JP2002276666A - Dynamic pressure type bearing unit - Google Patents

Dynamic pressure type bearing unit

Info

Publication number
JP2002276666A
JP2002276666A JP2001081049A JP2001081049A JP2002276666A JP 2002276666 A JP2002276666 A JP 2002276666A JP 2001081049 A JP2001081049 A JP 2001081049A JP 2001081049 A JP2001081049 A JP 2001081049A JP 2002276666 A JP2002276666 A JP 2002276666A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
shaft member
bearing unit
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001081049A
Other languages
Japanese (ja)
Inventor
Norio Yamada
典男 山田
Natsuhiko Mori
夏比古 森
Atsushi Hiraide
淳 平出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2001081049A priority Critical patent/JP2002276666A/en
Publication of JP2002276666A publication Critical patent/JP2002276666A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Sliding-Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-torque dynamic pressure type bearing unit having high durability and shock resistance. SOLUTION: A radial bearing surface 10a having a plurality of dynamic pressure grooves is formed in the internal circumference of a bearing member 7 composed of oil containing sintered metal, and a shaft member 2 comprising a shaft part 2a and a flange part 2b is inserted in the internal circumference of the bearing member 7. The shaft member 2 is formed of ceramic formed with a hollow hole formed in its surface. A bearing clearance is formed between both end faces of the flange part and its opposed surfaces 11a and 11b, so as to provide a thrust bearing part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、軸受隙間に生じる
潤滑流体の動圧により、軸部材を非接触支持する動圧型
軸受ユニットに関するものであり、特に情報機器用スピ
ンドルモータのスピンドル支持用に好適な軸受ユニット
に関する。ここでいう「情報機器用スピンドルモータ」
には、例えばCD−R/RW、DVD−ROM/RAM
などの光ディスク、MOなどの光磁気ディスク、HDD
などの磁気ディスクを駆動するスピンドルモータ、ある
いはレーザビームプリンタ(LBP)や複写機のポリゴ
ンスキャナモータなどが含まれる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure bearing unit for supporting a shaft member in a non-contact manner by a dynamic pressure of a lubricating fluid generated in a bearing gap, and is particularly suitable for supporting a spindle motor of a spindle motor for information equipment. Bearing unit. "Spindle motor for information equipment" here
Include, for example, CD-R / RW, DVD-ROM / RAM
Optical disk such as MO, magneto-optical disk such as MO, HDD
For example, a spindle motor for driving a magnetic disk such as a laser beam printer (LBP) or a polygon scanner motor of a copying machine is included.

【0002】[0002]

【従来の技術】上記各種情報機器用スピンドルモータの
スピンドルを支持する軸受としては、従来、転がり軸受
が一般的であったが、近年では、高回転精度、低コス
ト、低騒音等の優れた特徴を備える動圧型軸受の使用が
検討され、あるいは実際に使用されている。この動圧型
軸受を用いた軸受ユニットとしては、含油焼結金属から
なる軸受部材の内周と軸部材(スピンドル)の外周との
間にラジアル軸受隙間を形成すると共に、軸部材の軸端
にフランジ部を設けてフランジ部の両端面とこれらに対
向する面との間にスラスト軸受隙間を形成し、軸部材の
回転時に、両軸受隙間に面した動圧溝で両軸受隙間に流
体動圧を発生させてラジアル方向およびスラスト方向で
軸部材と軸受部材を非接触に保持するものが知られてい
る。
2. Description of the Related Art Conventionally, rolling bearings have been generally used as bearings for supporting spindles of various types of information equipment spindle motors. In recent years, however, excellent features such as high rotational accuracy, low cost, and low noise have been adopted. The use of a hydrodynamic bearing provided with is considered or actually used. In a bearing unit using this dynamic pressure type bearing, a radial bearing gap is formed between the inner periphery of a bearing member made of oil-impregnated sintered metal and the outer periphery of a shaft member (spindle), and a flange is formed at the shaft end of the shaft member. A thrust bearing gap is formed between both end faces of the flange part and the faces facing the flange part, and when the shaft member rotates, fluid dynamic pressure is applied to both bearing gaps by dynamic pressure grooves facing both bearing gaps. It is known that the shaft member and the bearing member are generated in a non-contact manner in the radial direction and the thrust direction.

【0003】従来、この動圧型軸受ユニットの軸部材し
ては、機械加工性に優れ、耐食性・耐摩耗性に富むステ
ンレス鋼を素材とする場合が多い。
Conventionally, as a shaft member of this dynamic pressure type bearing unit, stainless steel excellent in machinability and rich in corrosion resistance and wear resistance is often used as a material.

【0004】[0004]

【発明が解決しようとする課題】ところで、近年では、
上述した動圧型軸受ユニットについて以下の問題点が指
摘されている。
However, in recent years,
The following problems have been pointed out with respect to the above-described hydrodynamic bearing unit.

【0005】軸受ユニットの停止中は、回転側の軸部
材が浮上していないため、軸部材が静止側の部材と金属
接触している。従って、起動および停止時には軸部材の
凸部が静止側部材の表面を削って摩耗させ、さらにはこ
の時の摩耗粉によって摩耗を促進させる場合があり、軸
受の耐久寿命を低下させる要因となっている。
[0005] When the bearing unit is stopped, the shaft member on the rotating side does not float, so that the shaft member is in metallic contact with the member on the stationary side. Therefore, at the time of starting and stopping, the convex portion of the shaft member scrapes the surface of the stationary side member to wear, and further, the wear powder at this time may accelerate the wear, which is a factor to reduce the durability life of the bearing. I have.

【0006】軸部材に衝撃荷重が加わった際に、軸部
材が静止側部材と激しく衝突して相手側に損傷を与える
場合がある。
[0006] When an impact load is applied to the shaft member, the shaft member may collide violently with the stationary member to damage the partner.

【0007】ステンレス鋼では軸部材が重くなるた
め、トルクが増す。そのため、軸受ユニットのさらなる
高速回転化が難しくなっている。
In the case of stainless steel, the shaft member becomes heavy, so that the torque increases. Therefore, it is difficult to further increase the rotation speed of the bearing unit.

