に形成した小径部を有するリング状部材をハウジングの内周に設けた嵌合凹部に嵌め込むことでハウジングの所定位置に小径部を形成することも可能である。この際、Cリング状の如く、円周方向の一部を切り欠いた形状とすることで、容易にハウジングに嵌合することができる。   Also, if the housing has a considerable thickness in the radial direction, for example, a ring-shaped member having a small-diameter portion formed separately in advance is fitted into a fitting recess provided on the inner periphery of the housing, so that a predetermined position of the housing is obtained. It is also possible to form a small diameter portion. At this time, it is possible to easily fit the housing by forming a shape in which a part in the circumferential direction is cut out like a C ring shape.

また、仮固定用の小径部が、ハウジングより線膨張係数の大きい材料で形成されていてもよい。   Moreover, the small diameter part for temporary fixing may be formed with the material with a larger linear expansion coefficient than a housing.

この構成によれば、高温時、例えば接着剤の加熱昇温に伴いハウジングより線膨張係数の大きい小径部は外径側への膨張をハウジングにより制限され、結果的に内側に締まる向きに変形する。これにより、接着剤硬化時における小径部と軸受スリーブとの締め代の減少を抑えて、既に位置決めがなされた軸受スリーブが軸方向にずれる事態を可及的に回避することができる。   According to this configuration, at a high temperature, for example, the small diameter portion having a linear expansion coefficient larger than that of the housing is limited by the housing due to the heating temperature rise of the adhesive, and as a result, the housing is deformed so as to be tightened inward. . Accordingly, it is possible to suppress a reduction in the tightening allowance between the small-diameter portion and the bearing sleeve when the adhesive is cured, and to avoid the situation where the already-positioned bearing sleeve is displaced in the axial direction as much as possible.

また、仮固定用の小径部は、上記方法の他、ハウジングに外力を付与してハウジングを部分的に変形させることで形成されたものであってもよい。   Further, the temporary fixing small-diameter portion may be formed by applying an external force to the housing and partially deforming the housing in addition to the above method.

この方法によれば、ハウジングの内周面を径一定に形成できるため加工が容易で済む。また、小径部の内径寸法のみを外力の大きさにより調整することができるため、締め代の変更を行う場合であってもハウジングの大幅な設計変更を行わずに済む。   According to this method, since the inner peripheral surface of the housing can be formed with a constant diameter, processing is easy. Further, since only the inner diameter of the small diameter portion can be adjusted by the magnitude of the external force, it is not necessary to make a significant design change of the housing even when changing the tightening allowance.

なお、ハウジングに対する外力の解除は、双方のスラスト軸受隙間の合計量を所定の大きさに設定し終えた段階で行ってもよい。あるいは、当該隙間を所定の大きさに設定し、かつ、ハウジングと軸受スリーブとの間に接着剤を供給し固化し終えた段階で、ハウジングに対する外力を解除するようにしてもよい。   It should be noted that the release of the external force on the housing may be performed at the stage where the total amount of the thrust bearing gaps of both has been set to a predetermined size. Alternatively, the external force applied to the housing may be released when the gap is set to a predetermined size and the adhesive is supplied between the housing and the bearing sleeve and solidified.

この方法によれば、仮固定用の小径部と軸受スリーブとの締め代が、ハウジングの塑性変形分に弾性変形分を加えた大きさとして与えられるため、スラスト隙間設定後には、小径部の外径側への戻りに伴い、この小径部に圧入される軸受スリーブの内周面も外径側に若干戻ることとなる。そのため、実質的な締め代を大きくしても、軸受スリーブ内径の減少を小さく留めて、適正な大きさのラジアル軸受隙間を確保することができる。また、接着固定を併用する場合には、接着剤の固化時まで外力を付与し続けることで、加熱時における軸受スリーブの軸方向への位置ずれを効果的に防止することができる。   According to this method, the tightening allowance between the temporary fixing small-diameter portion and the bearing sleeve is given as a size obtained by adding the elastic deformation to the plastic deformation of the housing. With the return to the radial side, the inner peripheral surface of the bearing sleeve that is press-fitted into the small-diameter portion also slightly returns to the outer diameter side. Therefore, even if the substantial tightening allowance is increased, the decrease in the inner diameter of the bearing sleeve can be kept small, and a radial bearing gap of an appropriate size can be secured. In the case of using adhesive fixing together, it is possible to effectively prevent displacement of the bearing sleeve in the axial direction during heating by continuously applying external force until the adhesive is solidified.

また、ハウジングに部分的に薄肉部を設け、この薄肉部に外力を付与することで薄肉部の内側に仮固定用の小径部を形成することもできる。あるいは、ハウジングに複数の薄肉部を設け、これら薄肉部の間に外力を付与することで、薄肉部間の領域の内側に仮固定用の小径部を形成することもできる。   In addition, it is also possible to form a small-diameter portion for temporary fixing inside the thin portion by providing a thin portion in the housing and applying an external force to the thin portion. Alternatively, by providing a plurality of thin portions on the housing and applying an external force between these thin portions, a small-diameter portion for temporary fixing can be formed inside the region between the thin portions.

これら何れの方法によっても、厚み一定のハウジングに比べて小さい負荷でハウジングを部分的に変形させることができるので、小径部以外の部分における変形量を極力小さく抑えて当該部分における形状精度を高く保つことができる。   With any of these methods, the housing can be partially deformed with a smaller load than a housing with a constant thickness, so that the amount of deformation in a portion other than the small-diameter portion is kept as small as possible and the shape accuracy in that portion is kept high. be able to.

また、上記説明に係る動圧軸受装置において、ハウジングは、例えばモータブラケットの一部を構成しているものであってもよい。   In the hydrodynamic bearing device according to the above description, the housing may constitute a part of a motor bracket, for example.

このように、ハウジングがモータブラケットと一体に形成されている場合など、一般的には、ハウジングの形状が複雑化するにつれて軸受スリーブの組付け作業に要する設備も限定され、かつ、手間がかかることになるが、上述の軸受装置であれば、モータブラケット一体のハウジングを固定し、軸受スリーブおよび軸部材を一方向に往復運動させるのみで組付け作業およびスラスト軸受隙間の設定を行うことができる。そのため、情報機器等への組込みを含めた一連の動圧軸受装置のアセンブリ工程を簡略化することができる。   Thus, in general, when the housing is formed integrally with the motor bracket, the equipment required for the assembly work of the bearing sleeve is limited and time-consuming as the shape of the housing becomes complicated. However, with the above-described bearing device, the assembly operation and the thrust bearing clearance can be set only by fixing the housing integrated with the motor bracket and reciprocating the bearing sleeve and the shaft member in one direction. Therefore, it is possible to simplify the assembly process of a series of hydrodynamic bearing devices including incorporation into information equipment or the like.

以上より、本発明によれば、この種の動圧軸受装置において、フランジ部の両側に形成される双方のスラスト軸受隙間のみならず、ラジアル軸受隙間についてもその寸法を高精度に設定することができる。   As described above, according to the present invention, in this type of hydrodynamic bearing device, not only the thrust bearing gaps formed on both sides of the flange portion but also the radial bearing gaps can be set with high accuracy. it can.

以下、本発明の第1実施形態を図1〜図9に基づき説明する。なお、以下の説明における『上下』方向は、単に各図における構成要素間の位置関係を容易に理解するために規定したものに過ぎず、動圧軸受装置の設置方向や使用態様、製造方法等を特定するものではない。後述する他の実施形態に関しても同様である。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. Note that the “up and down” direction in the following description is merely defined for easy understanding of the positional relationship between the components in each drawing, and the installation direction, usage mode, manufacturing method, etc. of the hydrodynamic bearing device, etc. It does not specify. The same applies to other embodiments described later.

図1は、本発明の第1実施形態に係る動圧軸受装置1を組込んだ情報機器用スピンドルモータの断面図を示す。このスピンドルモータは、例えば磁気ディスクを備えたHDDに組み込まれて使用されるもので、ハブ3を取り付けた軸部材2をラジアル方向に非接触支持する動圧軸受装置1と、例えば半径方向のギャップを介して対向させたステータコイル4aおよびロータマグネット4bとからなる駆動部4と、モータブラケット5とを備えている。ステータコイル4aはモータブラケット5に固定され、ロータマグネット4bはハブ3に固定される。動圧軸受装置1のハウジング7は、モータブラケット5の内周に固定される。また、図1に示すように、ハブ3には1又は複数枚のディスク6(図1では2枚)が保持される。このように構成されたスピンドルモータにおいて、ステータコイル4aに通電すると、ステータコイル4aとロータマグネット4bとの間に発生する励磁力でロータマグネット4bが回転し、これに伴って、ハブ3に保持されたディスク6が軸部材2と一体に回転する。   FIG. 1 is a sectional view of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 according to a first embodiment of the present invention. This spindle motor is used by being incorporated in, for example, an HDD equipped with a magnetic disk. The spindle motor 2 is a non-contact support for the shaft member 2 to which the hub 3 is attached in the radial direction, and a radial gap, for example. And a motor bracket 5 including a stator coil 4a and a rotor magnet 4b opposed to each other. The stator coil 4 a is fixed to the motor bracket 5, and the rotor magnet 4 b is fixed to the hub 3. The housing 7 of the hydrodynamic bearing device 1 is fixed to the inner periphery of the motor bracket 5. Further, as shown in FIG. 1, the hub 3 holds one or a plurality of disks 6 (two in FIG. 1). In the spindle motor configured as described above, when the stator coil 4a is energized, the rotor magnet 4b is rotated by the exciting force generated between the stator coil 4a and the rotor magnet 4b, and is accordingly held by the hub 3. The disc 6 rotates integrally with the shaft member 2.

図2は、動圧軸受装置1を示している。この動圧軸受装置1は、ハウジング7と、ハウジング7の内周に固定される軸受スリーブ8と、ハウジング7および軸受スリーブ8に対して相対回転する軸部材2とを主に備える。また、この実施形態では、ハウジング7の開口側端部にシール部材12が配設されている。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 mainly includes a housing 7, a bearing sleeve 8 fixed to the inner periphery of the housing 7, and a shaft member 2 that rotates relative to the housing 7 and the bearing sleeve 8. In this embodiment, the seal member 12 is disposed at the opening end of the housing 7.

