JP5284172B2 - Hydrodynamic bearing device and manufacturing method thereof - Google Patents

Hydrodynamic bearing device and manufacturing method thereof Download PDF

Info

Publication number
JP5284172B2
JP5284172B2 JP2009098994A JP2009098994A JP5284172B2 JP 5284172 B2 JP5284172 B2 JP 5284172B2 JP 2009098994 A JP2009098994 A JP 2009098994A JP 2009098994 A JP2009098994 A JP 2009098994A JP 5284172 B2 JP5284172 B2 JP 5284172B2
Authority
JP
Japan
Prior art keywords
bearing
gap
seal
oil
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009098994A
Other languages
Japanese (ja)
Other versions
JP2010249217A (en
Inventor
一人 清水
仁彦 尾藤
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2009098994A priority Critical patent/JP5284172B2/en
Publication of JP2010249217A publication Critical patent/JP2010249217A/en
Application granted granted Critical
Publication of JP5284172B2 publication Critical patent/JP5284172B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は流体軸受装置およびその製造方法に関するものである。   The present invention relates to a hydrodynamic bearing device and a manufacturing method thereof.

流体軸受装置は、軸受隙間に形成される油膜で軸部材を回転自在に支持するものである。この流体軸受装置は、高速回転、高回転精度、低騒音等の特徴を有するものであり、近年ではその特徴を活かして、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として、より具体的には、HDD等の磁気ディスク装置やCD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、PC等のファンモータなどのモータ用軸受装置として好適に使用されている。   The hydrodynamic bearing device supports a shaft member rotatably with an oil film formed in a bearing gap. This hydrodynamic bearing device has characteristics such as high-speed rotation, high rotation accuracy, and low noise. In recent years, the hydrodynamic bearing device has been utilized as a motor bearing device for motors mounted on various electrical devices including information devices. More specifically, spindle motors for magnetic disk devices such as HDD, optical disk devices such as CD-ROM, CD-R / RW, DVD-ROM / RAM, etc., polygon scanner motors for laser beam printers (LBP), PCs It is suitably used as a motor bearing device such as a fan motor.

例えば、特開2003−336636号公報(特許文献1)には、ハウジングおよびその内周に固定された軸受スリーブからなり、両端が開口した軸受部材と、軸受部材の内周に挿入され、軸受部材(軸受スリーブ)の内周面との間にラジアル軸受隙間を形成する軸部材と、軸受部材の一端開口部に配設されたシール部材とを備え、ラジアル軸受隙間に形成される潤滑油の油膜で軸部材をラジアル方向に支持する流体軸受装置が開示されている。かかる構成の流体軸受装置において、シール部材は、軸部材の外周面との間に一端が大気に開放し、他端がラジアル軸受隙間に連通したシール隙間を形成する。シール隙間は、その軸方向範囲内に潤滑油の油面(気液界面)を保持し、これにより潤滑油漏れを可及的に防止する。   For example, Japanese Patent Application Laid-Open No. 2003-336636 (Patent Document 1) includes a bearing member which is composed of a housing and a bearing sleeve fixed to the inner periphery thereof, and is open at both ends, and is inserted into the inner periphery of the bearing member. An oil film of lubricating oil formed in the radial bearing gap, including a shaft member that forms a radial bearing gap between the inner peripheral surface of the (bearing sleeve) and a seal member that is disposed at one end opening of the bearing member The hydrodynamic bearing device for supporting the shaft member in the radial direction is disclosed. In the hydrodynamic bearing device having such a configuration, the seal member forms a seal gap in which one end is opened to the atmosphere and the other end communicates with the radial bearing gap between the seal member and the outer peripheral surface of the shaft member. The seal gap keeps the oil level (gas-liquid interface) of the lubricating oil within its axial range, thereby preventing the lubricating oil leakage as much as possible.

ところで、特にディスク装置に搭載されるスピンドルモータは潤滑油による汚染を極度に嫌うため、この種のモータに組み込まれる流体軸受装置においては、シール隙間に隣接するシール部材の端面や軸部材の外周面等に、撥油性を有する被膜(撥油膜)を形成するのが通例となっている。撥油膜を形成しておけば、例えば、流体軸受装置に衝撃荷重が加わることによってシール隙間内に保持された潤滑油が大気開放側に飛散した場合であっても、飛散した潤滑油は撥油膜で弾かれてシール隙間内に戻される。そのため、潤滑油漏れを一層確実に防止することができる。   By the way, since the spindle motor mounted on the disk device particularly dislikes contamination with lubricating oil, in the hydrodynamic bearing device incorporated in this type of motor, the end surface of the seal member adjacent to the seal gap and the outer peripheral surface of the shaft member For example, a film having oil repellency (oil repellent film) is usually formed. If an oil repellent film is formed, for example, even when the lubricating oil retained in the seal gap is scattered to the atmosphere opening side by applying an impact load to the hydrodynamic bearing device, the scattered lubricating oil is Is returned to the seal gap. Therefore, the lubricating oil leakage can be prevented more reliably.

特開2003−336636号公報JP 2003-336636 A

しかしながら、撥油膜の形成に際しては、撥油剤を所定の面に精度良く塗布すると共に、塗布後の乾燥時間も必要であるから、総じてその形成コストが高くなり易い。また、特にシール部材の端面は、流体軸受装置の組立時に用いる治具で加圧される場合が多いため、この面に予め撥油膜を形成しておいたのでは、流体軸受装置の組立時に撥油膜が損傷、剥離等するおそれがある。かかる事態は、撥油性能の低下を招くばかりか、剥離した撥油膜(撥油剤)が潤滑油内に混入してコンタミとなり、軸受性能を低下させる一因ともなる。そのため、この面に対する撥油膜の形成は、部材同士の組み付け完了後に行われる場合が多い。しかしながら、この状態で撥油膜を精度良く形成するには格別の配慮を要すため、製造コストの増大が避けられない。   However, when the oil repellent film is formed, the oil repellent agent is applied to a predetermined surface with high accuracy and a drying time after the application is also required, so that the formation cost tends to increase as a whole. In particular, the end face of the seal member is often pressed by a jig used when assembling the hydrodynamic bearing device. Therefore, if an oil repellent film is formed on this surface in advance, the end face of the seal member is repelled when the hydrodynamic bearing device is assembled. The oil film may be damaged or peeled off. Such a situation not only causes a decrease in oil repellency, but also causes the oil repellant film (oil repellant) that has been peeled off into the lubricating oil to become contaminated, thereby contributing to a decrease in bearing performance. Therefore, the formation of the oil repellent film on this surface is often performed after the assembly of the members is completed. However, in order to form the oil-repellent film with high accuracy in this state, special consideration is required, and thus an increase in manufacturing cost is inevitable.

また、特にシール部材の端面は外部に露出しているため、この面に形成した撥油膜は、その特性が経時変化したり、剥離、損傷等したりし易い。従い、安定した撥油性能を長期に亘って確保するのが困難である。   In particular, since the end face of the seal member is exposed to the outside, the characteristics of the oil repellent film formed on this face are likely to change over time, peel off, or be damaged. Therefore, it is difficult to ensure stable oil repellency over a long period of time.

本発明の課題は、潤滑油漏れを長期に亘って防止し得る流体軸受装置を低コストに提供することにある。   The subject of this invention is providing the low-cost hydrodynamic bearing apparatus which can prevent lubricating oil leakage over a long period of time.

上記課題を解決するため、本発明では、少なくとも一端が開口した軸受部材と、軸受部材の内周に挿入され、軸受部材の内周面との間にラジアル軸受隙間を形成する軸部材と、軸受部材の開口部に配設され、軸部材の外周面との間に一端が大気に開放したシール隙間を形成するシール部とを備え、ラジアル軸受隙間に形成される潤滑油の油膜で軸部材をラジアル方向に支持する流体軸受装置において、シール部に、内周に潤滑油の油面を保持する保油部と、該保油部の大気開放側で、シール隙間の隙間幅を縮小させる蓋部とを一体に設け、該蓋部を、シール部を部分的に変形させることで形成したことを特徴とする流体軸受装置を提供する。 In order to solve the above-mentioned problems, in the present invention, a bearing member having at least one end opened, a shaft member that is inserted into the inner circumference of the bearing member and forms a radial bearing gap between the inner circumference surface of the bearing member, and a bearing A seal portion disposed at the opening of the member and forming a seal gap with one end opened to the atmosphere between the shaft member and the outer peripheral surface of the shaft member, and the shaft member is made of an oil film of lubricating oil formed in the radial bearing gap. In a hydrodynamic bearing device that supports in the radial direction, an oil retaining part that retains the oil surface of the lubricating oil on the inner periphery, and a lid part that reduces the clearance width of the seal gap on the air release side of the oil retaining part And the lid portion are formed by partially deforming the seal portion . A hydrodynamic bearing device is provided.

上記のように、潤滑油の油面を保持する保油部の大気開放側で、シール隙間の隙間幅を縮小させる蓋部を設ければ、例えば流体軸受装置に衝撃荷重が加わることによって保油部に保持された潤滑油が飛散した場合であっても、この飛散した潤滑油を蓋部でブロックすることができる。また、かかる機能を奏する蓋部が保油部と一体に設けられることから、これを設ける際に必要となる手間は、同様の機能を奏する撥油膜を形成する場合に比べて軽減することができる。また、蓋部が保油部と一体に設けられていれば、蓋部がコンタミの原因となる可能性を効果的に減じることができ、さらには、特性変化等に起因して潤滑油の漏洩防止機能が低下するような事態も効果的に回避することができる。   As described above, if a cover portion for reducing the gap width of the seal gap is provided on the air release side of the oil retaining portion that holds the oil surface of the lubricating oil, the oil retaining force is applied by applying an impact load to the hydrodynamic bearing device, for example. Even when the lubricating oil held in the part is scattered, the scattered lubricating oil can be blocked by the lid part. Further, since the lid portion having such a function is provided integrally with the oil retaining portion, the labor required for providing this can be reduced compared to the case of forming an oil repellent film having the same function. . In addition, if the lid part is provided integrally with the oil retaining part, it is possible to effectively reduce the possibility that the lid part may cause contamination, and further, leakage of lubricating oil due to characteristic changes, etc. A situation where the prevention function is reduced can also be effectively avoided.

例えば、蓋部と保油部とを別体とし、蓋部を適宜の手段で保油部に固定することも可能であるが、保油部に対して蓋部を精度良く固定しなければ上記効果を確実に得ることが難しくなる。そのため、蓋部の取り付けコストが嵩み、却って製造コストの増大を招くおそれがある。また、特に、蓋部と保油部とを別材料で形成した場合には、軸受運転時等、周辺温度の上昇時に、両者の線膨張係数差に起因して保油部に対する蓋部の固定態様に悪影響が及ぶおそれがある。この点、蓋部と保油部とを一体に設けておけば、これらの問題を考慮せずとも足りる。   For example, it is possible to separate the lid part and the oil retaining part and fix the lid part to the oil retaining part by an appropriate means, but if the lid part is not accurately fixed to the oil retaining part, It becomes difficult to obtain the effect reliably. Therefore, the attachment cost of the lid portion is increased, and there is a possibility that the manufacturing cost is increased. In particular, when the lid and the oil retaining part are formed of different materials, the lid is fixed to the oil retaining part due to the difference in linear expansion coefficient between them when the ambient temperature rises, such as during bearing operation. There is a possibility that the aspect is adversely affected. In this respect, if the lid portion and the oil retaining portion are provided integrally, it is not necessary to consider these problems.

上記の蓋部は、シール部を部分的に変形させることで形成することができる。すなわち、かかる構成の流体軸受装置は、シール部を部分的に変形させることにより、内周に潤滑油の油面を保持する保油部の大気開放側に、シール隙間の隙間幅を縮小させる蓋部を形成する工程を経て製造することができる。この場合、上記態様で蓋部を形成した後、軸受内部に潤滑油を供給するようにしても良いし、軸受内部に潤滑油を給油した後、上記態様で蓋部を形成するようにしても良い。特に後者の手順であれば、給油作業を簡便に行うことができる。   The lid portion can be formed by partially deforming the seal portion. That is, the hydrodynamic bearing device configured as described above is a lid that reduces the gap width of the seal gap to the atmosphere opening side of the oil retaining portion that holds the oil surface of the lubricating oil on the inner periphery by partially deforming the seal portion. It can manufacture through the process of forming a part. In this case, after the lid portion is formed in the above mode, the lubricating oil may be supplied to the inside of the bearing, or after the lubricating oil is supplied inside the bearing, the lid portion may be formed in the above mode. good. Especially in the latter procedure, the refueling operation can be performed easily.