【0008】以上の問題点に鑑み、本発明は、高い耐久
性や耐衝撃性を備え、かつ低トルクの動圧型軸受ユニッ
トを提供することを目的とする。
In view of the above problems, an object of the present invention is to provide a dynamic pressure type bearing unit having high durability and impact resistance and low torque.

【0009】[0009]

【課題を解決するための手段】上記目的の達成のため、
本発明では、軸受部材と、軸受部材の内周に配置した軸
部材と、軸部材に面する微小な軸受隙間とを備え、軸部
材と軸受部材の相対回転時に動圧溝の動圧作用で軸受隙
間に潤滑流体の動圧を発生させて軸部材を非接触支持す
る動圧型軸受ユニットにおいて、軸部材をセラミックで
形成した。
In order to achieve the above object,
In the present invention, a bearing member, a shaft member disposed on the inner periphery of the bearing member, and a minute bearing gap facing the shaft member are provided, and the dynamic pressure action of the dynamic pressure groove is performed when the shaft member and the bearing member rotate relative to each other. In a dynamic pressure type bearing unit that generates a dynamic pressure of a lubricating fluid in a bearing gap to support a shaft member in a non-contact manner, the shaft member is formed of ceramic.

【0010】セラミックは、硬度が高く、また、表面粗
さも極めて小さくできるため、セラミック製軸部材が軸
受部材と摺接しても軸受部材にはほとんど摩耗が発生し
ない。従って、軸受ユニットの耐久性を大幅に向上させ
ることができる。また、セラミックはステンレス鋼より
も軽量であるため、軸部材に衝撃が作用した際にも軸受
部材に付与される衝撃荷重は小さく、従って、軸受ユニ
ットの耐衝撃性を向上させることができる。また、その
軽量性ゆえに低トルク化を図ることができ、軸受ユニッ
トのさらなる高速回転化が可能となる。
Since ceramic has a high hardness and a very small surface roughness, even if the ceramic shaft member is in sliding contact with the bearing member, the bearing member hardly wears. Therefore, the durability of the bearing unit can be significantly improved. Further, since the ceramic is lighter than the stainless steel, the impact load applied to the bearing member even when an impact acts on the shaft member is small, so that the impact resistance of the bearing unit can be improved. Further, because of its light weight, torque can be reduced, and the bearing unit can be rotated at a higher speed.

【0011】軸部材の表面に複数の凹部を備える潤滑流
体の溜り部を形成することにより、十分な潤滑膜が形成
されていない起動時にも軸受隙間に潤沢な油を保持する
ことができる。そのため、軸受部材の摩耗を減じること
ができ、軸受寿命の向上が図られる。この機能を実現す
るため、流体溜り部は、軸部材の表面のうちで、少なく
とも軸受隙間との対向部を含む領域に形成する。
By forming a lubricating fluid reservoir having a plurality of recesses on the surface of the shaft member, a sufficient amount of oil can be retained in the bearing gap even at the time of startup when a sufficient lubricating film is not formed. Therefore, the wear of the bearing member can be reduced, and the life of the bearing can be improved. In order to realize this function, the fluid reservoir is formed in a region including at least a portion facing the bearing gap on the surface of the shaft member.

【0012】セラミックは焼結により形成されるので、
焼結後にはその表面に空孔を残すことができる。油溜り
部の凹部は、軸部材の表面に開口した当該空孔で形成す
ることができる。
Since ceramic is formed by sintering,
After sintering, pores can be left on the surface. The concave portion of the oil reservoir can be formed by the hole opened on the surface of the shaft member.

【0013】軸部材表面の空孔密度が大きすぎると、表
面粗さを小さくすることが難しくなるので、溜り部の空
孔密度は10%以下にするのが望ましい。
If the pore density on the surface of the shaft member is too large, it becomes difficult to reduce the surface roughness. Therefore, it is desirable that the pore density in the reservoir is set to 10% or less.

【0014】本発明にかかる動圧型軸受ユニットにおい
ては、軸受隙間として、半径方向の隙間であるラジアル
軸受隙間が設けられる。これにより、ラジアル軸受隙間
に生じた流体動圧で軸部材をラジアル方向で非接触支持
することが可能となる。ラジアル軸受隙間は、軸部材の
外周と軸受部材の内周との間に形成され、この場合、複
数の動圧溝を備えるラジアル軸受面は、例えば軸受部材
の内周に形成することができる。
In the dynamic pressure bearing unit according to the present invention, a radial bearing gap which is a gap in the radial direction is provided as the bearing gap. This makes it possible to support the shaft member in a non-contact manner in the radial direction by the fluid dynamic pressure generated in the radial bearing gap. The radial bearing gap is formed between the outer periphery of the shaft member and the inner periphery of the bearing member. In this case, the radial bearing surface having the plurality of dynamic pressure grooves can be formed, for example, on the inner periphery of the bearing member.

【0015】軸部材の表面のうち、起動および停止時に
軸受部材と接触する部分を、表面に開口した空孔を除い
てRa0.03μm以下の表面粗さにすれば、軸部材と
軸受部材の摺接時にも軸受部材でほとんど摩耗が生じな
いようにすることができる。ここで「表面に開口した空
孔を除いて」とは、表面粗さRaを、当該空孔を除いて
算出することを意味する。
[0015] If the surface of the shaft member that comes into contact with the bearing member at the time of starting and stopping is made to have a surface roughness of Ra 0.03 µm or less excluding the holes opened on the surface, the sliding between the shaft member and the bearing member is achieved. At the time of contact, almost no wear occurs on the bearing member. Here, "excluding holes opened in the surface" means that the surface roughness Ra is calculated excluding the holes.

【0016】さらに軸受隙間として、軸方向の隙間であ
るスラスト軸受隙間を設けることにより、スラスト軸受
隙間に生じた流体動圧で軸部材をスラスト方向で非接触
支持することができる。具体的には、軸部材にフランジ
部を設け、軸受部材の端面とこれに対向するフランジ部
の一端面との間、および、フランジ部の他端面とこれに
対向するスラスト支持部材の端面との間にそれぞれスラ
スト軸受隙間が形成される。
Further, by providing a thrust bearing gap which is a gap in the axial direction as the bearing gap, the shaft member can be supported in a non-contact manner in the thrust direction by the fluid dynamic pressure generated in the thrust bearing gap. Specifically, a flange portion is provided on the shaft member, between the end surface of the bearing member and one end surface of the flange portion opposed thereto, and between the other end surface of the flange portion and the end surface of the thrust support member opposed thereto. Thrust bearing gaps are formed between them.