軸部材2は、軸部2aと、軸部2aの下端に一体又は別体に設けられたフランジ部2bとを有し、例えばステンレス鋼などの比較的高硬度および高剛性の金属で形成される。また、軸部2aの外周面のうち、後述する軸受スリーブ8の動圧溝8a1,8a2配列領域とラジアル方向に対向しない領域には、対向領域より小径となる逃げ部2cが形成されている。   The shaft member 2 has a shaft portion 2a and a flange portion 2b provided integrally or separately at the lower end of the shaft portion 2a, and is formed of a metal having a relatively high hardness and high rigidity such as stainless steel, for example. . Further, in the outer peripheral surface of the shaft portion 2a, a relief portion 2c having a smaller diameter than the opposed region is formed in a region that does not face the dynamic pressure grooves 8a1 and 8a2 arrangement region of the bearing sleeve 8 described later in the radial direction.

軸受スリーブ8は、その内周に軸部2aを挿通可能な形状に形成され、例えば焼結金属からなる多孔質体で円筒状に形成される。この実施形態では、軸受スリーブ8は、Cuを主成分とする焼結金属の多孔質体で円筒状に形成される。もちろん、軸受スリーブ8を樹脂やセラミック等、金属以外の材料で形成することも可能である。また、焼結金属等の多孔質体以外にも、内部空孔を持たない非孔質材料(中実材)、あるいは潤滑油の出入りができない程度の大きさの空孔を有する構造の材料で形成することもできる。   The bearing sleeve 8 is formed in a shape that allows the shaft portion 2a to be inserted into the inner periphery thereof, and is formed in a cylindrical shape with a porous body made of sintered metal, for example. In this embodiment, the bearing sleeve 8 is formed in a cylindrical shape with a porous body of sintered metal whose main component is Cu. Of course, the bearing sleeve 8 can be formed of a material other than metal, such as resin or ceramic. In addition to porous materials such as sintered metal, non-porous material (solid material) that does not have internal pores, or a material with a structure that has pores large enough to prevent lubricating oil from entering and exiting. It can also be formed.

軸受スリーブ8の内周面8aの全面又は一部の領域には、ラジアル動圧発生部として複数の動圧溝を配列した領域が形成される。この実施形態では、例えば図3に示すように、円周方向線に対して互いに異なる傾斜角を有する複数の動圧溝8a1,8a2がへリングボーン形状に配列されると共に、これら複数の動圧溝8a1,8a2が、動圧溝8a1,8a2より小径の区画部8a3により区画されている。また、図3では、上記配列態様をなす動圧溝8a1,8a2配列領域が軸方向に離隔して2ヶ所に形成されている。ここで、上側(シール部材12の側)の動圧溝8a1,8a2配列領域では、各動圧溝8a1,8a2が、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側に位置する動圧溝8a1配列領域の軸方向寸法X1が下側に位置する動圧溝8a2配列領域の軸方向寸法X2よりも大きくなっている。 A region where a plurality of dynamic pressure grooves are arranged as a radial dynamic pressure generating portion is formed on the entire surface or a partial region of the inner peripheral surface 8 a of the bearing sleeve 8. In this embodiment, as shown in FIG. 3, for example, a plurality of dynamic pressure grooves 8a1 and 8a2 having different inclination angles with respect to the circumferential line are arranged in a herringbone shape, and the plurality of dynamic pressures The grooves 8a1 and 8a2 are partitioned by a partition 8a3 having a smaller diameter than the dynamic pressure grooves 8a1 and 8a2. Moreover, in FIG. 3, the dynamic pressure grooves 8a1 and 8a2 having the above-described arrangement form are formed at two locations separated in the axial direction. Here, in the dynamic pressure groove 8a1, 8a2 arrangement region on the upper side (the seal member 12 side), each dynamic pressure groove 8a1, 8a2 is in the axial direction center m (the axial center of the region between the upper and lower inclined grooves). It is formed asymmetrically in the axial direction, than the dynamic pressure grooves 8a2 arranged regions axial dimension X 2 of the axial dimension X 1 of the dynamic pressure grooves 8a1 sequence region located above the axial center m are underneath It is getting bigger.

また、この実施形態では、内周面8aのうち、上下に離隔して形成された2つの動圧溝8a1,8a2配列領域の間に位置する中間領域8a4は平滑な円筒面状をなしている。また、中間領域8a4と、この中間領域8a4とそれぞれ隣接する図3中上側の動圧溝8a2ならびに図3中下側の動圧溝8a1とは、少なくとも後述するハウジング7に組み込む前の段階では、同一平面上にある。このような内周面8aの形状は、上述の如く、軸受スリーブ8を焼結金属で形成し、その内周面8aに、いわゆるスプリングバックを利用して、動圧溝8a1,8a2に倣った外周面形状を有するロッド状の成形型を押し付けることにより形成される。   Further, in this embodiment, the intermediate region 8a4 located between the two dynamic pressure grooves 8a1 and 8a2 arranged in the inner peripheral surface 8a so as to be separated from each other in the vertical direction has a smooth cylindrical surface shape. . Further, the intermediate region 8a4, the dynamic pressure groove 8a2 on the upper side in FIG. 3 adjacent to the intermediate region 8a4, and the dynamic pressure groove 8a1 on the lower side in FIG. On the same plane. As described above, the shape of the inner peripheral surface 8a follows the dynamic pressure grooves 8a1 and 8a2 by forming the bearing sleeve 8 from a sintered metal and using a so-called spring back on the inner peripheral surface 8a. It is formed by pressing a rod-shaped mold having an outer peripheral surface shape.

軸受スリーブ8の下端面8bの全面または一部の領域には、スラスト動圧発生部として、例えば図4に示すように、複数の動圧溝8b1をスパイラル形状に配列した領域が形成される。この動圧溝8b1配列領域は、図2に示す完成品の状態ではフランジ部2bの上端面2b1と対向し、軸部材2の回転時、上端面2b1との間に後述する第1スラスト軸受部T1のスラスト軸受隙間(第1スラスト軸受隙間)を形成する。   As shown in FIG. 4, for example, as shown in FIG. 4, a region in which a plurality of dynamic pressure grooves 8 b 1 are arranged in a spiral shape is formed on the entire lower surface 8 b of the bearing sleeve 8 or a partial region. This dynamic pressure groove 8b1 arrangement region is opposed to the upper end surface 2b1 of the flange portion 2b in the state of the finished product shown in FIG. 2, and a first thrust bearing portion described later between the upper end surface 2b1 when the shaft member 2 rotates. A thrust bearing gap T1 (first thrust bearing gap) is formed.

軸受スリーブ8の外周面8cには、軸方向に伸びる1又は複数の軸方向溝8c1が形成される。これら軸方向溝8c1は、主に動圧軸受装置1の使用時、軸受内部空間内で潤滑油の過不足が生じた場合などに、かかる過不足状態を早急に適正な状態に回復するための役割を果たす。   One or more axial grooves 8 c 1 extending in the axial direction are formed on the outer peripheral surface 8 c of the bearing sleeve 8. These axial grooves 8c1 are used for quickly recovering the excess / deficiency state to an appropriate state when the hydrodynamic bearing device 1 is used, and when the excess / deficiency of lubricating oil occurs in the bearing internal space. Play a role.

ハウジング7は筒状に形成され、少なくともその軸方向一端を開口した形態をなす。ハウジング7の内周面7aには、内周面7aより小径で、かつ、後述するスラスト軸受隙間の設定時に軸受スリーブ8をハウジング7に仮固定するための小径部9が形成されている。また、この実施形態では、ハウジング7の軸方向下端に円板状の底部7bが一体に形成され、ハウジング7の軸方向下端を閉塞している。ここで、底部7bの上端面7b1の全面または一部の領域には、スラスト動圧発生部として、例えば図示は省略するが、複数の動圧溝をスパイラル形状に配列した領域が形成される。この動圧溝配列領域は、図2に示す完成品の状態ではフランジ部2bの下端面2b2と対向し、軸部材2の回転時、下端面2b2との間に後述する第2スラスト軸受部T2のスラスト軸受隙間(第2スラスト軸受隙間)を形成する。なお、ハウジング7は、真ちゅう等の金属材料あるいは樹脂材料等、種々の材料で形成可能であり、ハウジング7が金属製の場合、削り出しや鍛造等の塑性加工の他、MIMなどの射出成形法(溶湯、粉末問わず)が使用可能である。   The housing 7 is formed in a cylindrical shape and has at least one axial end thereof opened. The inner peripheral surface 7a of the housing 7 is formed with a smaller diameter portion 9 that is smaller in diameter than the inner peripheral surface 7a and that temporarily fixes the bearing sleeve 8 to the housing 7 when a thrust bearing gap described later is set. In this embodiment, a disk-like bottom portion 7 b is integrally formed at the lower end in the axial direction of the housing 7, and closes the lower end in the axial direction of the housing 7. Here, on the entire surface or a partial region of the upper end surface 7b1 of the bottom portion 7b, a region in which a plurality of dynamic pressure grooves are arranged in a spiral shape is formed as a thrust dynamic pressure generating portion, for example, although not shown. This dynamic pressure groove arrangement region is opposed to the lower end surface 2b2 of the flange portion 2b in the state of the finished product shown in FIG. 2, and a second thrust bearing portion T2 described later between the lower end surface 2b2 and the shaft member 2 when rotating. The thrust bearing gap (second thrust bearing gap) is formed. The housing 7 can be formed of various materials such as a metal material such as brass or a resin material, and when the housing 7 is made of metal, an injection molding method such as MIM in addition to plastic processing such as machining or forging. (Both molten metal and powder) can be used.