上記の蓋部を設けることによって潤滑油漏れを確実に防止するには、蓋部で形成されるシール隙間の最小幅部の隙間幅を、保油部で形成されるシール隙間の最大幅部の隙間幅(例えば、保油部と蓋部の境界部分で形成されるシール隙間の隙間幅。図6を参照)の1/2以下に設定するのが望ましい。   In order to reliably prevent lubricating oil leakage by providing the above-described lid portion, the gap width of the minimum width portion of the seal gap formed by the lid portion is set to the maximum width portion of the seal gap formed by the oil retaining portion. It is desirable to set it to 1/2 or less of the gap width (for example, the gap width of the seal gap formed at the boundary portion between the oil retaining portion and the lid portion, see FIG. 6).

軸部材に凹部を設け、この凹部内に蓋部の先端を収容するようにすれば、シール隙間の大気開放部をラビリンス構造とすることができる。従い、潤滑油漏れを一層効果的に防止することが可能となる。   If a concave portion is provided in the shaft member and the tip of the lid portion is accommodated in the concave portion, the atmosphere opening portion of the seal gap can have a labyrinth structure. Therefore, it becomes possible to prevent the lubricating oil leakage more effectively.

以上の構成において、保油部の内周面は、軸線に沿って延びるストレートな面とする他、反大気開放側(軸受内部側)に向かって漸次縮径させることができる。後者の構成を採用すれば、保油部の内周面で形成されるシール隙間は、その隙間幅が軸受内部側に向かって漸次縮小した楔形状となり、保油部の内周に保持される潤滑油を毛細管力によって軸受内部側に引き込むことができる。そのため、潤滑油の外部漏洩を防止する上で好適である。また、後述するように、シール部を樹脂材料等で型成形する場合には、漸次縮径した内周面によって抜き勾配が確保されるので、保油部の内周面精度を高めることができる。保油部の内周面の縮径態様に限定はなく、直線的であっても良いし、曲線的であっても良い。   In the above configuration, the inner peripheral surface of the oil retaining portion can be a straight surface extending along the axis, and can be gradually reduced in diameter toward the anti-atmosphere release side (bearing inner side). If the latter configuration is adopted, the seal gap formed on the inner peripheral surface of the oil retaining portion has a wedge shape in which the gap width is gradually reduced toward the bearing inner side, and is held on the inner periphery of the oil retaining portion. Lubricating oil can be drawn into the inside of the bearing by capillary force. Therefore, it is suitable for preventing external leakage of the lubricating oil. Further, as will be described later, when the seal portion is molded with a resin material or the like, since the draft angle is secured by the gradually reduced inner peripheral surface, the inner peripheral surface accuracy of the oil retaining portion can be improved. . There is no limitation in the diameter reduction aspect of the internal peripheral surface of an oil retaining part, and it may be linear or curvilinear.

軸受部材は、ラジアル軸受隙間の外径寸法を規定する面を有する軸受スリーブと、該軸受スリーブを内周に収容したハウジングとを備えるものとすることができ、この場合、シール部は、軸受スリーブをインサート部品としてハウジングと一体に型成形することができる。このようにすれば、部品点数および各部の組み付け工数を減じて流体軸受装置の低コスト化を図ることができる。   The bearing member may include a bearing sleeve having a surface that defines an outer diameter dimension of the radial bearing gap, and a housing in which the bearing sleeve is accommodated in the inner periphery. In this case, the seal portion may be a bearing sleeve. Can be molded integrally with the housing as an insert part. If it does in this way, the number of parts and the assembly man-hour of each part can be reduced, and cost reduction of a hydrodynamic bearing device can be attained.

このとき、軸受スリーブを多孔質体で形成しておけば、アンカー効果によって軸受スリーブとハウジングの間の結合強度を高めることができる。また、軸受運転時には、軸受スリーブの内部気孔に保持された潤滑油の滲み出しによって、ラジアル軸受隙間に常時潤沢な潤滑油を介在させることができる。従い、油膜切れが生じる可能性を減じて、所期の軸受性能を安定的に維持することができる。但しこの場合、軸受部材の全体を非多孔質体で形成する場合に比べて軸受装置の内部空間に充填すべき潤滑油量が増大する分、シール隙間の容積を大きく確保する必要がある。これはすなわち、シール隙間で保持すべき潤滑油量が増大することを意味し、従い、潤滑油漏れの可能性も高まるが、上記本発明の構成を採用すれば、このような場合であっても、潤滑油漏れを効果的に防止することができる。   At this time, if the bearing sleeve is formed of a porous body, the coupling strength between the bearing sleeve and the housing can be increased by the anchor effect. Further, during the operation of the bearing, abundant lubricating oil can always be interposed in the radial bearing gap by the seepage of the lubricating oil held in the internal pores of the bearing sleeve. Accordingly, the possibility of oil film breakage is reduced, and the desired bearing performance can be stably maintained. However, in this case, it is necessary to ensure a large volume of the seal gap as the amount of lubricating oil to be filled in the internal space of the bearing device is increased as compared with the case where the entire bearing member is formed of a non-porous body. This means that the amount of lubricating oil to be held in the seal gap increases, and accordingly, the possibility of lubricating oil leakage increases, but this is the case if the configuration of the present invention is adopted. Also, it is possible to effectively prevent lubricating oil leakage.

シール部は、軸受部材と一体に型成形しても良い。なお、ここで言う「軸受部材」とは、上記の軸受スリーブとハウジングとを一体的に設けたものを意図している(図13を参照)。このようにすれば、部材点数や組み付け工数を一層減じて、流体軸受装置の更なる低コスト化を図ることができる。   The seal portion may be molded integrally with the bearing member. In addition, the "bearing member" said here intends what provided said bearing sleeve and the housing integrally (refer FIG. 13). In this way, it is possible to further reduce the cost of the hydrodynamic bearing device by further reducing the number of members and the number of assembly steps.

上記のようにシール部をハウジングあるいは軸受部材と一体に型成形する場合、シール部の成形材料としては、樹脂材料の他、金属材料を使用することも可能である。樹脂材料としては、熱可塑性樹脂をベース樹脂とするものを使用することができ、金属材料としては、マグネシウム合金等の低融点金属を使用することができる。これらの他、いわゆるMIM成形によってシール部を型成形することもできる。   As described above, when the seal portion is molded integrally with the housing or the bearing member, a metal material can be used as the molding material for the seal portion in addition to the resin material. As the resin material, a material having a thermoplastic resin as a base resin can be used, and as the metal material, a low melting point metal such as a magnesium alloy can be used. In addition to these, the seal portion can be molded by so-called MIM molding.

なお、本発明は、上記のようにシール部がハウジングあるいは軸受部材と一体に型成形された流体軸受装置のみならず、シール部をこれらとは別部材とした流体軸受装置(例えば、上記特許文献1に記載の流体軸受装置)にも好適に採用することができる。   The present invention is not limited to the hydrodynamic bearing device in which the seal portion is molded integrally with the housing or the bearing member as described above, but also a hydrodynamic bearing device in which the seal portion is a separate member (for example, the above-mentioned patent document). 1 can also be suitably employed.

軸受部材は、他端も開口した略円筒形態とする場合がある。この場合、軸受部材の他端開口は、軸受部材の他端開口部に固定した蓋部材で閉塞することができるが、所期の軸受性能を安定維持するためには、軸受部材に対する蓋部材の固定強度が問題となる。流体軸受装置の運転中等に衝撃荷重が加わると、軸部材の端部が蓋部材に突き当たり、この時の衝撃で蓋部材が脱落するおそれがあるからである。上記特許文献1の流体軸受装置のように軸受部材の内周面に蓋部材を固定する場合、蓋部材の肉厚を増せば軸受部材に対する蓋部材の固定面積が拡大する分、軸受部材に対する蓋部材の固定強度を高めることができる。しかし、蓋部材を厚肉化すると、軸受装置の軸方向寸法の長大化、あるいはラジアル軸受部の軸受スパンの縮小を招くため、蓋部材をむやみに厚肉化することはできない。   The bearing member may have a substantially cylindrical shape with the other end opened. In this case, the other end opening of the bearing member can be closed with a lid member fixed to the other end opening of the bearing member, but in order to stably maintain the desired bearing performance, Fixed strength becomes a problem. This is because when an impact load is applied during operation of the hydrodynamic bearing device, the end of the shaft member hits the lid member, and the lid member may fall off due to the impact at this time. When the lid member is fixed to the inner peripheral surface of the bearing member as in the hydrodynamic bearing device of the above-mentioned Patent Document 1, if the thickness of the lid member is increased, the fixing area of the lid member with respect to the bearing member is increased, so that the lid for the bearing member is increased. The fixing strength of the member can be increased. However, when the cover member is thickened, the axial dimension of the bearing device is increased or the bearing span of the radial bearing portion is reduced. Therefore, the cover member cannot be thickened unnecessarily.

以上の事態を鑑みると、軸受部材の他端開口を別体の蓋部材で閉塞する場合には、軸受部材の外周面に蓋部材を固定するのが望ましい。このようにすれば、上記特許文献1に開示された構成のように、蓋部材を軸受部材の内周面に固定する場合に比べて、内周面と外周面の径差分だけ両者の固定面積を増すことができる。この場合、蓋部材には、軸受部材の他端開口を閉塞する円盤状のプレート部と、軸受部材の外周面に固定される円筒状の筒部とが必要となる(図2を参照)が、軸受部材に対する蓋部材の固定面積を拡大するには、筒部の軸方向寸法を長大化すれば足り、プレート部を厚肉化する必要がない。また、筒部を長大化しても軸受装置の全長寸法に影響は及ばない。以上から、軸受装置の軸方向寸法やラジアル軸受部の軸受スパンに影響を与えることなく蓋部材の耐抜け強度を高めることができ、所期の軸受性能を安定維持することが可能となる。   In view of the above situation, when the other end opening of the bearing member is closed with a separate lid member, it is desirable to fix the lid member to the outer peripheral surface of the bearing member. In this way, compared to the case where the lid member is fixed to the inner peripheral surface of the bearing member as in the configuration disclosed in Patent Document 1, the fixed area of both is equal to the difference in diameter between the inner peripheral surface and the outer peripheral surface. Can be increased. In this case, the lid member requires a disk-shaped plate portion that closes the other end opening of the bearing member, and a cylindrical tube portion that is fixed to the outer peripheral surface of the bearing member (see FIG. 2). In order to increase the fixed area of the lid member with respect to the bearing member, it is sufficient to increase the axial dimension of the cylindrical portion, and it is not necessary to increase the thickness of the plate portion. Further, even if the cylindrical portion is lengthened, the overall length of the bearing device is not affected. From the above, it is possible to increase the anti-slip strength of the lid member without affecting the axial dimension of the bearing device and the bearing span of the radial bearing portion, and the desired bearing performance can be stably maintained.

また、流体軸受装置はモータの内周に取り付け固定されるが、上記構成とすれば、蓋部材をモータのベースとなる部材、例えばモータブラケットへの取り付け部として活用することができる。コスト面を考慮すると軸受部材を樹脂製とするのが有効であるが、これでは、通常金属製とされるモータブラケットに接着固定する場合に、必要とされる固定強度を確保することが難しくなる。一方、軸受部材を金属製とすれば固定強度を満足することはできるものの、樹脂製とする場合に比べコスト高となることは否めない。これに対し、上記構成とすれば、蓋部材をモータブラケットとの接着性に富む金属材料で形成してモータブラケットに対する流体軸受装置の固定強度を満足しつつ、軸受部材を樹脂で形成してコスト低減の要求も満足することができる。   The hydrodynamic bearing device is attached and fixed to the inner periphery of the motor. With the above configuration, the lid member can be used as an attachment portion to a member that serves as a base of the motor, for example, a motor bracket. Considering the cost, it is effective to make the bearing member made of resin. However, in this case, it is difficult to secure the required fixing strength when adhesively fixing to a motor bracket that is usually made of metal. . On the other hand, if the bearing member is made of metal, the fixing strength can be satisfied, but it cannot be denied that the cost is higher than that of the resin member. On the other hand, with the above configuration, the lid member is made of a metal material having high adhesiveness to the motor bracket, and the bearing member is made of resin while satisfying the fixing strength of the hydrodynamic bearing device to the motor bracket. The demand for reduction can also be satisfied.

以上より、本発明によれば、潤滑油漏れを長期に亘って防止し得る流体軸受装置を低コストに提供することができる。   As described above, according to the present invention, it is possible to provide a hydrodynamic bearing device capable of preventing leakage of lubricating oil over a long period of time at a low cost.