【0017】この場合、軸部材の表面のうち、起動およ
び停止時に軸受部材およびスラスト支持部材と接触する
部分を、表面に開口した空孔を除いてRa0.03μm
以下の表面粗さにすれば、軸部材と、軸受部材およびス
ラスト支持部材との摺接時にも軸受部材やスラスト支持
部材でほとんど摩耗が生じないようにすることができ
る。ここで「表面に開口した空孔を除いて」とは、上記
と同様に表面粗さRaを、当該空孔を除いて算出するこ
とを意味する。
In this case, a portion of the surface of the shaft member which comes into contact with the bearing member and the thrust support member at the time of starting and stopping is changed to Ra 0.03 μm except for a hole opened on the surface.
With the following surface roughness, even when the shaft member is in sliding contact with the bearing member and the thrust support member, almost no wear occurs on the bearing member and the thrust support member. Here, “excluding the holes opened on the surface” means that the surface roughness Ra is calculated excluding the holes as described above.

【0018】軸受部材を含油焼結金属で形成すれば、軸
受の運転中は、油の熱膨張や圧力発生によって潤滑剤が
軸受部材の表面から滲み出すため、軸受隙間に潤沢な潤
滑剤を供給することができる。含油焼結金属製の軸受部
材の内周にラジアル軸受面を形成する場合、当該ラジア
ル軸受面は圧縮成形等によって低コストに成形すること
ができる。
If the bearing member is formed of an oil-impregnated sintered metal, the lubricant oozes out of the surface of the bearing member during the operation of the bearing due to thermal expansion and pressure of the oil, so that ample lubricant is supplied to the bearing gap. can do. When a radial bearing surface is formed on the inner periphery of a bearing member made of an oil-impregnated sintered metal, the radial bearing surface can be formed at low cost by compression molding or the like.

【0019】軸部材の素材であるセラミックとしては、
アルミナ、窒化珪素、炭化珪素、ジルコニア、サイアロ
ンの何れかを使用することができる。
As the ceramic material of the shaft member,
Any of alumina, silicon nitride, silicon carbide, zirconia, and sialon can be used.

【0020】上記各構成の動圧型軸受ユニットを備える
情報機器用スピンドルモータは、高い耐久性・耐衝撃性
を有するために製品寿命を長期化することができ、かつ
さらなる高速回転化が可能でとあるという特徴を備えて
いる。
The spindle motor for information equipment provided with the above-described dynamic pressure type bearing unit has high durability and impact resistance, so that the product life can be extended and further high-speed rotation is possible. There is a feature that there is.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施形態を図1〜
図5に基づいて説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
A description will be given based on FIG.

【0022】図1は、情報機器用スピンドルモータの一
例として、HDDスピンドルモータを例示している。こ
のスピンドルモータは、軸部材2を回転自在に支持する
軸受ユニットUと、軸部材2に取付けられ、図示しない
磁気ディスクを一又は複数枚保持するディスクハブ3
と、半径方向のギャップを介して対向させたモータステ
ータ4およびモータロータ5とを有する。ステータ4
は、軸受ユニットUの外周に取付けられ、ロータ5はデ
ィスクハブ3の内周に取付けられている。ステータ4に
通電すると、ステータ4とロータ5との間の励磁力でロ
ータ5が回転し、ディスクハブ3および軸部材2が回転
する。
FIG. 1 illustrates an HDD spindle motor as an example of a spindle motor for information equipment. The spindle motor includes a bearing unit U rotatably supporting the shaft member 2 and a disk hub 3 mounted on the shaft member 2 and holding one or more magnetic disks (not shown).
And a motor stator 4 and a motor rotor 5 opposed to each other via a radial gap. Stator 4
Are mounted on the outer circumference of the bearing unit U, and the rotor 5 is mounted on the inner circumference of the disk hub 3. When the stator 4 is energized, the rotor 5 rotates by the exciting force between the stator 4 and the rotor 5, and the disk hub 3 and the shaft member 2 rotate.

【0023】軸受ユニットUは、略有底筒状の外方部材
1と、外方部材1の内周に固定された軸受部材7と、軸
受部材7の内側に配置され、軸部2aおよび外径側に張
り出したフランジ部2bからなる軸部材2とを主な構成
要素とする。
The bearing unit U includes a substantially bottomed cylindrical outer member 1, a bearing member 7 fixed to the inner periphery of the outer member 1, and a bearing unit 7 disposed inside the bearing member 7. The main member is a shaft member 2 composed of a flange portion 2b projecting radially.

【0024】軸部材2は、軸部2aとフランジ部2bを
一部品として一体成形したもので、本発明ではアルミ
ナ、窒化珪素、炭化珪素、ジルコニア、サイアロン等の
セラミックで形成される。軸部材2を一体成形する他、
軸部2aとフランジ部2bを別部品としてそれぞれセラ
ミックで形成し、電子ビーム溶接法、あるいはレーザビ
ーム溶接法等の公知の接合方法によって両部品を接合一
体化してもよい。
The shaft member 2 is formed by integrally forming the shaft portion 2a and the flange portion 2b as one part, and in the present invention, is formed of ceramics such as alumina, silicon nitride, silicon carbide, zirconia, and sialon. In addition to integrally molding the shaft member 2,
The shaft portion 2a and the flange portion 2b may be formed of ceramic as separate components, and the two components may be joined and integrated by a known joining method such as an electron beam welding method or a laser beam welding method.