小径部9は、ハウジング7内周の軸方向中間位置に形成されている。そして、軸受スリーブ8を後述するハウジング7内周の軸方向所定位置(スラスト軸受隙間設定時の位置)に固定した状態では、軸受スリーブ8の動圧溝8a1,8a2配列領域と互いに軸方向にずれた(重複しない)位置にて軸受スリーブ8に圧入固定される。従い、図2における完成品状態において、ハウジング7の小径部9と軸受スリーブ8との圧入領域は、動圧溝8a1,8a2配列領域と互いに軸方向にずれた(重複しない)位置に形成されている。   The small diameter portion 9 is formed at an intermediate position in the axial direction of the inner periphery of the housing 7. In a state in which the bearing sleeve 8 is fixed at a predetermined axial position on the inner periphery of the housing 7 (to be described later) (position when the thrust bearing gap is set), the dynamic pressure grooves 8a1 and 8a2 of the bearing sleeve 8 are displaced in the axial direction from each other. The bearing sleeve 8 is press-fitted and fixed at a position (not overlapping). Therefore, in the finished product state in FIG. 2, the press-fitting region between the small-diameter portion 9 of the housing 7 and the bearing sleeve 8 is formed at a position that is axially displaced (not overlapping) with the dynamic pressure groove 8 a 1, 8 a 2 arrangement region. Yes.

また、この実施形態では、圧入領域を除くハウジング7の内周面7aと軸受スリーブ8の外周面8cとの間が接着剤10で満たされ、これにより、ハウジング7と軸受スリーブ8とが接着固定されている。なお、この際の接着剤10の層厚み(言い換えると接着隙間)の大きさは、小径部9の内周面7aからの突出高さから、この小径部9と軸受スリーブ8との締め代を差し引いた値に設定される。   In this embodiment, the space between the inner peripheral surface 7a of the housing 7 and the outer peripheral surface 8c of the bearing sleeve 8 excluding the press-fitting region is filled with the adhesive 10, whereby the housing 7 and the bearing sleeve 8 are bonded and fixed. Has been. At this time, the layer thickness of the adhesive 10 (in other words, the bonding gap) is determined by the amount of tightening between the small diameter portion 9 and the bearing sleeve 8 based on the protruding height of the small diameter portion 9 from the inner peripheral surface 7a. Set to the subtracted value.

このように、ハウジング7と軸受スリーブ8との固定が、圧入だけでなく接着も併用して行われる場合、例えば図5に示すように、小径部9を円周方向に断続的に設けることも可能である。このように、複数の小径部9を円周方向に断続的に設けることで、後述するスラスト軸受隙間の設定時、仮固定状態にある軸受スリーブ8の外周面8cとの間で、かつ、小径部9と円周方向に隣接する箇所に所定の空間11が形成される。この所定の空間11は、軸受スリーブ8を仮固定した状態でハウジング7の開口部から接着剤10を供給した場合、小径部の軸方向開口側から閉塞側に向けて接着剤が流通可能な流通路として機能する。また、逆に言えば、所定の空間11は上記流通路として機能する程度の円周方向幅を有する。   As described above, when the fixing between the housing 7 and the bearing sleeve 8 is performed not only by press-fitting but also by adhesion, for example, as shown in FIG. 5, the small diameter portion 9 may be provided intermittently in the circumferential direction. Is possible. Thus, by providing the plurality of small-diameter portions 9 intermittently in the circumferential direction, when setting a thrust bearing gap, which will be described later, between the outer peripheral surface 8c of the bearing sleeve 8 in the temporarily fixed state and the small-diameter A predetermined space 11 is formed at a location adjacent to the portion 9 in the circumferential direction. When the adhesive 10 is supplied from the opening of the housing 7 in a state where the bearing sleeve 8 is temporarily fixed, the predetermined space 11 allows the adhesive to flow from the axial opening side of the small diameter portion toward the closing side. Functions as a road. In other words, the predetermined space 11 has a circumferential width that functions as the flow passage.

シール手段としてのシール部材12は、この実施形態ではハウジング7と別体に金属材料あるいは樹脂材料で形成され、その下端を軸受スリーブ8の上端面8dに当接させた状態でハウジング7の上端内周に固定される。この際、使用可能な固定手段として、圧入、接着、溶着、溶接等の手段で固定される。   In this embodiment, the sealing member 12 as a sealing means is formed of a metal material or a resin material separately from the housing 7, and the lower end of the sealing member 12 is in contact with the upper end surface 8 d of the bearing sleeve 8. Fixed around the circumference. At this time, as fixing means that can be used, fixing is performed by means such as press-fitting, adhesion, welding, and welding.

シール部材12の内周にはテーパ形状をなすシール面12aが形成されており、このシール面12aと、軸部2aの外周面との間にシール空間Sが形成される。また、潤滑油の油面が所定の温度範囲内(使用温度範囲内あるいは輸送時温度範囲内)において常にシール空間Sの範囲内に維持されるよう、動圧軸受装置1内部への潤滑油の充填量が調整される。   A tapered seal surface 12a is formed on the inner periphery of the seal member 12, and a seal space S is formed between the seal surface 12a and the outer peripheral surface of the shaft portion 2a. Further, the lubricating oil is supplied to the inside of the hydrodynamic bearing device 1 so that the oil level of the lubricating oil is always maintained within the range of the seal space S within a predetermined temperature range (operating temperature range or transport temperature range). The filling amount is adjusted.

上記構成をなす動圧軸受装置1内への注油作業は、上述の構成部品をアセンブリした後に行われ、これにより、ラジアル軸受隙間やスラスト軸受隙間、さらには軸受スリーブ8の内部空孔を含む軸受内部空間が潤滑油で満たされる。この際、軸受内部空間への潤滑油の供給手段としては、例えば動圧軸受装置1全体を潤滑油に浸漬して行う充填方法(真空含浸など)の他、例えば滴下含油のようにシール空間Sから直接潤滑油を供給する方法(滴下含油法)を採用することもできる。   The lubrication operation into the hydrodynamic bearing device 1 having the above-described configuration is performed after the above-described components are assembled, and thereby a bearing including a radial bearing gap, a thrust bearing gap, and further an internal hole of the bearing sleeve 8 is provided. The interior space is filled with lubricating oil. At this time, as a means for supplying the lubricating oil to the bearing internal space, for example, a filling method (vacuum impregnation or the like) performed by immersing the entire hydrodynamic bearing device 1 in the lubricating oil, for example, a seal space S such as dripping oil impregnation is used. It is also possible to employ a method of supplying lubricating oil directly from (a dripping oil impregnation method).

上記構成の動圧軸受装置1において、軸受スリーブ8の内周面8aのラジアル軸受面となる領域(上下2箇所の動圧溝8a1,8a2配列領域)は、軸部2aの外周面とラジアル軸受隙間を介して対向する。そして、軸部材2を回転させると、上記ラジアル軸受隙間の潤滑油が動圧溝8a1,8a2の軸方向中心m側に押し込まれ、その圧力が上昇する。このような動圧溝の動圧作用によって、軸部2aを回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが構成される。   In the fluid dynamic bearing device 1 having the above-described configuration, the region (the region where the dynamic pressure grooves 8a1 and 8a2 are arranged in the upper and lower portions) of the inner peripheral surface 8a of the bearing sleeve 8 is the outer peripheral surface of the shaft portion 2a and the radial bearing Opposing through a gap. When the shaft member 2 is rotated, the lubricating oil in the radial bearing gap is pushed into the axial center m of the dynamic pressure grooves 8a1 and 8a2, and the pressure rises. The first radial bearing portion R1 and the second radial bearing portion R2 that rotatably support the shaft portion 2a in a non-contact manner are configured by the dynamic pressure action of the dynamic pressure groove.

また、フランジ部2bの上端面2b1とこれに対向する軸受スリーブ8の下端面8b(スラスト動圧発生部)との間の第1スラスト軸受隙間、およびフランジ部2bの下端面2b2とこれに対向するハウジング底部7bの上端面(スラスト動圧発生部)7b1との間の第2スラスト軸受隙間に、各動圧溝の動圧作用により潤滑油の油膜がそれぞれ形成される。そして、これら油膜の圧力によって、フランジ部2bを両スラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが構成される。   Further, the first thrust bearing gap between the upper end surface 2b1 of the flange portion 2b and the lower end surface 8b (thrust dynamic pressure generating portion) of the bearing sleeve 8 facing the flange portion 2b, and the lower end surface 2b2 of the flange portion 2b is opposed to the first thrust bearing clearance. An oil film of lubricating oil is formed in the second thrust bearing gap between the upper end surface (thrust dynamic pressure generating portion) 7b1 of the housing bottom 7b and the dynamic pressure action of each dynamic pressure groove. The pressure of these oil films forms a first thrust bearing portion T1 and a second thrust bearing portion T2 that support the flange portion 2b in a non-contact manner so as to be rotatable in both thrust directions.

この実施形態の動圧軸受装置1は、例えば、以下に示すような態様で組立てられる。   The hydrodynamic bearing device 1 of this embodiment is assembled in the following manner, for example.

まず、図6に示すように、軸部2aを軸受スリーブ8の内周に所定のラジアル隙間を有した状態で嵌め合わせ、これら嵌合状態にある軸部材2および軸受スリーブ8をハウジング7の内周に挿入する。なお、この段階(軸受スリーブ8をハウジング7の内周に挿入する前の段階)におけるハウジング7の小径部19は、軸受スリーブ8を仮固定した後の小径部9と比べてその締め代の分だけ小径となっている。   First, as shown in FIG. 6, the shaft portion 2 a is fitted to the inner periphery of the bearing sleeve 8 with a predetermined radial gap, and the shaft member 2 and the bearing sleeve 8 in the fitted state are fitted inside the housing 7. Insert around. Note that the small-diameter portion 19 of the housing 7 at this stage (the stage before the bearing sleeve 8 is inserted into the inner periphery of the housing 7) is less than the small-diameter portion 9 after the bearing sleeve 8 is temporarily fixed. Only a small diameter.