ディスク装置用のスピンドルモータを概念的に示す断面図である。It is sectional drawing which shows notionally the spindle motor for disk apparatuses. 本発明の第1実施形態に係る流体軸受装置を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus which concerns on 1st Embodiment of this invention. 軸受部材の断面図である。It is sectional drawing of a bearing member. 軸受部材の下側端面を示す図である。It is a figure which shows the lower end surface of a bearing member. 蓋部材のプレート部の上側端面を示す図である。It is a figure which shows the upper side end surface of the plate part of a cover member. 図2に示す流体軸受装置の要部拡大断面図である。It is a principal part expanded sectional view of the hydrodynamic bearing apparatus shown in FIG. 蓋部の形成工程を概念的に示すものであり、(a)図は蓋部の形成直前の状態を、また(b)図は蓋部の形成直後の状態を概念的に示すものである。Fig. 2 conceptually shows a process of forming a lid, in which Fig. 1 (a) shows a state immediately before the formation of the lid, and Fig. 2 (b) conceptually shows a state immediately after the formation of the lid. 図2に示す流体軸受装置の要部拡大断面図である。It is a principal part expanded sectional view of the hydrodynamic bearing apparatus shown in FIG. 他の方法に係る蓋部の形成工程を概念的に示す要部拡大断面図であり、(a)図は蓋部の形成直前の状態を、また(b)図は蓋部の形成直後の状態をそれぞれ示すものである。It is a principal part expanded sectional view which shows the formation process of the cover part based on another method notionally, (a) A figure is the state immediately before formation of a cover part, (b) A figure is the state immediately after formation of a cover part. Respectively. 給油方法の他例を概念的に示す要部拡大断面図であり、(a)図は給油直前の状態を、(b)図は給油中の状態を、また(c)図は給油後の状態をそれぞれ示すものである。It is a principal part expanded sectional view which shows the other example of the oil supply method notionally, (a) A figure is the state just before oil supply, (b) A figure is the state during oil supply, (c) A figure is the state after oil supply Respectively. 図2に示す流体軸受装置の変形例を示す要部拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a main part showing a modification of the hydrodynamic bearing device shown in FIG. 本発明の第2実施形態に係る流体軸受装置を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る流体軸受装置を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus which concerns on 3rd Embodiment of this invention.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、流体軸受装置を組み込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に支持する流体軸受装置1と、軸部材2の一端に設けられたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ベース部材としてのモータブラケット6とを備えている。ステータコイル4はモータブラケット6の外周に取り付けられ、ロータマグネット5はディスクハブ3の内周に取り付けられる。流体軸受装置1の軸受部材7は、モータブラケット6の内周に固定される。ディスクハブ3には磁気ディスク等のディスクDが一又は複数枚(図示例は2枚)保持され、ディスクDは図示しないクランプ機構で固定される。以上の構成において、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、ディスクハブ3およびディスクハブ3に保持されたディスクDが軸部材2と一体に回転する。   FIG. 1 conceptually shows one configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device. The spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2, a disk hub 3 provided at one end of the shaft member 2, and a radial direction, for example. A stator coil 4 and a rotor magnet 5 that are opposed to each other through a gap, and a motor bracket 6 as a base member are provided. The stator coil 4 is attached to the outer periphery of the motor bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The bearing member 7 of the hydrodynamic bearing device 1 is fixed to the inner periphery of the motor bracket 6. One or a plurality (two in the illustrated example) of disks D such as magnetic disks are held on the disk hub 3, and the disks D are fixed by a clamp mechanism (not shown). In the above configuration, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the disk hub 3 and the disk D held by the disk hub 3 are rotated. It rotates integrally with the shaft member 2.

図2は、本発明の第1実施形態に係る流体軸受装置1を示すものである。この流体軸受装置1は、軸方向両端が開口した略円筒状の軸受部材7と、軸受部材7の内周に挿入された軸部材2と、軸受部材7の一端開口を閉塞する蓋部材10とを構成部材として備え、軸受部材7の内部空間には潤滑油が充満されている。なお、以下では、便宜上、蓋部材10が設けられた側を下側、その軸方向反対側を上側として説明を進める。   FIG. 2 shows the hydrodynamic bearing device 1 according to the first embodiment of the present invention. The hydrodynamic bearing device 1 includes a substantially cylindrical bearing member 7 having both axial ends open, a shaft member 2 inserted into the inner periphery of the bearing member 7, and a lid member 10 that closes one end opening of the bearing member 7. As a constituent member, and the internal space of the bearing member 7 is filled with lubricating oil. In the following, for the sake of convenience, the description will be given with the side on which the lid member 10 is provided as the lower side and the opposite side in the axial direction as the upper side.

軸部材2は、軸受部材7の内周に挿入された軸部2aと、軸部2aの一端に設けられ、軸受部材7の下方に配置されたフランジ部2bとを有する。軸部2aおよびフランジ部2bの双方は、耐摩耗性に富む金属材料、例えばステンレス鋼で形成される。軸部2aの下端には小径部2a2が形成され、この小径部2a2を環状のフランジ部2bの内周に嵌合固定することで軸部材2が形成される。軸部2aとフランジ部2bの固定方法は両者間に所定の固定強度を確保し得る限りにおいて任意であり、圧入、接着、溶接(特にレーザ溶接)等を採用することができる。軸部材2は、上記のように、個別に製作した軸部2aおよびフランジ部2bを適宜の手段で一体化したものの他、両者を鍛造等で一体成形したものを使用することもできる。   The shaft member 2 includes a shaft portion 2 a inserted into the inner periphery of the bearing member 7, and a flange portion 2 b provided at one end of the shaft portion 2 a and disposed below the bearing member 7. Both the shaft portion 2a and the flange portion 2b are made of a metal material having high wear resistance, such as stainless steel. A small diameter portion 2a2 is formed at the lower end of the shaft portion 2a, and the shaft member 2 is formed by fitting and fixing this small diameter portion 2a2 to the inner periphery of the annular flange portion 2b. The method of fixing the shaft portion 2a and the flange portion 2b is arbitrary as long as a predetermined fixing strength can be secured between them, and press-fitting, adhesion, welding (particularly laser welding) and the like can be employed. As the shaft member 2, as described above, the shaft portion 2 a and the flange portion 2 b that are individually manufactured may be integrated by an appropriate means, or those that are integrally formed by forging or the like may be used.

軸受部材7は、軸方向両端が開口した略円筒状をなし、軸受スリーブ8と、この軸受スリーブ8をインサート部品として樹脂で型成形(射出成形)されたハウジング9とで構成され、詳細は後述するが、ハウジング9にはシール隙間Sを形成するシール部92が一体に設けられている。   The bearing member 7 has a substantially cylindrical shape with both axial ends open, and is composed of a bearing sleeve 8 and a housing 9 which is molded with resin (injection molding) using the bearing sleeve 8 as an insert part. However, the housing 9 is integrally provided with a seal portion 92 that forms a seal gap S.

軸受スリーブ8は、多孔質体、特に銅を主成分とする焼結金属の多孔質体で円筒状に形成される。軸受スリーブ8は、焼結金属以外のその他の多孔質体、例えば多孔質樹脂やセラミックスで形成することもできるし、非多孔質体、例えば黄銅等の軟質金属で形成することもできる。軸受スリーブ8の内周面8aおよび外周面8dの双方は、径一定の円筒面状に形成される。また、軸受スリーブ8の軸方向両端の内周縁部および外周縁部には、それぞれチャンファ8ei、8eo、8fi、8foが形成される。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body, particularly a sintered metal porous body mainly composed of copper. The bearing sleeve 8 can be formed of a porous body other than the sintered metal, for example, a porous resin or ceramics, or can be formed of a non-porous body, for example, a soft metal such as brass. Both the inner peripheral surface 8a and the outer peripheral surface 8d of the bearing sleeve 8 are formed in a cylindrical surface shape having a constant diameter. Further, chamfers 8ei, 8eo, 8fi, and 8fo are formed on the inner peripheral edge and the outer peripheral edge at both ends in the axial direction of the bearing sleeve 8, respectively.

図3に示すように、軸受スリーブ8の内周面8a(軸受部材7の内周面)には、対向する軸部2aの外周面2a1との間にラジアル軸受隙間を形成する円筒状のラジアル軸受面A1,A2が軸方向の二箇所に離隔形成される。これらラジアル軸受面A1,A2が、ラジアル軸受隙間の外径寸法を規定する面となる。ラジアル軸受面A1,A2には、それぞれ、複数の動圧溝8a1,8a2をヘリングボーン形状に配列してなるラジアル動圧発生部が形成される。本実施形態において、上側の動圧溝8a1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。一方、下側の動圧溝8a2は軸方向対称に形成され、その上下領域の軸方向寸法はそれぞれ上記軸方向寸法X2と等しくなっている。かかる構成により、軸部材2の回転時には、軸受部材7の内周面と軸部2aの外周面2a1との間に介在する潤滑油が下方に押し込まれる(ポンピング能力のアンバランス)。なお、ラジアル動圧発生部は、対向する軸部2aの外周面2a1に形成しても良い。   As shown in FIG. 3, a cylindrical radial that forms a radial bearing gap on the inner peripheral surface 8 a of the bearing sleeve 8 (inner peripheral surface of the bearing member 7) with the outer peripheral surface 2 a 1 of the opposed shaft portion 2 a. Bearing surfaces A1 and A2 are spaced apart at two locations in the axial direction. These radial bearing surfaces A1 and A2 are surfaces that define the outer diameter of the radial bearing gap. Radial dynamic pressure generating portions formed by arranging a plurality of dynamic pressure grooves 8a1 and 8a2 in a herringbone shape are formed on the radial bearing surfaces A1 and A2, respectively. In the present embodiment, the upper dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions), and the axis in the upper region from the axial center m. The direction dimension X1 is larger than the axial direction dimension X2 of the lower region. On the other hand, the lower dynamic pressure groove 8a2 is formed symmetrically in the axial direction, and the axial dimensions of the upper and lower regions thereof are respectively equal to the axial dimension X2. With this configuration, when the shaft member 2 rotates, the lubricating oil interposed between the inner peripheral surface of the bearing member 7 and the outer peripheral surface 2a1 of the shaft portion 2a is pushed downward (unbalanced pumping ability). In addition, you may form a radial dynamic pressure generation | occurrence | production part in the outer peripheral surface 2a1 of the axial part 2a which opposes.

図4に示すように、軸受スリーブ8の下側端面8cには、対向するフランジ部2bの上側端面2b1との間に第1スラスト軸受隙間を形成するスラスト軸受面Bが設けられ、該スラスト軸受面Bにはスラスト動圧発生部が形成される。スラスト動圧発生部はヘリングボーン形状で、V字状に屈曲した複数の動圧溝8c1と、これを区画する図中クロスハッチングで示す丘部8c2とを円周方向で交互に配して構成される。なお、スラスト動圧発生部は、対向するフランジ部2bの上側端面2b1に形成しても良い。   As shown in FIG. 4, the lower end surface 8c of the bearing sleeve 8 is provided with a thrust bearing surface B that forms a first thrust bearing gap with the upper end surface 2b1 of the opposing flange portion 2b. A thrust dynamic pressure generating portion is formed on the surface B. The thrust dynamic pressure generating portion has a herringbone shape, and is configured by alternately arranging a plurality of dynamic pressure grooves 8c1 bent in a V shape and hill portions 8c2 shown by cross hatching in the drawing to divide the grooves in the circumferential direction. Is done. In addition, you may form a thrust dynamic pressure generation | occurrence | production part in the upper side end surface 2b1 of the flange part 2b which opposes.

ハウジング9は軸方向両端が開口した略円筒状をなし、軸受スリーブ8を内周に保持した本体部91と、本体部91の上端内径側に設けられたシール部92とを一体に有する。本体部91の内周面は径一定の円筒面状に形成され、外周面は下側を小径にした段付きの円筒面状に形成される。従い、本体部91は、相対的に厚肉に形成された厚肉部91aと、相対的に薄肉に形成された薄肉部91bとが軸方向に積み重なった形態をなす。   The housing 9 has a substantially cylindrical shape with both axial ends open, and integrally includes a main body portion 91 that holds the bearing sleeve 8 on the inner periphery and a seal portion 92 that is provided on the upper end inner diameter side of the main body portion 91. The inner peripheral surface of the main body 91 is formed in a cylindrical surface shape having a constant diameter, and the outer peripheral surface is formed in a stepped cylindrical surface shape having a lower diameter on the lower side. Therefore, the main body 91 has a form in which the thick part 91a formed relatively thick and the thin part 91b formed relatively thin are stacked in the axial direction.