【0025】図1の実施形態において、外方部材1は、
内周に軸受部材7を取り付けた円筒状のハウジング19
と、軸部材2のフランジ部2bに対向させた円盤状のス
ラスト支持部材8とで構成される。軸受部材7の一端部
とスラスト支持部材8との間には、フランジ部2bの厚
さにスラスト軸受隙間Ct1、Ct2(後述する)の幅
(10〜20μm程度)を加算した隙間があり、この隙
間に軸部材2のフランジ部2bが収容され、さらにハウ
ジング19の開口部がスラスト支持部材8によって封口
されている。軸受部材7の他端部は、シールワッシャ1
4等のシール部材によってシールされる。なお、以下の
説明では、外方部材1の一端側(スラスト支持部材8に
よって封口されている側:図面下方)を「封口側」、そ
の反対側(図面上方)を「反封口側」と呼ぶ。
In the embodiment shown in FIG. 1, the outer member 1 is
Cylindrical housing 19 with bearing member 7 mounted on the inner circumference
And a disk-shaped thrust support member 8 opposed to the flange portion 2b of the shaft member 2. Between one end of the bearing member 7 and the thrust support member 8, there is a gap obtained by adding the width of the thrust bearing gaps Ct1 and Ct2 (described later) (about 10 to 20 μm) to the thickness of the flange portion 2b. The flange portion 2b of the shaft member 2 is accommodated in the gap, and the opening of the housing 19 is closed by the thrust support member 8. The other end of the bearing member 7 is a seal washer 1
Sealed by a seal member such as 4. In the following description, one end side of the outer member 1 (the side sealed by the thrust support member 8: lower side in the drawing) is referred to as a “sealing side”, and the opposite side (upper side in the drawing) is referred to as a “non-sealing side”. .

【0026】軸受部材7は、焼結金属に潤滑油あるいは
潤滑グリースを含浸させて空孔内に油を保有させた含油
焼結金属によって形成される。焼結金属としては、例え
ば銅系、あるいは鉄系、またはその双方を主成分とする
ものが使用でき、望ましくは銅を20〜95%使用して
形成される。
The bearing member 7 is formed of an oil-impregnated sintered metal obtained by impregnating a sintered metal with lubricating oil or lubricating grease so that oil is retained in pores. As the sintered metal, for example, a copper-based material, an iron-based material, or a material containing both of them as a main component can be used. Preferably, the sintered metal is formed using 20 to 95% of copper.

【0027】軸受部材7の内周面には、複数の動圧溝1
3(図3参照)を有するラジアル軸受面10aが形成さ
れる。これにより軸部材2と外方部材1の相対回転時
(本実施形態では軸部材2の回転時)には、ラジアル軸
受面10aと軸部2aの外周面との間のラジアル軸受隙
間Crに満たされた潤滑流体(本実施形態では油)が動
圧を生じ、この動圧作用によって軸部2aと軸受部材7
がラジアル方向で非接触状態に保持される。ラジアル軸
受面10aの動圧溝13の形状は任意であり、例えばヘ
リングボーン型(図3参照)の他、スパイラル型、ステ
ップ型、あるいは多円弧型等を使用することができる。
なお、図1中のラジアル軸受隙間Crの幅は誇張して描
かれており、実際は数μmである(後述のスラスト軸受
隙間Ct1、Ct2の幅についても同様)。
The inner peripheral surface of the bearing member 7 has a plurality of dynamic pressure grooves 1.
3 (see FIG. 3) is formed. Thereby, when the shaft member 2 and the outer member 1 are relatively rotated (in this embodiment, when the shaft member 2 is rotated), the radial bearing gap Cr between the radial bearing surface 10a and the outer peripheral surface of the shaft portion 2a is filled. The lubricating fluid (oil in the present embodiment) generates a dynamic pressure, and the dynamic pressure action causes the shaft portion 2a and the bearing member 7 to move.
Are kept in a non-contact state in the radial direction. The shape of the dynamic pressure groove 13 on the radial bearing surface 10a is arbitrary, and for example, a herringbone type (see FIG. 3), a spiral type, a step type, a multi-arc type, or the like can be used.
Note that the width of the radial bearing gap Cr in FIG. 1 is exaggerated and is actually several μm (the same applies to the widths of thrust bearing gaps Ct1 and Ct2 described later).

【0028】フランジ部2bの両端面と、これに対向す
る軸受部材7およびスラスト支持部材8の面7a,15
との間には、軸方向の隙間であるスラスト軸受隙間Ct
1、Ct2が設けられる。具体的には、一方のスラスト
軸受隙間Ct1は、フランジ部2bの反封口側端面(上
端面)とこれに対向する軸受部材7の端面7aとの間に
形成され、他方のスラスト軸受隙間Ct2は、フランジ
部2bの封口側端面(下端面)と、これに対向するスラ
スト支持部材8の反封孔側端面15との間に形成され
る。
Both end surfaces of the flange portion 2b and surfaces 7a and 15 of the bearing member 7 and the thrust support member 8 opposed thereto.
Between the thrust bearing clearance Ct which is an axial clearance.
1, Ct2. Specifically, one thrust bearing gap Ct1 is formed between the non-sealing side end face (upper end face) of the flange portion 2b and the end face 7a of the bearing member 7 opposed thereto, and the other thrust bearing gap Ct2 is formed. , Formed between the sealing-side end surface (lower end surface) of the flange portion 2b and the non-sealing-side end surface 15 of the thrust support member 8 opposed thereto.

【0029】軸受部材7の端面7aおよびスラスト支持
部材8の端面15には、それぞれ動圧発生用の動圧溝
(図示省略)を有するスラスト軸受面11a、11bが
形成される。これより上記回転時にはスラスト軸受隙間
Ct1、Ct2に満たされた潤滑流体(油)の動圧が発
生し、軸部材2をスラスト方向両側で非接触支持するス
ラスト軸受部11が構成される。スラスト軸受面11
a、11bの動圧溝形状は任意であり、例えば公知のヘ
リングボーン型やスパイラル型等を選択して使用するこ
とができる。なお、スラスト軸受面11a、11bは、
フランジ部2bの端面に形成することもできる。
Thrust bearing surfaces 11a and 11b having dynamic pressure grooves (not shown) for generating dynamic pressure are formed on the end surface 7a of the bearing member 7 and the end surface 15 of the thrust support member 8, respectively. Thus, at the time of the rotation, a dynamic pressure of the lubricating fluid (oil) filled in the thrust bearing gaps Ct1 and Ct2 is generated, and the thrust bearing portion 11 that supports the shaft member 2 on both sides in the thrust direction in a non-contact manner is configured. Thrust bearing surface 11
The shapes of the dynamic pressure grooves a and 11b are arbitrary, and for example, a known herringbone type or spiral type can be selected and used. The thrust bearing surfaces 11a and 11b are
It can also be formed on the end face of the flange portion 2b.