次に、図7に示すように、軸受スリーブ8の外周面8cをハウジング7の小径部9に所定の締め代をもって圧入すると共に、軸受スリーブ8の下端面8bがフランジ部2bの上端面2b1に当接し、かつ、フランジ部2bの下端面2b2がハウジング底部7bの上端面7b1に当接する位置まで軸受スリーブ8を底部7bに向けて押し込む。これにより、軸受スリーブ8がハウジング7の内周に仮固定されると共に、フランジ部2bの両側に形成されるスラスト軸受隙間が零(第1スラスト軸受隙間と第2スラスト軸受隙間の大きさが共に零)の状態に設定される。なお、軸部材2を先にハウジング7の内周に挿入し、その後、軸受スリーブ8を軸部2aに嵌め合わせると共にハウジング7の小径部9に圧入して、図7に示す状態を達成しても構わない。   Next, as shown in FIG. 7, the outer peripheral surface 8c of the bearing sleeve 8 is press-fitted into the small-diameter portion 9 of the housing 7 with a predetermined tightening margin, and the lower end surface 8b of the bearing sleeve 8 is engaged with the upper end surface 2b1 of the flange portion 2b. The bearing sleeve 8 is pushed toward the bottom portion 7b until the lower end surface 2b2 of the flange portion 2b comes into contact with the upper end surface 7b1 of the housing bottom portion 7b. As a result, the bearing sleeve 8 is temporarily fixed to the inner periphery of the housing 7, and the thrust bearing gap formed on both sides of the flange portion 2b is zero (the sizes of the first thrust bearing gap and the second thrust bearing gap are both the same). Zero). The shaft member 2 is first inserted into the inner periphery of the housing 7, and then the bearing sleeve 8 is fitted into the shaft portion 2a and press-fitted into the small diameter portion 9 of the housing 7 to achieve the state shown in FIG. It doesn't matter.

次に、図8に示すように、ハウジング7の上端内周にシール部材12を導入して、シール部材12の下端面が軸受スリーブ8の上端面8dに当接する位置までシール部材12をハウジング7の上端内周に導入する。そして、この状態から、軸部材2を軸受スリーブ8およびシール部材12と共に、第1スラスト軸受隙間の軸方向寸法と第2スラスト軸受隙間の軸方向寸法の合計量に相当する寸法δだけ、ハウジング7に対して軸方向上方に相対移動させる。これにより、フランジ部2bの下端面2b2と、ハウジング底部7bの上端面7b1とのスラスト方向の隙間が、双方のスラスト軸受隙間の合計量δとして所定の大きさに設定される。なお、シール部材12は、上記スラスト軸受隙間の設定後にハウジング7の上端内周に導入してもよいし、軸受スリーブ8をハウジング7の内周に圧入(仮固定)する際、軸受スリーブ8と共にハウジング7の内周に導入してもよい。   Next, as shown in FIG. 8, the seal member 12 is introduced to the inner periphery of the upper end of the housing 7, and the seal member 12 is moved to a position where the lower end surface of the seal member 12 contacts the upper end surface 8 d of the bearing sleeve 8. It is introduced into the inner periphery of the upper end of Then, from this state, the shaft member 2 together with the bearing sleeve 8 and the seal member 12 is the housing 7 by a dimension δ corresponding to the total amount of the axial dimension of the first thrust bearing gap and the axial dimension of the second thrust bearing gap. Is moved relatively upward in the axial direction. Thereby, the gap in the thrust direction between the lower end surface 2b2 of the flange portion 2b and the upper end surface 7b1 of the housing bottom portion 7b is set to a predetermined size as the total amount δ of both thrust bearing gaps. The seal member 12 may be introduced to the inner periphery of the upper end of the housing 7 after setting the thrust bearing clearance. When the bearing sleeve 8 is press-fitted (temporarily fixed) to the inner periphery of the housing 7, the seal member 12 is used. You may introduce into the inner periphery of the housing 7.

図8に示す状態では、小径部9が軸受スリーブ8の軸方向中間位置、詳細には、軸受スリーブ8の動圧溝8a1,8a2配列領域と互いに軸方向にずれた(重複しない)位置にて軸受スリーブ8に圧入固定される。従い、スラスト軸受隙間の合計量δが所定の大きさに設定された段階では、小径部9と軸受スリーブ8との圧入領域の内径側に軸受スリーブ内周面8aの中間領域8a4が位置すると共に、この中間領域8a4が、図9に示すように、仮固定前と比べて締め代に応じた大きさ分だけ内径側に縮小する(図9中破線から実線で示す位置に向けて)。この場合、中間領域8a4と軸部2aの外周面とのラジアル隙間W2は、動圧溝8a1,8a2を区画する区画部(丘部)8a3と軸部2aの外周面とのラジアル隙間W1(実質的なラジアル軸受隙間に相当)よりも常に大きくなるよう設定される。   In the state shown in FIG. 8, the small-diameter portion 9 is at an axially intermediate position of the bearing sleeve 8, specifically, at a position that is axially displaced (not overlapping) with the dynamic pressure grooves 8 a 1 and 8 a 2 of the bearing sleeve 8. It is press-fitted and fixed to the bearing sleeve 8. Accordingly, when the total amount δ of the thrust bearing gap is set to a predetermined size, the intermediate region 8a4 of the inner peripheral surface 8a of the bearing sleeve is positioned on the inner diameter side of the press-fitted region between the small diameter portion 9 and the bearing sleeve 8. As shown in FIG. 9, the intermediate region 8a4 is reduced to the inner diameter side by a size corresponding to the tightening allowance as compared with that before temporary fixing (from the broken line toward the position indicated by the solid line in FIG. 9). In this case, the radial gap W2 between the intermediate region 8a4 and the outer peripheral surface of the shaft portion 2a is a radial gap W1 (substantially) between the partition portion (hill portion) 8a3 that partitions the dynamic pressure grooves 8a1 and 8a2 and the outer peripheral surface of the shaft portion 2a. It is set so as to be always larger than the equivalent radial bearing clearance.

このようにして、軸受スリーブ8をハウジング7内周の軸方向所定位置に位置決め固定した後、ハウジング7の上部開口側から接着剤を供給して、圧入領域を除くハウジング7の内周面7aと軸受スリーブ8の外周面8cとの隙間を上記接着剤で満たす。そして、例えば所定温度にまで加熱し、この加熱状態を所定時間保持することで、接着剤が硬化し、当該充填箇所にてハウジング7と軸受スリーブ8とが接着固定される。なお、接着剤は、隙間設定後に限らず供給することができ、例えば軸受スリーブ8の圧入前に塗布すべき接着剤の全部あるいは一部をハウジング7の内周面7aにしておくことで、圧入時に生じたコンタミをその導入方向前方部で補足する役割を果たす。   In this way, after positioning and fixing the bearing sleeve 8 at a predetermined position in the axial direction of the inner periphery of the housing 7, an adhesive is supplied from the upper opening side of the housing 7, and the inner peripheral surface 7 a of the housing 7 excluding the press-fitting region The gap with the outer peripheral surface 8c of the bearing sleeve 8 is filled with the adhesive. Then, for example, by heating to a predetermined temperature and holding this heating state for a predetermined time, the adhesive is cured, and the housing 7 and the bearing sleeve 8 are bonded and fixed at the filling location. The adhesive can be supplied not only after the gap has been set. For example, all or a part of the adhesive to be applied before press-fitting the bearing sleeve 8 is placed on the inner peripheral surface 7a of the housing 7, thereby press-fitting. It plays a role of supplementing the contamination that has occurred at the front part in the introduction direction.

上記の方法によれば、動圧軸受装置1の各構成部品を実際に組み合わせて双方何れのスラスト軸受隙間も一旦零としておき、この状態から、軸受スリーブ8をハウジング7に対して軸方向に所定量だけ相対移動させてスラスト軸受隙間を形成するので、上記の軸方向相対移動量(=スラスト軸受隙間の合計量δ)を管理するだけで、スラスト軸受隙間の各構成面(軸受スリーブ8の下端面8b、ハウジング底部7bの上端面7b1、フランジ部2bの両端面2b1,2b2)の面精度、フランジ部2bの軸方向寸法精度等の影響を受けることなく、スラスト軸受隙間を精度良く形成することができる。   According to the above-described method, the components of the hydrodynamic bearing device 1 are actually combined and both thrust bearing gaps are once set to zero. From this state, the bearing sleeve 8 is placed in the axial direction with respect to the housing 7. Since the thrust bearing gap is formed by relative movement by a fixed amount, each component surface of the thrust bearing gap (below the bearing sleeve 8) can be managed only by managing the above axial relative movement amount (= total amount of thrust bearing gap δ). The thrust bearing gap can be accurately formed without being affected by the surface accuracy of the end surface 8b, the upper end surface 7b1 of the housing bottom portion 7b, the both end surfaces 2b1, 2b2) of the flange portion 2b, and the axial dimensional accuracy of the flange portion 2b. Can do.

また、ハウジング7の内周面7aの軸方向一部に仮固定用の小径部9を設け、この小径部9にて軸受スリーブ8を圧入固定するようにしたので、実質的な圧入面積を低減して、軸受スリーブ内周面8aの内径側への変形を小さく抑えることができる。また、上述のように、実質的にラジアル軸受面となる領域(動圧溝8a1,8a2配列領域)を相互に軸方向に外した位置にて仮固定用の小径部9を最終的に圧入固定するようにしたので、軸受スリーブ8の圧入時、軸受スリーブ8の内周面8aのうち動圧溝8a1,8a2を有さない中間領域8a4が優先的に内径側に変形する。そのため、動圧溝8a1,8a2や区画部8a3の内径寸法の変化を最小限に抑えて、ラジアル軸受隙間を高精度に管理することができる。   Further, since a small-diameter portion 9 for temporary fixing is provided on a part of the inner peripheral surface 7a of the housing 7 and the bearing sleeve 8 is press-fitted and fixed by this small-diameter portion 9, the substantial press-fitting area is reduced. Thus, deformation of the bearing sleeve inner peripheral surface 8a toward the inner diameter side can be suppressed to be small. Further, as described above, the temporary fixing small-diameter portion 9 is finally press-fitted and fixed at a position where the regions (dynamic pressure groove 8a1 and 8a2 arrangement region) that are substantially radial bearing surfaces are axially removed from each other. Therefore, when the bearing sleeve 8 is press-fitted, the intermediate region 8a4 that does not have the dynamic pressure grooves 8a1 and 8a2 in the inner peripheral surface 8a of the bearing sleeve 8 is preferentially deformed toward the inner diameter side. Therefore, the radial bearing gap can be managed with high accuracy by minimizing changes in the inner diameter of the dynamic pressure grooves 8a1 and 8a2 and the partition portion 8a3.

また、この実施形態のように、小径部9との圧入領域を除くハウジング7の内周面7aと軸受スリーブ8の外周面8cとの隙間全てを接着剤で満たして接着固定することで、軸受の振動特性に悪影響を及ぼす空間としての上記隙間を除去することができる。また、ハウジング7と軸受スリーブ8との接着面積をできる限り大きく取ることができ、圧入強度と併せたハウジング7と軸受スリーブ8との固定強度を一層高めることができる。また、図5に示すように、小径部9を円周方向に断続的に設け、これら小径部9の間に、小径部の軸方向開口側から閉塞側に向けて接着剤10が流通可能となる流通路(所定の空間11)を形成することで、その供給タイミングに関らず、小径部9の軸方向閉塞側にも十分な量の接着剤10を供給できる。   Further, as in this embodiment, the bearing 7 is formed by filling and fixing all the gaps between the inner peripheral surface 7a of the housing 7 and the outer peripheral surface 8c of the bearing sleeve 8 excluding the press-fitting region with the small diameter portion 9 with an adhesive. It is possible to remove the gap as a space that adversely affects the vibration characteristics. Further, the bonding area between the housing 7 and the bearing sleeve 8 can be made as large as possible, and the fixing strength of the housing 7 and the bearing sleeve 8 combined with the press-fit strength can be further increased. Further, as shown in FIG. 5, the small diameter portion 9 is intermittently provided in the circumferential direction, and the adhesive 10 can flow between the small diameter portions 9 from the axial opening side of the small diameter portion toward the closing side. By forming the flow passage (predetermined space 11), a sufficient amount of the adhesive 10 can be supplied to the axially closed side of the small diameter portion 9 regardless of the supply timing.

以上、本発明の第1実施形態を説明したが、本発明に係る方法および軸受装置はこの実施形態に限定されることなく、本発明の範囲内において任意に構成の変更が可能である。   While the first embodiment of the present invention has been described above, the method and the bearing device according to the present invention are not limited to this embodiment, and the configuration can be arbitrarily changed within the scope of the present invention.

図10は第2実施形態に係る動圧軸受装置21の断面図を示している。この動圧軸受装置21は、主に仮固定用の小径部29をハウジング27とは別体に形成し、これをハウジング27に一体化した点で、図2に係る動圧軸受装置1と構成上相違する。   FIG. 10 shows a cross-sectional view of the hydrodynamic bearing device 21 according to the second embodiment. The hydrodynamic bearing device 21 is mainly configured with the hydrodynamic bearing device 1 according to FIG. 2 in that a temporary fixing small-diameter portion 29 is formed separately from the housing 27 and integrated with the housing 27. It is different.

この図示例では、ハウジング内周面27aの軸方向所定位置に、小径部29を有する環状部材22を嵌合固定するための環状凹部27cを形成し、この環状凹部27cに予め別体に形成した環状部材22を嵌合固定することで、ハウジング27内周の軸方向所定位置に仮固定用の小径部29が形成される。なお、底部27bがハウジング27と一体に形成される点、および、底部27bの上端面27b1とこの上端面27b1に対向するフランジ部2bの下端面2b2との間に、スラスト軸受部(第2スラスト軸受部T2)が形成される点など、他の構成に関しては第1実施形態と実質的に同一であるので、対応箇所には同一の符号を付して説明を省略する。   In this illustrated example, an annular recess 27c for fitting and fixing the annular member 22 having the small diameter portion 29 is formed at a predetermined position in the axial direction of the housing inner peripheral surface 27a, and the annular recess 27c is separately formed in advance. By fitting and fixing the annular member 22, a small-diameter portion 29 for temporary fixing is formed at a predetermined axial position on the inner periphery of the housing 27. A thrust bearing portion (second thrust portion) is formed between the point where the bottom portion 27b is formed integrally with the housing 27 and the upper end surface 27b1 of the bottom portion 27b and the lower end surface 2b2 of the flange portion 2b opposite to the upper end surface 27b1. Since other configurations such as the formation of the bearing portion T2) are substantially the same as those of the first embodiment, the corresponding portions are denoted by the same reference numerals and description thereof is omitted.

このような方法で小径部29をハウジング27に設けることで、先に述べた方法により得られる作用効果と同一の作用効果を得られる他、ハウジング27を、動圧軸受装置21用のハウジングとして要求される所要の強度を有する材料で形成すると共に、仮固定用の小径部29を、軸受スリーブ8との圧入仮固定に適した剛性を有する材料で形成することができ、それぞれの部位に要求される特性を容易かつ低コストに満たすことができる。   By providing the small-diameter portion 29 in the housing 27 by such a method, the same effect as that obtained by the above-described method can be obtained, and the housing 27 is required as a housing for the hydrodynamic bearing device 21. In addition, the small-diameter portion 29 for temporary fixing can be formed of a material having rigidity suitable for press-fitting temporary fixing with the bearing sleeve 8 and is required for each part. The characteristics can be satisfied easily and at low cost.

また、この場合、仮固定用の小径部29をハウジング27の内周に射出成形で形成することもできる。具体的な手順について述べると、まず、図11(a)に示すように、ハウジング素材127を粗加工にて形成しておき、続いて、図11(b)に示すように、ハウジング素材127の内周に設けた環状凹部127cに、樹脂製の環状部材122を射出成形にて形成する。そして、最後に、ハウジング素材127および環状部材122に対して研磨等の適当な仕上げ加工を施すことで、図11(c)に示すように、完成品としてのハウジング27が形成されると共に、その内周に所定の締め代を有する仮固定用の小径部29が形成される。   In this case, the small diameter portion 29 for temporary fixing can be formed on the inner periphery of the housing 27 by injection molding. A specific procedure will be described. First, as shown in FIG. 11A, the housing material 127 is formed by roughing, and then, as shown in FIG. An annular member 122 made of resin is formed by injection molding in an annular recess 127c provided on the inner periphery. Finally, the housing material 127 and the annular member 122 are subjected to an appropriate finishing process such as polishing to form a housing 27 as a finished product as shown in FIG. A temporary fixing small-diameter portion 29 having a predetermined fastening margin is formed on the inner periphery.

この方法によれば、射出成形すべきハウジング素材127の寸法精度もそれほど必要なく、また、射出成形型に対しても高い寸法精度は要求されない。そのため、かかる加工設備に関し低コスト化が可能となる。また、射出成形であれば、ハウジング27と別体に形成される環状部材22に切欠き部を設ける等の工夫を施すことなく、容易にハウジング27の環状凹部27cに環状部材22を形成することができる。また、この場合、小径部29を有する環状部材22は環状凹部27cに形成されるため、軸受スリーブ8の圧入時においても高い抜止め強度を有する。   According to this method, the dimensional accuracy of the housing material 127 to be injection-molded is not so required, and high dimensional accuracy is not required for the injection mold. Therefore, it is possible to reduce the cost for such processing equipment. In addition, in the case of injection molding, the annular member 22 can be easily formed in the annular recess 27c of the housing 27 without taking any measures such as providing a notch in the annular member 22 formed separately from the housing 27. Can do. Further, in this case, since the annular member 22 having the small diameter portion 29 is formed in the annular recess 27c, it has a high retaining strength even when the bearing sleeve 8 is press-fitted.

また、小径部29を樹脂等のハウジング27より線膨張係数の大きい材料で形成すれば、例えば接着剤10の加熱硬化時、昇温に伴いハウジング27より線膨張係数の大きい小径部29(環状部材22)の外径側への膨張がハウジング27により制限され、結果的に内側に締まる向きに小径部29が変形する。これにより、接着剤硬化時における小径部29と軸受スリーブ8との締め代の減少を抑えて、既に位置決めがなされた軸受スリーブ8が軸方向にずれる事態を可及的に回避することができる。特に、この実施形態のように、相対的に線膨張係数の大きい環状部材22をハウジング27に比べて肉厚に形成することで、上記効果をより一層有効に得ることができる。   Further, if the small diameter portion 29 is formed of a material having a larger linear expansion coefficient than that of the housing 27 such as resin, for example, when the adhesive 10 is heated and cured, the small diameter portion 29 (annular member having a larger linear expansion coefficient than the housing 27 as the temperature rises). The expansion of 22) toward the outer diameter side is limited by the housing 27, and as a result, the small diameter portion 29 is deformed so as to be tightened inward. As a result, it is possible to suppress a reduction in the fastening allowance between the small diameter portion 29 and the bearing sleeve 8 when the adhesive is cured, and to avoid as much as possible a situation in which the already-positioned bearing sleeve 8 is displaced in the axial direction. In particular, by forming the annular member 22 having a relatively large linear expansion coefficient thicker than the housing 27 as in this embodiment, the above effect can be obtained more effectively.

図12は第2実施形態に係る動圧軸受装置31の断面図を示している。この動圧軸受装置31は、主に仮固定用の小径部39を、ハウジング37に外力を付与してこのハウジング37を部分的に変形させることで形成した点で、図2に係る動圧軸受装置1と構成上相違する。   FIG. 12 shows a cross-sectional view of a fluid dynamic bearing device 31 according to the second embodiment. The hydrodynamic bearing device 31 is mainly composed of a temporary fixing small-diameter portion 39 formed by applying an external force to the housing 37 and partially deforming the housing 37, as shown in FIG. It differs from the device 1 in configuration.

この図示例では、ハウジング37の軸方向中間位置に部分的に環状の薄肉部37cを設けると共に、この薄肉部37cに適当な手段により外力を付与することで薄肉部37cの内側に仮固定用の小径部39が形成されている。この場合、小径部39の形成は、例えば図13(a)に示すように、内周面37aを径一定とすると共に、軸方向所定位置に薄肉部37cを設けたハウジング37を用意し、このハウジング37の薄肉部37cの外側から適当な外力付与手段32(締め付け部材など)で薄肉部37cを全周にわたって内径側に押圧変形させる。このような方法を採ることで、薄肉部37cの内側部分で小径部39が構成される。なお、底部37bがハウジング37と一体に形成される点、および、底部37bの上端面37b1とこの上端面37b1に対向するフランジ部2bの下端面2b2との間に、スラスト軸受部(第2スラスト軸受部T2)が形成される点など、他の構成に関しては第1実施形態と実質的に同一であるので、対応箇所には同一の符号を付して説明を省略する。   In this illustrated example, a partially annular thin portion 37c is provided at an axially intermediate position of the housing 37, and an external force is applied to the thin portion 37c by an appropriate means to temporarily fix the thin portion 37c inside. A small diameter portion 39 is formed. In this case, as shown in FIG. 13A, for example, the small-diameter portion 39 is formed by preparing a housing 37 in which the inner peripheral surface 37a has a constant diameter and a thin portion 37c is provided at a predetermined position in the axial direction. The thin portion 37c is pressed and deformed from the outside of the thin portion 37c of the housing 37 to the inner diameter side over the entire circumference by an appropriate external force applying means 32 (such as a fastening member). By adopting such a method, the small-diameter portion 39 is formed in the inner portion of the thin portion 37c. A thrust bearing portion (second thrust portion) is formed between the point where the bottom portion 37b is formed integrally with the housing 37 and the upper end surface 37b1 of the bottom portion 37b and the lower end surface 2b2 of the flange portion 2b facing the upper end surface 37b1. Since other configurations such as the formation of the bearing portion T2) are substantially the same as those of the first embodiment, the corresponding portions are denoted by the same reference numerals and description thereof is omitted.

このような方法で小径部39をハウジング37に設けることで、先に述べた方法により得られる作用効果と同一の作用効果が得られる他、ハウジング37の内周面37aを径一定に形成できるため加工が容易で済むとのメリットが得られる。また、外力付与手段32などにより小径部39の内径寸法のみを外力の大きさでもって調整することができるため、締め代の変更を行う場合であってもハウジング37の大幅な設計変更を行わずに済む。   By providing the small-diameter portion 39 in the housing 37 by such a method, the same operation effect as that obtained by the above-described method can be obtained, and the inner peripheral surface 37a of the housing 37 can be formed with a constant diameter. The merit that processing is easy is obtained. Further, since only the inner diameter dimension of the small diameter portion 39 can be adjusted by the magnitude of the external force by the external force applying means 32 or the like, a significant design change of the housing 37 is not performed even when the tightening margin is changed. It will end.

また、この方法によれば、厚み一定のハウジングに比べて小さい負荷でハウジング37を部分的に変形させることができるので、小径部39以外の部分における変形量を極力小さく抑えて内周面37aにおける形状精度を高く保つことができる。当該作用効果は、例えば図13(b)に示すように、環状の薄肉部37cをハウジング37の軸方向に離隔して2ヶ所に設け、これら薄肉部37cの間に外力を付与することで、薄肉部37c,37c間の領域の内側に仮固定用の小径部39を形成することによっても同様に得ることができる。   Further, according to this method, the housing 37 can be partially deformed with a load smaller than that of a housing having a constant thickness. Therefore, the amount of deformation in a portion other than the small-diameter portion 39 can be suppressed as small as possible on the inner peripheral surface 37a. The shape accuracy can be kept high. For example, as shown in FIG. 13 (b), the operational effect is obtained by providing an annular thin portion 37 c in two locations apart in the axial direction of the housing 37, and applying an external force between these thin portions 37 c. It can be obtained in the same manner by forming a small-diameter portion 39 for temporary fixing inside the region between the thin portions 37c and 37c.

なお、ハウジング37に対する外力の解除は、双方のスラスト軸受隙間の合計量δを所定の大きさに設定し終えた段階で行ってもよい。あるいは、当該隙間の合計量δを所定の大きさに設定し、かつ、ハウジング37と軸受スリーブ8との間に接着剤10を供給し固化し終えた段階で、ハウジング37に対する外力を解除するようにしてもよい。   The release of the external force with respect to the housing 37 may be performed when the total amount δ of both thrust bearing gaps has been set to a predetermined size. Alternatively, the external force applied to the housing 37 is released when the total amount δ of the gap is set to a predetermined size and the adhesive 10 is supplied between the housing 37 and the bearing sleeve 8 and solidified. It may be.

この方法によれば、仮固定用の小径部39と軸受スリーブ8との締め代が、ハウジング37の塑性変形分に弾性変形分を加えた値により与えられる。そのため、スラスト隙間設定後には、小径部39の外径側への戻りに伴い、小径部39に圧入される軸受スリーブ8の内周面8aも外径側に若干戻ることとなる。そのため、実質的な締め代を多少大きく取った場合でも、軸受スリーブ8の内径が縮小する割合を小さく留めて、適正な大きさのラジアル軸受隙間を確保することができる。特に、この実施形態で示すように、接着を併用する場合には、接着剤10の固化時まで外力を付与し続けることで、加熱時における軸受スリーブ8の軸方向への位置ずれを効果的に防止しつつも、ハウジング37との間で高い固定強度を得ることができる。   According to this method, the fastening allowance between the temporary fixing small-diameter portion 39 and the bearing sleeve 8 is given by a value obtained by adding the elastic deformation to the plastic deformation of the housing 37. Therefore, after the thrust gap is set, the inner peripheral surface 8a of the bearing sleeve 8 press-fitted into the small diameter portion 39 is slightly returned to the outer diameter side as the small diameter portion 39 returns to the outer diameter side. Therefore, even when the substantial tightening allowance is slightly increased, the ratio of the reduction in the inner diameter of the bearing sleeve 8 can be kept small, and a radial bearing gap of an appropriate size can be secured. In particular, as shown in this embodiment, when bonding is used in combination, by continuously applying an external force until the adhesive 10 is solidified, the axial displacement of the bearing sleeve 8 during heating is effectively reduced. While preventing, high fixation strength between the housing 37 can be obtained.

また、以上の実施形態(第1〜第3実施形態)では、ラジアル軸受部R1,R2およびスラスト軸受部T1,T2として、へリングボーン形状やスパイラル形状の動圧溝により潤滑油の動圧作用を発生させる構成を例示しているが、本発明はこれに限定されるものではない。   Moreover, in the above embodiment (1st-3rd embodiment), as radial bearing part R1, R2 and thrust bearing part T1, T2, the dynamic pressure action of lubricating oil by a herringbone shape or a spiral-shaped dynamic pressure groove is used. However, the present invention is not limited to this.

例えば、ラジアル軸受部R1,R2として、図示は省略するが、軸方向の溝を円周方向の複数箇所に形成した、いわゆるステップ状の動圧発生部、あるいは、円周方向に複数の円弧面を配列し、対向する軸部材2の外周面との間に、くさび状の半径方向隙間(軸受隙間)を形成した、いわゆる多円弧軸受を採用してもよい。   For example, as the radial bearing portions R1 and R2, although not shown, a so-called step-like dynamic pressure generating portion in which axial grooves are formed at a plurality of locations in the circumferential direction, or a plurality of circular arc surfaces in the circumferential direction. A so-called multi-arc bearing in which wedge-shaped radial gaps (bearing gaps) are formed between the outer peripheral surfaces of the opposing shaft members 2 may be employed.

あるいは、軸受スリーブ8の内周面8aを、ラジアル動圧発生部としての動圧溝や円弧面等を設けない真円状内周面とし、この内周面と対向する真円状の外周面とで、いわゆる真円軸受を構成することができる。   Alternatively, the inner peripheral surface 8a of the bearing sleeve 8 is a perfect circular inner peripheral surface not provided with a dynamic pressure groove or a circular arc surface as a radial dynamic pressure generating portion, and a perfect circular outer peripheral surface facing the inner peripheral surface. Thus, a so-called perfect circle bearing can be configured.

また、スラスト軸受部T1,T2の一方又は双方は、同じく図示は省略するが、スラスト軸受面となる領域に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、あるいは波型軸受(端面が調和波形などの波型になったもの)等で構成することもできる。   One or both of the thrust bearing portions T1 and T2 are also not shown in the figure, but a plurality of radial groove-shaped dynamic pressure grooves are provided at predetermined intervals in the circumferential direction in a region serving as a thrust bearing surface. It can also be configured by a step bearing or a corrugated bearing (having a corrugated waveform such as an end face).

また、以上の実施形態では、動圧発生部を何れも固定側(軸受スリーブ8や、底部7bなど)に設けた場合を説明したが、その一部あるいは全てを回転側(軸部2aやフランジ部2bなど)に設けることも可能である。具体的には、軸部材2の外周面やフランジ部2bの両端面2b1,2b2の一方もしくは双方に既述の動圧発生部を設けることが可能である。   In the above embodiment, the case where the dynamic pressure generating portions are all provided on the fixed side (the bearing sleeve 8 and the bottom portion 7b) has been described. However, part or all of the dynamic pressure generating portion is provided on the rotating side (the shaft portion 2a and the flange). It is also possible to provide it in the part 2b or the like. Specifically, it is possible to provide the above-described dynamic pressure generating portion on one or both of the outer peripheral surface of the shaft member 2 and both end surfaces 2b1, 2b2 of the flange portion 2b.

また、以上の実施形態では、ハウジング7の底部7bをハウジング7と一体に形成する場合を説明したが、本発明は、底部7bを別体に形成したハウジング7のスラスト軸受隙間設定を行う動圧軸受装置についても適用可能である。図14はその一例を示すもので、同図に係る動圧軸受装置41は、ハウジング47の軸方向下端を閉塞する底部47bをハウジング47と別体に形成し、この底部47bを適当な手段(接着、圧入、溶接など)によりハウジング47に固定している。そして、底部47bをハウジング47に固定し終えた状態において上述のスラスト軸受隙間の設定が行われるようになっている。   Moreover, although the above embodiment demonstrated the case where the bottom part 7b of the housing 7 was formed integrally with the housing 7, this invention is a dynamic pressure which performs the thrust bearing clearance setting of the housing 7 which formed the bottom part 7b separately. The present invention can also be applied to a bearing device. FIG. 14 shows an example thereof. In the hydrodynamic bearing device 41 according to the figure, a bottom portion 47b that closes the lower end in the axial direction of the housing 47 is formed separately from the housing 47, and this bottom portion 47b is formed by an appropriate means ( It is fixed to the housing 47 by bonding, press fitting, welding, or the like. Then, in the state where the bottom 47b is fixed to the housing 47, the above-described thrust bearing gap is set.

