JP2008185140A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device Download PDF

Info

Publication number
JP2008185140A
JP2008185140A JP2007019694A JP2007019694A JP2008185140A JP 2008185140 A JP2008185140 A JP 2008185140A JP 2007019694 A JP2007019694 A JP 2007019694A JP 2007019694 A JP2007019694 A JP 2007019694A JP 2008185140 A JP2008185140 A JP 2008185140A
Authority
JP
Japan
Prior art keywords
dynamic pressure
thrust
pressure generating
hub
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007019694A
Other languages
Japanese (ja)
Inventor
Masaaki Toda
正明 戸田
Isao Komori
功 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007019694A priority Critical patent/JP2008185140A/en
Publication of JP2008185140A publication Critical patent/JP2008185140A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic pressure bearing device which excels in workability and has a housing or a hub forming high-precision thrust dynamic pressure grooves. <P>SOLUTION: In the dynamic pressure bearing device, the periphery of a housing 71 is comprised of a dynamic pressure generation member 712 and a peripheral body 711 which are separately formed, and the two parts can be formed from different materials by different processing methods. Since the peripheral body does not face the thrust bearing clearance and is not required to have a superior wear resistance property, the moldability of the peripheral body 711 can be improved by forming it with soft metal forging. Moreover, the dynamic pressure generation member 712 can be formed in a simple shape and can be machined comparatively easily even with a hard metal, and the wear resistance property can be improved without causing cost increases or machining time lengthening. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軸受隙間に形成された潤滑膜の動圧作用で、軸部材を回転可能に支持する動圧軸受装置に関する。   The present invention relates to a hydrodynamic bearing device that rotatably supports a shaft member by a hydrodynamic action of a lubricating film formed in a bearing gap.

動圧軸受装置は、その高回転精度および静粛性から、情報機器、例えばHDD等の磁気ディスク駆動装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク駆動装置、MD、MO等の光磁気ディスク駆動装置等のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイール用モータ、あるいは電気機器の冷却に使用されるファンモータなどの小型モータ用として好適に使用可能である。   Due to its high rotational accuracy and quietness, the hydrodynamic bearing device is an information device, for example, a magnetic disk drive device such as HDD, an optical disk drive device such as CD-ROM, CD-R / RW, DVD-ROM / RAM, MD, Suitable for small motors such as spindle motors for magneto-optical disk drive devices such as MOs, polygon scanner motors for laser beam printers (LBP), color wheel motors for projectors, or fan motors used for cooling electrical equipment Can be used.

特許文献1には、筒状の側部を有するハウジングと、ハウジングの内周に固定された軸受スリーブと、軸受スリーブの内周に回転自在に挿入された軸部材と、軸部材にフランジ状に設けられ、ロータマグネットが取り付けられたハブとを備え、ハウジング側部の端面とハブの端面との間にスラスト軸受隙間が形成された動圧軸受装置が示されている。この動圧軸受装置では、ハウジングを金属材料の鍛造加工で形成すると共に、このハウジング側部の端面に型成形でスラスト動圧溝を形成している。   In Patent Document 1, a housing having a cylindrical side portion, a bearing sleeve fixed to the inner periphery of the housing, a shaft member rotatably inserted into the inner periphery of the bearing sleeve, and a flange shape on the shaft member are disclosed. The hydrodynamic bearing device includes a hub provided with a rotor magnet and having a thrust bearing gap formed between the end surface of the housing side and the end surface of the hub. In this dynamic pressure bearing device, the housing is formed by forging a metal material, and a thrust dynamic pressure groove is formed on the end surface of the side portion of the housing by molding.

特開2006−207787号公報JP 2006-207787 A

上記のようにハウジングを鍛造加工で形成するに際し、加工性を高めるために比較的軟質な材料、例えば真ちゅう等を使用する場合がある。このようにハウジングを軟質金属で形成すると、耐摩耗性に劣るため、ハウジングのうちスラスト軸受隙間に面する部分が対向するハブの端面と接触摺動することで摩耗し、スラスト軸受機能の低下、ひいてはこれに起因するスラスト方向の支持力の低下を招く恐れがある。特に、上記のようにこの部分にスラスト動圧発生部を形成する場合、スラスト動圧発生部が摩耗することによりスラスト方向の支持力が大幅に低下する恐れがある。   When the housing is formed by forging as described above, a relatively soft material such as brass may be used in order to improve workability. When the housing is formed of a soft metal in this way, the wear resistance is inferior, so the portion of the housing that faces the thrust bearing gap is worn by sliding against the end face of the opposite hub, and the thrust bearing function is reduced. As a result, there is a risk of lowering the supporting force in the thrust direction due to this. In particular, when the thrust dynamic pressure generating portion is formed in this portion as described above, the thrust dynamic pressure generating portion is worn out, so that the support force in the thrust direction may be significantly reduced.

かかる不具合は、例えば硬質な材料でも高精度に加工することのできる切削加工でハウジングを形成することにより解消することができる。しかし、例えば特許文献1で示されているような動圧軸受装置のハウジングは、外周面にシール空間を形成するテーパ面が形成された複雑な形状を成す。このような複雑な形状を成し、かつ硬質金属で形成されたハウジングを切削加工で形成すると、コストの高騰及び生産効率の低下を招くことになる。   Such inconvenience can be solved by forming the housing by a cutting process capable of processing a hard material with high accuracy. However, for example, the housing of a hydrodynamic bearing device as shown in Patent Document 1 has a complicated shape in which a tapered surface that forms a seal space is formed on the outer peripheral surface. If a housing having such a complicated shape and made of hard metal is formed by cutting, the cost increases and the production efficiency decreases.