【0030】上述のように本発明では、軸部材2の素材
を従来のステンレス鋼からセラミックに変えている。セ
ラミック材は、硬度が高く、また、表面粗さも極めて小
さくできるため、静止側の部材である軸受部材7やスラ
スト支持部材8との摺接時にもこれらにほとんど摩耗を
発生させない。そのため、軸受ユニットの耐久性を大幅
に向上させることができる。具体的には、従来のステン
レス鋼ではRa0.1〜0.15程度の表面粗さであっ
たが、セラミックであればバレル研摩等により、Ra
0.03以下(望ましくはRa0.01以上、Ra0.
03以下)の表面粗さも容易に得ることができ、軸受部
材7やスラスト支持部材8の耐久性向上に顕著な効果が
得られる(なお、この表面粗さの算出に際しては、軸部
材2の表面に開口した空孔を除くものとする)。この範
囲の表面粗さは軸部材2の全表面には必ずしも必要では
なく、少なくとも軸受部材7やスラスト支持部材8と摺
接する部位、具体的にはフランジ部2bの両端面や軸部
2aの外周面の全てまたは一部で得られていれば足り
る。
As described above, in the present invention, the material of the shaft member 2 is changed from conventional stainless steel to ceramic. Since the ceramic material has a high hardness and a very small surface roughness, even when the ceramic material slides on the bearing member 7 and the thrust support member 8 on the stationary side, they hardly wear. Therefore, the durability of the bearing unit can be significantly improved. Specifically, in the case of conventional stainless steel, the surface roughness was about Ra 0.1 to 0.15, but in the case of ceramic, Ra was obtained by barrel polishing or the like.
0.03 or less (desirably, Ra0.01 or more, Ra0.
03 or less) can be easily obtained, and a remarkable effect can be obtained in improving the durability of the bearing member 7 and the thrust support member 8 (the surface roughness of the shaft member 2 is calculated when calculating the surface roughness). Vacancies that are open at the same time). The surface roughness in this range is not necessarily required for the entire surface of the shaft member 2, and is at least a portion in sliding contact with the bearing member 7 and the thrust support member 8, specifically, both end surfaces of the flange portion 2 b and the outer periphery of the shaft portion 2 a It suffices if all or part of the surface is obtained.

【0031】また、セラミックはステンレス鋼よりも軽
量であるため、軸部材2に衝撃が作用した際にも軸受部
材7やスラスト支持部材8に付与される衝撃荷重は小さ
く、従って、軸受ユニットUの耐衝撃性を向上させるこ
とができる。また、その軽量性ゆえに低トルク化を図る
ことができ、軸受ユニットのさらなる高速回転化が可能
となる。
Further, since the ceramic is lighter than the stainless steel, the impact load applied to the bearing member 7 and the thrust support member 8 when the shaft member 2 receives an impact is small. Impact resistance can be improved. Further, because of its light weight, torque can be reduced, and the bearing unit can be rotated at a higher speed.

【0032】ところで、セラミックの製造工程において
は、焼結後の軸部材2の表面に意図的に空孔(表面に開
口した空孔)を残すことができる。この空孔により、軸
部材2の表面に複数の凹部が形成され、この複数の凹部
で油の溜り部が形成されるので、潤滑油膜が十分に形成
されていない起動時にもラジアル軸受隙間Crやスラス
ト軸受隙間Ct1,Ct2に潤沢な油を供給することが
でき、これにより軸受寿命の向上を図ることができる。
複数の空孔からなる溜り部は、軸部材2の全表面に形成
してもよいが、油溜りとしての機能上、軸部2aの外周
面やフランジ部2bの両端面のうち、少なくともラジア
ル軸受隙間Crやスラスト軸受隙間Ct1,Ct2との
対向部を含む領域に形成されていれば足りる。この場
合、空孔の密度(単位面積あたりの空孔の開口面積の割
合)が大きすぎると、表面粗さRaを上記範囲内に設定
することが難しくなるので、溜り部の空孔密度は10%
以下に設定するのが望ましい。
By the way, in the ceramic manufacturing process, holes (holes opened on the surface) can be intentionally left on the surface of the shaft member 2 after sintering. A plurality of recesses are formed on the surface of the shaft member 2 by these holes, and an oil reservoir is formed by the plurality of recesses. Therefore, even when the lubricating oil film is not sufficiently formed, the radial bearing gap Cr or Ample oil can be supplied to the thrust bearing gaps Ct1 and Ct2, thereby improving the bearing life.
The reservoir formed of a plurality of holes may be formed on the entire surface of the shaft member 2. However, from the viewpoint of functioning as an oil reservoir, at least the radial bearing of the outer peripheral surface of the shaft 2 a and both end surfaces of the flange 2 b. It suffices if it is formed in a region including a portion facing the gap Cr and the thrust bearing gaps Ct1 and Ct2. In this case, if the density of the holes (the ratio of the opening area of the holes per unit area) is too large, it becomes difficult to set the surface roughness Ra within the above range. %
It is desirable to set the following.

【0033】図2は、動圧型軸受ユニットの他の実施形
態を示すもので、含油焼結金属製の軸受部材7を、有底
筒状に一体成形されたハウジング19の内周に固定した
ものである。この場合、ハウジング19の底部がフラン
ジ部2bと対向するスラスト支持部材8となる。軸受部
材7の反封口側は、シールワッシャ14等のシール部材
によってシールされている。
FIG. 2 shows another embodiment of a dynamic pressure type bearing unit in which a bearing member 7 made of an oil-impregnated sintered metal is fixed to an inner periphery of a housing 19 integrally formed in a bottomed cylindrical shape. It is. In this case, the bottom of the housing 19 becomes the thrust support member 8 facing the flange 2b. The non-sealing side of the bearing member 7 is sealed by a seal member such as a seal washer 14.

【0034】この軸受ユニットUにおいても軸部材2を
セラミックで形成することにより、上記と同様の効果が
得られる。
In the bearing unit U, the same effect as described above can be obtained by forming the shaft member 2 of ceramic.

【0035】図3は、スラスト軸受部を接触型とした動
圧型軸受ユニットの実施形態である。すなわち、スラス
ト荷重は、軸部材2の軸端に形成した球面部2cをハウ
ジング19の底部に設けたスラスト支持部材8の反封口
側端面15に摺接させることによってピボット支持され
る。この場合、外方部材1は、含油焼結金属製の軸受部
材7を内装したハウジング19、およびハウジング19
底部に装着したスラスト支持部材8で構成される。
FIG. 3 shows an embodiment of a dynamic pressure bearing unit having a contact type thrust bearing. That is, the thrust load is pivotally supported by sliding the spherical portion 2c formed at the shaft end of the shaft member 2 against the non-sealing-side end surface 15 of the thrust support member 8 provided at the bottom of the housing 19. In this case, the outer member 1 includes a housing 19 in which the bearing member 7 made of oil-impregnated sintered metal is provided,
It is composed of a thrust support member 8 mounted on the bottom.

【0036】この軸受ユニットUにおいても軸部材2を
セラミックで形成することにより、上記と同様の効果が
得られる。この軸受ユニットUでは、起動および停止時
に軸部材2が軸受部材7と接触するが、軸部材2のう
ち、軸受部材7との接触部分(さらに望ましくは軸受部
材7およびスラスト支持部材8との接触部分)を表面に
開孔した空孔を除いてRa0.03μm以下の表面粗さ
にすれば、軸受部材7(あるいは、軸受部材7およびス
ラスト支持部材8)の耐久性向上を図ることができる。
Also in this bearing unit U, the same effect as described above can be obtained by forming the shaft member 2 from ceramic. In the bearing unit U, the shaft member 2 comes into contact with the bearing member 7 at the time of starting and stopping, but the contact portion of the shaft member 2 with the bearing member 7 (more desirably, the contact with the bearing member 7 and the thrust support member 8). If the surface roughness is reduced to Ra 0.03 μm or less except for holes formed in the surface of the bearing member 7, the durability of the bearing member 7 (or the bearing member 7 and the thrust support member 8) can be improved.

【0037】図2と同タイプの軸受ユニットを用い、ス
テンレス鋼製軸部材2を有する従来品と、セラミック製
軸部材2を有する本発明品との間で耐摩耗試験(起動―
停止試験)とトルク試験を行った。耐摩耗試験は、1サ
イクルの起動時間を4秒、停止時間を2秒としてサイク
ルを繰り返した後、ハウジング底面15の摩耗量を測定
するものである。トルク試験は、規定回転数で回転させ
た時のモータの消費電流を測定するもので、潤滑油粘度
は10mm2/s、試験温度は20℃とした。試験対象
の軸受ユニットは以下の仕様である。
Using a bearing unit of the same type as in FIG. 2, a wear resistance test (start-up) between a conventional product having a stainless steel shaft member 2 and a product of the present invention having a ceramic shaft member 2 was carried out.
Stop test) and a torque test. The wear resistance test measures the amount of wear on the housing bottom surface 15 after repeating the cycle with a start time of one cycle of 4 seconds and a stop time of 2 seconds. The torque test measures the current consumption of the motor when the motor is rotated at a specified number of revolutions. The lubricating oil viscosity was 10 mm 2 / s, and the test temperature was 20 ° C. The bearing unit to be tested has the following specifications.

【0038】軸受部材7:Cuを主成分とする焼結金
属で内周にラジアル軸受面10aを、端面7aにスラス
ト軸受面11aを形成した。内径寸法はφ3、外径寸法
はφ6、軸方向の長さは4mmである。
Bearing member 7: A radial bearing surface 10a is formed on the inner periphery and a thrust bearing surface 11a is formed on the end surface 7a of a sintered metal mainly composed of Cu. The inner diameter is φ3, the outer diameter is φ6, and the axial length is 4 mm.

【0039】軸部材2:ステンレス鋼としてSUS4
20J2(Hv500)を、セラミックとしてアルミナ
(Hv1800)を使用し、双方に研削加工を施した。
セラッミク製軸部材については、表面の空孔密度を2〜
10%とし、表面に開口した空孔を除いて表面粗さをR
a0.03以下にした。何れも軸部2aの外形寸法はφ
3、フランジ部2bの外形寸法はφ6、軸方向の全長は
8mm、フランジ部2bの軸方向長さは1mmである。
Shaft member 2: SUS4 as stainless steel
20J2 (Hv500) was used, and alumina (Hv1800) was used as a ceramic, and both were ground.
For the shaft member made of ceramic, the pore density on the surface is 2 to 2.
10%, and the surface roughness is R, excluding vacancies opened on the surface.
a was set to 0.03 or less. In any case, the outer dimension of the shaft portion 2a is φ
3. The outer dimensions of the flange 2b are φ6, the total length in the axial direction is 8mm, and the axial length of the flange 2b is 1mm.

【0040】ハウジング19:底面(スラスト支持部
材8の端面15)にスラスト軸受面11bを形成した。
Housing 19: Thrust bearing surface 11b was formed on the bottom surface (end surface 15 of thrust support member 8).

【0041】シールワッシャ14:耐摩耗試験の結果
を図4に、トルク試験の結果を図5に示す。両図におい
て●はステンレス製軸部材、○はセラミック製軸部材を
表す。図4から明らかなようにセラミック製軸部材の摩
耗量はステンレス製軸部材に比べて格段に少なく(ステ
ンレス軸は650×103回で試験を中止した)、高い
耐久性を有すると考えられる。また、図5から明らかな
ようにセラミック製軸部材の電流値は、ステンレス製軸
部材よりも小さく、低トルクであると考えられる。
Seal washer 14: FIG. 4 shows the results of the wear resistance test, and FIG. 5 shows the results of the torque test. In both figures, ● represents a stainless steel shaft member and ○ represents a ceramic shaft member. As is clear from FIG. 4, the wear amount of the ceramic shaft member is much smaller than that of the stainless steel shaft member (the test was stopped at 650 × 10 3 times for the stainless steel shaft member), and is considered to have high durability. Also, as is apparent from FIG. 5, the current value of the ceramic shaft member is smaller than that of the stainless steel shaft member, and is considered to be low in torque.

【0042】[0042]

【発明の効果】本発明によれば、軸部材を表面粗さの低
いセラミックで形成したので、起動・停止時に軸部材と
摺接する軸受部材やスラスト支持部材の摩耗量を抑制で
き、動圧型軸受ユニットの耐久寿命を向上させることが
できる。また、セラミックは軽量であるので、軸受ユニ
ットの耐衝撃性を向上させ、かつ低トルク化を図ること
が可能となる。
According to the present invention, since the shaft member is formed of ceramic having a low surface roughness, the amount of wear of the bearing member and the thrust support member that slides on the shaft member at the time of starting and stopping can be suppressed, and the dynamic pressure type bearing can be suppressed. The durability life of the unit can be improved. Further, since the ceramic is lightweight, it is possible to improve the impact resistance of the bearing unit and reduce the torque.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる動圧型軸受ユニットの断面図で
ある。
FIG. 1 is a sectional view of a dynamic pressure bearing unit according to the present invention.

【図2】本発明の他の実施形態を示す断面図である。FIG. 2 is a cross-sectional view showing another embodiment of the present invention.

【図3】本発明の他の実施形態を示す断面図である。FIG. 3 is a cross-sectional view showing another embodiment of the present invention.

【図4】(A)図は耐摩耗試験の測定結果をまとめた表
であり、(B)図は測定結果をプロットしたグラフであ
る。
FIG. 4A is a table summarizing the measurement results of the abrasion resistance test, and FIG. 4B is a graph in which the measurement results are plotted.

【図5】(A)図はトルク試験の測定結果をまとめた表
であり、(B)図は測定結果をプロットしたグラフであ
る。
5A is a table summarizing the measurement results of the torque test, and FIG. 5B is a graph in which the measurement results are plotted.

【符号の説明】[Explanation of symbols]

1 外方部材 2 軸部材 2a 軸部 2b フランジ部 7 軸受部材 8 スラスト支持部材 10a ラジアル軸受面 11a スラスト軸受面 11b スラスト軸受面 Cr ラジアル軸受隙間 Ct1 スラスト軸受隙間 Ct2 スラスト軸受隙間 U 動圧型軸受ユニット Reference Signs List 1 outer member 2 shaft member 2a shaft portion 2b flange portion 7 bearing member 8 thrust support member 10a radial bearing surface 11a thrust bearing surface 11b thrust bearing surface Cr radial bearing gap Ct1 thrust bearing gap Ct2 thrust bearing gap U dynamic pressure type bearing unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02K 21/22 H02K 21/22 M (72)発明者 平出 淳 三重県桑名市大字東方字尾弓田3066 エヌ ティエヌ株式会社内 Fターム(参考) 3J011 AA07 AA10 BA04 BA06 CA02 DA01 JA02 KA02 KA03 LA01 MA03 RA02 RA03 SB02 SB03 SB19 SD01 SD02 SD03 SD04 5H605 BB05 BB19 CC04 CC05 DD03 EA06 EB03 EB06 EB13 FF10 GG09 GG21 5H607 AA00 BB01 BB17 BB25 CC01 DD03 GG03 GG07 GG09 GG10 GG12 GG15 KK10 5H621 JK13 JK17 JK19 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) H02K 21/22 H02K 21/22 M (72) Inventor Atsushi Hirade 3066 Oyumida, Ogata, Ogata, Kuwana-shi, Mie Prefecture F term in NTN Corporation (reference) DD03 GG03 GG07 GG09 GG10 GG12 GG15 KK10 5H621 JK13 JK17 JK19

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 軸受部材と、軸受部材の内周に配置した
軸部材と、軸部材に面する微小な軸受隙間とを備え、軸
部材と軸受部材の相対回転時に動圧溝の動圧作用で軸受
隙間に潤滑流体の動圧を発生させて軸部材を非接触支持
する動圧型軸受ユニットにおいて、軸部材をセラミック
で形成したことを特徴とする動圧型軸受ユニット。
A bearing member, a shaft member disposed on an inner periphery of the bearing member, and a minute bearing gap facing the shaft member, wherein a dynamic pressure action of the dynamic pressure groove is generated when the shaft member and the bearing member rotate relative to each other. A dynamic pressure bearing unit for generating a dynamic pressure of a lubricating fluid in a bearing gap to support a shaft member in a non-contact manner, wherein the shaft member is formed of ceramic.
【請求項2】 軸部材の表面のうち、少なくとも軸受隙
間との対向部を含む領域に、複数の凹部を備える潤滑流
体の溜り部を形成した請求項1記載の動圧型軸受ユニッ
ト。
2. The dynamic pressure bearing unit according to claim 1, wherein a lubricating fluid reservoir having a plurality of recesses is formed in a region of the surface of the shaft member including at least a portion facing the bearing gap.
【請求項3】 凹部が、軸部材の表面に開口した空孔で
形成されている請求項2記載の動圧型軸受ユニット。
3. The dynamic pressure bearing unit according to claim 2, wherein the recess is formed by a hole opened on the surface of the shaft member.
【請求項4】 溜り部の空孔密度を10%以下にした請
求項3記載の動圧型軸受ユニット。
4. The dynamic pressure type bearing unit according to claim 3, wherein a pore density of the reservoir is set to 10% or less.
【請求項5】 軸受隙間として、半径方向の隙間である
ラジアル軸受隙間を有する請求項1〜4何れか記載の動
圧型軸受ユニット。
5. The dynamic pressure bearing unit according to claim 1, wherein the bearing gap has a radial bearing gap which is a gap in a radial direction.
【請求項6】 軸受部材の内周に、複数の動圧溝を備え
るラジアル軸受面を形成した請求項5記載の動圧型軸受
ユニット。
6. The dynamic pressure bearing unit according to claim 5, wherein a radial bearing surface having a plurality of dynamic pressure grooves is formed on an inner periphery of the bearing member.
【請求項7】 軸部材の表面のうち、起動および停止時
に軸受部材と接触する部分を、表面に開口した空孔を除
いてRa0.03μm以下の表面粗さにした請求項5ま
たは6記載の動圧型軸受ユニット。
7. The shaft member according to claim 5, wherein a portion of the surface of the shaft member, which is in contact with the bearing member at the time of starting and stopping, has a surface roughness of Ra 0.03 μm or less excluding a hole opened on the surface. Dynamic pressure bearing unit.
【請求項8】 さらに軸受隙間として、軸方向の隙間で
あるスラスト軸受隙間を有する請求項5または6記載の
動圧型軸受ユニット。
8. The dynamic pressure bearing unit according to claim 5, further comprising a thrust bearing gap which is an axial gap as the bearing gap.
【請求項9】 軸部材にフランジ部を設け、軸受部材の
端面とこれに対向するフランジ部の一端面との間、およ
び、フランジ部の他端面とこれに対向するスラスト支持
部材の端面との間にそれぞれスラスト軸受隙間を形成し
た請求項8記載の動圧型軸受ユニット。
9. A flange member is provided on a shaft member, and a flange portion is provided between an end surface of a bearing member and one end surface of a flange portion opposed thereto, and between an end surface of the flange portion and an end surface of a thrust support member opposed thereto. 9. The dynamic pressure type bearing unit according to claim 8, wherein a thrust bearing gap is formed between the bearings.
【請求項10】 軸部材の表面のうち、起動および停止
時に軸受部材およびスラスト支持部材と接触する部分
を、表面に開口した空孔を除いてRa0.03μm以下
の表面粗さにした請求項9記載の動圧型軸受ユニット。
10. A portion of the surface of the shaft member, which is in contact with the bearing member and the thrust support member at the time of starting and stopping, has a surface roughness of Ra 0.03 μm or less excluding a hole opened on the surface. The dynamic pressure bearing unit as described.
【請求項11】 軸受部材を含油焼結金属で形成した請
求項1〜10何れか記載の動圧型軸受ユニット。
11. The dynamic pressure type bearing unit according to claim 1, wherein the bearing member is formed of an oil-impregnated sintered metal.
【請求項12】 セラミックが、アルミナ、窒化珪素、
炭化珪素、ジルコニア、サイアロンの何れかである請求
項1〜11何れか記載の動圧型軸受ユニット。
12. The ceramic, wherein the ceramic is alumina, silicon nitride,
The dynamic pressure bearing unit according to any one of claims 1 to 11, wherein the unit is any one of silicon carbide, zirconia, and sialon.
【請求項13】 請求項1〜12の何れかに記載した動
圧型軸受ユニットを備える情報機器用スピンドルモー
タ。
13. A spindle motor for information equipment comprising the dynamic pressure bearing unit according to claim 1. Description:
JP2001081049A 2001-03-21 2001-03-21 Dynamic pressure type bearing unit Pending JP2002276666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001081049A JP2002276666A (en) 2001-03-21 2001-03-21 Dynamic pressure type bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001081049A JP2002276666A (en) 2001-03-21 2001-03-21 Dynamic pressure type bearing unit