シール部92は、対向する軸部2aの外周面2a1との間に、上端が大気に開放し、下端がラジアル軸受隙間に連通したシール隙間Sを形成する。このシール部92は、内周に潤滑油の油面を保持した保油部92aと、保油部92aの大気開放側(上側)に配置された蓋部92bとを一体に有する。シール隙間Sのうち、保油部92aの内周面92a1で形成される軸方向領域は、軸受部材7の内部空間を満たす潤滑油の温度変化に伴う容積変化量の吸収機能(バッファ機能)を有し、従い、潤滑油の油面は、保油部92aの軸方向領域内に常に保持されるようになっている。軸部2aの外周面2a1は軸線に沿って延びる径一定の円筒面状に形成される一方、保油部92aの内周面92a1は下方に向かって直線的に漸次縮径したテーパ面状に形成される。従い、シール隙間Sのうち、保油部92aで形成される軸方向領域は、下方に向けて隙間幅を漸次縮小させた楔形状を呈する。なお、保油部92aの内周面92a1は、下方に向かって曲面状に漸次縮径した円弧面としても良い。   The seal portion 92 forms a seal gap S between the opposed shaft portion 2a and the outer peripheral surface 2a1 with the upper end opened to the atmosphere and the lower end communicated with the radial bearing gap. The seal portion 92 integrally includes an oil retaining portion 92a that holds the oil level of the lubricating oil on the inner periphery, and a lid portion 92b that is disposed on the atmosphere opening side (upper side) of the oil retaining portion 92a. In the seal gap S, the axial region formed by the inner peripheral surface 92a1 of the oil retaining portion 92a has a function of absorbing a volume change amount (buffer function) accompanying a temperature change of the lubricating oil that fills the internal space of the bearing member 7. Therefore, the oil level of the lubricating oil is always held within the axial direction region of the oil retaining portion 92a. The outer peripheral surface 2a1 of the shaft portion 2a is formed in a cylindrical surface shape having a constant diameter extending along the axis, while the inner peripheral surface 92a1 of the oil retaining portion 92a is formed in a tapered surface shape that gradually decreases in diameter linearly downward. It is formed. Accordingly, in the seal gap S, the axial region formed by the oil retaining portion 92a has a wedge shape in which the gap width is gradually reduced downward. In addition, the inner peripheral surface 92a1 of the oil retaining portion 92a may be a circular arc surface that is gradually reduced in a curved shape toward the lower side.

図6に拡大して示すように、蓋部92bは保油部92aの上端部よりも内径側に突出しており、従い、蓋部92bは保油部92aの上側でシール隙間Sの隙間幅を縮小させている。より詳細に述べると、蓋部92b(の内径端部)はシール隙間Sの最小幅部を形成し、当該シール隙間Sの最小幅部の隙間幅d2は、保油部92aの内周面92a1で形成されるシール隙間Sのうち、最大幅部(保油部92aと保油部92bの境界部分で形成されるシール隙間S)の隙間幅d1の1/2以下に設定される。なお、以上の構成からなる蓋部92bは、シール部92を部分的に変形させることによって形成されるが、その具体的な形成方法は後に詳述する。   As shown in FIG. 6 in an enlarged manner, the lid portion 92b protrudes to the inner diameter side from the upper end portion of the oil retaining portion 92a. Accordingly, the lid portion 92b has a gap width of the seal gap S on the upper side of the oil retaining portion 92a. Reduced. More specifically, the lid portion 92b (the inner diameter end thereof) forms the minimum width portion of the seal gap S, and the gap width d2 of the minimum width portion of the seal gap S is the inner peripheral surface 92a1 of the oil retaining portion 92a. Is set to ½ or less of the gap width d1 of the maximum width portion (the seal gap S formed at the boundary portion between the oil retaining portion 92a and the oil retaining portion 92b). The lid portion 92b having the above configuration is formed by partially deforming the seal portion 92, and a specific method for forming the lid portion 92b will be described in detail later.

ハウジング9の成形に用いる樹脂材料は射出成形可能であれば特段の限定はなく、例えばポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)等の結晶性樹脂、あるいはポリフェニルサルフォン(PPSU)等の非晶性樹脂をベース樹脂としたものを用いることができる。この樹脂材料には、必要に応じて強化材や導電性充填材等の各種充填材を配合することも可能であるが、後述するように、本実施形態では蓋部材10で導電性が確保されるので、導電性充填材は基本的に不要である。但し、ハウジング9の成形性等に悪影響を及ぼさず、コスト面でも支障がなければ、導電性充填材を配合しても良い。   The resin material used for molding the housing 9 is not particularly limited as long as it can be injection-molded. For example, a crystalline resin such as polyphenylene sulfide (PPS) or liquid crystal polymer (LCP), or a non-polyethylene such as polyphenylsulfone (PPSU). What used crystalline resin as base resin can be used. The resin material can be blended with various fillers such as a reinforcing material and a conductive filler as necessary. However, as will be described later, in this embodiment, the lid member 10 ensures conductivity. Therefore, the conductive filler is basically unnecessary. However, a conductive filler may be blended if it does not adversely affect the moldability of the housing 9 and there is no problem in terms of cost.

以上のように、軸受スリーブ8をインサート部品としてハウジング9を射出成形することにより、軸受スリーブ8の上側端面8bが外周チャンファ8eoも含めてシール部92で被覆され、また、軸受スリーブ8の下端外周チャンファ8foが樹脂で被覆される。さらに、軸受スリーブ8は焼結金属の多孔質体で形成されることから、ハウジング9を形成する樹脂が軸受スリーブ8の表面開孔に入り込みアンカー効果を発揮する。従って、軸受スリーブ8とハウジング9の密着強度は強固なものとなる。かかる構成から、ハウジング9に対する軸受スリーブ8の抜け止めが図られる。一方、軸受スリーブ8の上端内周チャンファ8eiは樹脂で被覆されない。これは、射出成形時に上端内周チャンファ8eiを型に接触させることで、型内における軸受スリーブ8の位置決めを行うためである。   As described above, the housing 9 is injection-molded using the bearing sleeve 8 as an insert part, so that the upper end surface 8b of the bearing sleeve 8 is covered with the seal portion 92 including the outer peripheral chamfer 8eo. The chamfer 8fo is coated with resin. Further, since the bearing sleeve 8 is formed of a sintered metal porous body, the resin forming the housing 9 enters the surface opening of the bearing sleeve 8 and exhibits an anchor effect. Therefore, the adhesion strength between the bearing sleeve 8 and the housing 9 becomes strong. With this configuration, the bearing sleeve 8 can be prevented from coming off from the housing 9. On the other hand, the inner peripheral chamfer 8ei at the upper end of the bearing sleeve 8 is not covered with resin. This is because the bearing sleeve 8 is positioned in the mold by bringing the upper end inner peripheral chamfer 8ei into contact with the mold during injection molding.

本体部91とシール部92の境界となるハウジング9の上端外径側では、角部が肉取りされている。この肉取りによって、本体部91からシール部92にかけての領域でハウジング9の肉厚がほぼ均一化される。そのため、射出成形後の成形収縮によるシール部92(特に保油部92a)の内周面の変形を抑制し、シール隙間Sの形状精度が確保される。   On the outer diameter side of the upper end of the housing 9 that becomes the boundary between the main body portion 91 and the seal portion 92, the corner portion is thinned. By this wall removal, the thickness of the housing 9 is substantially uniform in the region from the main body 91 to the seal portion 92. Therefore, deformation of the inner peripheral surface of the seal portion 92 (particularly the oil retaining portion 92a) due to molding shrinkage after injection molding is suppressed, and the shape accuracy of the seal gap S is ensured.

蓋部材10は、導電性を有する金属材料で形成され、例えば金属板をプレス加工することにより、円盤状のプレート部10aと、プレート部10aの外径端から上方へ延びた円筒状の筒部10bとを一体に有するコップ状に形成される。詳細は後述するが、この蓋部材10は、ハウジング9を構成する薄肉部91bの外周面(小径外周面)91b1に隙間接着で固定され、これにより軸受部材7の下側開口を閉塞する。筒部10bの内周面10b2は、軸受スリーブ8の内周面8aに設けられたラジアル軸受面A2(下側のラジアル動圧発生部)の一部または全部と軸方向でオーバーラップしている。   The lid member 10 is formed of a conductive metal material, and for example, by pressing a metal plate, a disk-shaped plate portion 10a and a cylindrical tube portion extending upward from the outer diameter end of the plate portion 10a. 10b is integrally formed. Although the details will be described later, the lid member 10 is fixed to the outer peripheral surface (small-diameter outer peripheral surface) 91b1 of the thin wall portion 91b constituting the housing 9 with a gap, thereby closing the lower opening of the bearing member 7. The inner peripheral surface 10b2 of the cylindrical portion 10b overlaps with a part or all of the radial bearing surface A2 (lower radial dynamic pressure generating portion) provided on the inner peripheral surface 8a of the bearing sleeve 8 in the axial direction. .

プレート部10aの上側端面10a1(蓋部材10の内底面)には、対向するフランジ部2bの下側端面2b2との間に第2スラスト軸受隙間を形成するスラスト軸受面Cが設けられ、このスラスト軸受面Cにはスラスト動圧発生部が形成される。スラスト動圧発生部は、図5に示すようなヘリングボーン形状で、V字状に屈曲した複数の動圧溝10a11と、これを区画する図中クロスハッチングで示す丘部10a12とを円周方向で交互に配して構成される。なお、このスラスト動圧発生部は、対向するフランジ部2bの下側端面2b2に形成しても良い。   A thrust bearing surface C is provided on the upper end surface 10a1 of the plate portion 10a (inner bottom surface of the lid member 10) to form a second thrust bearing gap with the lower end surface 2b2 of the opposing flange portion 2b. A thrust dynamic pressure generating portion is formed on the bearing surface C. The thrust dynamic pressure generating portion has a herringbone shape as shown in FIG. 5 and a plurality of dynamic pressure grooves 10a11 bent in a V-shape and a hill portion 10a12 shown by cross hatching in the drawing to divide the groove 10a11 in the circumferential direction. Are arranged alternately. The thrust dynamic pressure generating portion may be formed on the lower end surface 2b2 of the opposing flange portion 2b.

筒部10bの上側端面10b1とハウジング9の厚肉部91aの下側端面(段差面)91a1とは所定幅の第1軸方向隙間δ1を介して軸方向に対向している。この第1軸方向隙間δ1は、その隙間幅がフランジ部2bの上側端面2b1と軸受スリーブ8の下側端面8c、およびフランジ部2bの下側端面2b2と蓋部材10のプレート部10aの上側端面10a1とが軸方向に相互に当接するまで蓋部材10と軸受部材7の軸方向の接近移動を許容する値に設定され、後述するスラスト軸受隙間の幅設定により形成される。第1軸方向隙間δ1には接着剤が充填され、これによりこの第1軸方向隙間δ1は完全に封止されている。また、ハウジング9の薄肉部91bの下側端面と蓋部材10のプレート部10aの上側端面10a1とは所定幅の第2軸方向隙間δ2を介して軸方向に対向している。   The upper end surface 10b1 of the cylindrical portion 10b and the lower end surface (step surface) 91a1 of the thick portion 91a of the housing 9 are opposed to each other in the axial direction via a first axial gap δ1 having a predetermined width. The first axial gap δ1 has a gap width of the upper end surface 2b1 of the flange portion 2b and the lower end surface 8c of the bearing sleeve 8, and the lower end surface 2b2 of the flange portion 2b and the upper end surface of the plate portion 10a of the lid member 10. It is set to a value that allows the axial movement of the lid member 10 and the bearing member 7 until they abut against each other in the axial direction, and is formed by setting the width of a thrust bearing gap described later. The first axial gap δ1 is filled with an adhesive, whereby the first axial gap δ1 is completely sealed. Further, the lower end surface of the thin portion 91b of the housing 9 and the upper end surface 10a1 of the plate portion 10a of the lid member 10 are opposed to each other in the axial direction via a second axial gap δ2 having a predetermined width.

以上の構成からなる流体軸受装置1は、例えば以下の手順を踏んで完成する。   The hydrodynamic bearing device 1 having the above configuration is completed, for example, according to the following procedure.

まず、軸受スリーブ8をインサート部品としてハウジング9を樹脂で射出成形することによって得られた軸受部材7の内周に軸部材2を挿入する。但しこの段階では、図7(a)にも示すように、軸受部材7(ハウジング9)に所定形状のシール部92(蓋部92b)が形成されておらず、従い、軸受部材7は完成品としての態様をなしていない。詳述すると、シール部92の上端内周には、軸方向上側に突出した環状突起92b’がシール部92と一体に樹脂で射出成形されている。   First, the shaft member 2 is inserted into the inner periphery of the bearing member 7 obtained by injection molding the housing 9 with resin using the bearing sleeve 8 as an insert part. However, at this stage, as shown in FIG. 7A, the bearing member 7 (housing 9) is not formed with the seal portion 92 (lid portion 92b) having a predetermined shape. It does not form as. More specifically, an annular protrusion 92 b ′ protruding upward in the axial direction is injection-molded integrally with the seal portion 92 on the inner periphery of the upper end of the seal portion 92.

軸受部材7の内周に軸部材2を挿入した後、例えば、ハウジング9の小径外周面91b1に適当な接着剤(ここでは、エポキシ系接着剤)を塗布し、この小径外周面91b1に蓋部材10の筒部10bの内周面を嵌合する。そのまま軸受部材7と蓋部材10とを軸方向に相対移動させ、フランジ部2bの上側端面2b1を軸受スリーブ8の下側端面8cに当接させると共に、フランジ部2bの下側端面2b2を蓋部材10のプレート部10aの上側端面10a1に当接させて、両スラスト軸受隙間の隙間幅をそれぞれ0の状態にする。このとき、蓋部材10の筒部10bの上側端面10b1とハウジング9の段差面91a1とが接触しないように各部材の寸法を設定しておく。次いで、両スラスト軸受隙間の隙間幅の合計量分だけ蓋部材10を軸受部材7に対して下方(軸受部材7から離反する方向)に引き戻し、軸受部材7に対する蓋部材10の相対的な位置決めを行った後、第1軸方向隙間δ1に接着剤を充填する。そして、ベーキングを行って接着剤を固化させる。これにより、軸受部材7に対する蓋部材10の組み付けと、スラスト軸受隙間の幅設定とが同時に完了する。以上に示す組立手順であれば、蓋部材10の移動量でスラスト軸受隙間の幅設定を行うことができるので、各部材の加工精度を緩和して、加工コストを低減することができる。   After the shaft member 2 is inserted into the inner periphery of the bearing member 7, for example, an appropriate adhesive (here, an epoxy-based adhesive) is applied to the small-diameter outer peripheral surface 91b1 of the housing 9, and the lid member is applied to the small-diameter outer peripheral surface 91b1. The inner peripheral surfaces of the ten cylindrical portions 10b are fitted. The bearing member 7 and the lid member 10 are relatively moved in the axial direction as they are, the upper end surface 2b1 of the flange portion 2b is brought into contact with the lower end surface 8c of the bearing sleeve 8, and the lower end surface 2b2 of the flange portion 2b is brought into the lid member. The upper and lower end surfaces 10a1 of the ten plate portions 10a are brought into contact with each other so that the gap widths of the thrust bearing gaps are set to zero. At this time, the dimension of each member is set so that the upper end surface 10b1 of the cylindrical portion 10b of the lid member 10 and the stepped surface 91a1 of the housing 9 do not contact each other. Next, the lid member 10 is pulled back downward (in the direction away from the bearing member 7) from the bearing member 7 by the total amount of the clearance widths of both thrust bearing gaps, and the relative positioning of the lid member 10 with respect to the bearing member 7 is performed. After that, the first axial gap δ1 is filled with an adhesive. Then, baking is performed to solidify the adhesive. Thereby, the assembly of the lid member 10 to the bearing member 7 and the setting of the width of the thrust bearing gap are completed at the same time. With the assembly procedure described above, the width of the thrust bearing gap can be set by the amount of movement of the lid member 10, so that the processing accuracy of each member can be relaxed and the processing cost can be reduced.

そして、軸受部材7の内部空間に、軸受スリーブ8の内部気孔も含め、潤滑油を充填する。このように、蓋部92bの形成前、すなわちシール隙間Sの開口部(大気開放部)の隙間幅が狭小化される前の段階で、軸受部材7の内部空間に潤滑油を供給しておけば、給油作業を簡便に行うことができる。   The interior space of the bearing member 7 is filled with lubricating oil including the internal pores of the bearing sleeve 8. As described above, before the lid portion 92b is formed, that is, before the gap width of the opening portion (atmosphere release portion) of the seal gap S is narrowed, the lubricating oil should be supplied to the internal space of the bearing member 7. Thus, the refueling operation can be performed easily.

なお、上述のように、本実施形態に係る流体軸受装置1では、軸受部材7のハウジング9が樹脂製、蓋部材10が金属製とされ、かつこの蓋部材10の筒部10bは、軸受スリーブ8の内周面8aに設けられた下側のラジアル軸受面A2の一部と軸方向でオーバーラップしている。このような場合に、圧入を伴う手法(圧入、圧入接着等)で蓋部材10をハウジング9に固定したのでは、圧入に伴うハウジング9の変形がラジアル軸受面A2にも及び、ラジアル軸受隙間の幅精度、ひいてはラジアル方向の回転精度に悪影響が及ぶおそれがある。そのため、本実施形態では、蓋部材10の筒部10の内周面とハウジング9の小径外周面91b1との間に微小な径方向隙間を介在させ、この径方向隙間を満たす接着剤で両者を接着固定している(隙間接着)。   As described above, in the hydrodynamic bearing device 1 according to the present embodiment, the housing 9 of the bearing member 7 is made of resin, the lid member 10 is made of metal, and the cylindrical portion 10b of the lid member 10 has a bearing sleeve. 8 overlaps a part of the lower radial bearing surface A2 provided on the inner peripheral surface 8a in the axial direction. In such a case, if the lid member 10 is fixed to the housing 9 by a method involving press-fitting (press-fitting, press-fitting adhesion, etc.), the deformation of the housing 9 due to the press-fitting also reaches the radial bearing surface A2, and the radial bearing gap There is a possibility of adversely affecting the width accuracy and consequently the rotational accuracy in the radial direction. Therefore, in the present embodiment, a minute radial clearance is interposed between the inner peripheral surface of the cylindrical portion 10 of the lid member 10 and the small-diameter outer peripheral surface 91b1 of the housing 9, and both are bonded with an adhesive that satisfies this radial clearance. Adhesion is fixed (gap adhesion).

次いで、軸受部材7の外周面や外底面等を位置決め保持した状態で、図7(a)にしめすように、シール部92の上端内周に形成した環状突起92b’を治具20で加圧し、環状突起92b’を径方向内側に変形させる(折り曲げる)。これにより、図7(b)に示すように、保油部92aの上側で、シール隙間Sの隙間幅を縮小させる蓋部92bが形成される。なお、このとき用いる治具20のうち、少なくとも環状突起92b’との当接部は、ハウジング9(シール部92)を構成するベース樹脂の軟化点程度に加熱しておくのが望ましい。環状突起92b’を容易かつスムーズに変形させ、蓋部92bを精度良く形成するためである。   Next, with the outer peripheral surface and outer bottom surface of the bearing member 7 positioned and held, the annular protrusion 92b ′ formed on the inner periphery of the upper end of the seal portion 92 is pressurized with the jig 20 as shown in FIG. Then, the annular protrusion 92b ′ is deformed (folded) inward in the radial direction. Thereby, as shown in FIG. 7B, a lid portion 92b for reducing the gap width of the seal gap S is formed on the upper side of the oil retaining portion 92a. Of the jig 20 used at this time, at least the contact portion with the annular protrusion 92b 'is preferably heated to the softening point of the base resin constituting the housing 9 (seal portion 92). This is because the annular protrusion 92b 'can be easily and smoothly deformed to form the lid portion 92b with high accuracy.

以上では、エポキシ系接着剤を用いて蓋部材10を軸受部材7(ハウジング9)に接着固定するようにしたが、両者間に所定の固定強度(接着強度)を確保できるのであればエポキシ系接着剤以外の接着剤、例えば嫌気性接着剤や紫外線硬化型接着剤等を使用することも可能である。   In the above, the lid member 10 is bonded and fixed to the bearing member 7 (housing 9) using an epoxy adhesive. However, if a predetermined fixing strength (adhesive strength) can be secured between the two, an epoxy-based adhesive is used. It is also possible to use an adhesive other than the adhesive, such as an anaerobic adhesive or an ultraviolet curable adhesive.

また、以上では、蓋部材10を軸受部材7に固定する際、ハウジング9の小径外周面91b1に予め接着剤を塗布するようにしたが、蓋部材10と軸受部材7とを嵌合してスラスト軸受隙間の幅設定を行った後に、軸方向隙間δ1から接着剤を供給し、ハウジング9の小径外周面91b1と筒部8bの内周面との間の径方向隙間の毛細管力を利用して接着剤を引き込むことで両者を接着固定してもよい。   In the above description, when the lid member 10 is fixed to the bearing member 7, an adhesive is applied in advance to the small-diameter outer peripheral surface 91 b 1 of the housing 9. However, the lid member 10 and the bearing member 7 are fitted and thrusted. After setting the width of the bearing gap, an adhesive is supplied from the axial gap δ1, and the capillary force of the radial gap between the small-diameter outer peripheral surface 91b1 of the housing 9 and the inner peripheral surface of the cylindrical portion 8b is used. You may adhere and fix both by drawing in the adhesive.

以上の構成からなり、また以上のようにして製造される流体軸受装置1において、軸部材2が回転すると、軸受スリーブ8の内周面8aの上下2箇所に離隔して設けられたラジアル軸受面A1,A2と、これに対向する軸部2aの外周面2a1との間にそれぞれラジアル軸受隙間が形成される。そして軸部材2の回転に伴い、両ラジアル軸受隙間の油膜圧力が動圧溝8a1,8a2の動圧作用によって高められる結果、軸部材2をラジアル方向に非接触支持するラジアル軸受部R1,R2が軸方向の二箇所に離隔形成される。これと同時に、軸受スリーブ8の下側端面8cに設けられたスラスト軸受面Bとフランジ部2bの上側端面2b1との間、および、フランジ部2bの下側端面2b2とプレート部10aの上側端面10a1に設けたスラスト軸受面Cとの間に、それぞれ第1および第2スラスト軸受隙間が形成される。そして、軸部材2の回転に伴い、両スラスト軸受隙間の油膜圧力が、動圧溝8c1,10a11の動圧作用によって高められる結果、軸部材2をスラスト両方向に非接触支持する第1スラスト軸受部T1および第2スラスト軸受部T2が形成される。   In the hydrodynamic bearing device 1 having the above-described configuration and manufactured as described above, when the shaft member 2 rotates, the radial bearing surfaces are provided separately at two locations on the upper and lower sides of the inner peripheral surface 8a of the bearing sleeve 8. A radial bearing gap is formed between each of A1 and A2 and the outer peripheral surface 2a1 of the shaft portion 2a opposed thereto. As the shaft member 2 rotates, the oil film pressure in the radial bearing gaps is increased by the dynamic pressure action of the dynamic pressure grooves 8a1 and 8a2. As a result, the radial bearing portions R1 and R2 that support the shaft member 2 in the radial direction without contact are provided. Separately formed at two positions in the axial direction. At the same time, between the thrust bearing surface B provided on the lower end surface 8c of the bearing sleeve 8 and the upper end surface 2b1 of the flange portion 2b, and the lower end surface 2b2 of the flange portion 2b and the upper end surface 10a1 of the plate portion 10a. The first and second thrust bearing gaps are respectively formed between the thrust bearing surface C and the thrust bearing surface C. As the shaft member 2 rotates, the oil film pressure in the gap between the thrust bearings is increased by the dynamic pressure action of the dynamic pressure grooves 8c1 and 10a11. As a result, the first thrust bearing portion that supports the shaft member 2 in a thrust non-contact manner. T1 and second thrust bearing portion T2 are formed.

また、シール隙間Sのうち、保油部92aの内周面92a1で形成される軸方向領域が、下方(軸受部材7の内部側)に向かって径方向寸法を漸次縮小した楔形状を呈しているため、保油部92aの内周に保持された潤滑油は毛細管力による引き込み作用によって軸受部材7の内部側に向けて引き込まれる。また、上述のとおり、シール隙間Sのうち、保油部92aの内周面92a1で形成される軸方向領域は、軸受部材7の内部空間を満たす潤滑油の温度変化に伴う容積変化量の吸収機能(バッファ機能)を有し、想定される温度変化の範囲内で潤滑油の油面を常にその範囲内に保持する。   Further, in the seal gap S, the axial region formed by the inner peripheral surface 92a1 of the oil retaining portion 92a has a wedge shape with the radial dimension gradually reduced downward (inside the bearing member 7). Therefore, the lubricating oil held on the inner periphery of the oil retaining portion 92a is drawn toward the inner side of the bearing member 7 by the drawing action by the capillary force. Further, as described above, in the seal gap S, the axial region formed by the inner peripheral surface 92a1 of the oil retaining portion 92a absorbs the volume change amount accompanying the temperature change of the lubricating oil that fills the internal space of the bearing member 7. It has a function (buffer function), and always keeps the oil level of the lubricating oil within the range of the assumed temperature change.

また、シール部92はハウジング9と一体に樹脂で射出成形されるが、潤滑油の油面を保持する保油部92aの内周面92a1が下方に向かって漸次縮径したテーパ面に形成されるため、この面によって射出成形時の抜き勾配が確保される。従い、潤滑油の油面を保持する保油部92aの内周面92a1精度を高めて、潤滑油の保持性能を高めることができる。   The seal portion 92 is injection-molded with resin integrally with the housing 9, but the inner peripheral surface 92a1 of the oil retaining portion 92a that holds the oil surface of the lubricating oil is formed on a tapered surface that gradually decreases in diameter downward. Therefore, this surface ensures a draft angle during injection molding. Accordingly, the accuracy of the inner peripheral surface 92a1 of the oil retaining portion 92a that retains the oil surface of the lubricating oil can be increased, and the retaining performance of the lubricating oil can be enhanced.

これに加え、本発明では、保油部92aの大気開放側で、シール隙間Sの隙間幅を縮小させる蓋部92bを設けているので、例えば流体軸受装置1に衝撃荷重が加わることによって保持部92aの軸方向範囲内に保持された潤滑油が飛散した場合であっても、この飛散した潤滑油の外部漏洩を蓋部92bで阻止することができる。特に、上述のように、蓋部92bで形成されるシール隙間Sの最小幅部の隙間幅d2を、保持部92aで形成されるシール隙間Sの最大幅部の隙間幅d1の1/2以下とすれば、潤滑油の外部漏洩を確実に阻止することができる。また、かかる機能を奏する蓋部92bが保油部92aと一体に設けられることから、これを設ける際に要する手間は、同様の機能を奏する撥油膜をシール部92の端面に形成する場合に比べて軽減することができる。また、蓋部92bが保油部92aと一体に設けられていれば、蓋部92bが損傷等し、これがコンタミの原因となる可能性を効果的に減じることができる。さらに、この蓋部92bは、撥油膜のように時間経過に伴う特性変化が生じ難く、従い、潤滑油の外部漏洩防止機能を長期に亘って安定的に維持することができる。   In addition, in the present invention, since the lid portion 92b for reducing the gap width of the seal gap S is provided on the air release side of the oil retaining portion 92a, for example, the holding portion is applied by applying an impact load to the hydrodynamic bearing device 1. Even when the lubricating oil retained within the axial range of 92a scatters, external leakage of the scattered lubricating oil can be prevented by the lid portion 92b. In particular, as described above, the gap width d2 of the minimum width portion of the seal gap S formed by the lid portion 92b is equal to or less than ½ of the gap width d1 of the maximum width portion of the seal gap S formed by the holding portion 92a. If so, external leakage of the lubricating oil can be reliably prevented. Further, since the lid portion 92b having such a function is provided integrally with the oil retaining portion 92a, the labor required for providing this is compared with the case where an oil repellent film having the same function is formed on the end surface of the seal portion 92. Can be reduced. Moreover, if the cover part 92b is provided integrally with the oil retaining part 92a, the cover part 92b may be damaged, and the possibility of causing contamination is effectively reduced. Further, the lid portion 92b is unlikely to change in characteristics with the passage of time unlike the oil repellent film, and accordingly, the function of preventing the external leakage of the lubricating oil can be stably maintained over a long period of time.

以上から、本発明の構成を採用した流体軸受装置1は、低コストでありながら、潤滑油の外部漏洩を確実に防止することができるものである。特に本実施形態では、軸受部材7の一部を多孔質体からなる軸受スリーブ8で構成したことから、軸受部材7の内部空間に充填される潤滑油量が増大する分、シール隙間Sの容積を大きく確保する必要がある。これはすなわち、シール隙間Sで保持すべき潤滑油量が増大することを意味し、従い、潤滑油漏れの可能性も高まるが、上記本発明の構成を採用すれば、このような場合であっても、潤滑油漏れを確実に防止することができる。   As described above, the hydrodynamic bearing device 1 employing the configuration of the present invention can reliably prevent external leakage of the lubricating oil while being low in cost. Particularly in this embodiment, since a part of the bearing member 7 is constituted by the bearing sleeve 8 made of a porous body, the volume of the seal gap S is increased by the amount of the lubricating oil filled in the internal space of the bearing member 7. It is necessary to ensure a large. This means that the amount of lubricating oil to be held in the seal gap S increases, and accordingly, the possibility of lubricating oil leakage increases. However, if the above-described configuration of the present invention is adopted, this is the case. Even in this case, it is possible to reliably prevent lubricating oil leakage.

なお、以上では、特段の説明を省略しているが、コスト面等で問題がなければ、軸部2aの外周面2a1のうち、蓋部92bとの対向領域に撥油膜を形成しても良い。このようにすれば、潤滑油漏れを一層確実に防止することができる。   In the above, a special description is omitted, but if there is no problem in terms of cost or the like, an oil repellent film may be formed in a region facing the lid portion 92b in the outer peripheral surface 2a1 of the shaft portion 2a. . In this way, lubricating oil leakage can be prevented more reliably.

上述のとおり、軸部材2の回転時には、ラジアル軸受隙間に充満された潤滑油がラジアル動圧発生部のポンピング能力のアンパランスによって下方に押し込まれる。この場合、軸受内部の閉塞側の空間、特に第2スラスト軸受隙間の内径側の空間(底面空間P、図8を参照)で圧力が高くなり、軸部材2に作用する上向きの浮上力が過剰となる結果、両スラスト軸受部T1,T2間でのスラスト支持力をバランスさせることが難しくなる。この点に鑑み、本実施形態では、図8にも拡大して示すように、フランジ部2bの両端面2b1,2b2に開口した連通孔11を設けている。これにより、連通孔11を介して両スラスト軸受隙間間で潤滑油が行き来可能となるので、両スラスト軸受隙間間での圧力バランスの崩れを早期に解消し、両スラスト軸受部T1,T2間でのスラスト支持力をバランスさせることができる。   As described above, when the shaft member 2 rotates, the lubricating oil filled in the radial bearing gap is pushed downward by the unbalance of the pumping ability of the radial dynamic pressure generating portion. In this case, the pressure increases in the space on the closed side inside the bearing, particularly the space on the inner diameter side of the second thrust bearing gap (bottom space P, see FIG. 8), and the upward levitation force acting on the shaft member 2 is excessive. As a result, it becomes difficult to balance the thrust support force between the thrust bearing portions T1, T2. In view of this point, in the present embodiment, as shown in an enlarged view in FIG. 8, the communication holes 11 are provided in the both end faces 2b1 and 2b2 of the flange portion 2b. As a result, the lubricating oil can go back and forth between the two thrust bearing gaps via the communication hole 11, so that the collapse of the pressure balance between the two thrust bearing gaps can be eliminated at an early stage, and the two thrust bearing portions T1 and T2 can be connected. The thrust support force can be balanced.

図示例の連通孔11は、径方向部11aと軸方向部11bとで構成され、両スラスト軸受面B,C(スラスト動圧発生部)の形成領域を避けてその内径側に開口させるため、屈曲した形状を呈する。より詳細には、径方向部11aの外径端がフランジ部2bの上側端面2b1と軸受スリーブ8の下端内周チャンファ8fiと軸部2aの下端に設けられたヌスミ部2a3とで形成される空間に開口し、径方向部11aの内径端に繋がった軸方向部11bが軸部2aの小径部2a2の外周面に沿って延び、第2スラスト軸受部T2の内径側に開口している。かかる構成は、円環状のフランジ部2bの内周面に軸方向溝を形成すると共に、フランジ部2bの上側端面2b1に前記軸方向溝に通じる半径方向溝を形成し、その後、フランジ部2bの内周に軸部2aの小径部2a2を嵌合することによって形成することができる。なお、連通孔11は、円周方向の一箇所に設ける他、円周方向の複数箇所に設けることもできる。   In the illustrated example, the communication hole 11 is composed of a radial portion 11a and an axial portion 11b, and is opened to the inner diameter side of the thrust bearing surfaces B and C (thrust dynamic pressure generating portions) to avoid the formation region. Presents a bent shape. More specifically, the outer diameter end of the radial direction portion 11a is a space formed by the upper end surface 2b1 of the flange portion 2b, the lower end inner peripheral chamfer 8fi of the bearing sleeve 8, and the numi portion 2a3 provided at the lower end of the shaft portion 2a. The axial direction portion 11b connected to the inner diameter end of the radial direction portion 11a extends along the outer peripheral surface of the small diameter portion 2a2 of the shaft portion 2a and opens to the inner diameter side of the second thrust bearing portion T2. In such a configuration, an axial groove is formed on the inner peripheral surface of the annular flange portion 2b, and a radial groove communicating with the axial groove is formed on the upper end surface 2b1 of the flange portion 2b. It can be formed by fitting the small diameter portion 2a2 of the shaft portion 2a to the inner periphery. In addition, the communication hole 11 can be provided in one place in the circumferential direction, or can be provided in a plurality of places in the circumferential direction.

また、上記のように、本実施形態に係る流体軸受装置1では、底面空間Pの圧力が高くなる傾向にあるので、第2スラスト軸受部T2を形成する動圧溝10a11を、従来多用されてきたポンプインタイプのスパイラル形状に配列すると、第2スラスト軸受隙間内に充満された潤滑油が内径側に押し込まれるため、底面空間Pの圧力増大を助長することとなる。これを回避するため、第2スラスト軸受部T2を形成する動圧溝10a11は、図5に示すヘリングボーン形状に形成するのが望ましい。一方、第1スラスト軸受部T1では、この種の問題が生じないので、動圧溝8c1を、図4に示すヘリングボーン形状ではなく、ポンプインタイプのスパイラル形状に形成しても良い。   Further, as described above, in the hydrodynamic bearing device 1 according to the present embodiment, the pressure in the bottom space P tends to increase, and thus the dynamic pressure groove 10a11 that forms the second thrust bearing portion T2 has been frequently used. If the pump-in type is arranged in a spiral shape, the lubricating oil filled in the second thrust bearing gap is pushed into the inner diameter side, which helps increase the pressure in the bottom space P. In order to avoid this, it is desirable to form the dynamic pressure groove 10a11 forming the second thrust bearing portion T2 in the herringbone shape shown in FIG. On the other hand, since this type of problem does not occur in the first thrust bearing portion T1, the dynamic pressure groove 8c1 may be formed in a pump-in type spiral shape instead of the herringbone shape shown in FIG.

以上の構成からなる流体軸受装置1は、蓋部材10の筒部10bの外周面、およびハウジング9の大径外周面を、アルミ合金等の金属材料で形成されたモータブラケット6(図1を参照)の内周面に例えば接着固定することでモータに組み込まれる。このとき、ハウジング9と蓋部材10の外径寸法を等しくしておけば、これらをモータブラケット6の内周面に確実に固定することができる。そして、蓋部材10とモータブラケット6の双方を金属製とした本実施形態では両者間に高い接着強度を確保することができる。従って、流体軸受装置1はモータブラケット6に対して高い接着強度でもって固定することができる。なお、蓋部材10とモータブラケット6との間で十分な接着強度を確保できるのであれば、必ずしもハウジング9をモータブラケット6に対して接着固定する必要はない。   The hydrodynamic bearing device 1 having the above configuration includes a motor bracket 6 (see FIG. 1) in which the outer peripheral surface of the cylindrical portion 10b of the lid member 10 and the large-diameter outer peripheral surface of the housing 9 are formed of a metal material such as an aluminum alloy. ), For example, by being bonded and fixed to the inner peripheral surface. At this time, if the outer diameters of the housing 9 and the lid member 10 are made equal, they can be securely fixed to the inner peripheral surface of the motor bracket 6. And in this embodiment which made both the cover member 10 and the motor bracket 6 metal, high adhesive strength can be ensured between both. Therefore, the hydrodynamic bearing device 1 can be fixed to the motor bracket 6 with high adhesive strength. Note that the housing 9 is not necessarily bonded and fixed to the motor bracket 6 as long as sufficient adhesive strength can be secured between the lid member 10 and the motor bracket 6.

また、蓋部材10の筒部10bを軸受部材7の外周面(小径外周面7a3)に固定しているので、従来のように蓋部材を軸受部材(ハウジング)の内周面に固定する場合に比べ、内周面と外周面の径差分だけ両部材間の固定面積を増すことができる。しかも軸受部材7に対する蓋部材10の固定面積を拡大するには、筒部10bの軸方向寸法を長大化すれば足り、蓋部材10のプレート部10aを厚肉化する必要もない。そのため、流体軸受装置1の軸方向寸法の長大化やラジアル軸受部R1,R2のスパンを短縮することなく、軸受部材7に対する蓋部材10の固定強度を高めることができる。   Moreover, since the cylinder part 10b of the cover member 10 is being fixed to the outer peripheral surface (small-diameter outer peripheral surface 7a3) of the bearing member 7, when fixing a cover member to the inner peripheral surface of a bearing member (housing) like the past. In comparison, the fixed area between both members can be increased by the difference in diameter between the inner peripheral surface and the outer peripheral surface. Moreover, in order to increase the fixed area of the lid member 10 with respect to the bearing member 7, it is sufficient to increase the axial dimension of the cylindrical portion 10b, and it is not necessary to increase the thickness of the plate portion 10a of the lid member 10. Therefore, the fixing strength of the lid member 10 to the bearing member 7 can be increased without increasing the axial dimension of the hydrodynamic bearing device 1 and shortening the spans of the radial bearing portions R1 and R2.

また、蓋部材10は金属材料で形成されているので、ディスクDが回転することによって帯電した静電気を、軸部材2→蓋部材10→モータブラケット6という経路を介して確実に接地側に放電することができる。但し、蓋部材10とモータブラケット6とを接着固定した本実施形態においては、接着剤(通常は絶縁体)によって導電経路が遮断される事態を防止するため、必要に応じて蓋部材10の下端外径端部とブラケット6の下端内径端部とにまたがって適当な導電材を塗布し、導電性被膜を形成するのが望ましい。   Further, since the lid member 10 is made of a metal material, the static electricity charged by the rotation of the disk D is surely discharged to the ground side via the path of the shaft member 2 → the lid member 10 → the motor bracket 6. be able to. However, in the present embodiment in which the lid member 10 and the motor bracket 6 are bonded and fixed, in order to prevent a situation where the conductive path is blocked by an adhesive (usually an insulator), the lower end of the lid member 10 is necessary. It is desirable to apply a suitable conductive material across the outer diameter end and the lower end inner diameter end of the bracket 6 to form a conductive coating.

このように蓋部材10で導電経路を構成すれば、軸受部材7の導電性を考慮せずとも足りるため、ハウジング9の成形材料を検討する際に材料選択の余地が広がり、流体軸受装置1の設計自由度が増す。樹脂製としたハウジング9に導電性を持たせる場合には樹脂材料中に高価な導電性充填材を配合するのが通例であるが、本発明では、この種の導電性充填材の配合を不要とし、あるいは配合量を少なくすることができるので、材料コストの高騰を抑制することができる。   If the conductive path is constituted by the lid member 10 in this way, it is not necessary to consider the conductivity of the bearing member 7, so that there is room for material selection when examining the molding material of the housing 9. Increase design freedom. When the resin-made housing 9 is made conductive, it is usual to mix expensive conductive fillers in the resin material. However, in the present invention, this type of conductive filler is not necessary. Or, since the blending amount can be reduced, an increase in material cost can be suppressed.

以上では、図7(a)(b)に示すように、軸方向上方に突出した環状突起92b’をシール部92(ハウジング9)を射出成形するのと同時に型成形し、これを内径側に変形させる(折り曲げる)ことによって蓋部92bを形成したが、蓋部92bはかかる手順でのみ形成されるものではない。例えば、図9(a)に示すように、シール部92の上側端面を軸線と直交する方向の平坦面に樹脂で射出成形し、その後、図9(b)に示すようにシール部92の上端内周縁部を治具20で内径側に変形させることによって蓋部92bを形成することもできる。   In the above, as shown in FIGS. 7A and 7B, the annular protrusion 92b ′ protruding upward in the axial direction is molded at the same time as the seal portion 92 (housing 9) is injection-molded, and this is formed on the inner diameter side. The lid portion 92b is formed by deforming (bending), but the lid portion 92b is not formed only by this procedure. For example, as shown in FIG. 9A, the upper end surface of the seal portion 92 is injection-molded with a resin on a flat surface in a direction orthogonal to the axis, and then the upper end of the seal portion 92 as shown in FIG. 9B. The lid portion 92b can also be formed by deforming the inner peripheral edge portion to the inner diameter side with the jig 20.

また、以上では、軸受部材7の内部空間に潤滑油を充填した後、シール部92を部分的に変形させることによって蓋部92bを形成したが、これとは逆の手順を踏むことも可能である。具体的には、図10(a)に示すように蓋部92bを形成した後、図10(b)に示すように、蓋部92bを弾性的に変形させる。かかる蓋部92bの変形領域では、シール隙間Sの開口寸法が拡大するので、この領域から給油具21をシール部92の内周に挿入して潤滑油を供給する。給油作業が完了した後、給油具21を引き抜くと、図10(c)に示す態様で蓋部92bが弾性的に復帰する。   Further, in the above, the lid portion 92b is formed by partially deforming the seal portion 92 after filling the internal space of the bearing member 7 with the lubricating oil, but it is also possible to take the reverse procedure. is there. Specifically, after forming the lid portion 92b as shown in FIG. 10A, the lid portion 92b is elastically deformed as shown in FIG. 10B. In the deformation region of the lid portion 92b, since the opening size of the seal gap S is enlarged, the lubricating oil is supplied by inserting the oil filler 21 into the inner periphery of the seal portion 92 from this region. When the refueling tool 21 is pulled out after the refueling operation is completed, the lid portion 92b is elastically returned in the manner shown in FIG.

また、シール隙間Sは、図11に示す形態とすることも可能である。詳述すると、軸部2aの外周面2a1に凹部2a4を設け、この凹部2a4内にシール部92を構成する蓋部92bの先端内周を収容している。かかる構成とすれば、シール隙間Sの上端部(大気開放部)をラビリンス構造とすることができるので、潤滑油漏れを一層効果的に防止することが可能となる。   Further, the seal gap S can be configured as shown in FIG. Specifically, the recess 2a4 is provided on the outer peripheral surface 2a1 of the shaft portion 2a, and the inner periphery of the tip of the lid portion 92b constituting the seal portion 92 is accommodated in the recess 2a4. With such a configuration, the upper end portion (atmosphere release portion) of the seal gap S can have a labyrinth structure, so that it is possible to more effectively prevent lubricating oil leakage.

以上、本発明の構成を適用した流体軸受装置1の一実施形態について説明を行ったが、本発明は上記構成の流体軸受装置1に限定適用されるものではなく、以下示す他の実施形態に係る流体軸受装置1に適用することももちろん可能である。なお、以下では、以上で説明した流体軸受装置1と異なる点についてのみ詳細に説明を行い、実質的に同一の部材等には共通の参照番号を付して重複説明を省略する。   As mentioned above, although one embodiment of the hydrodynamic bearing device 1 to which the configuration of the present invention was applied was described, the present invention is not limited to the hydrodynamic bearing device 1 having the above configuration, and other embodiments described below are applied. Of course, it is also possible to apply to such a hydrodynamic bearing device 1. In the following, only differences from the hydrodynamic bearing device 1 described above will be described in detail, and substantially the same members and the like will be denoted by common reference numerals and redundant description will be omitted.

図11は、本発明に係る流体軸受装置1の第2実施形態を示すものであり、図2に示すものと同様に、軸受部材7が、軸受スリーブ8と、この軸受スリーブ8をインサート部品として樹脂で射出成形されたシール部92を一体に有するハウジング9とからなり、かつ金属製の蓋部材10をハウジング9の小径外周面91b1に固定したものである。スラスト軸受隙間の幅設定後は、蓋部材10の筒部10bの上側端面10b1と、ハウジング9の段差面91a1との間に軸方向隙間δ1が形成される。   FIG. 11 shows a second embodiment of the hydrodynamic bearing device 1 according to the present invention. Like the one shown in FIG. 2, the bearing member 7 includes a bearing sleeve 8 and the bearing sleeve 8 as an insert part. The housing 9 integrally includes a seal portion 92 that is injection-molded with resin, and the metal lid member 10 is fixed to the small-diameter outer peripheral surface 91 b 1 of the housing 9. After setting the width of the thrust bearing gap, an axial gap δ1 is formed between the upper end surface 10b1 of the cylindrical portion 10b of the lid member 10 and the stepped surface 91a1 of the housing 9.

この第2実施形態に係る流体軸受装置1では、ハウジング9の本体部91を構成する薄肉部91bの下端に、内径側に延びる被覆部91cを形成し、この被覆部91cで軸受スリーブ8の外周チャンファ8foのみならず、軸受スリーブ8の下側端面8cの全体を被覆している。被覆部91cの端面には、第1スラスト軸受部T1のスラスト動圧発生部として機能する複数の動圧溝(例えば図4に示すヘリングボーン形状の動圧溝)が形成されている。   In the hydrodynamic bearing device 1 according to the second embodiment, a covering portion 91c extending toward the inner diameter side is formed at the lower end of the thin portion 91b constituting the main body portion 91 of the housing 9, and the outer periphery of the bearing sleeve 8 is formed by the covering portion 91c. Not only the chamfer 8fo but also the entire lower end surface 8c of the bearing sleeve 8 is covered. A plurality of dynamic pressure grooves (for example, herringbone-shaped dynamic pressure grooves shown in FIG. 4) functioning as thrust dynamic pressure generating portions of the first thrust bearing portion T1 are formed on the end surface of the covering portion 91c.

このように、ハウジング9の被覆部91cにスラスト動圧発生部を形成することにより、軸受スリーブ8の下側端面8cに形成していたスラスト動圧発生部が不要となる。そのため、軸受スリーブ8の半径方向の肉厚を、図2に示す実施形態に比べて薄くすることができる。この薄肉化により、焼結金属製の軸受スリーブ8に対する含油量を減じることができるため、軸受装置全体の保油量を少なくすることができ、昇温時における潤滑油の熱膨張量を抑制することができる。従って、シール隙間Sの容積を小さくすることができ、シール隙間Sの軸方向寸法を減じて軸受装置全体を軸方向で小型化することが、またあるいはラジアル軸受部R1、R2のスパンを拡大してラジアル方向の回転精度向上を図ることが可能となる。   Thus, by forming the thrust dynamic pressure generating portion in the covering portion 91c of the housing 9, the thrust dynamic pressure generating portion formed on the lower end surface 8c of the bearing sleeve 8 becomes unnecessary. Therefore, the radial thickness of the bearing sleeve 8 can be reduced as compared with the embodiment shown in FIG. This thinning can reduce the oil content in the bearing sleeve 8 made of sintered metal, so that the oil retention amount of the entire bearing device can be reduced, and the thermal expansion amount of the lubricating oil at the time of temperature rise is suppressed. be able to. Accordingly, the volume of the seal gap S can be reduced, the axial dimension of the seal gap S can be reduced to downsize the entire bearing device in the axial direction, or the span of the radial bearing portions R1 and R2 can be expanded. Thus, the rotational accuracy in the radial direction can be improved.

なお、被覆部91cのスラスト動圧発生部は、ハウジング9成形用の金型にスラスト動圧発生部に対応した溝型を予め形成しておくことで、ハウジング9の射出成形と同時に型成形することができる。これにより、スラスト動圧発生部の形成工程を省略して低コスト化を図ることができる。また、シール隙間Sの軸方向寸法が小さくなることで、ハウジング9におけるシール部92の肉厚と本体部91の肉厚差が小さくなるため、樹脂の成形収縮時における変形が生じにくくなる。そのため、この実施形態の流体軸受装置1ではハウジング9の上端外径部に形成する肉取りを省略している。   The thrust dynamic pressure generating portion of the covering portion 91c is molded simultaneously with the injection molding of the housing 9 by previously forming a groove mold corresponding to the thrust dynamic pressure generating portion in the mold for molding the housing 9. be able to. Thereby, the formation process of a thrust dynamic pressure generating part can be omitted and cost reduction can be achieved. Further, since the axial dimension of the seal gap S is reduced, the difference in thickness between the seal portion 92 and the main body portion 91 in the housing 9 is reduced, so that deformation at the time of molding shrinkage of the resin is less likely to occur. Therefore, in the hydrodynamic bearing device 1 of this embodiment, the meat removal formed in the upper end outer diameter portion of the housing 9 is omitted.

図12は、本発明に係る流体軸受装置1の第3実施形態を示すものである。同図に示す実施形態では、軸受部材7を、図2および図11に示す軸受スリーブ8と、これを内周に収容したハウジング9とを一体に有する樹脂の射出成形品とした点において、上記実施形態と構成を異にしている。詳細に述べると、軸受部材7は、厚肉部71aおよび薄肉部71bで構成された本体部71と、本体部71の上端内径側に設けられたシール部72とを一体に有する。そして、軸受部材7(本体部71)の内周面7aと軸部材2の外周面2a1との間にラジアル軸受隙間(ラジアル軸受部R1,R2)が形成され、軸受部材7(本体部71の薄肉部71b)の下側端面7bとフランジ部2bの上側端面2b1との間に第1スラスト軸受隙間(第1スラスト軸受部T1)が形成される。また、シール部72には、内周に潤滑油の油面を保持した保油部72aと、該保油部72aの上側で、シール隙間Sの隙間幅を縮小させる蓋部72bとが一体に設けられている。   FIG. 12 shows a third embodiment of the hydrodynamic bearing device 1 according to the present invention. In the embodiment shown in the figure, the bearing member 7 is the above-described one in that the bearing sleeve 8 shown in FIGS. 2 and 11 and a resin injection molding product integrally including a housing 9 accommodated in the inner periphery thereof are used. The configuration is different from that of the embodiment. More specifically, the bearing member 7 integrally includes a main body portion 71 composed of a thick portion 71a and a thin portion 71b, and a seal portion 72 provided on the upper end inner diameter side of the main body portion 71. Then, radial bearing gaps (radial bearing portions R1, R2) are formed between the inner peripheral surface 7a of the bearing member 7 (main body portion 71) and the outer peripheral surface 2a1 of the shaft member 2, and the bearing member 7 (the main body portion 71). A first thrust bearing gap (first thrust bearing portion T1) is formed between the lower end surface 7b of the thin portion 71b) and the upper end surface 2b1 of the flange portion 2b. The seal portion 72 is integrally formed with an oil retaining portion 72a that holds the oil level of the lubricating oil on the inner periphery and a lid portion 72b that reduces the clearance width of the seal clearance S above the oil retaining portion 72a. Is provided.