また、ハウジングとスラスト軸受隙間を介して対向するハブも、ロータマグネットを取り付ける取り付け部を要する等、複雑な形状を呈することが多い。このため、ハブを金属材料で形成する場合にも上記と同様の不具合が生じる。   Also, the hub that faces the housing through the thrust bearing gap often has a complicated shape, such as requiring a mounting portion for mounting the rotor magnet. For this reason, when the hub is formed of a metal material, the same problem as described above occurs.

本発明の課題は、耐摩耗性及び成形性に優れた金属製のハウジングあるいはハブを備えた動圧軸受装置を提供することにある。   An object of the present invention is to provide a hydrodynamic bearing device including a metal housing or hub excellent in wear resistance and formability.

前記課題を解決するため、本発明は、筒状の側部を有するハウジングと、ハウジングの側部の端面が面するスラスト軸受隙間と、スラスト軸受隙間に形成された潤滑膜に動圧作用を発生させるスラスト動圧発生部とを備えた動圧軸受装置において、ハウジングの側部が、前記スラスト動圧発生部を形成した動圧発生部材と、金属材料の塑性加工で形成された側部本体とで構成されたことを特徴とする。   In order to solve the above problems, the present invention generates a hydrodynamic action on a housing having a cylindrical side portion, a thrust bearing gap facing an end surface of the side portion of the housing, and a lubricating film formed in the thrust bearing gap. In the hydrodynamic bearing device provided with the thrust dynamic pressure generating portion to be made, the side portion of the housing includes a dynamic pressure generating member in which the thrust dynamic pressure generating portion is formed, a side body formed by plastic processing of a metal material, It is characterized by comprising.

このように本発明の動圧軸受装置では、耐摩耗性が要求されるスラスト動圧発生部を含む動圧発生部材と、それ以外の側部本体とを別体に形成することで、これらを異なる材料および加工方法で形成することができる。これによると、側部本体はスラスト軸受隙間に面さず耐摩耗性はそれ程要求されないため、側部本体を軟質金属の塑性加工(例えば鍛造加工やプレス加工)で形成することにより成形性を高めることができる。   As described above, in the dynamic pressure bearing device of the present invention, the dynamic pressure generating member including the thrust dynamic pressure generating portion requiring wear resistance and the other side main body are separately formed, so that It can be formed with different materials and processing methods. According to this, since the side part body does not face the thrust bearing gap and wear resistance is not so much required, the formability is improved by forming the side part body by plastic processing (for example, forging or pressing) of soft metal. be able to.

こうして成形性の高い側部本体でハウジング側部の複雑な形状を有する部分を形成すると、動圧発生部材を単純な形状とすることができる。これにより、動圧発生部材を硬質金属で形成しても比較的容易に切削加工することができるため、コスト高や製作時間の延長を招くことなく耐摩耗性の向上を図ることができる。また、動圧発生部材の形状を単純化することで、スラスト動圧発生部を型成形する際の支持構造が単純化されて加圧しやすくなるため、スラスト動圧発生部を精度良く形成することができる。   Thus, if the part which has the complicated shape of a housing side part is formed in the side part main body with high moldability, a dynamic pressure generating member can be made into a simple shape. As a result, even if the dynamic pressure generating member is made of a hard metal, it can be cut relatively easily, so that it is possible to improve wear resistance without incurring an increase in cost and an increase in manufacturing time. In addition, by simplifying the shape of the dynamic pressure generating member, the support structure when molding the thrust dynamic pressure generating part is simplified and it becomes easier to pressurize, so the thrust dynamic pressure generating part can be accurately formed. Can do.

また、軸部材と、軸部材にフランジ状に設けられ、ロータマグネットが取り付けられたハブと、ハブの端面が面するスラスト軸受隙間と、スラスト軸受隙間に形成された潤滑膜に動圧作用を発生させるスラスト動圧発生部とを備えた動圧軸受装置においても、ハブを、スラスト動圧発生部を型成形した動圧発生部材と、金属材料の塑性加工で形成されたハブ本体とで構成することにより、上記と同様の効果を得ることができる。   In addition, dynamic pressure action is generated in the shaft member, the hub provided in a flange shape on the shaft member, to which the rotor magnet is attached, the thrust bearing gap facing the end surface of the hub, and the lubricating film formed in the thrust bearing gap Also in the hydrodynamic bearing device provided with the thrust dynamic pressure generating portion to be made, the hub is composed of a dynamic pressure generating member obtained by molding the thrust dynamic pressure generating portion and a hub body formed by plastic processing of a metal material. Thus, the same effect as described above can be obtained.

以上のように、本発明によると、加工性に優れ、且つスラスト動圧溝が高精度に形成されたハウジングあるいはハブを備えた動圧軸受装置を得ることができる。   As described above, according to the present invention, it is possible to obtain a hydrodynamic bearing device including a housing or a hub that is excellent in workability and in which thrust dynamic pressure grooves are formed with high accuracy.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施形態に係る動圧軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。この情報機器用スピンドルモータは、HDD等のディスク駆動装置に用いられるもので、動圧軸受装置1と、例えば、半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はブラケット6の外径側内周面6aに取り付けられ、ロータマグネット5は、動圧軸受装置1に設けられたハブ3の外周に取り付けられている。ハブ3には、磁気ディスク等のディスク状情報記録媒体(図示省略)が一枚または複数枚保持される。ブラケット6の内周には動圧軸受装置1のハウジング7が装着されている。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する励磁力でロータマグネット5が回転し、それに伴って、ハブ3及びディスクが回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 according to a first embodiment of the present invention. This spindle motor for information equipment is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 and, for example, a stator coil 4 and a rotor magnet 5 that are opposed to each other with a gap in the radial direction. Yes. The stator coil 4 is attached to the outer peripheral side inner peripheral surface 6 a of the bracket 6, and the rotor magnet 5 is attached to the outer periphery of the hub 3 provided in the fluid dynamic bearing device 1. The hub 3 holds one or more disk-shaped information recording media (not shown) such as magnetic disks. A housing 7 of the hydrodynamic bearing device 1 is mounted on the inner periphery of the bracket 6. When the stator coil 4 is energized, the rotor magnet 5 is rotated by an exciting force generated between the stator coil 4 and the rotor magnet 5, and accordingly, the hub 3 and the disk are rotated.

図2に、動圧軸受装置1を示す。動圧軸受装置1は、軸部材2と、軸部材2に設けられたフランジ状のハブ3と、内周に軸部材2を挿入した軸受スリーブ8と、軸受スリーブ8を内周に保持するコップ状のハウジング7とを備える。なお、説明の便宜上、ハウジング7の開口側を上側、閉口側を下側として、以下の説明を行う。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a shaft member 2, a flange-shaped hub 3 provided on the shaft member 2, a bearing sleeve 8 with the shaft member 2 inserted on the inner periphery, and a cup that holds the bearing sleeve 8 on the inner periphery. Shaped housing 7. For convenience of explanation, the following description will be given with the opening side of the housing 7 as the upper side and the closing side as the lower side.

この動圧軸受装置1では、詳細は後述するが、軸部材2の外周面2aと軸受スリーブ8の内周面8aとの間に、軸部材2及びハブ3をラジアル方向に支持するラジアル軸受部R1、R2が形成される。また、ハブ3の基部3aの下側端面3a1と軸受スリーブ8の上側端面8bとの間に、軸部材2及びハブ3をスラスト方向に支持するスラスト軸受部Tが形成される。   As will be described in detail later, in this hydrodynamic bearing device 1, a radial bearing portion that supports the shaft member 2 and the hub 3 in the radial direction between the outer peripheral surface 2 a of the shaft member 2 and the inner peripheral surface 8 a of the bearing sleeve 8. R1 and R2 are formed. A thrust bearing portion T that supports the shaft member 2 and the hub 3 in the thrust direction is formed between the lower end surface 3a1 of the base portion 3a of the hub 3 and the upper end surface 8b of the bearing sleeve 8.

軸部材2は、例えばステンレス鋼等の金属材料を切削加工もしくは鍛造加工することにより形成される。軸部材2の外周面2aは、動圧発生部を有さない平滑な円筒面状に形成され、軸受スリーブ8の内周面8aとラジアル軸受隙間を介して対向する。   The shaft member 2 is formed by cutting or forging a metal material such as stainless steel. The outer peripheral surface 2a of the shaft member 2 is formed in a smooth cylindrical surface having no dynamic pressure generating portion, and is opposed to the inner peripheral surface 8a of the bearing sleeve 8 via a radial bearing gap.

ハブ3は、例えば金属材料で形成され、軸部材2の上端に、接着、圧入、接着剤介在下での圧入(以下、圧入接着)等の手段により固定される。ハブ3は、略円板形状を成す基部3aと、基部3aの外周部から軸方向下方に延在した周壁部3bと、周壁部3bの外周に設けられた鍔部3cと、ディスク搭載面3dとを備えている。ディスク搭載面3dには、図示しない磁気ディスク等が載置される。周壁部3bの外周面3b1には、ロータマグネット5が取り付けられる。   The hub 3 is formed of, for example, a metal material, and is fixed to the upper end of the shaft member 2 by means such as adhesion, press-fitting, press-fitting (hereinafter referred to as press-fitting adhesion) with an adhesive interposed therebetween. The hub 3 includes a base portion 3a having a substantially disc shape, a peripheral wall portion 3b extending axially downward from an outer peripheral portion of the base portion 3a, a flange portion 3c provided on the outer periphery of the peripheral wall portion 3b, and a disk mounting surface 3d. And. A magnetic disk or the like (not shown) is placed on the disk mounting surface 3d. A rotor magnet 5 is attached to the outer peripheral surface 3b1 of the peripheral wall 3b.

ハブ3の周壁部3bの内周には抜け止め部材9が設けられる。抜け止め部材9は、例えば、金属材料、例えば真ちゅう等の軟質金属のプレス成形で断面略L字型のリング状に形成され、周壁部3bの内周面上端部に設けられた段部3eに、接着、溶接等の適宜の手段で固定される。抜け止め部材9の内周面9aは、上方へ向けて漸次拡径したテーパ面状に形成され、その軸方向に対する角度は対向するハウジング7のテーパ面71a2よりも小さく設定される。これにより、抜け止め部材9の内周面9aと、後述するハウジング7のテーパ面71a2との間に、上方へ向けて径方向幅を漸次縮小したテーパ状のシール空間Sが形成される。このシール空間Sの毛細管力による引き込み作用に加えて、遠心力により外径方向へ流動したシール空間S内の潤滑流体が、テーパ状の抜け止め部材9の内周面9aにより上方、すなわち軸受内部側へ押込まれることにより、潤滑流体の外部への漏れ出しが確実に防止される。   A retaining member 9 is provided on the inner periphery of the peripheral wall 3 b of the hub 3. The retaining member 9 is formed in a ring shape having a substantially L-shaped cross section by press molding of a metal material, for example, a soft metal such as brass, and is provided on a step portion 3e provided at the upper end portion of the inner peripheral surface of the peripheral wall portion 3b. It is fixed by appropriate means such as adhesion and welding. The inner peripheral surface 9a of the retaining member 9 is formed in a tapered surface shape whose diameter is gradually increased upward, and the angle with respect to the axial direction is set smaller than the tapered surface 71a2 of the opposing housing 7. Thus, a tapered seal space S is formed between the inner peripheral surface 9a of the retaining member 9 and a tapered surface 71a2 of the housing 7 to be described later, with the radial width gradually reduced upward. In addition to the pull-in action by the capillary force of the seal space S, the lubricating fluid in the seal space S that has flowed in the outer diameter direction due to the centrifugal force is moved upward by the inner peripheral surface 9a of the tapered retaining member 9, that is, inside the bearing. By being pushed to the side, leakage of the lubricating fluid to the outside is surely prevented.