Publications (1)

Publication Number Publication Date
JP2002276666A true JP2002276666A (en) 2002-09-25

Family

ID=18937217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001081049A Pending JP2002276666A (en) 2001-03-21 2001-03-21 Dynamic pressure type bearing unit

Country Status (1)

Country Link
JP (1) JP2002276666A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028892A1 (en) * 2003-09-18 2005-03-31 Ntn Corporation Fluid bearing device
JP2006017218A (en) * 2004-07-01 2006-01-19 Nissan Motor Co Ltd Sliding device
WO2007148783A1 (en) * 2006-06-22 2007-12-27 Nidec Corporation Shaft bush structure and vibration motor using the shaft bush structure
US7391139B2 (en) * 2005-01-17 2008-06-24 Matsushita Electric Industrial Co., Ltd. Spindle motor and rotation apparatus
CN102386715A (en) * 2011-11-11 2012-03-21 宜昌飞鹰电子科技有限公司 DC hollow cup motor with ceramic rotation part
WO2023047938A1 (en) * 2021-09-27 2023-03-30 Ntn株式会社 Dynamic bearing and fluid dynamic bearing device provide with same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028892A1 (en) * 2003-09-18 2005-03-31 Ntn Corporation Fluid bearing device
CN100400914C (en) * 2003-09-18 2008-07-09 Ntn株式会社 Fluid bearing device
US7625124B2 (en) 2003-09-18 2009-12-01 Ntn Corporation Fluid bearing device
JP2006017218A (en) * 2004-07-01 2006-01-19 Nissan Motor Co Ltd Sliding device
JP4710263B2 (en) * 2004-07-01 2011-06-29 日産自動車株式会社 Sliding device
US7391139B2 (en) * 2005-01-17 2008-06-24 Matsushita Electric Industrial Co., Ltd. Spindle motor and rotation apparatus
WO2007148783A1 (en) * 2006-06-22 2007-12-27 Nidec Corporation Shaft bush structure and vibration motor using the shaft bush structure
CN102386715A (en) * 2011-11-11 2012-03-21 宜昌飞鹰电子科技有限公司 DC hollow cup motor with ceramic rotation part
WO2023047938A1 (en) * 2021-09-27 2023-03-30 Ntn株式会社 Dynamic bearing and fluid dynamic bearing device provide with same

Similar Documents

Publication Publication Date Title
US7466050B2 (en) Brushless motor and method of manufacturing the same
JP3893021B2 (en) Hydrodynamic bearing unit
JP2007177808A (en) Hydrodynamic bearing unit
JP3774080B2 (en) Hydrodynamic bearing unit
US6712514B2 (en) Hydrodynamic bearing unit
US6955469B2 (en) Dynamic pressure bearing device
JP2008064302A (en) Hydrodynamic bearing device
JP2002276666A (en) Dynamic pressure type bearing unit
US7582996B2 (en) Dynamic pressure bearing motor
JP3983435B2 (en) Hydrodynamic bearing unit
JP2006304565A (en) Brushless electric motor and its manufacturing method
JP3936527B2 (en) Manufacturing method of hydrodynamic bearing device
JPH11190340A (en) Dynamic pressure type bearing device
JP4024007B2 (en) Hydrodynamic bearing unit
JP2001124057A (en) Dynamic pressure bearing
JP2002054628A (en) Dynamic pressure fluid bearing device and spindle motor
JP2003314533A (en) Fluid bearing device
JPH1198763A (en) Dynamic pressure bearing apparatus
JP2004183867A (en) Dynamic pressure fluid bearing device, and motor provided with the same
JP2004116623A (en) Fluid bearing device
JP2004197889A (en) Dynamic-pressure bearing device
JP3893018B2 (en) Hydrodynamic bearing device
JP2002276645A (en) Dynamic pressure type bearing unit
JP4731852B2 (en) Hydrodynamic bearing unit
JP4233771B2 (en) Hydrodynamic bearing unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070928

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202