なお、この図示例では、底部47bの抜け強度を確保するため、ハウジング47の下端を相対的に肉薄の加締め部47cとし、ハウジング47の内周下端に底部47bを嵌合し、加締め部47cに対して加締め加工を施すことで底部47bを加締め固定した場合を示している。   In the illustrated example, the lower end of the housing 47 is formed as a relatively thin caulking portion 47c to secure the pull-out strength of the bottom portion 47b, and the bottom portion 47b is fitted to the lower end of the inner periphery of the housing 47, The case where the bottom part 47b is fixed by caulking by applying caulking to 47c is shown.

また、以上の実施形態では、ハウジング7(ハウジング27,37,47を含む。以下同じ。)とモータブラケット5とをそれぞれ別体に形成した後、これらを適当な手段で一体化した場合を説明したが、上記の動圧軸受装置1において、ハウジング7は、例えばモータブラケット5と同一材料で一体に形成されているものであってもよい。言い換えると、ハウジング7がモータブラケット5の一部(内径側)を構成しているものであってもよい。   Further, in the above embodiment, the case where the housing 7 (including the housings 27, 37, 47. The same applies hereinafter) and the motor bracket 5 are formed separately and then integrated by appropriate means will be described. However, in the above hydrodynamic bearing device 1, the housing 7 may be integrally formed of the same material as the motor bracket 5, for example. In other words, the housing 7 may constitute a part (inner diameter side) of the motor bracket 5.

このように、ハウジング7がモータブラケット5と一体に形成されている場合であっても上記の動圧軸受装置1であれば、モータブラケット一体のハウジングを固定し、軸受スリーブ8および軸部材2を一方向に往復運動させるのみでこれら構成部品の組付け作業およびスラスト軸受隙間の設定を行うことができる。そのため、情報機器等への組込みを含めた一連の動圧軸受装置1のアセンブリ工程を簡略化することができる。もちろん、モータブラケット5に限らず、動圧軸受装置1を組み込むべき機器の構成部品であって、直接的にハウジング7を装着もしくは固定する部品であれば、モータブラケット5と同様、ハウジング7と一体化することが可能である。   As described above, even if the housing 7 is formed integrally with the motor bracket 5, in the above-described hydrodynamic bearing device 1, the housing integrated with the motor bracket is fixed, and the bearing sleeve 8 and the shaft member 2 are fixed. The assembly operation of these components and the setting of the thrust bearing gap can be performed only by reciprocating in one direction. Therefore, a series of assembly processes of the hydrodynamic bearing device 1 including incorporation into information equipment or the like can be simplified. Needless to say, not only the motor bracket 5 but also a component part of a device into which the hydrodynamic bearing device 1 is to be incorporated, and a part that directly mounts or fixes the housing 7, as with the motor bracket 5, is integrated with the housing 7. It is possible to

また、以上の実施形態では、軸受スリーブ8がフランジ部2bに当接しかつフランジ部2bがハウジング7の底部7bに当接する位置まで軸受スリーブ8を押し込んだ後、この当接位置から軸受スリーブ8を底部7bから離隔する向きに相対移動させることで、軸受スリーブ8をハウジング7に対する最終的な固定位置まで移動させるようにしていたが、必ずしもこの移動態様には限定されない。仮固定用の小径部9,29,39に圧入された状態から、最終的な固定位置まで軸受スリーブを移動する態様を採る限りにおいて、任意の移動態様(移動経路)を採ることが可能である。   In the above embodiment, after the bearing sleeve 8 is pushed to a position where the bearing sleeve 8 abuts against the flange portion 2 b and the flange portion 2 b abuts against the bottom portion 7 b of the housing 7, the bearing sleeve 8 is moved from this abutting position. The bearing sleeve 8 is moved to the final fixed position with respect to the housing 7 by relatively moving in a direction away from the bottom 7b. However, the moving mode is not necessarily limited thereto. As long as a mode is adopted in which the bearing sleeve is moved from the state of being press-fitted into the temporary fixing small-diameter portions 9, 29, 39 to the final fixed position, it is possible to adopt any movement mode (movement path). .

また、以上の実施形態では、動圧軸受装置1の内部に充満し、ラジアル軸受隙間やスラスト軸受隙間に流体膜を形成するための流体として潤滑油を例示したが、これ以外にも流体膜を形成可能な流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。   Further, in the above embodiment, the lubricating oil is exemplified as a fluid for filling the inside of the hydrodynamic bearing device 1 and forming a fluid film in the radial bearing gap or the thrust bearing gap. A fluid that can be formed, for example, a gas such as air, a fluid lubricant such as a magnetic fluid, or a lubricating grease can also be used.

本発明の第1実施形態に係る動圧軸受装置を備えたスピンドルモータの含軸断面図である。1 is a cross-sectional view including a spindle motor of a spindle motor provided with a fluid dynamic bearing device according to a first embodiment of the present invention. 第1実施形態に係る動圧軸受装置の含軸断面図である。It is a shaft-containing sectional view of the fluid dynamic bearing device concerning a 1st embodiment. 軸受スリーブの含軸断面図である。It is a shaft-containing sectional view of a bearing sleeve. 図3に示す軸受スリーブを下端面の側から見た平面図である。It is the top view which looked at the bearing sleeve shown in FIG. 3 from the lower end surface side. 動圧軸受装置の小径部における軸直交断面図である。It is an axial orthogonal cross section in the small diameter part of a fluid dynamic bearing device. スラスト軸受隙間の設定工程の一例を概念的に示す図であって、相互に圧入する前の軸受スリーブおよびハウジングの含軸断面図である。It is a figure which shows an example of the setting process of a thrust bearing clearance conceptually, Comprising: It is a shaft-containing sectional view of the bearing sleeve and housing before press-fitting mutually. スラスト軸受隙間の設定工程の一例を概念的に示す図であって、スラスト軸受隙間が零となる位置まで軸受スリーブを圧入した状態の軸受スリーブおよびハウジングの含軸断面図である。It is a figure which shows notionally an example of the setting process of a thrust bearing clearance, Comprising: It is a shaft-containing sectional view of the bearing sleeve and housing of a state in which the bearing sleeve is press-fitted to a position where the thrust bearing clearance becomes zero. スラスト軸受隙間の設定工程の一例を概念的に示す図であって、スラスト軸受隙間が設定された状態における軸受スリーブおよびハウジングの含軸断面図である。It is a figure which shows an example of the setting process of a thrust bearing clearance conceptually, Comprising: It is an axial cross-sectional view of the bearing sleeve and housing in the state in which the thrust bearing clearance was set. スラスト軸受隙間が設定された状態におけるラジアル軸受隙間周辺の拡大断面図である。It is an expanded sectional view of a radial bearing gap periphery in a state where a thrust bearing gap is set. 本発明の第2実施形態に係る動圧軸受装置の含軸断面図である。It is a shaft-containing sectional view of a fluid dynamic bearing device concerning a 2nd embodiment of the present invention. 第2実施形態に係る仮固定用の小径部の製作工程を概念的に示すもので、(a)は粗加工によりハウジング素材を形成した段階の含軸断面図、(b)は射出成形により環状部材をハウジング素材の環状凹部に形成した段階の含軸断面図、(c)は仕上げ加工により所定の寸法に仕上げられたハウジングおよび小径部の含軸断面図である。FIG. 9 conceptually shows a manufacturing process of a temporary fixing small-diameter portion according to the second embodiment, where (a) is a cross-sectional view including a shaft when a housing material is formed by roughing, and (b) is an annular shape by injection molding. A shaft-containing cross-sectional view at a stage where the member is formed in the annular recess of the housing material, (c) is a shaft-containing cross-sectional view of the housing and the small-diameter portion finished to a predetermined size by finishing. 本発明の第3実施形態に係る動圧軸受装置の含軸断面図である。It is a shaft-containing sectional view of a fluid dynamic bearing device concerning a 3rd embodiment of the present invention. 第3実施形態に係る仮固定用の小径部の製作工程を概念的に示すもので、(a)はハウジングに部分的に設けた薄肉部に外力を付与することで小径部を形成する形態を示す含軸断面図、(b)は薄肉部を軸方向に離隔して2ヶ所に設け、この薄肉部間の領域に外力を付与することで小径部を形成する形態を示す含軸断面図である。The manufacturing process of the small diameter part for temporary fixation which concerns on 3rd Embodiment is shown notionally, (a) forms the small diameter part by providing external force to the thin part partially provided in the housing. (B) is an axial cross-sectional view showing a form in which a small-diameter portion is formed by providing an external force to an area between the thin-walled portions and providing an external force to a region between the thin-walled portions. is there. 底部を別体に有するハウジングを備えた動圧軸受装置の一例を示す含軸断面図である。It is a shaft-containing sectional view showing an example of a hydrodynamic bearing device provided with a housing having a bottom part as a separate body.

符号の説明Explanation of symbols

1,21,31,41 動圧軸受装置
2 軸部材
2a 軸部
2b フランジ部
5 モータブラケット
7,27,37,47 ハウジング
7a,27a,37a,47a 内周面
7b,27b,37b,47b 底部
7b1,27b1,37b1,47b1 上端面
8 軸受スリーブ
8a 内周面
8a1,8a2,8b1 動圧溝
8a4 中間領域
8b 下端面
8c 外周面
9,29,39 小径部
10 接着剤
11 空間(流通路)
12 シール部材
22 環状部材
27c 環状凹部
32 外力付与手段
37c 薄肉部
47c 加締め部
127 ハウジング素材
S シール空間
R1,R2 ラジアル軸受部
T1,T2 スラスト軸受部
δ スラスト軸受隙間の合計量
1, 21, 31, 41 Hydrodynamic bearing device 2 Shaft member 2a Shaft portion 2b Flange portion 5 Motor bracket 7, 27, 37, 47 Housing 7a, 27a, 37a, 47a Inner peripheral surface 7b, 27b, 37b, 47b Bottom portion 7b1 27b1, 37b1, 47b1 Upper end surface 8 Bearing sleeve 8a Inner peripheral surface 8a1, 8a2, 8b1 Dynamic pressure groove 8a4 Intermediate region 8b Lower end surface 8c Outer peripheral surface 9, 29, 39 Small diameter portion 10 Adhesive 11 Space (flow passage)
12 Seal member 22 Annular member 27c Annular recess 32 External force applying means 37c Thin portion 47c Clamping portion 127 Housing material S Seal space R1, R2 Radial bearing portion T1, T2 Thrust bearing portion δ Total amount of thrust bearing clearance

Claims (12)

軸部およびフランジ部を有する軸部材と、軸部を内周に挿通した軸受スリーブと、軸方向一端を閉塞する底部を有し、軸受スリーブを内周に固定したハウジングと、互いに軸方向に対峙するフランジ部の一端面と軸受スリーブの一端面との間に形成される第1スラスト軸受隙間と、互いに軸方向に対峙するフランジ部の他端面とハウジングの底部の一端面との間に形成される第2スラスト軸受隙間とを備え、第1および第2スラスト軸受隙間がそれぞれ所定の大きさに設定されている動圧軸受装置において、
軸受スリーブは2種類の固定手段によりハウジングに固定されており、一方の固定手段は、ハウジングの内周に設けられた仮固定用の小径部で構成され、この小径部は圧入により軸受スリーブをハウジングに仮固定するための部位であることを特徴とする動圧軸受装置。
A shaft member having a shaft portion and a flange portion, a bearing sleeve having the shaft portion inserted into the inner periphery, a housing having a bottom portion closing one end in the axial direction, and the bearing sleeve fixed to the inner periphery, and facing each other in the axial direction Formed between the first thrust bearing gap formed between one end surface of the flange portion and the one end surface of the bearing sleeve, and the other end surface of the flange portion facing each other in the axial direction and one end surface of the bottom portion of the housing. And a second thrust bearing gap, wherein the first and second thrust bearing gaps are each set to a predetermined size,
The bearing sleeve is fixed to the housing by two types of fixing means. One fixing means is composed of a small-diameter portion for temporary fixing provided on the inner periphery of the housing. The small-diameter portion houses the bearing sleeve by press-fitting. A hydrodynamic bearing device characterized by being a part for being temporarily fixed to a shaft.
仮固定用の小径部と軸受スリーブとの圧入領域が、軸受スリーブの内周に設けたラジアル軸受面と相互に軸方向にずれた位置に形成されている請求項1に記載の動圧軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein the press-fitting region between the temporary fixing small-diameter portion and the bearing sleeve is formed at a position axially displaced from a radial bearing surface provided on the inner periphery of the bearing sleeve. . ハウジングの内周面と軸受スリーブの外周面との隙間が接着剤で満たされ、これにより他方の固定手段が構成されている請求項1に記載の動圧軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein a gap between the inner peripheral surface of the housing and the outer peripheral surface of the bearing sleeve is filled with an adhesive, thereby constituting the other fixing means. 仮固定用の小径部に、小径部の軸方向開口側から閉塞側に向けて接着剤を流通可能な流通路が設けられている請求項3に記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 3, wherein the temporary fixing small-diameter portion is provided with a flow passage through which an adhesive can flow from the axial opening side to the closing side of the small-diameter portion. 仮固定用の小径部がハウジングと別体に形成されたものである請求項1に記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the temporary fixing small-diameter portion is formed separately from the housing. 仮固定用の小径部が、ハウジングより線膨張係数の大きい材料で形成されている請求項5に記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 5, wherein the temporary fixing small-diameter portion is formed of a material having a larger linear expansion coefficient than the housing. 仮固定用の小径部は、ハウジングに外力を付与してハウジングを部分的に変形させることで形成されたものである請求項1に記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the temporary fixing small-diameter portion is formed by applying an external force to the housing to partially deform the housing. ハウジングは、モータブラケットの一部を構成している請求項1に記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the housing constitutes a part of the motor bracket. 軸部およびフランジ部を有する軸部材と、軸部を内周に挿通した軸受スリーブと、軸方向一端を閉塞する底部を有し、軸受スリーブを内周に固定したハウジングと、互いに軸方向に対峙するフランジ部の一端面と軸受スリーブの一端面との間に形成される第1スラスト軸受隙間と、互いに軸方向に対峙するフランジ部の他端面とハウジングの底部の一端面との間に形成される第2スラスト軸受隙間とを備えた動圧軸受装置の製造方法において、
ハウジングの内周に仮固定用の小径部を設け、この小径部に軸受スリーブを圧入し、第1および第2スラスト軸受隙間の合計量を所定の大きさに設定するよう圧入状態の軸受スリーブをハウジングに対する固定位置まで移動させることを特徴とする動圧軸受装置の製造方法。
A shaft member having a shaft portion and a flange portion, a bearing sleeve having the shaft portion inserted into the inner periphery, a housing having a bottom portion closing one end in the axial direction, and the bearing sleeve fixed to the inner periphery, and facing each other in the axial direction Formed between the first thrust bearing gap formed between one end surface of the flange portion and the one end surface of the bearing sleeve, and the other end surface of the flange portion facing each other in the axial direction and one end surface of the bottom portion of the housing. In the manufacturing method of the hydrodynamic bearing device provided with the second thrust bearing gap,
A small-diameter portion for temporary fixing is provided on the inner periphery of the housing, and a bearing sleeve is press-fitted into the small-diameter portion, and the bearing sleeve in a press-fit state is set so that the total amount of the first and second thrust bearing gaps is set to a predetermined size. A method for manufacturing a hydrodynamic bearing device, wherein the hydrodynamic bearing device is moved to a fixed position with respect to a housing.
軸受スリーブをフランジ部に当接させると共にフランジ部をハウジングの底部に当接させ、然る後に、圧入状態を維持して軸受スリーブを底部から離隔する向きに移動させることで、軸受スリーブを固定位置に移動させる請求項9に記載の動圧軸受装置の製造方法。   The bearing sleeve is brought into contact with the flange portion and the flange portion is brought into contact with the bottom portion of the housing, and then the bearing sleeve is moved in a direction away from the bottom portion while maintaining the press-fitted state. The method of manufacturing a hydrodynamic bearing device according to claim 9. 双方のスラスト軸受隙間の合計量を所定の大きさに設定した状態で、軸受スリーブの内周に設けたラジアル軸受面と小径部とが相互に軸方向にずれて配置されるように、小径部をハウジングの所定位置に形成する請求項9又は10に記載の動圧軸受装置の製造方法。   With the total amount of both thrust bearing gaps set to a predetermined size, the small-diameter portion is arranged such that the radial bearing surface and the small-diameter portion provided on the inner periphery of the bearing sleeve are offset from each other in the axial direction. The method for manufacturing a hydrodynamic bearing device according to claim 9 or 10, wherein the step is formed at a predetermined position of the housing. ハウジングの内周面と軸受スリーブの外周面との隙間を接着剤で満たし、かつ、該接着剤を固化させてハウジングに軸受スリーブを接着固定する請求項9又は10に記載の動圧軸受装置の製造方法。   The hydrodynamic bearing device according to claim 9 or 10, wherein a gap between the inner peripheral surface of the housing and the outer peripheral surface of the bearing sleeve is filled with an adhesive, and the adhesive is solidified to bond and fix the bearing sleeve to the housing. Production method.
JP2008006869A 2008-01-16 2008-01-16 Dynamic pressure bearing device and its manufacturing method Withdrawn JP2009168147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008006869A JP2009168147A (en) 2008-01-16 2008-01-16 Dynamic pressure bearing device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008006869A JP2009168147A (en) 2008-01-16 2008-01-16 Dynamic pressure bearing device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009168147A true JP2009168147A (en) 2009-07-30

Family

ID=40969550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008006869A Withdrawn JP2009168147A (en) 2008-01-16 2008-01-16 Dynamic pressure bearing device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009168147A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074949A (en) * 2009-09-29 2011-04-14 Ntn Corp Fluid dynamic pressure bearing device
CN103262378A (en) * 2010-12-13 2013-08-21 松下电器产业株式会社 Electric power control device and electric power control system using same
CN108400663A (en) * 2018-05-09 2018-08-14 江苏富丽华通用设备股份有限公司 A kind of p-m rotor of novel permanent-magnet motor
WO2021166394A1 (en) * 2020-02-21 2021-08-26 日本電産コパル電子株式会社 Pneumatic bearing motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074949A (en) * 2009-09-29 2011-04-14 Ntn Corp Fluid dynamic pressure bearing device
CN103262378A (en) * 2010-12-13 2013-08-21 松下电器产业株式会社 Electric power control device and electric power control system using same
CN108400663A (en) * 2018-05-09 2018-08-14 江苏富丽华通用设备股份有限公司 A kind of p-m rotor of novel permanent-magnet motor
CN108400663B (en) * 2018-05-09 2024-01-09 江苏富丽华通用设备股份有限公司 Permanent magnet rotor of permanent magnet motor
WO2021166394A1 (en) * 2020-02-21 2021-08-26 日本電産コパル電子株式会社 Pneumatic bearing motor
JP7387487B2 (en) 2020-02-21 2023-11-28 ニデックコンポーネンツ株式会社 air dynamic bearing motor

Similar Documents

Publication Publication Date Title
US8113715B2 (en) Fluid dynamic bearing device
JP5306747B2 (en) Hydrodynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP4446727B2 (en) Hydrodynamic bearing device
WO2010044327A1 (en) Fluid bearing device
JP2009168147A (en) Dynamic pressure bearing device and its manufacturing method
JP2005337490A (en) Dynamic pressure bearing device
JP2005098315A (en) Hydrodynamic bearing apparatus
JP2009024810A (en) Fluid bearing device and method of producing the same
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP2009228873A (en) Fluid bearing device
WO2005088143A1 (en) Hydrodynamic bearing device
JP4554324B2 (en) Hydrodynamic bearing device
JP2009014121A (en) Dynamic pressure bearing device and its manufacturing method
JP2008298235A (en) Fluid bearing device and its assembling method
JP5143435B2 (en) Manufacturing method of shaft member for hydrodynamic bearing device, and shaft member manufactured by the method
JP2008111520A (en) Dynamic pressure bearing device
JP4498932B2 (en) Hydrodynamic bearing device
JP2013053692A (en) Fluid dynamic pressure bearing device and method of manufacturing the same
JP5284172B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP5172213B2 (en) Hydrodynamic bearing device and method for manufacturing shaft member thereof
JP2007218397A (en) Fluid bearing device
JP2007225060A (en) Fluid bearing arrangement
JP2008138846A (en) Fluid bearing device
JP2007263165A (en) Fluid bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110405