ハウジング7は、筒状に形成された側部71と、側部71の一端開口部を閉塞する底部72とを備える。ハウジング側部71は、略円筒状の側部本体711と、側部本体711の上側端面711dに固定された動圧発生部材712とで構成される。尚、本実施形態では側部本体711と底部72とが一体に形成されているが、これらを別体に形成した後、接着、溶接、溶着等任意の手段により両者を固定してもよい。   The housing 7 includes a side portion 71 formed in a cylindrical shape and a bottom portion 72 that closes one end opening of the side portion 71. The housing side portion 71 includes a substantially cylindrical side body 711 and a dynamic pressure generating member 712 fixed to the upper end surface 711d of the side body 711. In this embodiment, the side body 711 and the bottom 72 are integrally formed. However, after these are formed separately, they may be fixed by any means such as adhesion, welding, or welding.

側部本体711は、比較的軟質な金属材料の塑性加工により形成され、例えば真ちゅうの鍛造加工により形成される。側部本体711の外周面上方部には上方へ向けて漸次拡径したテーパ面711bが設けられ、側部本体711の外周面下方部には円筒面711cが設けられる。テーパ面711bは、ハブ3に固定された抜け止め部材9の内周面9aとの間に、上方に向けて径方向寸法が漸次縮小した環状のシール空間Sを形成する。このシール空間Sは、後述するスラスト軸受部Tのスラスト軸受隙間の外径側と連通している。円筒面711cは、ブラケット6の内周面に接着等により固定される。尚、側部本体711の加工方法は鍛造加工に限らず、例えばプレス加工で形成することもできる。   The side body 711 is formed by plastic processing of a relatively soft metal material, and is formed by, for example, brass forging. A tapered surface 711 b that gradually increases in diameter upward is provided at the upper part of the outer peripheral surface of the side body 711, and a cylindrical surface 711 c is provided at the lower part of the outer peripheral surface of the side body 711. The taper surface 711b forms an annular seal space S whose radial dimension is gradually reduced upward with the inner peripheral surface 9a of the retaining member 9 fixed to the hub 3. The seal space S communicates with an outer diameter side of a thrust bearing gap of a thrust bearing portion T described later. The cylindrical surface 711c is fixed to the inner peripheral surface of the bracket 6 by adhesion or the like. In addition, the processing method of the side part main body 711 is not restricted to a forging process, For example, it can also form by press work.

動圧発生部材712は、比較的硬質な金属材料、例えばステンレス鋼等の切削加工により断面矩形の円環形状に形成される。動圧発生部材712は、側部本体711の上側端面711dに接着、溶接、あるいは圧接等の手段により固定される。動圧発生部材712の上側端面712aには、図4に示すように、スラスト動圧発生部として、スパイラル形状に配列した動圧溝712a1が形成される。この動圧溝712a1は、例えば型成形により形成することができる。動圧発生部材712の内周面712cは、側部本体711の内周面711aと同一径を成し、これらの内周面712c及び711aで円筒面状のハウジング側部71の内周面71aを形成する。動圧発生部材712は、側部本体711の上側端面711dの外径端よりも外径へ突出しており、この突出した部分の下側端面712bが、抜け止め部材9の上側端面9bと軸方向で係合することにより、軸部材2及びハブ3の抜けを規制している。   The dynamic pressure generating member 712 is formed in an annular shape having a rectangular cross section by cutting a relatively hard metal material such as stainless steel. The dynamic pressure generating member 712 is fixed to the upper end surface 711d of the side body 711 by means such as adhesion, welding, or pressure welding. As shown in FIG. 4, dynamic pressure grooves 712a1 arranged in a spiral shape are formed on the upper end surface 712a of the dynamic pressure generating member 712 as a thrust dynamic pressure generating portion. The dynamic pressure groove 712a1 can be formed by molding, for example. The inner peripheral surface 712c of the dynamic pressure generating member 712 has the same diameter as the inner peripheral surface 711a of the side body 711, and the inner peripheral surface 71a of the cylindrical side housing 71 is formed by these inner peripheral surfaces 712c and 711a. Form. The dynamic pressure generating member 712 protrudes to the outer diameter from the outer diameter end of the upper end surface 711d of the side body 711, and the lower end surface 712b of this protruding portion is axially aligned with the upper end surface 9b of the retaining member 9 The shaft member 2 and the hub 3 are prevented from coming off.

上記のように、本発明に係る動圧軸受装置1のハウジング側部71は、塑性加工で形成された側部本体711と、切削加工で形成された動圧発生部材712とを一体化して構成される。これにより、側部本体711はスラスト軸受隙間に面さず耐摩耗性はそれ程要求されないため、テーパ面711b等が形成された複雑な形状を有する側部本体711を軟質金属の塑性加工で形成することができる。従って、側部本体711の形成が容易化され、製造コストを低減することができる。   As described above, the housing side portion 71 of the hydrodynamic bearing device 1 according to the present invention is configured by integrating the side body 711 formed by plastic working and the dynamic pressure generating member 712 formed by cutting. Is done. As a result, the side body 711 does not face the thrust bearing gap and wear resistance is not so much required. Therefore, the side body 711 having a complicated shape formed with the tapered surface 711b and the like is formed by plastic processing of soft metal. be able to. Therefore, the formation of the side body 711 is facilitated, and the manufacturing cost can be reduced.

また、成形性の高い側部本体711でハウジング側部71の複雑な形状を有する部分を形成し、動圧発生部と別部材にすることにより、動圧発生部材712を単純な形状(例えば円環状)とすることができる。これにより、動圧発生部材712を耐摩耗性が良好な硬質金属で形成しても比較的容易に切削加工することができるため、コスト高や製作時間の延長を招くことなく、スラスト軸受隙間に面する上側端面712a、特に動圧溝712a1の耐摩耗性の向上を図ることができる。また、動圧発生部材712を単純な形状とすることで、動圧溝712a1を型成形する際の支持構造が単純化されて加圧しやすくなるため、動圧溝712a1を簡易的な方法で精度良く形成することができる。   Further, by forming a part having a complicated shape of the housing side part 71 with the side body 711 having high formability and making it a separate member from the dynamic pressure generating part, the dynamic pressure generating member 712 has a simple shape (for example, a circular shape). Annular). As a result, even if the dynamic pressure generating member 712 is formed of a hard metal having good wear resistance, it can be cut relatively easily, so that the thrust bearing gap is not increased without incurring an increase in cost and an increase in manufacturing time. The wear resistance of the facing upper end surface 712a, particularly the dynamic pressure groove 712a1, can be improved. In addition, since the dynamic pressure generating member 712 has a simple shape, the support structure when the dynamic pressure groove 712a1 is molded is simplified and can be easily pressurized. It can be formed well.

軸受スリーブ8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体で円筒状に形成され、ハウジング7の内周面71aの所定位置に圧入、接着、あるいは圧入接着等の手段で固定される。なお、軸受スリーブ8は、焼結金属以外にも銅合金等のメタル材料や他の多孔質材料などで形成することもできる。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body made of sintered metal, in particular, a sintered metal porous body mainly composed of copper, and is press-fitted into a predetermined position on the inner peripheral surface 71a of the housing 7, It is fixed by means such as adhesion or press-fit adhesion. The bearing sleeve 8 can be formed of a metal material such as a copper alloy, other porous materials, or the like in addition to the sintered metal.

軸受スリーブ8の内周面8aには、図3に示すように、軸方向に離隔した2箇所の領域に、ラジアル動圧発生部として、ヘリングボーン形状に配列した動圧溝8a1、8a2が形成される。また、軸受スリーブ8の外周面8dに軸方向溝8d1が1又は複数本形成されると共に、下側端面8cに前記軸方向溝8d1と連通した径方向溝8c1が形成される。尚、これらの軸方向溝及び径方向溝は、ハウジング7の内周面71a及び内底面72aに形成してもよい。あるいは、軸受スリーブ8側及びハウジング7側の双方に軸方向溝及び径方向溝を形成してもよい。   On the inner peripheral surface 8a of the bearing sleeve 8, as shown in FIG. 3, dynamic pressure grooves 8a1 and 8a2 arranged in a herringbone shape are formed as radial dynamic pressure generating portions in two regions separated in the axial direction. Is done. Further, one or a plurality of axial grooves 8d1 are formed on the outer peripheral surface 8d of the bearing sleeve 8, and a radial groove 8c1 communicating with the axial groove 8d1 is formed on the lower end surface 8c. These axial grooves and radial grooves may be formed on the inner peripheral surface 71 a and the inner bottom surface 72 a of the housing 7. Alternatively, an axial groove and a radial groove may be formed on both the bearing sleeve 8 side and the housing 7 side.

上記の構成の動圧軸受装置1の内部空間に、潤滑流体として例えば潤滑油を充満させることにより、動圧軸受装置1が完成する。シール空間Sの容積は、軸受内部に充満された潤滑油の使用想定範囲内の温度変化や圧力変化による体積変化を吸収することのできる範囲で設定されるため、油面は常にシール空間S内に保持される。   The fluid dynamic bearing device 1 is completed by filling the internal space of the fluid dynamic bearing device 1 configured as described above with, for example, lubricating oil as a lubricating fluid. Since the volume of the seal space S is set within a range in which the volume change due to temperature change or pressure change within the expected use range of the lubricating oil filled in the bearing can be absorbed, the oil level is always in the seal space S. Retained.

軸部材2が回転すると、軸受スリーブ8の内周面8aに形成された動圧溝8a1、8a2が、ラジアル軸受隙間の潤滑油に動圧作用を発生させることにより、軸部材2及びハブ3をラジアル方向で回転自在に支持するラジアル軸受部R1、R2が形成される。これと同時に、動圧発生部材712の上側端面712aに形成された動圧溝712a1が、スラスト軸受隙間の潤滑油に動圧作用を発生させることにより、軸部材2及びハブ3をスラスト方向で回転自在に支持するスラスト軸受部Tが形成される。   When the shaft member 2 rotates, the dynamic pressure grooves 8a1 and 8a2 formed on the inner peripheral surface 8a of the bearing sleeve 8 generate a dynamic pressure action on the lubricating oil in the radial bearing gap, thereby causing the shaft member 2 and the hub 3 to move. Radial bearing portions R1 and R2 that are rotatably supported in the radial direction are formed. At the same time, the dynamic pressure groove 712a1 formed on the upper end surface 712a of the dynamic pressure generating member 712 generates a dynamic pressure action on the lubricating oil in the thrust bearing gap, thereby rotating the shaft member 2 and the hub 3 in the thrust direction. A thrust bearing portion T that is freely supported is formed.

また、図2に示すように、軸受スリーブ8の外周面8dに形成された軸方向溝8d1及び下側端面8cに形成された径方向溝8c1により、ラジアル軸受隙間の下端と、軸受スリーブ8の上側端面8bとハブ3の基部3aの下側端面3a1との間の軸方向隙間とを連通することにより、内部空間での圧力バランスを適正に保つことができる。さらに、本実施形態では、図3に示すように、軸受スリーブ8の内周面8aの動圧溝8a1を、軸方向中間部に形成した環状の平滑部に対して軸方向非対称、具体的には、環状平滑部より上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている(X1>X2)。このため、軸部材2の回転時、動圧溝8a1による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。この引き込み力の差圧によって、第1ラジアル軸受部R1のラジアル軸受隙間に満たされた潤滑油が下方に流動し、第2ラジアル軸受部のラジアル軸受隙間→径方向溝8c1→軸方向溝8d1→軸受スリーブ8とハブ3との間の軸方向隙間、という経路を流動して、再びラジアル軸受隙間に戻る。このように、ラジアル軸受隙間の潤滑油を強制的に循環させることにより、軸受装置の内部空間での局所的な負圧の発生をより効果的に防止できる。なお、軸方向寸法の関係は負圧の発生が生じない限り、逆(X1<X2)にすることもできる。また、このようにラジアル軸受隙間で潤滑油を強制的に流動させる必要がないときは、動圧溝8a1の形状を環状平滑部に対して軸方向対称に形成してもよい。   Further, as shown in FIG. 2, the axial groove 8d1 formed on the outer peripheral surface 8d of the bearing sleeve 8 and the radial groove 8c1 formed on the lower end surface 8c allow the lower end of the radial bearing gap and the bearing sleeve 8 to By communicating the axial clearance between the upper end surface 8b and the lower end surface 3a1 of the base 3a of the hub 3, the pressure balance in the internal space can be maintained appropriately. Furthermore, in this embodiment, as shown in FIG. 3, the dynamic pressure groove 8a1 of the inner peripheral surface 8a of the bearing sleeve 8 is axially asymmetric with respect to the annular smooth portion formed in the axially intermediate portion, specifically The axial dimension X1 of the upper region from the annular smooth portion is larger than the axial dimension X2 of the lower region (X1> X2). For this reason, when the shaft member 2 rotates, the pulling force (pumping force) of the lubricating oil by the dynamic pressure groove 8a1 is relatively larger in the upper region than in the lower region. Due to the differential pressure of the pulling force, the lubricating oil filled in the radial bearing gap of the first radial bearing portion R1 flows downward, and the radial bearing gap of the second radial bearing portion → the radial groove 8c1 → the axial groove 8d1 → It flows through the path of the axial gap between the bearing sleeve 8 and the hub 3 and returns to the radial bearing gap again. Thus, by forcibly circulating the lubricating oil in the radial bearing gap, it is possible to more effectively prevent the generation of a local negative pressure in the internal space of the bearing device. The relationship between the axial dimensions can be reversed (X1 <X2) as long as no negative pressure is generated. Further, when it is not necessary to force the lubricating oil to flow through the radial bearing gap as described above, the shape of the dynamic pressure groove 8a1 may be formed symmetrically with respect to the annular smooth portion.

本発明は、上記の実施形態に限られない。以下、本発明の他の実施形態を説明する。尚、以下の説明において、上記の実施形態と同一の構成、機能を有する箇所には、同一符合を付し、説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, other embodiments of the present invention will be described. In the following description, parts having the same configuration and function as those of the above embodiment are given the same reference numerals, and the description thereof is omitted.

図5に、本発明の第2の実施形態に係る動圧軸受装置21を示す。この動圧軸受装置21では、ハブ3がハブ本体31及び動圧発生部材32で構成されている。動圧発生部材32は、ステンレス鋼等の切削加工により円環状に形成され、その下側端面でハブ3の基部3aの下側端面3a1を形成し、この下側端面にスラスト動圧発生部が形成される。このスラスト動圧発生部形成領域が、平滑面状に形成されたハウジング7の側部71の上端面71bと第1スラスト軸受部T1のスラスト軸受隙間を介して対向する。ハブ本体31は例えば真ちゅうの鍛造加工で形成され、ハブ本体31の所定位置に動圧発生部材32が接着、溶接、圧接等の適宜の手段で固定される。ハウジング7は、軸方向両端に開口した略円筒形状の側部71と、側部71の一端開口部を閉塞する底部材72とで構成される。尚、本実施形態の動圧軸受装置21におけるハウジング側部71のテーパ面71c及び円筒面71dは、上記実施形態の動圧軸受装置1におけるハウジング側部71のテーパ面71a2及び円筒面71a3にそれぞれ対応する。   FIG. 5 shows a hydrodynamic bearing device 21 according to a second embodiment of the present invention. In this dynamic pressure bearing device 21, the hub 3 is composed of a hub body 31 and a dynamic pressure generating member 32. The dynamic pressure generating member 32 is formed in an annular shape by cutting of stainless steel or the like, and the lower end surface thereof forms a lower end surface 3a1 of the base portion 3a of the hub 3, and a thrust dynamic pressure generating portion is formed on the lower end surface. It is formed. This thrust dynamic pressure generating portion forming region is opposed to the upper end surface 71b of the side portion 71 of the housing 7 formed in a smooth surface via a thrust bearing gap of the first thrust bearing portion T1. The hub body 31 is formed by, for example, brass forging, and a dynamic pressure generating member 32 is fixed to a predetermined position of the hub body 31 by an appropriate means such as adhesion, welding, or pressure welding. The housing 7 includes a substantially cylindrical side portion 71 that is open at both ends in the axial direction, and a bottom member 72 that closes one end opening portion of the side portion 71. The tapered surface 71c and the cylindrical surface 71d of the housing side portion 71 in the dynamic pressure bearing device 21 of the present embodiment are respectively the tapered surface 71a2 and the cylindrical surface 71a3 of the housing side portion 71 in the dynamic pressure bearing device 1 of the above embodiment. Correspond.

また、この動圧軸受装置21は、軸部材2の下端に円盤状のフランジ部10が固定される。フランジ部10の上側端面10aは、軸受スリーブ8の下側端面8cと第2スラスト軸受部T2のスラスト軸受隙間を介して対向する。軸部材2及びハブ3が回転すると、第1及び第2スラスト軸受部T1、T2の各スラスト軸受隙間の潤滑膜に動圧作用が発生し、軸部材2及びハブ3が回転可能に非接触支持される。このように、軸方向に離隔した2箇所にスラスト軸受部T1、T2が形成されることにより、軸受剛性、特にモーメント剛性が高められる。また、この実施形態では、シール空間Sはハウジング側部71のテーパ面71cとハブ3の周壁部3bの円筒状内周面3b2との間に形成される。   Further, in the dynamic pressure bearing device 21, the disc-shaped flange portion 10 is fixed to the lower end of the shaft member 2. The upper end surface 10a of the flange portion 10 faces the lower end surface 8c of the bearing sleeve 8 via a thrust bearing gap of the second thrust bearing portion T2. When the shaft member 2 and the hub 3 rotate, a dynamic pressure action is generated in the lubricating film in the thrust bearing gaps of the first and second thrust bearing portions T1 and T2, and the shaft member 2 and the hub 3 are rotatably supported in a non-contact manner. Is done. As described above, the thrust bearing portions T1 and T2 are formed at two locations separated in the axial direction, so that the bearing rigidity, particularly the moment rigidity is enhanced. In this embodiment, the seal space S is formed between the tapered surface 71 c of the housing side portion 71 and the cylindrical inner peripheral surface 3 b 2 of the peripheral wall portion 3 b of the hub 3.

動圧発生部材の形状等は以上の実施形態に限られず、適宜変更することができる。例えば、図2に示す動圧軸受装置1のハウジング側部71における動圧発生部材712を薄肉化してもよい。あるいは、図5に示す動圧軸受装置1のハブ3に設けられた動圧発生部材32を厚肉化し、動圧発生部材32の上側端面をハブ3の上側端面に露出させてもよい。   The shape or the like of the dynamic pressure generating member is not limited to the above embodiment, and can be changed as appropriate. For example, the dynamic pressure generating member 712 in the housing side portion 71 of the dynamic pressure bearing device 1 shown in FIG. Alternatively, the dynamic pressure generating member 32 provided on the hub 3 of the dynamic pressure bearing device 1 shown in FIG. 5 may be thickened so that the upper end surface of the dynamic pressure generating member 32 is exposed to the upper end surface of the hub 3.

また、以上の実施形態では、ラジアル動圧発生部としてヘリングボーン形状の動圧溝が、スラスト動圧発生部としてスパイラル形状の動圧溝が形成されているが、これに限らない。例えば、ラジアル動圧発生部として、スパイラル形状の動圧溝や、多円弧軸受、あるいはステップ軸受を形成してもよい。また、スラスト動圧発生部として、へリングボーン形状の動圧溝や、ステップ軸受、あるいは波型軸受(ステップ軸受が波型形状になったもの)を形成してもよい。   Further, in the above embodiment, the herringbone-shaped dynamic pressure groove is formed as the radial dynamic pressure generating portion, and the spiral-shaped dynamic pressure groove is formed as the thrust dynamic pressure generating portion, but this is not restrictive. For example, a spiral dynamic pressure groove, a multi-arc bearing, or a step bearing may be formed as the radial dynamic pressure generating portion. Further, as the thrust dynamic pressure generating portion, a herringbone-shaped dynamic pressure groove, a step bearing, or a wave bearing (a step bearing having a wave shape) may be formed.

また、以上の実施形態では、ラジアル軸受部R1、R2が軸方向に離隔して設けられているが、これに限らず、例えばこれらを軸方向で連続的に形成してもよい。あるいは、ラジアル軸受部R1、R2の何れか一方のみを設けても良い。   Further, in the above embodiment, the radial bearing portions R1 and R2 are provided separately in the axial direction. However, the present invention is not limited thereto, and for example, they may be continuously formed in the axial direction. Alternatively, only one of the radial bearing portions R1 and R2 may be provided.

また、以上では、潤滑流体として潤滑油が使用されているが、これ以外にも各軸受隙間に動圧作用を発生可能な流体、例えば空気等の気体や、磁性流体、あるいは潤滑グリース等を使用することもできる。   In the above, lubricating oil is used as the lubricating fluid, but other fluids that can generate a dynamic pressure action in each bearing gap, for example, gas such as air, magnetic fluid, or lubricating grease are used. You can also

また、上記の実施形態では、ハブ3にディスクを載置し、動圧軸受装置1、21をHDD等のディスク駆動装置に用いられるスピンドルモータに使用しているが、これに限られない。例えば、ハブ3にポリゴンミラーを装着あるいは一体化し、動圧軸受装置1、21をレーザビームプリンタのポリゴンスキャナモータの回転軸支持用に使用することもできる。あるいは、ハブ3にカラーホイールを装着し、動圧軸受装置1、21をプロジェクタのカラーホイールモータの回転軸支持用に使用することもできる。あるいは、ハブ3にファンを設置(一体化)し、動圧軸受装置1、21をファンモータに使用することもできる。   In the above embodiment, a disk is placed on the hub 3 and the hydrodynamic bearing devices 1 and 21 are used for a spindle motor used in a disk drive device such as an HDD. However, the present invention is not limited to this. For example, a polygon mirror may be attached to or integrated with the hub 3, and the dynamic pressure bearing devices 1 and 21 may be used for supporting the rotating shaft of a polygon scanner motor of a laser beam printer. Alternatively, a color wheel can be mounted on the hub 3 and the dynamic pressure bearing devices 1 and 21 can be used for supporting the rotating shaft of the color wheel motor of the projector. Alternatively, a fan may be installed (integrated) in the hub 3 and the dynamic pressure bearing devices 1 and 21 may be used for the fan motor.

動圧軸受装置1を組み込んだスピンドルモータを示す断面図である。It is sectional drawing which shows the spindle motor incorporating the dynamic pressure bearing apparatus. 本発明に係る動圧軸受装置1を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus 1 which concerns on this invention. 軸受スリーブ8の軸方向断面図である。3 is an axial sectional view of a bearing sleeve 8. FIG. 動圧発生部材712の上面図である。6 is a top view of a dynamic pressure generating member 712. FIG. 本発明の第2の実施形態に係る動圧軸受装置21の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus 21 which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
3 ハブ
4 ステータコイル
5 ロータマグネット
6 ブラケット
7 ハウジング
71 側部
72 底部
711 側部本体
712 動圧発生部材
712a1 動圧溝(スラスト動圧発生部)
8 軸受スリーブ
9 抜け止め部材
31 ハブ本体
32 動圧発生部材
R1、R2 ラジアル軸受部
T スラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 3 Hub 4 Stator coil 5 Rotor magnet 6 Bracket 7 Housing 71 Side part 72 Bottom part 711 Side part main body 712 Dynamic pressure generating member 712a1 Dynamic pressure groove (thrust dynamic pressure generating part)
8 Bearing sleeve 9 Retaining member 31 Hub body 32 Dynamic pressure generating member R1, R2 Radial bearing portion T Thrust bearing portion S Seal space

Claims (4)

筒状の側部を有するハウジングと、ハウジングの側部の端面が面するスラスト軸受隙間と、スラスト軸受隙間に形成された潤滑膜に動圧作用を発生させるスラスト動圧発生部とを備えた動圧軸受装置において、
ハウジングの側部が、前記スラスト動圧発生部を形成した動圧発生部材と、金属材料の塑性加工で形成された側部本体とで構成されたことを特徴とする動圧軸受装置。
A dynamic motor comprising a housing having a cylindrical side part, a thrust bearing gap facing an end surface of the side part of the housing, and a thrust dynamic pressure generating part for generating a dynamic pressure action on a lubricating film formed in the thrust bearing gap. In the pressure bearing device,
A hydrodynamic bearing device, characterized in that a side portion of the housing is composed of a dynamic pressure generating member forming the thrust dynamic pressure generating portion and a side main body formed by plastic processing of a metal material.
軸部材と、軸部材にフランジ状に設けられ、ロータマグネットが取り付けられたハブと、ハブの端面が面するスラスト軸受隙間と、スラスト軸受隙間に形成された潤滑膜に動圧作用を発生させるスラスト動圧発生部とを備えた動圧軸受装置において、
ハブが、前記スラスト動圧発生部を形成した動圧発生部材と、金属材料の塑性加工で形成されたハブ本体とで構成されたことを特徴とする動圧軸受装置。
A shaft member, a hub provided in a flange shape on the shaft member, to which a rotor magnet is attached, a thrust bearing gap facing the end surface of the hub, and a thrust that generates a dynamic pressure action on a lubricating film formed in the thrust bearing gap In the hydrodynamic bearing device provided with the hydrodynamic pressure generating part,
A hydrodynamic bearing device, characterized in that a hub includes a dynamic pressure generating member that forms the thrust dynamic pressure generating portion and a hub body that is formed by plastic processing of a metal material.
前記動圧発生部材が金属材料の切削加工で形成された請求項1又は2記載の動圧軸受装置。   The dynamic pressure bearing device according to claim 1, wherein the dynamic pressure generating member is formed by cutting a metal material. 前記スラスト動圧発生部を型成形により形成した請求項1又は2記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the thrust dynamic pressure generating portion is formed by molding.
JP2007019694A 2007-01-30 2007-01-30 Dynamic pressure bearing device Withdrawn JP2008185140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007019694A JP2008185140A (en) 2007-01-30 2007-01-30 Dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007019694A JP2008185140A (en) 2007-01-30 2007-01-30 Dynamic pressure bearing device

Publications (1)

Publication Number Publication Date
JP2008185140A true JP2008185140A (en) 2008-08-14

Family

ID=39728322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007019694A Withdrawn JP2008185140A (en) 2007-01-30 2007-01-30 Dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JP2008185140A (en)

Similar Documents

Publication Publication Date Title
JP2006194400A (en) Spindle motor and rotating device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2007263228A (en) Dynamic pressure bearing device
JP2007024267A (en) Fluid bearing device and motor equipped with the same
JP2005337490A (en) Dynamic pressure bearing device
JP4657734B2 (en) Hydrodynamic bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP5220359B2 (en) Hydrodynamic bearing device
JP2009103280A (en) Dynamic pressure bearing device and its manufacturing method
JP2006329391A (en) Dynamic pressure bearing arrangement
JP2008144847A (en) Dynamic pressure bearing device
JP2008185140A (en) Dynamic pressure bearing device
JP2011074951A (en) Fluid dynamic bearing device
JP2002054628A (en) Dynamic pressure fluid bearing device and spindle motor
JP2008111520A (en) Dynamic pressure bearing device
JP5064083B2 (en) Method for manufacturing hydrodynamic bearing device
JP2009103179A (en) Fluid bearing device
JP4738831B2 (en) Hydrodynamic bearing device
JP2005265180A (en) Dynamic pressure bearing device
JP2004183867A (en) Dynamic pressure fluid bearing device, and motor provided with the same
JP2004197889A (en) Dynamic-pressure bearing device
JP2005210896A (en) Spindle motor of disc drive
JP2001173645A (en) Dynamic pressure bearing unit
JP2005264983A (en) Dynamic pressure bearing device
JP2007285414A (en) Dynamic pressure bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406