このようにすれば、以上で説明した実施形態に比べ、部品点数および組み立て工数を減じて、流体軸受装置1の低コスト化を図ることができる。また、軸受部材7の全体を非多孔質体で形成することができるので、軸受内部に充満すべき潤滑油量を減じてシール隙間Sの容積を一層小さくすることができる。従い、シール隙間Sの軸方向寸法を減じて軸受装置全体を軸方向で一層小型化することが、またあるいはラジアル軸受部R1、R2のスパンを拡大してラジアル方向の回転精度を一層向上することが可能となる。   If it does in this way, compared with embodiment described above, the number of parts and an assembly man-hour can be reduced, and cost reduction of the hydrodynamic bearing device 1 can be achieved. Further, since the entire bearing member 7 can be formed of a non-porous body, the volume of the seal gap S can be further reduced by reducing the amount of lubricating oil to be filled in the bearing. Accordingly, the axial dimension of the seal gap S can be reduced to further reduce the size of the entire bearing device in the axial direction, or the span of the radial bearing portions R1 and R2 can be expanded to further improve the rotational accuracy in the radial direction. Is possible.

以上で説明した図2および図11に示す実施形態では、ハウジング9の成形材料として、また図12に示す実施形態では軸受部材7の成形材料として樹脂を使用しているが、コスト面等で問題がなければ、これらの成形材料として、例えば、マグネシウム合金やアルミニウム合金等の低融点金属材料を使用することも可能である。また、これらは、いわゆるMIM成形品とすることも可能である。但し、ハウジング9を、軸受スリーブ8をインサート部品とした金属の射出成形品あるいはMIM成形品とする場合には、射出材料を軸受スリーブ8よりも低融点のものにするのが肝要である。インサート部品とされる軸受スリーブ8が熱変形等するのを防止するためである。   In the embodiment shown in FIG. 2 and FIG. 11 described above, resin is used as the molding material for the housing 9, and in the embodiment shown in FIG. 12, the resin is used as the molding material for the bearing member 7. If not, it is also possible to use a low melting point metal material such as a magnesium alloy or an aluminum alloy as these molding materials. These can also be so-called MIM molded products. However, when the housing 9 is a metal injection molded product or MIM molded product using the bearing sleeve 8 as an insert part, it is important that the injection material has a lower melting point than the bearing sleeve 8. This is to prevent the bearing sleeve 8, which is an insert part, from being thermally deformed.

また、以上では、ハウジング9と一体に(図2、図12)、もしくは軸受部材7と一体に(図13)に型成形されたシール部に本発明の構成を適用した場合について説明を行ったが、ハウジング9や軸受部材7とは別体に設けられ、ハウジング等に適宜の手段で固定されるシール部に本発明の構成を適用することも可能である。   In the above description, the case where the configuration of the present invention is applied to the seal portion molded integrally with the housing 9 (FIGS. 2 and 12) or integrally formed with the bearing member 7 (FIG. 13) has been described. However, it is also possible to apply the configuration of the present invention to a seal portion provided separately from the housing 9 and the bearing member 7 and fixed to the housing or the like by an appropriate means.

また、以上の実施形態では、ヘリングボーン形状等の動圧溝による動圧作用により動圧軸受からなるラジアル軸受部R1,R2を構成した場合について説明を行ったが、いわゆる多円弧軸受、ステップ軸受、および波型軸受等、公知のその他の動圧軸受でラジアル軸受部を構成することも可能である。また、ラジアル軸受隙間を介して対向する二面の双方を円筒面とした、いわゆる真円軸受でラジアル軸受部を構成することもできる。   Further, in the above embodiment, the case where the radial bearing portions R1 and R2 including the dynamic pressure bearing are configured by the dynamic pressure action by the dynamic pressure groove having a herringbone shape or the like has been described. It is also possible to configure the radial bearing portion with other known hydrodynamic bearings such as a wave bearing and the like. Moreover, a radial bearing part can also be comprised with what is called a perfect-circle bearing which made both two surfaces which oppose through a radial bearing clearance | interval the cylindrical surface.

また、以上の実施形態では、ヘリングボーン形状等の動圧溝による動圧作用により動圧軸受からなるスラスト軸受部T1,T2を構成した場合について説明を行ったが、いわゆるステップ軸受や波型軸受等、公知のその他の動圧軸受でスラスト軸受部T1,T2の何れか一方又は双方を構成することもできる。また、スラスト軸受部は、軸部材2の一端を接触支持するいわゆるピボット軸受で構成することもできる。   In the above embodiment, the case where the thrust bearing portions T1 and T2 made of a dynamic pressure bearing are configured by the dynamic pressure action by the dynamic pressure groove having a herringbone shape or the like has been described. Any one or both of the thrust bearing portions T1 and T2 can be configured by other known hydrodynamic bearings. Further, the thrust bearing portion can be constituted by a so-called pivot bearing that contacts and supports one end of the shaft member 2.

1 流体軸受装置
2 軸部材
2a 軸部
6 モータブラケット
7 軸受部材
8 軸受スリーブ
9 ハウジング
91 本体部
92 シール部
92a 保油部
92b 蓋部
10 蓋部材
10b 筒部
11 連通孔
A1、A2 ラジアル軸受面
B、C スラスト軸受面
S シール隙間
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Fluid dynamic bearing apparatus 2 Shaft member 2a Shaft part 6 Motor bracket 7 Bearing member 8 Bearing sleeve 9 Housing 91 Main body part 92 Sealing part 92a Oil retaining part 92b Lid part 10 Lid member 10b Cylindrical part 11 Communication hole A1, A2 Radial bearing surface B , C Thrust bearing surface S Seal gap R1, R2 Radial bearing portion T1, T2 Thrust bearing portion

Claims (11)

少なくとも一端が開口した軸受部材と、軸受部材の内周に挿入され、軸受部材の内周面との間にラジアル軸受隙間を形成する軸部材と、軸受部材の開口部に配設され、軸部材の外周面との間に一端が大気に開放したシール隙間を形成するシール部とを備え、ラジアル軸受隙間に形成される潤滑油の油膜で軸部材をラジアル方向に支持する流体軸受装置において、
シール部に、内周に潤滑油の油面を保持する保油部と、該保油部の大気開放側で、シール隙間の隙間幅を縮小させる蓋部とを一体に設け、該蓋部を、シール部を部分的に変形させることで形成したことを特徴とする流体軸受装置。
A shaft member that is inserted in the inner periphery of the bearing member at least at one end thereof, and that forms a radial bearing gap between the inner peripheral surface of the bearing member; and the shaft member disposed in the opening of the bearing member. A hydrodynamic bearing device that supports a shaft member in a radial direction with an oil film of a lubricating oil formed in a radial bearing gap.
The seal portion is integrally provided with an oil retaining portion that holds the oil level of the lubricating oil on the inner periphery and a lid portion that reduces the gap width of the seal gap on the air release side of the oil retaining portion. A hydrodynamic bearing device formed by partially deforming a seal portion .
蓋部で形成されるシール隙間の最小幅部の隙間幅を、保油部で形成されるシール隙間の最大幅部の隙間幅の1/2以下に設定した請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the gap width of the minimum width portion of the seal gap formed by the lid portion is set to ½ or less of the gap width of the maximum width portion of the seal gap formed by the oil retaining portion. 軸部材に凹部を設け、該凹部内に蓋部の先端を収容した請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the shaft member is provided with a recess, and the tip of the lid is accommodated in the recess. 保油部の内周面を、反大気開放側に向かって漸次縮径させた請求項1記載の流体動圧軸受装置。   The fluid dynamic pressure bearing device according to claim 1, wherein the inner peripheral surface of the oil retaining portion is gradually reduced in diameter toward the air release side. 軸受部材が、ラジアル軸受隙間の外径寸法を規定する面を有する軸受スリーブと、軸受スリーブを内周に収容したハウジングとを備え、
シール部が、軸受スリーブをインサート部品としてハウジングと一体に型成形された請求項1記載の流体軸受装置。
The bearing member includes a bearing sleeve having a surface that defines an outer diameter dimension of the radial bearing gap, and a housing in which the bearing sleeve is accommodated in the inner periphery,
The hydrodynamic bearing device according to claim 1, wherein the seal portion is molded integrally with the housing using a bearing sleeve as an insert part.
軸受スリーブが、多孔質体で形成された請求項記載の流体軸受装置。 The hydrodynamic bearing device according to claim 5 , wherein the bearing sleeve is formed of a porous body. シール部が、軸受部材と一体に型成形された請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the seal portion is molded integrally with the bearing member. 軸受部材の他端を開口させ、該他端開口を軸受部材の外周面に固定した蓋部材で閉塞した請求項1記載の流体軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein the other end of the bearing member is opened, and the other end opening is closed with a lid member fixed to the outer peripheral surface of the bearing member. 少なくとも一端が開口した軸受部材と、軸受部材の内周に挿入され、軸受部材の内周面との間にラジアル軸受隙間を形成する軸部材と、軸受部材の開口部に配設され、軸部材の外周面との間に一端が大気に開放したシール隙間を形成するシール部とを備え、ラジアル軸受隙間に形成される潤滑油の油膜で軸部材をラジアル方向に支持する流体軸受装置の製造方法において、
シール部を部分的に変形させることにより、内周に潤滑油の油面を保持する保油部の大気開放側に、シール隙間の隙間幅を縮小させる蓋部を形成する工程を含むことを特徴とする流体軸受装置の製造方法。
A shaft member that is inserted in the inner periphery of the bearing member at least at one end thereof, and that forms a radial bearing gap between the inner peripheral surface of the bearing member; and the shaft member disposed in the opening of the bearing member. And a seal portion that forms a seal gap with one end opened to the atmosphere between the outer peripheral surface of the shaft and the hydrodynamic bearing device that supports the shaft member in the radial direction with a lubricating oil film formed in the radial bearing gap In
Including a step of forming a lid portion for reducing the gap width of the seal gap on the air release side of the oil retaining portion that holds the oil surface of the lubricating oil on the inner periphery by partially deforming the seal portion. A method for manufacturing a hydrodynamic bearing device.
蓋部の形成後、軸受部材の内部空間に潤滑油を供給する請求項記載の流体軸受装置の製造方法。 The method for manufacturing a hydrodynamic bearing device according to claim 9 , wherein after the lid portion is formed, lubricating oil is supplied to the internal space of the bearing member. 軸受部材の内部空間に潤滑油を供給した後、蓋部を形成する請求項記載の流体軸受装置の製造方法。 The method for manufacturing a hydrodynamic bearing device according to claim 9 , wherein the lid portion is formed after the lubricating oil is supplied to the internal space of the bearing member.
JP2009098994A 2009-04-15 2009-04-15 Hydrodynamic bearing device and manufacturing method thereof Expired - Fee Related JP5284172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098994A JP5284172B2 (en) 2009-04-15 2009-04-15 Hydrodynamic bearing device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098994A JP5284172B2 (en) 2009-04-15 2009-04-15 Hydrodynamic bearing device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010249217A JP2010249217A (en) 2010-11-04
JP5284172B2 true JP5284172B2 (en) 2013-09-11

Family

ID=43311780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098994A Expired - Fee Related JP5284172B2 (en) 2009-04-15 2009-04-15 Hydrodynamic bearing device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5284172B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3693743B2 (en) * 1996-04-08 2005-09-07 光洋精工株式会社 Hydrodynamic bearing
JP2001208067A (en) * 2000-01-24 2001-08-03 Canon Precision Inc Kinetic pressure oil bearing
JP4248176B2 (en) * 2001-12-14 2009-04-02 株式会社ジェイテクト Hydrodynamic bearing
JP4949216B2 (en) * 2007-12-07 2012-06-06 Ntn株式会社 Hydrodynamic bearing device

Also Published As

Publication number Publication date
JP2010249217A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
KR101519426B1 (en) Fluid dynamic-pressure bearing device
JP5306747B2 (en) Hydrodynamic bearing device
WO2010004828A1 (en) Fluid dynamic pressure bearing device
KR101413554B1 (en) Fluid bearing device and process for manufacturing the same
JP4738868B2 (en) Hydrodynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
WO2005059387A1 (en) Fluid bearing device
JP2005282779A (en) Fluid bearing device
JP2007051717A (en) Manufacturing method of dynamic pressure bearing device
JP2007071274A (en) Dynamic pressure bearing device
JP2010106994A (en) Fluid bearing device
JP4689283B2 (en) Hydrodynamic bearing device
JP2009103252A (en) Fluid bearing device and motor having the same
JP5284172B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2010096200A (en) Fluid bearing device and its manufacturing method
JP2007327588A (en) Fluid bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP4828908B2 (en) Hydrodynamic bearing device
JP2010043666A (en) Dynamic pressure bearing device
JP4916941B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2009228873A (en) Fluid bearing device
JP5318343B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2007071312A (en) Dynamic pressure bearing device
JP5335304B2 (en) Fluid dynamic bearing device
JP5335311B2 (en) Fluid dynamic bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130529

R150 Certificate of patent or registration of utility model

Ref document number: 5284172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees