JP5064083B2 - Method for manufacturing hydrodynamic bearing device - Google Patents

Method for manufacturing hydrodynamic bearing device Download PDF

Info

Publication number
JP5064083B2
JP5064083B2 JP2007098667A JP2007098667A JP5064083B2 JP 5064083 B2 JP5064083 B2 JP 5064083B2 JP 2007098667 A JP2007098667 A JP 2007098667A JP 2007098667 A JP2007098667 A JP 2007098667A JP 5064083 B2 JP5064083 B2 JP 5064083B2
Authority
JP
Japan
Prior art keywords
housing
bearing
peripheral surface
dynamic pressure
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007098667A
Other languages
Japanese (ja)
Other versions
JP2008256087A (en
Inventor
正明 戸田
功 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2007098667A priority Critical patent/JP5064083B2/en
Publication of JP2008256087A publication Critical patent/JP2008256087A/en
Application granted granted Critical
Publication of JP5064083B2 publication Critical patent/JP5064083B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、軸受隙間に形成された潤滑膜で軸部材を回転可能に支持する流体軸受装置の製造方法に関する。   The present invention relates to a method for manufacturing a hydrodynamic bearing device in which a shaft member is rotatably supported by a lubricating film formed in a bearing gap.

流体軸受装置は、その高回転精度および静粛性から、情報機器、例えばHDD等の磁気ディスク駆動装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク駆動装置、MD、MO等の光磁気ディスク駆動装置等のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイール、あるいは電気機器の冷却ファン等に使用されるファンモータなどの小型モータ用として好適に使用可能である。   Due to its high rotational accuracy and quietness, the hydrodynamic bearing device is an information device, for example, a magnetic disk drive device such as HDD, an optical disk drive device such as CD-ROM, CD-R / RW, DVD-ROM / RAM, MD, MO, etc. Suitable for small motors such as fan motors used for spindle motors such as magneto-optical disk drive devices, etc., polygon scanner motors for laser beam printers (LBP), color wheels for projectors, cooling fans for electrical equipment, etc. It can be used.

例えば特許文献1に示されている流体軸受装置は、有底筒状のハウジングと、ハウジングの内周に固定された軸受スリーブと、軸受スリーブの内周に挿入された軸部材と、軸部材に固定されたディスクハブとを備える。軸受スリーブの内周面と軸部材の外周面との間にラジアル軸受隙間が形成されると共に、ハウジングの上端面とディスクハブとの間にスラスト軸受隙間が形成される。   For example, a hydrodynamic bearing device disclosed in Patent Document 1 includes a bottomed cylindrical housing, a bearing sleeve fixed to the inner periphery of the housing, a shaft member inserted into the inner periphery of the bearing sleeve, and a shaft member. A fixed disk hub. A radial bearing gap is formed between the inner peripheral surface of the bearing sleeve and the outer peripheral surface of the shaft member, and a thrust bearing gap is formed between the upper end surface of the housing and the disk hub.

特開2006−207787号公報JP 2006-207787 A

このような流体軸受装置では、軸受スリーブの内周面に形成されたラジアル軸受面と、ハウジングの上端面に形成されたスラスト軸受面との直角度等の寸法精度が重要となる。この寸法精度が十分でないと、ラジアル軸受隙間及びスラスト軸受隙間の幅精度が低下し、回転精度や軸受剛性等に悪影響を与える恐れがある。この寸法精度を高めるためには、ハウジング及び軸受スリーブを高精度に加工すると共に、両部材の組み立てに用いる治具の精度も良好にして組み立て精度を向上させる必要がある。しかし、かかる高精度な加工及び組み立ては製造コストの高騰や生産効率の低下を招く。   In such a hydrodynamic bearing device, the dimensional accuracy such as the squareness between the radial bearing surface formed on the inner peripheral surface of the bearing sleeve and the thrust bearing surface formed on the upper end surface of the housing is important. If this dimensional accuracy is not sufficient, the width accuracy of the radial bearing gap and the thrust bearing gap is lowered, which may adversely affect the rotation accuracy, bearing rigidity, and the like. In order to increase the dimensional accuracy, it is necessary to process the housing and the bearing sleeve with high accuracy, improve the accuracy of the jig used to assemble both members, and improve the assembly accuracy. However, such highly accurate processing and assembly leads to a rise in manufacturing cost and a decrease in production efficiency.

本発明の課題は、ラジアル軸受面とスラスト軸受面との直角度等の寸法精度を、簡易且つ低コストに高めることのできる流体軸受装置の製造方法を提供することにある。   The subject of this invention is providing the manufacturing method of the hydrodynamic bearing apparatus which can raise dimensional accuracy, such as a squareness of a radial bearing surface and a thrust bearing surface, simply and at low cost.

前記課題を解決するために、本発明は、筒状の側部を有するハウジングと、前記ハウジングの内周に固定された軸受スリーブと、前記ハウジングの側部の軸方向一方側の端面に形成されたスラスト軸受面が面するスラスト軸受隙間と、前記軸受スリーブの内周面に形成されたラジアル軸受面が面するラジアル軸受隙間と、前記ハウジングの側部の外周面の軸方向一方側の端部付近に設けられ、軸方向他方へ向けて漸次縮径したテーパ面と、前記テーパ面が面し、軸受内部の潤滑剤の外部への漏れ出しを防止するシール空間とを備えた流体軸受装置を製造するための方法であって、前記ハウジングの内周に前記軸受スリーブを配置し、前記軸受スリーブの内周に雄型を挿入するステップと、前記ハウジングを軸方向他方側から支持しない状態で、前記雄型で前記ハウジングの軸方向一方側の端面を軸方向他方側押し込んで、前記ハウジング、前記軸受スリーブ、及び前記雄型を、前記ハウジングの外周面よりも圧入代の分だけ小径に設定された雌型の内周に圧入して前記ハウジングを縮径させることにより、前記軸受スリーブの内周面を前記雄型の外周面に押し付けて前記ラジアル軸受面を型成形すると共に、前記ハウジングの内周面と前記軸受スリーブの外周面とを圧着固定するステップと前記雌型で前記ハウジングのテーパ面を軸方向他方側から支持した状態で、前記雄型前記ハウジングの軸方向一方側の端面軸方向圧迫することにより、前記ハウジングの軸方向一方側の端面に前記スラスト軸受面を型成形するステップとを有するものである。尚、ここでいう軸受面とは、軸受隙間に面する部分のことを言い、この面に動圧発生部が形成されているか否かを問わない(以下の説 明においても同様)。 In order to solve the above problems, the present invention is formed on a housing having a cylindrical side portion, a bearing sleeve fixed to the inner periphery of the housing, and an end surface on one axial side of the side portion of the housing. A thrust bearing gap that faces the thrust bearing surface, a radial bearing gap that faces a radial bearing surface that is formed on the inner peripheral surface of the bearing sleeve, and an end portion on one axial side of the outer peripheral surface of the side portion of the housing A hydrodynamic bearing device provided with a tapered surface provided in the vicinity and gradually reduced in diameter toward the other in the axial direction, and a seal space that faces the tapered surface and prevents leakage of lubricant inside the bearing to the outside. a method for manufacturing, the bearing sleeve is arranged on the inner periphery of the housing, inserting the male into the inner periphery of the bearing sleeve, with no supporting said housing from the other axial side Push the end surface of one axial side of the housing on the other side in the axial direction in the male, the housing, setting the bearing sleeve, and the male, the small-diameter by the amount of press-fitting margin of the outer circumferential surface of the housing the Rukoto reduced in diameter to the housing by press-fitting to the inner periphery of the female mold which is, as well as molding the radial bearing surface against the inner circumferential surface of the bearing sleeve on the outer peripheral surface of the male, the housing the inner peripheral surface and a step of crimping and fixing the outer peripheral surface of the bearing sleeve, in a state in which the tapered surface of the housing in the female support from the other axial side, one axial side of the housing in the male by pressing the end face of the axial direction, in which a step of molding the thrust bearing surface to the end surface of one axial side of the housing. Incidentally, the bearing surface here means a portion facing the bearing gap, and it does not matter whether a dynamic pressure generating portion is formed on this surface (the same applies to the following description).

このように、本発明の製造方法によると、軸受スリーブに形成されたラジアル軸受面とハウジング側部に形成されたスラスト軸受面とを同一の金型で型成形することができるため、この金型を精度良く加工しておくことにより、これらの直角度や振れ精度等の寸法精度を高めることができる。また、この型成形の圧迫力で、ハウジング側部の内周面と軸受スリーブの外周面とを圧着固定することにより、ハウジングと軸受スリーブの組み付け時にラジアル軸受面とスラスト軸受面との間の寸法精度が悪化する事態を回避することができる。また、この製造方法によると、ラジアル軸受面及びスラスト軸受面を型成形する金型内でハウジング及び軸受スリーブの固定を行うことができるため、ハウジング及び軸受スリーブのサブアッシ品におけるラジアル軸受面及びスラスト軸受面の面精度や直角度等の寸法精度を高めることができる。従って、組み付け前のハウジング及び軸受スリーブに要求される寸法精度が緩和され、これらの部材の加工コストの低減が図られる。   Thus, according to the manufacturing method of the present invention, the radial bearing surface formed on the bearing sleeve and the thrust bearing surface formed on the side of the housing can be molded with the same mold. By accurately machining the dimensional accuracy, the dimensional accuracy such as the squareness and the deflection accuracy can be increased. In addition, by pressing and fixing the inner peripheral surface of the housing side and the outer peripheral surface of the bearing sleeve with this molding pressure, the dimension between the radial bearing surface and the thrust bearing surface when the housing and the bearing sleeve are assembled. A situation in which the accuracy deteriorates can be avoided. Further, according to this manufacturing method, since the housing and the bearing sleeve can be fixed in the mold for molding the radial bearing surface and the thrust bearing surface, the radial bearing surface and the thrust bearing in the sub-assemblies of the housing and the bearing sleeve are provided. Dimensional accuracy such as surface accuracy and perpendicularity of the surface can be increased. Therefore, the dimensional accuracy required for the housing and the bearing sleeve before assembly is relaxed, and the processing cost of these members can be reduced.

このスラスト軸受面の型成形時の圧迫力で、スラスト軸受隙間の潤滑膜に動圧作用を発生させるスラスト動圧発生部を型成形すると、加工工数が削減され、製造コストの低減及び生産効率の向上が図られる。また、ラジアル軸受面の型成形時の圧迫力で、ラジアル軸受隙間の潤滑膜に動圧作用を発生させるラジアル動圧発生部を型成形しても、上記と同様の効果が得られる。   When the thrust dynamic pressure generating part that generates dynamic pressure action on the lubricating film in the thrust bearing gap is molded by the compression force at the time of molding the thrust bearing surface, the processing man-hours are reduced, the manufacturing cost is reduced, and the production efficiency is reduced. Improvement is achieved. Further, the same effect as described above can be obtained even if a radial dynamic pressure generating portion that generates a dynamic pressure action on the lubricating film in the radial bearing gap is molded by the pressing force at the time of molding the radial bearing surface.

また、この流体軸受装置のハウジングが、軸受内部の潤滑剤の外部への漏れ出しを防止するシール空間に面するシール面を有する場合、このシール面を、前記ラジアル軸受面及びスラスト軸受面の型成形時の圧迫力で型成形すれば、加工工数が削減され、製造コストの低減及び生産効率の向上が図られる。また、この製造方法によると、各軸受面の成形とシール面の成形とを同一の金型で行うことができるため、各軸受面に対するシール面の寸法精度を高めることができる。これにより、軸部材の回転時に形成されるシール空間の精度が高められ、シール性能の向上が図られる。   Further, when the housing of the hydrodynamic bearing device has a seal surface facing a seal space that prevents the lubricant inside the bearing from leaking to the outside, the seal surface is formed by the type of the radial bearing surface and the thrust bearing surface. If the molding is performed with the pressing force at the time of molding, the number of processing steps is reduced, and the manufacturing cost is reduced and the production efficiency is improved. Further, according to this manufacturing method, the molding of each bearing surface and the molding of the seal surface can be performed with the same mold, so that the dimensional accuracy of the seal surface with respect to each bearing surface can be increased. Thereby, the precision of the seal space formed at the time of rotation of a shaft member is raised, and the improvement of a sealing performance is achieved.

以上のように、本発明の流体軸受装置の製造方法によると、簡易且つ低コストに、ラジアル軸受面とスラスト軸受面との直角度等の寸法精度を高精度に設定することができる。   As described above, according to the method for manufacturing a fluid dynamic bearing device of the present invention, the dimensional accuracy such as the perpendicularity between the radial bearing surface and the thrust bearing surface can be set with high accuracy easily and at low cost.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の製造方法が適用される流体軸受装置(動圧軸受装置1)を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。この情報機器用スピンドルモータは、HDD等のディスク駆動装置に用いられるもので、動圧軸受装置1と、例えば、半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はブラケット6の外径側内周面6aに取り付けられ、ロータマグネット5は、動圧軸受装置1に設けられたディスクハブ3の外周に取り付けられている。ディスクハブ3には、磁気ディスク等のディスク状情報記録媒体(図示省略)が一枚または複数枚保持される。ブラケット6の内周には動圧軸受装置1のハウジング7が装着されている。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する励磁力でロータマグネット5が回転し、それに伴って、ディスクハブ3及びディスクが回転する。   FIG. 1 conceptually shows one configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device (dynamic pressure bearing device 1) to which the manufacturing method of the present invention is applied. This spindle motor for information equipment is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 and, for example, a stator coil 4 and a rotor magnet 5 that are opposed to each other with a gap in the radial direction. Yes. The stator coil 4 is attached to the outer peripheral side inner peripheral surface 6 a of the bracket 6, and the rotor magnet 5 is attached to the outer periphery of the disk hub 3 provided in the hydrodynamic bearing device 1. The disk hub 3 holds one or more disk-shaped information recording media (not shown) such as magnetic disks. A housing 7 of the hydrodynamic bearing device 1 is mounted on the inner periphery of the bracket 6. When the stator coil 4 is energized, the rotor magnet 5 is rotated by an exciting force generated between the stator coil 4 and the rotor magnet 5, and accordingly, the disk hub 3 and the disk are rotated.

図2に、動圧軸受装置1を示す。動圧軸受装置1は、軸部材2と、軸部材2に設けられたフランジ状のディスクハブ3と、内周に軸部材2を挿入した軸受スリーブ8と、軸受スリーブ8を内周に保持する有底筒状のハウジング7とを備える。なお、説明の便宜上、ハウジング7の開口側を上側、閉口側を下側として、以下の説明を行う。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a shaft member 2, a flange-shaped disk hub 3 provided on the shaft member 2, a bearing sleeve 8 with the shaft member 2 inserted on the inner periphery, and a bearing sleeve 8 held on the inner periphery. And a bottomed cylindrical housing 7. For convenience of explanation, the following description will be given with the opening side of the housing 7 as the upper side and the closing side as the lower side.

この動圧軸受装置1では、軸部材2の外周面2aと軸受スリーブ8の内周面8aとの間に、軸部材2及びディスクハブ3をラジアル方向に支持するラジアル軸受部R1、R2が形成される。また、ディスクハブ3の基部3aの下側端面3a1と軸受スリーブ8の上側端面8bとの間に、軸部材2及びディスクハブ3をスラスト方向に支持するスラスト軸受部Tが形成される。   In the hydrodynamic bearing device 1, radial bearing portions R 1 and R 2 that support the shaft member 2 and the disk hub 3 in the radial direction are formed between the outer peripheral surface 2 a of the shaft member 2 and the inner peripheral surface 8 a of the bearing sleeve 8. Is done. A thrust bearing portion T that supports the shaft member 2 and the disc hub 3 in the thrust direction is formed between the lower end surface 3a1 of the base portion 3a of the disc hub 3 and the upper end surface 8b of the bearing sleeve 8.

軸部材2は、例えばステンレス鋼等の金属材料を切削加工もしくは鍛造加工することにより形成される。軸部材2の外周面2aは、動圧発生部を有さない平滑な円筒面状に形成され、軸受スリーブ8の内周面8aとラジアル軸受隙間を介して対向する。   The shaft member 2 is formed by cutting or forging a metal material such as stainless steel. The outer peripheral surface 2a of the shaft member 2 is formed in a smooth cylindrical surface having no dynamic pressure generating portion, and is opposed to the inner peripheral surface 8a of the bearing sleeve 8 via a radial bearing gap.

ディスクハブ3は、例えば金属材料で形成され、軸部材2の上端に、接着、圧入、接着剤介在下での圧入(以下、圧入接着と称す)等の手段により固定される。ディスクハブ3は、略円板形状を成す基部3aと、基部3aの外周部から軸方向下方に延在した周壁部3bと、周壁部3bの外周に設けられた鍔部3cと、ディスク搭載面3dとを備えている。ディスク搭載面3dには、図示しない磁気ディスク等が載置される。周壁部3bの外周面3b1には、ロータマグネット5が取り付けられる。   The disk hub 3 is formed of, for example, a metal material, and is fixed to the upper end of the shaft member 2 by means such as adhesion, press-fitting, or press-fitting with an adhesive (hereinafter referred to as press-fitting adhesion). The disc hub 3 includes a base portion 3a having a substantially disc shape, a peripheral wall portion 3b extending axially downward from the outer peripheral portion of the base portion 3a, a flange portion 3c provided on the outer periphery of the peripheral wall portion 3b, and a disc mounting surface. 3d. A magnetic disk or the like (not shown) is placed on the disk mounting surface 3d. A rotor magnet 5 is attached to the outer peripheral surface 3b1 of the peripheral wall 3b.

ディスクハブ3の周壁部3bの内周には抜け止め部材9が設けられる。抜け止め部材9は、例えば、金属材料、例えば真ちゅう等の軟質金属のプレス成形で断面略L字型のリング状に形成され、周壁部3bの内周面上端部に設けられた段部3eに、接着、溶接等の適宜の手段で固定される。抜け止め部材9の内周面9aは、上方へ向けて漸次拡径したテーパ面状に形成され、この面の軸方向に対する傾斜角は、対向するハウジング7のテーパ面7a4よりも小さく設定される。これにより、抜け止め部材9の内周面9aとハウジング7のテーパ面7a4との間に、上方へ向けて径方向幅を漸次縮小したテーパ状のシール空間Sが形成される。このシール空間Sの毛細管力による引き込み作用に加えて、遠心力により外径方向へ流動したシール空間S内の潤滑流体が、テーパ状の抜け止め部材9の内周面9aにより上方、すなわち軸受内部側へ押込まれることにより、潤滑流体の外部への漏れ出しが確実に防止される。   A retaining member 9 is provided on the inner periphery of the peripheral wall 3 b of the disk hub 3. The retaining member 9 is formed in a ring shape having a substantially L-shaped cross section by press molding of a metal material, for example, a soft metal such as brass, and is provided on a step portion 3e provided at the upper end portion of the inner peripheral surface of the peripheral wall portion 3b. It is fixed by appropriate means such as adhesion and welding. The inner peripheral surface 9a of the retaining member 9 is formed in a tapered surface shape whose diameter is gradually increased upward, and the inclination angle of this surface with respect to the axial direction is set smaller than the tapered surface 7a4 of the opposing housing 7. . As a result, a tapered seal space S is formed between the inner peripheral surface 9a of the retaining member 9 and the tapered surface 7a4 of the housing 7, with the radial width gradually reduced upward. In addition to the pull-in action by the capillary force of the seal space S, the lubricating fluid in the seal space S that has flowed in the outer diameter direction due to the centrifugal force is moved upward by the inner peripheral surface 9a of the tapered retaining member 9, that is, inside the bearing. By being pushed to the side, leakage of the lubricating fluid to the outside is surely prevented.

ハウジング7は、例えば真ちゅう等の金属材料の鍛造加工により形成され、筒状に形成された側部7aと、側部7aの一端開口部を閉塞する底部7bとを一体に備える。尚、本実施形態では側部7aと底部7bとが一体成形されているが、これらを別体に形成した後、接着、溶接、溶着等の手段により両者を固定してもよい。また、ハウジング7の形成方法は鍛造加工に限らず、例えばプレス加工や機械加工で形成することもできる。   The housing 7 is formed by forging a metal material such as brass, for example, and integrally includes a side portion 7a formed in a cylindrical shape and a bottom portion 7b that closes one end opening of the side portion 7a. In the present embodiment, the side portion 7a and the bottom portion 7b are integrally formed. However, after these are formed separately, they may be fixed together by means such as adhesion, welding, or welding. Further, the method of forming the housing 7 is not limited to forging, and can be formed by, for example, pressing or machining.

側部7aの上側端面7a1は、スラスト軸受隙間に面するスラスト軸受面Bとして機能し、この面に、スラスト動圧発生部としてスパイラル形状に配列した動圧溝7a10が形成される(図4参照)。側部7aの外周面上方部には径方向の肩面7a3、及び肩面7a3の内径端から下方へ向けて漸次縮径したテーパ面7a4が設けられ、側部7aの外周面下方部には円筒面7a5が設けられる。肩面7a3は、抜け止め部材9の上側端面9bと係合し、軸部材2及びディスクハブ3の抜けを規制している。テーパ面7a4は、ディスクハブ3に固定された抜け止め部材9の内周面9aとの間に、上方に向けて径方向寸法が漸次縮小した環状のシール空間Sを形成する。このシール空間Sは、後述するスラスト軸受部Tのスラスト軸受隙間の外径側と連通している。円筒面7a5は、ブラケット6の内周面に接着等により固定される。   The upper end surface 7a1 of the side portion 7a functions as a thrust bearing surface B facing the thrust bearing gap, and a dynamic pressure groove 7a10 arranged in a spiral shape as a thrust dynamic pressure generating portion is formed on this surface (see FIG. 4). ). A radial shoulder surface 7a3 and a tapered surface 7a4 that is gradually reduced in diameter downward from the inner diameter end of the shoulder surface 7a3 are provided in the upper portion of the outer peripheral surface of the side portion 7a. A cylindrical surface 7a5 is provided. The shoulder surface 7a3 engages with the upper end surface 9b of the retaining member 9 and restricts the shaft member 2 and the disc hub 3 from coming off. The taper surface 7a4 forms an annular seal space S whose radial dimension is gradually reduced upward with the inner peripheral surface 9a of the retaining member 9 fixed to the disk hub 3. The seal space S communicates with an outer diameter side of a thrust bearing gap of a thrust bearing portion T described later. The cylindrical surface 7a5 is fixed to the inner peripheral surface of the bracket 6 by adhesion or the like.

軸受スリーブ8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体で円筒状に形成され、ハウジング7の内周面7a2の所定位置に圧入、接着、あるいは圧入接着等の手段で固定される。なお、軸受スリーブ8は、焼結金属以外にも銅合金等のメタル材料で形成することもできる。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body made of sintered metal, in particular, a sintered metal porous body mainly composed of copper, and is press-fitted into a predetermined position on the inner peripheral surface 7a2 of the housing 7, It is fixed by means such as adhesion or press-fit adhesion. The bearing sleeve 8 can be formed of a metal material such as a copper alloy in addition to the sintered metal.

軸受スリーブ8の内周面8aは、ラジアル軸受隙間に面するラジアル軸受面Aとして機能し、この面の軸方向に離隔した2箇所の領域に、ラジアル動圧発生部としてヘリングボーン形状に配列した動圧溝8a1、8a2が形成される(図3参照)。また、軸受スリーブ8の外周面8dに軸方向溝8d1が1又は複数本形成されると共に、下側端面8cに前記軸方向溝8d1と連通した径方向溝8c1が形成される。尚、これらの軸方向溝及び径方向溝は、ハウジング7の内周面7a2及び内底面7b1に形成してもよい。あるいは、軸受スリーブ8側及びハウジング7側の双方に軸方向溝及び径方向溝を形成してもよい。   The inner peripheral surface 8a of the bearing sleeve 8 functions as a radial bearing surface A facing the radial bearing gap, and is arranged in a herringbone shape as a radial dynamic pressure generating portion in two regions separated in the axial direction of this surface. Dynamic pressure grooves 8a1 and 8a2 are formed (see FIG. 3). Further, one or a plurality of axial grooves 8d1 are formed on the outer peripheral surface 8d of the bearing sleeve 8, and a radial groove 8c1 communicating with the axial groove 8d1 is formed on the lower end surface 8c. The axial grooves and the radial grooves may be formed on the inner peripheral surface 7a2 and the inner bottom surface 7b1 of the housing 7. Alternatively, an axial groove and a radial groove may be formed on both the bearing sleeve 8 side and the housing 7 side.

上記の構成の動圧軸受装置1の内部空間に、潤滑流体として例えば潤滑油を充満させることにより、動圧軸受装置1が完成する。シール空間Sの容積は、軸受内部に充満された潤滑油の使用想定範囲内の温度変化による体積変化を吸収することのできる範囲で設定されるため、油面は常にシール空間S内に保持される。   The fluid dynamic bearing device 1 is completed by filling the internal space of the fluid dynamic bearing device 1 configured as described above with, for example, lubricating oil as a lubricating fluid. Since the volume of the seal space S is set in a range that can absorb the volume change due to the temperature change within the expected use range of the lubricating oil filled in the bearing, the oil level is always held in the seal space S. The

軸部材2が回転すると、軸受スリーブ8の内周面8aに形成された動圧溝8a1、8a2が、ラジアル軸受隙間の潤滑油に動圧作用を発生させることにより、軸部材2及びディスクハブ3をラジアル方向で回転自在に支持するラジアル軸受部R1、R2が形成される。これと同時に、ハウジング7の上端面7a1に形成された動圧溝7a10が、スラスト軸受隙間の潤滑油に動圧作用を発生させることにより、軸部材2及びディスクハブ3をスラスト方向で回転自在に支持するスラスト軸受部Tが形成される。   When the shaft member 2 rotates, the dynamic pressure grooves 8a1 and 8a2 formed on the inner peripheral surface 8a of the bearing sleeve 8 generate a dynamic pressure action on the lubricating oil in the radial bearing gap, so that the shaft member 2 and the disc hub 3 Are formed in the radial bearing portions R1 and R2. At the same time, the dynamic pressure groove 7a10 formed in the upper end surface 7a1 of the housing 7 generates a dynamic pressure action on the lubricating oil in the thrust bearing gap so that the shaft member 2 and the disk hub 3 can rotate in the thrust direction. A supporting thrust bearing portion T is formed.

また、図2に示すように、軸受スリーブ8の外周面8dに形成された軸方向溝8d1及び下側端面8cに形成された径方向溝8c1により、ラジアル軸受隙間の下端と、軸受スリーブ8の上側端面8bとディスクハブ3の基部3aの下側端面3a1との間の隙間とを連通することにより、内部空間での圧力バランスを適正に保つことができる。さらに、本実施形態では、図3に示すように、軸受スリーブ8の内周面8aの動圧溝8a1を、軸方向中間部に形成した環状の平滑部に対して軸方向非対称、具体的には、環状平滑部より上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている(X1>X2)。このため、軸部材2の回転時、動圧溝8a1による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。この引き込み力の差圧によって、ラジアル軸受隙間に満たされた潤滑油が下方に流動し、径方向溝8c1→軸方向溝8d1→軸受スリーブ8とディスクハブ3の基部3aとの間の隙間を流動して、再びラジアル軸受隙間に戻る。このように、ラジアル軸受隙間の潤滑油を強制的に循環させることにより、軸受装置の内部空間での局所的な負圧の発生をより効果的に防止できる。なお、このようにラジアル軸受隙間で潤滑油を強制的に流動させる必要がないときは、動圧溝8a1の形状を環状平滑部に対して軸方向対称に形成してもよい。   Further, as shown in FIG. 2, the axial groove 8d1 formed on the outer peripheral surface 8d of the bearing sleeve 8 and the radial groove 8c1 formed on the lower end surface 8c allow the lower end of the radial bearing gap and the bearing sleeve 8 to By communicating the gap between the upper end surface 8b and the lower end surface 3a1 of the base portion 3a of the disk hub 3, the pressure balance in the internal space can be properly maintained. Furthermore, in this embodiment, as shown in FIG. 3, the dynamic pressure groove 8a1 of the inner peripheral surface 8a of the bearing sleeve 8 is axially asymmetric with respect to the annular smooth portion formed in the axially intermediate portion, specifically The axial dimension X1 of the upper region from the annular smooth portion is larger than the axial dimension X2 of the lower region (X1> X2). For this reason, when the shaft member 2 rotates, the pulling force (pumping force) of the lubricating oil by the dynamic pressure groove 8a1 is relatively larger in the upper region than in the lower region. Due to the differential pressure of the pulling force, the lubricating oil filled in the radial bearing gap flows downward, and flows in the gap between the radial groove 8c1 → the axial groove 8d1 → the bearing sleeve 8 and the base 3a of the disk hub 3. Then, it returns to the radial bearing gap again. Thus, by forcibly circulating the lubricating oil in the radial bearing gap, it is possible to more effectively prevent the generation of a local negative pressure in the internal space of the bearing device. When there is no need to force the lubricating oil to flow through the radial bearing gap as described above, the shape of the dynamic pressure groove 8a1 may be formed symmetrically with respect to the annular smooth portion.

以下、ハウジング7及び軸受スリーブ8の組み付け方法、及びこの組み付けと同時に行われるラジアル軸受面A、スラスト軸受面B、ラジアル動圧発生部(動圧溝8a1、8a2)、及びスラスト動圧発生部(動圧溝7a10)の成形方法を図5に基づいて説明する。   Hereinafter, a method for assembling the housing 7 and the bearing sleeve 8, a radial bearing surface A, a thrust bearing surface B, a radial dynamic pressure generating portion (dynamic pressure grooves 8a1, 8a2), and a thrust dynamic pressure generating portion ( A method of forming the dynamic pressure groove 7a10) will be described with reference to FIG.

この工程に用いられる金型は、雄型10と雌型20とからなる。雄型10は、大径部11と小径部12とを備える。大径部11の端面11aには、スラスト動圧発生部(動圧溝7a10)を形成するための成形部11a1が形成される。小径部12の外周面12aには、ラジアル動圧発生部(動圧溝8a1、8a2)を形成するための成形部12a1、12a2が形成される。   The mold used in this process is composed of a male mold 10 and a female mold 20. The male mold 10 includes a large diameter part 11 and a small diameter part 12. Formed on the end surface 11a of the large-diameter portion 11 is a molding portion 11a1 for forming a thrust dynamic pressure generating portion (dynamic pressure groove 7a10). Formed portions 12a1 and 12a2 for forming radial dynamic pressure generating portions (dynamic pressure grooves 8a1 and 8a2) are formed on the outer peripheral surface 12a of the small diameter portion 12.

雌型20は、ハウジング7の外周形状に対応した内周面20aを有する。内周面20aは、ハウジング7外周のテーパ面7a4に対応したテーパ状内周面20a1と、ハウジング7外周の円筒面7a5に対応した円筒状内周面20a2と、ハウジング7外周の肩面7a3に対応した受け面20a3とを備える。テーパ状内周面20a1及び円筒状内周面20a2は、それぞれテーパ面7a4及び円筒面7a5よりも後述する圧入代の分だけ小径に設定される。   The female die 20 has an inner peripheral surface 20 a corresponding to the outer peripheral shape of the housing 7. The inner peripheral surface 20a is formed on a tapered inner peripheral surface 20a1 corresponding to the tapered surface 7a4 on the outer periphery of the housing 7, a cylindrical inner peripheral surface 20a2 corresponding to the cylindrical surface 7a5 on the outer periphery of the housing 7, and a shoulder surface 7a3 on the outer periphery of the housing 7. And a corresponding receiving surface 20a3. The tapered inner peripheral surface 20a1 and the cylindrical inner peripheral surface 20a2 are set to have a smaller diameter than the tapered surface 7a4 and the cylindrical surface 7a5 by a press-fit allowance described later.

まず、図5(a)に示すように、ハウジング7の内周に軸受スリーブ8を挿入し、軸受スリーブ8の下側端面8cをハウジング7の内底面7b1に当接させて位置決めする。このとき、ハウジング7の内周面7a2と軸受スリーブ8の外周面8dとは、微小隙間を介して嵌合した隙間嵌め、あるいは僅かに圧入代を介して嵌合した軽圧入状態とする。尚、ハウジング7と軸受スリーブ8との固定力を向上させるために、これらの固定面に予め接着剤を介在させておいてもよい。   First, as shown in FIG. 5A, the bearing sleeve 8 is inserted into the inner periphery of the housing 7, and the lower end surface 8 c of the bearing sleeve 8 is brought into contact with the inner bottom surface 7 b 1 of the housing 7 for positioning. At this time, the inner peripheral surface 7a2 of the housing 7 and the outer peripheral surface 8d of the bearing sleeve 8 are in a light press-fitted state in which they are fitted through a minute gap or slightly fitted through a press-fitting allowance. In order to improve the fixing force between the housing 7 and the bearing sleeve 8, an adhesive may be interposed in advance on these fixing surfaces.

次に、図5(b)に示すように、雄型10の小径部12を軸受スリーブ8の内周に挿入し、大径部11の端面11aをハウジング7の上端面7a1に当接させる。このとき、小径部12の外周面12aと軸受スリーブ8の内周面8aとは、微小隙間を介して嵌合した隙間嵌めとする。   Next, as shown in FIG. 5B, the small diameter portion 12 of the male mold 10 is inserted into the inner periphery of the bearing sleeve 8, and the end surface 11 a of the large diameter portion 11 is brought into contact with the upper end surface 7 a 1 of the housing 7. At this time, the outer peripheral surface 12a of the small-diameter portion 12 and the inner peripheral surface 8a of the bearing sleeve 8 are a gap fit that is fitted through a minute gap.

次に、図5(c)に示すように、ハウジング7、軸受スリーブ8、及び雄型10を、雌型20の内周に圧入する。これにより、ハウジング7の外周面は、内径方向への圧迫力を受ける(図5(c)に横矢印で示す)。この圧迫力がハウジング7を介して軸受スリーブ8に伝わり、軸受スリーブ8の内周面8aが雄型10の小径部12の外周面12aに押し付けられることにより、ラジアル軸受面Aとなる軸受スリーブ8の内周面8aが型成形される。これと同時に、軸受スリーブ8の内周面8aが、小径部12の外周面12aに設けられた成形部12a1、12a2に押し付けられることにより、内周面8aにラジアル動圧発生部(動圧溝8a1、8a2)が型成形される(図5(c)に縦点線で示す)。また、この圧迫力により、ハウジング7と軸受スリーブ8とが圧着固定される。さらに、この圧迫力で雌型20のテーパ状内周面20a1がハウジング7外周に押し付けられることにより、ハウジング7のテーパ面7a4が型成形される。   Next, as shown in FIG. 5C, the housing 7, the bearing sleeve 8, and the male mold 10 are press-fitted into the inner periphery of the female mold 20. Thereby, the outer peripheral surface of the housing 7 receives a pressing force in the inner diameter direction (indicated by a horizontal arrow in FIG. 5C). This compression force is transmitted to the bearing sleeve 8 through the housing 7, and the inner peripheral surface 8 a of the bearing sleeve 8 is pressed against the outer peripheral surface 12 a of the small-diameter portion 12 of the male mold 10, whereby the bearing sleeve 8 that becomes the radial bearing surface A is obtained. The inner peripheral surface 8a is molded. At the same time, the inner peripheral surface 8a of the bearing sleeve 8 is pressed against the molding portions 12a1 and 12a2 provided on the outer peripheral surface 12a of the small-diameter portion 12, thereby causing a radial dynamic pressure generating portion (dynamic pressure groove) on the inner peripheral surface 8a. 8a1, 8a2) are molded (indicated by vertical dotted lines in FIG. 5C). Moreover, the housing 7 and the bearing sleeve 8 are pressure-bonded and fixed by this compression force. Further, the tapered inner peripheral surface 20a1 of the female die 20 is pressed against the outer periphery of the housing 7 by this compression force, whereby the tapered surface 7a4 of the housing 7 is molded.

また、雌型20のテーパ状内周面20a1及び受け面20a3で、ハウジング7外周のテーパ面7a4及び肩面7a3を軸方向で支持した状態で、雄型10の大径部11の端面11aをハウジング7の上端面7a1に押し付けることにより(図5(c)に縦矢印で示す)、スラスト軸受面Bとなるハウジング7の上端面7a1が型成形される。これと同時に、大径部11の端面11aに設けられた成形部11a1を、ハウジング7の上端面7a1に押し付けることにより、上端面7a1にスラスト動圧発生部(動圧溝7a10)が型成形される(図5(c)に横点線で示す)。   Further, the end surface 11a of the large-diameter portion 11 of the male mold 10 is supported in a state where the tapered inner peripheral surface 20a1 and the receiving surface 20a3 of the female mold 20 support the tapered surface 7a4 and the shoulder surface 7a3 of the outer periphery of the housing 7 in the axial direction. By pressing against the upper end surface 7a1 of the housing 7 (indicated by a vertical arrow in FIG. 5C), the upper end surface 7a1 of the housing 7 serving as the thrust bearing surface B is molded. At the same time, a thrust dynamic pressure generating portion (dynamic pressure groove 7a10) is molded on the upper end surface 7a1 by pressing the molding portion 11a1 provided on the end surface 11a of the large diameter portion 11 against the upper end surface 7a1 of the housing 7. (Indicated by a horizontal dotted line in FIG. 5C).

尚、図5(c)に示す型締め状態において、ハウジング7の底部7bは金型で支持されていない。従って、ハウジング7のテーパ面7a4や上端面7a1を型成形した際に、ハウジング側部7aに生じた変形(延び)を、底部側7b側で吸収することができる。   5C, the bottom portion 7b of the housing 7 is not supported by the mold. Therefore, when the tapered surface 7a4 and the upper end surface 7a1 of the housing 7 are molded, the deformation (extension) generated in the housing side portion 7a can be absorbed on the bottom side 7b side.

その後、雌型20の内周から、ハウジング7及び軸受スリーブ8のサブアッシ品に雄型10の小径部12を挿入した状態で排出する。これにより、雌型20の内周面20aによる圧迫力が解放され、雄型10の小径部12の外周面に押し付けられていたラジアル軸受面A(軸受スリーブ8の内周面8a)が拡径し、これらの間に微小隙間が形成される。この微小隙間の形成により、サブアッシ品の内周から雄型10の小径部12を排出する際に、ラジアル軸受面Aに形成された動圧溝8a1、8a2と、小径部12の外周面12aに形成された成形部12a1、12a2とが干渉することを防止し、動圧溝8a1、8a2の損傷を回避することができる。   Thereafter, the discharge is performed from the inner periphery of the female die 20 in a state where the small diameter portion 12 of the male die 10 is inserted into the subassemblies of the housing 7 and the bearing sleeve 8. Thereby, the compression force by the inner peripheral surface 20a of the female die 20 is released, and the radial bearing surface A (the inner peripheral surface 8a of the bearing sleeve 8) pressed against the outer peripheral surface of the small-diameter portion 12 of the male die 10 is expanded. In addition, a minute gap is formed between them. Due to the formation of this minute gap, when the small-diameter portion 12 of the male mold 10 is discharged from the inner periphery of the sub-assembly product, the dynamic pressure grooves 8a1 and 8a2 formed in the radial bearing surface A and the outer peripheral surface 12a of the small-diameter portion 12 are formed. It is possible to prevent the formed portions 12a1 and 12a2 from interfering with each other and avoid damage to the dynamic pressure grooves 8a1 and 8a2.

以上のように、本発明の製造方法によると、ラジアル軸受面A(軸受スリーブ8の内周面8a)及びスラスト軸受面B(ハウジング側部7aの上端面7a1)が同一の金型で型成形されるため、これらを成形する金型の成形面を精度良く設定することで、各軸受面の寸法精度を高めることができる。具体的には、雄型10の大径部11の端面11aと小径部12の外周面12aとの直角度や振れ精度等の寸法精度を高めおくことで、各軸受面間の直角度や振れ精度等を高めることができる。   As described above, according to the manufacturing method of the present invention, the radial bearing surface A (the inner peripheral surface 8a of the bearing sleeve 8) and the thrust bearing surface B (the upper end surface 7a1 of the housing side portion 7a) are molded with the same mold. Therefore, the dimensional accuracy of each bearing surface can be increased by setting the molding surface of the mold for molding them with high accuracy. Specifically, by increasing the dimensional accuracy such as the perpendicularity and runout accuracy between the end surface 11a of the large-diameter portion 11 of the male mold 10 and the outer peripheral surface 12a of the small-diameter portion 12, the perpendicularity and runout between the bearing surfaces are increased. Accuracy and the like can be increased.

また、各軸受面の型成形時の圧迫力で、ハウジング7の内周面7a1と軸受スリーブ8の外周面8dとを圧着固定するため、ハウジング7と軸受スリーブ8の組み付け時に各軸受面間の寸法精度が悪化する事態を回避することができる。また、軸受面の型成形及びハウジング7と軸受スリーブ8との固定を同一の金型で行うことで、サブアッシ品における各軸受面の寸法精度を高めることができるため、組み付け前のハウジング7及び軸受スリーブ8に要求される寸法精度を緩和することができ、低コスト化が図られる。尚、ラジアル軸受面Aの成形、スラスト軸受面Bの成形、及びハウジング7と軸受スリーブ8との圧着固定は、これらの全ての工程が必ずしも同時に行われるとは限らないが、作業効率を考慮すると、これらの工程を同時に行うことが望ましい。   Further, the inner peripheral surface 7a1 of the housing 7 and the outer peripheral surface 8d of the bearing sleeve 8 are pressure-bonded and fixed by the pressing force at the time of molding of each bearing surface. The situation where dimensional accuracy deteriorates can be avoided. In addition, since the molding of the bearing surface and the fixing of the housing 7 and the bearing sleeve 8 are performed with the same mold, the dimensional accuracy of each bearing surface in the sub-assemblies can be increased. The dimensional accuracy required for the sleeve 8 can be relaxed, and the cost can be reduced. Note that the radial bearing surface A, the thrust bearing surface B, and the crimping and fixing of the housing 7 and the bearing sleeve 8 are not necessarily performed at the same time. It is desirable to perform these steps simultaneously.

また、上記のように、型成形時の圧迫力で、スラスト動圧発生部(動圧溝7a10)及びラジアル動圧発生部(動圧溝8a1、8a2)を型成形することにより、加工工数を削減することができるため、製造コストの低減及び生産効率の向上が図られる。さらに、この圧迫力で、ハウジング7のシール面となるテーパ面7a4を型成形することで、さらに加工工数を削減できる。また、各軸受面の成形とシール面の成形とを同一の金型で行うことにより、各軸受面に対するシール面の寸法精度を高めることができるため、シール空間Sの形成精度が高められ、シール性能の向上が図られる。   In addition, as described above, by molding the thrust dynamic pressure generating portion (dynamic pressure groove 7a10) and radial dynamic pressure generating portions (dynamic pressure grooves 8a1, 8a2) with the pressing force at the time of mold forming, the processing man-hours can be reduced. Therefore, the manufacturing cost can be reduced and the production efficiency can be improved. Further, by molding the taper surface 7a4 that becomes the seal surface of the housing 7 with this compression force, the number of processing steps can be further reduced. Further, since the molding of each bearing surface and the molding of the seal surface are performed with the same mold, the dimensional accuracy of the seal surface with respect to each bearing surface can be increased, so that the formation accuracy of the seal space S is increased, and the seal The performance is improved.

本発明の製造方法は上記に限られない。例えば、上記ではハウジング7及び軸受スリーブ8の内周に雄型10の小径部12を挿入した状態で、これらを雌型20の内周に圧入しているが、これに限らず、例えばハウジング7を雌型20の内周に挿入すると共に、軸受スリーブ8の内周に雄型10の小径部12を挿入し、この軸受スリーブ8及び雄型10をハウジング7の内周に圧入することで、上記のような圧迫力を得ることもできる。   The manufacturing method of the present invention is not limited to the above. For example, in the above, the small diameter portion 12 of the male mold 10 is inserted into the inner periphery of the housing 7 and the bearing sleeve 8, and these are press-fitted into the inner periphery of the female mold 20. Is inserted into the inner periphery of the female mold 20, the small diameter portion 12 of the male mold 10 is inserted into the inner periphery of the bearing sleeve 8, and the bearing sleeve 8 and the male mold 10 are press-fitted into the inner periphery of the housing 7. The compression force as described above can also be obtained.

また、本発明の製造方法が適用される流体軸受装置は上記に限られない。図6に本発明の製造方法が適用される他の例の流体軸受装置(動圧軸受装置21)を示す。尚、以下の説明において、上記の実施形態と同一の構成、機能を有する箇所には、同一符合を付し、説明を省略する。   The hydrodynamic bearing device to which the manufacturing method of the present invention is applied is not limited to the above. FIG. 6 shows another example of a hydrodynamic bearing device (dynamic pressure bearing device 21) to which the manufacturing method of the present invention is applied. In the following description, parts having the same configuration and function as those of the above embodiment are given the same reference numerals, and the description thereof is omitted.

この動圧軸受装置21では、軸部材2の下端にフランジ部2bが設けられ、ハウジング側部7aの上端面7a1とディスクハブ3の基部3aの下側端面3a1との間に第1のスラスト軸受部T1が形成されると共に、軸受スリーブ8の下側端面8cとフランジ部2bの上側端面2b1との間に第2のスラスト軸受部T2が形成される。また、ディスクハブ3の周壁部3bの内周面3b2とハウジング側部7a外周のテーパ面7a4との間にシール空間Sが形成される。   In this dynamic pressure bearing device 21, a flange portion 2b is provided at the lower end of the shaft member 2, and a first thrust bearing is provided between the upper end surface 7a1 of the housing side portion 7a and the lower end surface 3a1 of the base portion 3a of the disk hub 3. A portion T1 is formed, and a second thrust bearing portion T2 is formed between the lower end surface 8c of the bearing sleeve 8 and the upper end surface 2b1 of the flange portion 2b. Further, a seal space S is formed between the inner peripheral surface 3b2 of the peripheral wall portion 3b of the disk hub 3 and the tapered surface 7a4 on the outer periphery of the housing side portion 7a.

以上の実施形態では、ラジアル動圧発生部としてヘリングボーン形状の動圧溝が、スラスト動圧発生部としてスパイラル形状の動圧溝が形成されているが、これに限らない。例えば、ラジアル動圧発生部として、スパイラル形状の動圧溝や、多円弧軸受、あるいはステップ軸受を形成してもよい。また、スラスト動圧発生部として、へリングベーン形状の動圧溝や、ステップ軸受、あるいは波型軸受(ステップ軸受が波型形状になったもの)を形成してもよい。   In the above embodiment, the herringbone-shaped dynamic pressure groove is formed as the radial dynamic pressure generating portion and the spiral-shaped dynamic pressure groove is formed as the thrust dynamic pressure generating portion. However, the present invention is not limited to this. For example, a spiral dynamic pressure groove, a multi-arc bearing, or a step bearing may be formed as the radial dynamic pressure generating portion. Further, as the thrust dynamic pressure generating portion, a herring vane-shaped dynamic pressure groove, a step bearing, or a wave bearing (a step bearing having a wave shape) may be formed.

あるいは、軸受スリーブ8の内周面8aを、動圧発生部としての動圧溝や円弧面等を設けない真円外周面とし、この内周面8aと対向する軸部材2の真円状外周面2aとで、いわゆる真円軸受を構成することができる。   Alternatively, the inner peripheral surface 8a of the bearing sleeve 8 is a perfect circular outer peripheral surface not provided with a dynamic pressure groove or a circular arc surface as a dynamic pressure generating portion, and the perfect outer periphery of the shaft member 2 facing the inner peripheral surface 8a. A so-called perfect circle bearing can be constituted by the surface 2a.

また、以上の実施形態では、ラジアル軸受部R1、R2が軸方向に離隔して設けられているが、これに限らず、例えばこれらを軸方向で連続的に形成してもよい。あるいは、ラジアル軸受部R1、R2の何れか一方のみを設けても良い。   Further, in the above embodiment, the radial bearing portions R1 and R2 are provided separately in the axial direction. Alternatively, only one of the radial bearing portions R1 and R2 may be provided.

また、以上の実施形態では、ラジアル動圧発生部が軸受スリーブ8側に、スラスト動圧発生部がハウジング7側に形成される場合を示しているが、これらを軸受隙間を介して対向する軸部材2の外周面2a、ディスクハブ3の基部3aの下側端面3a1に形成してもよい。   In the above embodiment, the radial dynamic pressure generating part is formed on the bearing sleeve 8 side and the thrust dynamic pressure generating part is formed on the housing 7 side. You may form in the outer peripheral surface 2a of the member 2, and the lower end surface 3a1 of the base 3a of the disc hub 3. FIG.

また、以上では、潤滑流体として潤滑油が使用されているが、これ以外にも各軸受隙間に動圧作用を発生可能な流体、例えば空気等の気体や、磁性流体、あるいは潤滑グリース等を使用することもできる。   In the above, lubricating oil is used as the lubricating fluid, but other fluids that can generate a dynamic pressure action in each bearing gap, for example, gas such as air, magnetic fluid, or lubricating grease are used. You can also

また、本発明の流体軸受装置の製造方法は、上記のようにHDD等のディスク駆動装置に用いられるスピンドルモータに限らず、光ディスクの光磁気ディスク駆動用のスピンドルモータ等、高速回転下で使用される情報機器用の小型モータ、レーザビームプリンタのポリゴンスキャナモータ等における回転軸支持用、あるいは電気機器の冷却ファン用のファンモータ使用される流体軸受装置にも適用することができる。   The method for manufacturing a hydrodynamic bearing device according to the present invention is not limited to a spindle motor used in a disk drive device such as an HDD as described above, but is used under a high-speed rotation, such as a spindle motor for driving a magneto-optical disk of an optical disk. The present invention can also be applied to a hydrodynamic bearing device that is used for a small motor for an information device, a rotating shaft support in a polygon scanner motor of a laser beam printer, or a fan motor for a cooling fan of an electric device.

動圧軸受装置1を組み込んだスピンドルモータを示す断面図である。It is sectional drawing which shows the spindle motor incorporating the dynamic pressure bearing apparatus. 動圧軸受装置1を示す断面図である。1 is a cross-sectional view showing a fluid dynamic bearing device 1. 軸受スリーブ8の軸方向断面図である。3 is an axial sectional view of a bearing sleeve 8. FIG. ハウジング7の上面図である。FIG. 6 is a top view of the housing 7. (a)〜(c)は、ハウジング7と軸受スリーブ8のサブアッシ品の製造工程を示す断面図である。(A)-(c) is sectional drawing which shows the manufacturing process of the subassembly product of the housing 7 and the bearing sleeve 8. FIG. 動圧軸受装置21の断面図である。3 is a cross-sectional view of the hydrodynamic bearing device 21. FIG.

符号の説明Explanation of symbols

1 動圧軸受装置(流体軸受装置)
2 軸部材
3 ディスクハブ
4 ステータコイル
5 ロータマグネット
6 ブラケット
7 ハウジング
7a 側部
7a10 動圧溝
8 軸受スリーブ
9 抜け止め部材
10 雄型
11 大径部
12 小径部
20 雌型
A ラジアル軸受面
B スラスト軸受面
R1、R2 ラジアル軸受部
T スラスト軸受部
S シール空間
1 Hydrodynamic bearing device (fluid bearing device)
2 Shaft member 3 Disc hub 4 Stator coil 5 Rotor magnet 6 Bracket 7 Housing 7a Side 7a10 Dynamic pressure groove 8 Bearing sleeve 9 Retaining member 10 Male 11 Large diameter 12 Small diameter 20 Female A Radial bearing surface B Thrust bearing Surface R1, R2 Radial bearing part T Thrust bearing part S Seal space

Claims (3)

筒状の側部を有するハウジングと、前記ハウジングの内周に固定された軸受スリーブと、前記ハウジングの側部の軸方向一方側の端面に形成されたスラスト軸受面が面するスラスト軸受隙間と、前記軸受スリーブの内周面に形成されたラジアル軸受面が面するラジアル軸受隙間と、前記ハウジングの側部の外周面の軸方向一方側の端部付近に設けられ、軸方向他方へ向けて漸次縮径したテーパ面と、前記テーパ面が面し、軸受内部の潤滑剤の外部への漏れ出しを防止するシール空間とを備えた流体軸受装置を製造するための方法であって、
前記ハウジングの内周に前記軸受スリーブを配置し、前記軸受スリーブの内周に雄型を挿入するステップと、
前記ハウジングを軸方向他方側から支持しない状態で、前記雄型で前記ハウジングの軸方向一方側の端面を軸方向他方側押し込んで、前記ハウジング、前記軸受スリーブ、及び前記雄型を、前記ハウジングの外周面よりも圧入代の分だけ小径に設定された雌型の内周に圧入して前記ハウジングを縮径させることにより、前記軸受スリーブの内周面を前記雄型の外周面に押し付けて前記ラジアル軸受面を型成形すると共に、前記ハウジングの内周面と前記軸受スリーブの外周面とを圧着固定するステップと
前記雌型で前記ハウジングのテーパ面を軸方向他方側から支持した状態で、前記雄型前記ハウジングの軸方向一方側の端面軸方向圧迫することにより、前記ハウジングの軸方向一方側の端面に前記スラスト軸受面を型成形するステップとを有する流体軸受装置の製造方法。
A housing having a cylindrical side portion, a bearing sleeve fixed to the inner periphery of the housing, a thrust bearing gap formed on an end surface on one axial side of the side portion of the housing and facing a thrust bearing surface; A radial bearing gap formed on the inner peripheral surface of the bearing sleeve and facing a radial bearing surface and an end portion on one axial side of the outer peripheral surface of the side portion of the housing are provided gradually toward the other axial direction. A method for manufacturing a hydrodynamic bearing device comprising a tapered surface having a reduced diameter and a seal space that faces the tapered surface and prevents leakage of lubricant inside the bearing to the outside ,
Disposing the bearing sleeve on the inner periphery of the housing and inserting a male mold on the inner periphery of the bearing sleeve;
In a state where the housing is not supported from the other side in the axial direction, an end surface on one side in the axial direction of the housing is pushed into the other side in the axial direction with the male mold, and the housing, the bearing sleeve, and the male mold are moved to the housing. the Rukoto min press-fitting margin of the outer circumferential surface only by press-fitting to the inner periphery of the female mold set in a small diameter reduced in diameter to the housing, presses the inner circumferential surface of the bearing sleeve on the outer peripheral surface of the male while molding the radial bearing surface Te, a step of bonding and fixing the outer peripheral surface of the bearing sleeve and the inner peripheral surface of the housing,
While supporting the tapered surface of the housing from the other axial side the female, by pressing the end surface of one axial side of the housing in the axial direction in the male, the one axial side of the housing And a step of molding the thrust bearing surface on the end surface.
前記スラスト軸受面の型成形時の圧迫力で、スラスト軸受隙間の潤滑膜に動圧作用を発生させるスラスト動圧発生部を型成形した請求項1記載の流体軸受装置の製造方法。   2. The method of manufacturing a hydrodynamic bearing device according to claim 1, wherein a thrust dynamic pressure generating portion for generating a dynamic pressure action on a lubricating film in a thrust bearing gap is molded by a pressing force at the time of molding the thrust bearing surface. 前記ラジアル軸受面の型成形時の圧迫力で、ラジアル軸受隙間の潤滑膜に動圧作用を発生させるラジアル動圧発生部を型成形した請求項1記載の流体軸受装置の製造方法。   The method of manufacturing a hydrodynamic bearing device according to claim 1, wherein a radial dynamic pressure generating portion that generates a dynamic pressure action on a lubricating film in a radial bearing gap is molded by a pressing force at the time of molding the radial bearing surface.
JP2007098667A 2007-04-04 2007-04-04 Method for manufacturing hydrodynamic bearing device Expired - Fee Related JP5064083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007098667A JP5064083B2 (en) 2007-04-04 2007-04-04 Method for manufacturing hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007098667A JP5064083B2 (en) 2007-04-04 2007-04-04 Method for manufacturing hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2008256087A JP2008256087A (en) 2008-10-23
JP5064083B2 true JP5064083B2 (en) 2012-10-31

Family

ID=39979848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007098667A Expired - Fee Related JP5064083B2 (en) 2007-04-04 2007-04-04 Method for manufacturing hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP5064083B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4172944B2 (en) * 2002-03-19 2008-10-29 Ntn株式会社 Hydrodynamic bearing device and manufacturing method thereof
JP3984091B2 (en) * 2002-04-08 2007-09-26 Ntn株式会社 Hydrodynamic bearing device and manufacturing method thereof
JP2006207787A (en) * 2004-12-28 2006-08-10 Ntn Corp Housing for dynamic pressure bearing device and manufacturing method therefor

Also Published As

Publication number Publication date
JP2008256087A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2007263228A (en) Dynamic pressure bearing device
JP4874004B2 (en) Hydrodynamic bearing device
JP2007024267A (en) Fluid bearing device and motor equipped with the same
JP5312895B2 (en) Hydrodynamic bearing device
JP2005337490A (en) Dynamic pressure bearing device
JP5064083B2 (en) Method for manufacturing hydrodynamic bearing device
JP2008144847A (en) Dynamic pressure bearing device
JP2009014121A (en) Dynamic pressure bearing device and its manufacturing method
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP2008190711A (en) Manufacturing process for hydrodynamic bearing unit
JP5784777B2 (en) Fluid dynamic bearing device
JP4588561B2 (en) Hydrodynamic bearing device
JP4738831B2 (en) Hydrodynamic bearing device
JP2008111520A (en) Dynamic pressure bearing device
JP2008075687A (en) Fluid bearing device
JP5231095B2 (en) Hydrodynamic bearing device
JP2005210896A (en) Spindle motor of disc drive
JP2005265180A (en) Dynamic pressure bearing device
JP5602535B2 (en) Fluid dynamic bearing device
JP5274902B2 (en) Hydrodynamic bearing device
JP4498932B2 (en) Hydrodynamic bearing device
JP4675880B2 (en) Method for manufacturing fluid dynamic bearing device
JP2008185140A (en) Dynamic pressure bearing device
JP5172213B2 (en) Hydrodynamic bearing device and method for manufacturing shaft member thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120620

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120725

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

R150 Certificate of patent or registration of utility model

Ref document number: 5064083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees