JP4786157B2 - Shaft member for hydrodynamic bearing device and manufacturing method thereof - Google Patents

Shaft member for hydrodynamic bearing device and manufacturing method thereof Download PDF

Info

Publication number
JP4786157B2
JP4786157B2 JP2004261452A JP2004261452A JP4786157B2 JP 4786157 B2 JP4786157 B2 JP 4786157B2 JP 2004261452 A JP2004261452 A JP 2004261452A JP 2004261452 A JP2004261452 A JP 2004261452A JP 4786157 B2 JP4786157 B2 JP 4786157B2
Authority
JP
Japan
Prior art keywords
dynamic pressure
pressure groove
shaft
radial
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004261452A
Other languages
Japanese (ja)
Other versions
JP2006077863A (en
Inventor
信好 山下
夏比古 森
昭一 小寺
雅人 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Fukui Byora Co Ltd
Original Assignee
NTN Corp
Fukui Byora Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, Fukui Byora Co Ltd filed Critical NTN Corp
Priority to JP2004261452A priority Critical patent/JP4786157B2/en
Priority to KR1020077000956A priority patent/KR101164462B1/en
Priority to US11/629,910 priority patent/US20070278881A1/en
Priority to PCT/JP2005/015952 priority patent/WO2006027986A1/en
Priority to CN2005800255692A priority patent/CN101014777B/en
Publication of JP2006077863A publication Critical patent/JP2006077863A/en
Priority to US13/149,313 priority patent/US9003664B2/en
Application granted granted Critical
Publication of JP4786157B2 publication Critical patent/JP4786157B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、動圧軸受装置用の軸部材およびその製造方法に関するものである。この軸受装置は、情報機器、例えばHDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、その他の小型モータ用として好適である。   The present invention relates to a shaft member for a hydrodynamic bearing device and a manufacturing method thereof. This bearing device is a spindle motor such as an information device, for example, a magnetic disk device such as an HDD, an optical disk device such as a CD-ROM, CD-R / RW, DVD-ROM / RAM, or a magneto-optical disk device such as MD or MO, It is suitable for polygon scanner motors of laser beam printers (LBP) and other small motors.

上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化等が求められている。これらの要求性能を決定づける構成要素の1つに当該モータのスピンドルを支持する軸受があり、近年では、上記要求性能に優れた特性を有する動圧軸受の使用が検討され、あるいは実際に使用されている。   In addition to high rotational accuracy, the various motors are required to have high speed, low cost, low noise, and the like. One of the components that determine the required performance is a bearing that supports the spindle of the motor. In recent years, the use of a hydrodynamic bearing having characteristics excellent in the required performance has been studied or actually used. Yes.

動圧軸受は、軸受隙間に生じる潤滑油の動圧作用で軸部材を回転自在に非接触支持するものであり、例えば、HDD等のディスク状記録媒体駆動装置のスピンドルモータに組込まれて使用される。この種の動圧軸受装置には、軸部材をラジアル方向に回転自在に非接触支持するラジアル軸受部と、軸部材をスラスト方向に回転自在に非接触支持するスラスト軸受部とが設けられ、ラジアル軸受部を構成する軸受スリーブの内周面または軸部材の外周面に、動圧発生用の溝(動圧溝)が形成される。また、スラスト軸受部を構成する軸部材のフランジ部の両端面、あるいは、これに対向する面(軸受スリーブの端面や、ハウジングに固定されるスラスト部材の端面、あるいはハウジングの底部の内底面等)に、動圧溝が形成される(例えば、特許文献1を参照)。 A dynamic pressure bearing is a member that rotatably supports a shaft member in a non-contact manner by the dynamic pressure action of lubricating oil generated in a bearing gap, and is used by being incorporated in a spindle motor of a disk-shaped recording medium driving device such as an HDD. The This type of hydrodynamic bearing device is provided with a radial bearing portion that supports the shaft member in a non-contact manner so as to be rotatable in the radial direction, and a thrust bearing portion that supports the shaft member in a non-contact manner so as to be rotatable in the thrust direction. A dynamic pressure generating groove (dynamic pressure groove) is formed on the inner peripheral surface of the bearing sleeve or the outer peripheral surface of the shaft member constituting the bearing portion. Further, both end surfaces of the flange portion of the shaft member constituting the thrust bearing portion, or surfaces facing the flange surface (the end surface of the bearing sleeve, the end surface of the thrust member fixed to the housing, the inner bottom surface of the bottom of the housing, etc.) In addition, a dynamic pressure groove is formed (see, for example, Patent Document 1).

上記動圧溝は、例えば軸部材の外周面にへリングボーン形状やスパイラル形状に配列した状態で形成される。この種の動圧溝を形成するための方法として、例えば切削加工(例えば、特許文献2を参照)や、エッチング(例えば、特許文献3を参照)などが知られている。
特開2002−61641号公報 特開平08−196056号公報 特開平06−158357号公報
The dynamic pressure grooves are formed, for example, in a state of being arranged in a herringbone shape or a spiral shape on the outer peripheral surface of the shaft member. As a method for forming this type of dynamic pressure groove, for example, cutting (see, for example, Patent Document 2), etching (see, for example, Patent Document 3), and the like are known.
JP 2002-61641 A Japanese Patent Laid-Open No. 08-196056 Japanese Patent Laid-Open No. 06-158357

最近では、情報機器における情報記録密度の増大や高速回転化に対応するため、上記情報機器用のスピンドルモータには一層の高回転精度化が求められており、この要請に応じるために、上記スピンドルモータに組込まれる動圧軸受装置についても更なる高回転精度が要求されている。 Recently, in order to cope with an increase in information recording density and high-speed rotation in information equipment, the spindle motor for the information equipment has been required to have higher rotational accuracy. Higher rotational accuracy is also required for the hydrodynamic bearing device incorporated in the motor.

ところで、動圧軸受装置の回転精度を高めるためには、動圧が生じるラジアル軸受隙間やスラスト軸受隙間を高精度に管理することが重要となる。この隙間を適正に管理するため、上記各軸受隙間の形成に関与する動圧軸受装置の軸部材には、高い寸法精度が要求される。特に、軸部材の側(例えば軸部の外周面や、フランジ部の両端面)に動圧溝を形成する場合には、動圧溝の加工精度が各軸受隙間の精度を左右するため、動圧溝の高精度な加工が必要となる。しかしながら、既存の加工方法(例えばエッチングや切削加工など)を利用して、動圧溝加工の高精度化を図る場合、加工コストが著しく高騰する。   By the way, in order to increase the rotational accuracy of the hydrodynamic bearing device, it is important to manage the radial bearing gap and the thrust bearing gap in which the dynamic pressure is generated with high accuracy. In order to properly manage this gap, high dimensional accuracy is required for the shaft member of the hydrodynamic bearing device involved in the formation of the bearing gaps. In particular, when dynamic pressure grooves are formed on the shaft member side (for example, the outer peripheral surface of the shaft portion or both end surfaces of the flange portion), the processing accuracy of the dynamic pressure grooves affects the accuracy of each bearing gap. High precision machining of the groove is required. However, when an existing processing method (for example, etching or cutting) is used to increase the precision of the dynamic pressure groove processing, the processing cost is remarkably increased.

本発明の課題は、軸部材に形成される動圧溝を、斯かる加工コストの高騰を避けて精度良く加工し、この種の動圧軸受装置における軸受隙間を高精度に管理することである。   An object of the present invention is to precisely process a dynamic pressure groove formed in a shaft member while avoiding such a rise in processing cost, and to manage a bearing gap in this type of dynamic pressure bearing device with high accuracy. .

前記課題を解決するため、本発明は、軸部とフランジ部とを一体に備えた金属製の動圧軸受装置用軸部材において、前記軸部の外周に、複数の動圧溝および動圧溝をヘリングボーン形状に区画する区画部からなり、塑性加工により軸方向の二箇所に離隔形成されたラジアル動圧溝領域と、二つのラジアル動圧溝領域の間に形成されたヌスミ部とを有し、両ラジアル動圧溝領域のそれぞれの軸方向両端で、動圧溝の端部を区画部で区画せずに開放し、ヌスミ部の軸方向両側を両ラジアル動圧溝領域の動圧溝につなげ、軸部の外周面の区画部以外の領域が区画部よりも小径であり、前記ラジアル動圧溝領域における区画部の外周面が研削加工で仕上げられていることを特徴とする。ここでいう区画部は、各動圧溝を区画する部分を指し、いわゆる動圧溝間の背の部分を含む。また、動圧溝が軸方向に対して傾斜して形成されている場合に、それら傾斜状の動圧溝を軸方向に分割する、いわゆる平滑部の部分も区画部に含まれる。 In order to solve the above-mentioned problem, the present invention provides a metal dynamic pressure bearing device shaft member integrally including a shaft portion and a flange portion, and a plurality of dynamic pressure grooves and dynamic pressure grooves on an outer periphery of the shaft portion. the consists partition part for partitioning the herringbone pattern, chromatic and radial dynamic pressure groove regions spaced apart formed at two positions in the axial direction, and a grinding undercut portion formed between the two radial dynamic groove region by plastic working The ends of the dynamic pressure grooves are opened at both ends in the axial direction of both radial dynamic pressure groove regions without partitioning them in the partition portions, and both sides in the axial direction of the Numi portion are opened in the dynamic pressure grooves of both radial dynamic pressure groove regions. The region other than the partition portion on the outer peripheral surface of the shaft portion is smaller in diameter than the partition portion, and the outer peripheral surface of the partition portion in the radial dynamic pressure groove region is finished by grinding. A partition part here refers to the part which divides each dynamic pressure groove, and includes the back part between what is called dynamic pressure grooves. In addition, when the dynamic pressure grooves are formed to be inclined with respect to the axial direction, a so-called smooth portion that divides the inclined dynamic pressure grooves in the axial direction is also included in the partition portion.

このように、本発明では、軸部材の軸部外周に、動圧溝と各動圧溝を区画する区画部とからなるラジアル動圧溝領域を塑性加工により形成したので、例えば切削加工のように、切削加工時に切粉を生じることなく、材料を節約することができる。また、エッチングによる加工方法と比べても、腐食のために予めマスキングを行う手間が省けるので、総じて加工コストの大幅な低減が図られる。また、本発明は、ラジアル動圧溝領域における区画部の外周面が研削面であることを特徴とするものである。この研削面は、塑性加工により形成したラジアル動圧溝領域のうち、動圧溝を区画する区画部(動圧溝に隣接する山となる部分)の外径部を研削することで得られるものであるから、これによれば、塑性加工だけではなし得ない動圧溝領域の精密加工が可能となり、外径寸法精度や表面粗さを精度良く得ることができる。このため、本発明によれば、加工精度の向上と、加工コストの低減とを両立することができ、斯かる動圧軸受装置におけるラジアル軸受隙間を高精度に管理することができる。   As described above, in the present invention, the radial dynamic pressure groove region including the dynamic pressure grooves and the partition portions that partition the dynamic pressure grooves is formed on the outer periphery of the shaft portion of the shaft member by plastic working. In addition, material can be saved without generating chips during cutting. Further, compared with the processing method by etching, the labor of masking in advance due to corrosion can be saved, so that the processing cost can be greatly reduced as a whole. In the present invention, the outer peripheral surface of the partition portion in the radial dynamic pressure groove region is a ground surface. This grinding surface is obtained by grinding the outer diameter part of the partitioning part (the part that becomes a mountain adjacent to the dynamic pressure groove) that partitions the dynamic pressure groove in the radial dynamic pressure groove region formed by plastic working. Therefore, according to this, it is possible to perform precision machining of the dynamic pressure groove region, which cannot be achieved only by plastic machining, and to obtain the outer diameter dimensional accuracy and the surface roughness with high accuracy. For this reason, according to the present invention, both improvement in machining accuracy and reduction in machining cost can be achieved, and the radial bearing gap in such a dynamic pressure bearing device can be managed with high accuracy.

斯かる動圧溝領域は、例えば塑性加工により軸部と一体に形成したフランジ部の両端面にも形成することができる。この場合、フランジ部は、その両端面に、動圧溝と各動圧溝を区画する区画部とからなるスラスト動圧溝領域を形成すると共に、このスラスト動圧溝領域における区画部の軸方向端面が研削面となる構成を成す。   Such a dynamic pressure groove region can also be formed on both end faces of the flange portion formed integrally with the shaft portion by plastic working, for example. In this case, the flange portion forms a thrust dynamic pressure groove region composed of a dynamic pressure groove and a partition portion partitioning each dynamic pressure groove on both end faces thereof, and the axial direction of the partition portion in the thrust dynamic pressure groove region The end surface is a ground surface.

ラジアル動圧溝領域は、例えば転造加工で形成することができ、鍛造加工で形成することもできる。また、ラジアル動圧溝領域とスラスト動圧溝領域を共に鍛造加工で形成することもできる。あるいは、これら動圧溝領域がそれぞれ形成される軸部およびフランジ部を、例えば鍛造で一体成形することも可能である。   The radial dynamic pressure groove region can be formed by rolling, for example, or can be formed by forging. Further, both the radial dynamic pressure groove region and the thrust dynamic pressure groove region can be formed by forging. Alternatively, the shaft portion and the flange portion in which the dynamic pressure groove regions are respectively formed can be integrally formed by forging, for example.

また、本発明は、軸部とフランジ部とを一体に備え、前記軸部の外周に、複数の動圧溝および各動圧溝をヘリングボーン形状に区画する区画部からなるラジアル動圧溝領域と、二つのラジアル動圧溝領域の間に形成されたヌスミ部とを有し、両ラジアル動圧溝領域のそれぞれの軸方向両端で、動圧溝の端部を区画部で区画せずに開放し、ヌスミ部の軸方向両側を両ラジアル動圧溝領域の動圧溝につなげた動圧軸受装置用軸部材の製造方法において、軸素材の軸部外周に前記ラジアル動圧溝領域を塑性加工で形成し、二つのラジアル動圧溝領域の間に前記ヌスミ部を形成して、軸部の外周面の区画部以外の領域を区画部よりも小径とし、その後、前記ラジアル動圧溝領域における区画部の外周面の仕上げを、該区画部の外周面だけに研削加工を施して行うものである。 Further, the present invention includes a radial dynamic pressure groove region that includes a shaft portion and a flange portion integrally, and includes a plurality of dynamic pressure grooves and a partition portion that divides each dynamic pressure groove into a herringbone shape on the outer periphery of the shaft portion. And a Nusumi portion formed between the two radial dynamic pressure groove regions, and without dividing the end portions of the dynamic pressure grooves at the respective axial ends of both radial dynamic pressure groove regions by the partition portions. In the manufacturing method of a shaft member for a hydrodynamic bearing device in which the axially opposite sides of the Nusumi part are connected to the dynamic pressure grooves of both radial dynamic pressure groove areas, the radial dynamic pressure groove area is plasticized on the outer periphery of the shaft part of the shaft material. Formed by machining, forming the Nusumi part between two radial dynamic pressure groove areas, and making the area other than the partition part of the outer peripheral surface of the shaft part smaller than the partition part, and then the radial dynamic pressure groove area the finish of the outer circumferential surface of the partition portion in the only grinding the outer peripheral surface of the compartment unit It shall be made by.

斯かる製造方法によれば、ラジアル動圧溝領域の加工精度の向上および加工コストの低減とを両立することができる。また、軸部とフランジ部とを一体に有する軸素材を鍛造成形すれば、さらなる加工コストの低減、あるいは加工品1個当りのサイクルタイムの短縮が図られる。   According to such a manufacturing method, it is possible to achieve both improvement in processing accuracy of the radial dynamic pressure groove region and reduction in processing cost. Further, if the shaft material having the shaft portion and the flange portion is integrally formed by forging, the processing cost can be further reduced or the cycle time per processed product can be shortened.

ラジアル動圧溝領域の塑性加工としては、例えば鍛造加工を採用することができるが、この場合には、軸素材およびラジアル動圧溝領域を共に鍛造で成形し、かつ両者の鍛造加工を同時に行うことも可能である。これによれば、斯かる加工工程を簡略化できると共に、加工に要するサイクルタイムをさらに短縮することができる。   As the plastic working of the radial dynamic pressure groove region, forging can be employed, for example. In this case, both the shaft material and the radial dynamic pressure groove region are formed by forging, and the forging of both is performed simultaneously. It is also possible. According to this, such a processing step can be simplified and the cycle time required for processing can be further shortened.

軸素材の軸部には、軸部のラジアル動圧溝領域を含む部分の円筒度を矯正するための転造加工を施すことができる。この場合、例えばラジアル動圧溝領域の形成と、軸部のラジアル動圧溝領域を含む部分の円筒度の矯正とを共に転造で行い、かつ両者の転造加工を同時に行うことで、斯かる加工工程の簡略化が図られると共に、サイクルタイムの短縮化が図られる。これにより、加工品の量産性を飛躍的に向上させることが可能となる。   The shaft portion of the shaft material can be subjected to a rolling process for correcting the cylindricity of the portion including the radial dynamic pressure groove region of the shaft portion. In this case, for example, the formation of the radial dynamic pressure groove region and the correction of the cylindricity of the portion including the radial dynamic pressure groove region of the shaft portion are both performed by rolling, and both the rolling processes are performed simultaneously. This simplifies the machining process and shortens the cycle time. As a result, the mass productivity of processed products can be dramatically improved.

あるいは、軸素材の成形と、フランジ部の両端面への、動圧溝と各動圧溝を区画する区画部とからなるスラスト動圧溝領域の形成とを共に鍛造で行い、かつ両者の鍛造加工を同時に行うこともできる。これによれば、軸素材とスラスト動圧溝領域の形成に係る加工工程を簡略化して、加工時間の短縮を図ることができる。   Alternatively, the shaft material is formed and the thrust dynamic pressure groove region formed by the dynamic pressure grooves and the partition portions defining the respective dynamic pressure grooves are formed on both end surfaces of the flange portion by forging, and both are forged. Processing can also be performed simultaneously. According to this, the machining process related to the formation of the shaft material and the thrust dynamic pressure groove region can be simplified, and the machining time can be shortened.

上記動圧軸受装置用軸部材は、例えば動圧軸受装置用軸部材と、この軸部材が内周に挿入され、軸部材との間でラジアル軸受隙間を形成するスリーブ部材とを備え、ラジアル軸受隙間に生じた流体の動圧作用で軸部材とスリーブ部材とを非接触に保持する動圧軸受装置として提供可能である。また、軸受スリーブは、例えば含油焼結金属で形成することができ、この軸方向端面には、フランジ部の端面に代えて、スラスト動圧溝領域を形成することもできる。   The shaft member for a hydrodynamic bearing device includes, for example, a shaft member for a hydrodynamic bearing device, and a sleeve member in which the shaft member is inserted into the inner periphery and forms a radial bearing gap with the shaft member. It can be provided as a hydrodynamic bearing device that holds the shaft member and the sleeve member in a non-contact manner by the dynamic pressure action of the fluid generated in the gap. The bearing sleeve can be made of, for example, oil-impregnated sintered metal, and a thrust dynamic pressure groove region can be formed on the axial end face instead of the end face of the flange portion.

また、上記動圧軸受装置は、この動圧軸受装置と、ロータマグネットと、ステータコイルとを備えたモータとして提供することも可能である。   Moreover, the said dynamic pressure bearing apparatus can also be provided as a motor provided with this dynamic pressure bearing apparatus, a rotor magnet, and a stator coil.

本発明によれば、軸部材に形成される動圧溝を、斯かる加工コストの高騰を避けて精度良く加工することができる。また、この軸部材を組み込んだ動圧軸受装置における軸受隙間を高精度に管理することで、動圧軸受装置の軸受性能を長期に亘って安定的に発揮することができる。   According to the present invention, the dynamic pressure groove formed in the shaft member can be processed with high accuracy while avoiding such increase in processing cost. In addition, the bearing performance of the hydrodynamic bearing device can be stably exhibited over a long period of time by managing the bearing gap in the hydrodynamic bearing device incorporating the shaft member with high accuracy.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図3は、本発明の一実施形態に係る動圧軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。この情報機器用スピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に取付けられたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6とを備えている。ステータコイル4はブラケット6の外周に取付けられ、ロータマグネット5は、ディスクハブ3の内周に取付けられる。ブラケット6は、その内周に動圧軸受装置1を装着している。また、ディスクハブ3は、その外周に磁気ディスク等のディスク状情報記録媒体(以下、単にディスクという。)Dを一枚または複数枚保持している。この情報機器用スピンドルモータは、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の磁力によりロータマグネット5が回転し、これに伴って、ディスクハブ3およびディスクハブ3に保持されたディスクDが軸部材2と一体に回転する。   FIG. 3 conceptually shows a configuration example of a spindle motor for information equipment incorporating the fluid dynamic bearing device 1 according to one embodiment of the present invention. This spindle motor for information equipment is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2 in a non-contact manner, a disk hub 3 attached to the shaft member 2, For example, a stator coil 4 and a rotor magnet 5 which are opposed to each other via a gap in the radial direction, and a bracket 6 are provided. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The bracket 6 has the hydrodynamic bearing device 1 mounted on the inner periphery thereof. The disk hub 3 holds one or more disk-shaped information recording media (hereinafter simply referred to as disks) D such as a magnetic disk on the outer periphery thereof. In the spindle motor for information equipment, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the magnetic force between the stator coil 4 and the rotor magnet 5, and accordingly, the disk hub 3 and the disk hub 3 hold the rotor magnet 5. The disk D rotates together with the shaft member 2.

図4は、動圧軸受装置1の一例を示している。この動圧軸受装置1は、一端に底部7bを有するハウジング7と、ハウジング7に固定された軸受スリーブ8と、軸受スリーブ8の内周に挿入される軸部材2と、シール部材9とを主な構成部品として構成される。なお、説明の便宜上、ハウジング7の底部7bの側を下側、底部7bと反対の側を上側として以下説明を行う。   FIG. 4 shows an example of the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 mainly includes a housing 7 having a bottom 7b at one end, a bearing sleeve 8 fixed to the housing 7, a shaft member 2 inserted into the inner periphery of the bearing sleeve 8, and a seal member 9. Configured as a simple component. For convenience of explanation, the following description will be made with the bottom 7b side of the housing 7 as the lower side and the side opposite the bottom 7b as the upper side.

ハウジング7は、図4に示すように、例えばLCPやPPS、あるいはPEEK等の樹脂材料で円筒状に形成された側部7aと、側部7aの一端側に位置し、例えば金属材料で形成された底部7bとで構成されている。底部7bは、この実施形態では側部7aとは別体として成形され、側部7aの下部内周に後付けされている。なお、底部7bは、この実施形態では側部7aとは別体に形成され、側部7aの下部内周に固定されるが、側部7aと例えば樹脂材料で一体に型成形することもできる。   As shown in FIG. 4, the housing 7 is positioned on one end side of the side portion 7 a and the side portion 7 a formed in a cylindrical shape with a resin material such as LCP, PPS, or PEEK, and is formed of, for example, a metal material. And a bottom portion 7b. In this embodiment, the bottom portion 7b is formed as a separate body from the side portion 7a and is retrofitted to the lower inner periphery of the side portion 7a. In this embodiment, the bottom portion 7b is formed separately from the side portion 7a and is fixed to the lower inner periphery of the side portion 7a. However, the bottom portion 7b can be integrally molded with the side portion 7a, for example, with a resin material. .

軸受スリーブ8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体で円筒状に形成され、ハウジング7の内周面7cの所定位置に固定される。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body made of sintered metal, in particular, a sintered metal porous body mainly composed of copper, and is fixed at a predetermined position on the inner peripheral surface 7 c of the housing 7. The

軸受スリーブ8の内周には、断面真円状を成す円筒面8aが軸方向に向けて形成されている。   A cylindrical surface 8 a having a perfect circular cross section is formed on the inner periphery of the bearing sleeve 8 in the axial direction.

軸受スリーブ8の外周面8bには、1本又は複数本の軸方向溝8b1が軸方向全長に亘って形成されている。この実施形態では、3本の軸方向溝8b1を円周方向等間隔に形成している。   One or a plurality of axial grooves 8b1 are formed on the outer peripheral surface 8b of the bearing sleeve 8 over the entire axial length. In this embodiment, three axial grooves 8b1 are formed at equal intervals in the circumferential direction.

シール手段としてのシール部材9は、図4に示すように、例えば真ちゅう等の軟質金属材料やその他の金属材料、あるいは樹脂材料でハウジング7とは別体かつ環状に形成され、ハウジング7の側部7aの上部内周に圧入、接着等の手段で固定される。この実施形態において、シール部材9の内周面9aは円筒状に形成され、シール部材9の下側端面9bは軸受スリーブ8の上側端面8dと当接している。   As shown in FIG. 4, the sealing member 9 as a sealing means is formed in a ring shape separate from the housing 7 with a soft metal material such as brass, other metal materials, or a resin material. It is fixed to the inner periphery of the upper part of 7a by means such as press fitting or adhesion. In this embodiment, the inner peripheral surface 9 a of the seal member 9 is formed in a cylindrical shape, and the lower end surface 9 b of the seal member 9 is in contact with the upper end surface 8 d of the bearing sleeve 8.

軸部材2は、例えば図1に示すように、ステンレス鋼等の金属材料で形成され、軸部21と、軸部21の下端に設けられたフランジ部22とを一体に備える断面T字形を成す。軸部21外周の一部円筒領域には、図4に示すように、軸受スリーブ8の内周に形成された円筒面8aに対向するラジアル動圧溝領域23a、23bが軸方向に離隔して2箇所形成されている。この上下2つの動圧溝領域23a、23bは、それぞれ複数の動圧溝23a1、23b1と、各動圧溝23a1、23b1を区画する区画部23a2、23b2とからなっており、この実施形態では、図1に示すように、共にへリングボーン形状を成す。このうち、上側のラジアル動圧溝領域23aは、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。   For example, as shown in FIG. 1, the shaft member 2 is formed of a metal material such as stainless steel and has a T-shaped cross section integrally including a shaft portion 21 and a flange portion 22 provided at the lower end of the shaft portion 21. . As shown in FIG. 4, radial dynamic pressure groove regions 23 a and 23 b facing the cylindrical surface 8 a formed on the inner periphery of the bearing sleeve 8 are separated in the axial direction in a partial cylindrical region on the outer periphery of the shaft portion 21. Two places are formed. The upper and lower two dynamic pressure groove regions 23a and 23b are each composed of a plurality of dynamic pressure grooves 23a1 and 23b1 and partition portions 23a2 and 23b2 that partition the dynamic pressure grooves 23a1 and 23b1, respectively. As shown in FIG. 1, both form a herringbone shape. Of these, the upper radial dynamic pressure groove region 23a is formed to be axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions). The direction dimension X1 is larger than the axial direction dimension X2 of the lower region.

フランジ部22の上端面の全面または一部環状領域には、例えば図2(a)に示すように、スラスト動圧溝領域22aが形成される。また、フランジ部22の下端面の一部環状領域には、例えば図2(b)に示すように、スラスト動圧溝領域22bが形成される。これらスラスト動圧溝領域22a、22bは、それぞれ複数の動圧溝22a1、22b1と、各動圧溝22a1、22b1を区画する区画部22a2、22b2とからなり、この実施形態では、図2(a)、(b)に示すように、それぞれスパイラル形状を成す。なお、各スラスト動圧溝領域22a、22bは、特に図示した形状に限ることなく、例えばへリングボーン形状等の形状を採ることができる。また、上下面でそれぞれ異なる動圧溝形状を形成することもできる。   For example, as shown in FIG. 2A, a thrust dynamic pressure groove region 22a is formed on the entire upper surface of the flange portion 22 or a partial annular region. Further, a thrust dynamic pressure groove region 22b is formed in a partial annular region on the lower end surface of the flange portion 22 as shown in FIG. 2B, for example. These thrust dynamic pressure groove regions 22a and 22b are each composed of a plurality of dynamic pressure grooves 22a1 and 22b1 and partitioning portions 22a2 and 22b2 that partition the dynamic pressure grooves 22a1 and 22b1, respectively. In this embodiment, FIG. ) And (b), each has a spiral shape. In addition, each thrust dynamic pressure groove area | region 22a, 22b can take not only the shape shown in particular but shapes, such as a herringbone shape, for example. Also, different dynamic pressure groove shapes can be formed on the upper and lower surfaces.

一方のラジアル動圧溝領域23aの上方には、軸先端に向けて漸次縮径するテーパ面24が隣接して形成され、さらにその上方にディスクハブ3の取付け部となる円筒面25が形成されている。二つのラジアル動圧溝領域23a、23bの間、他方のラジアル動圧溝領域23bとフランジ部22との間、およびテーパ面24と円筒面25との間には、それぞれ環状のヌスミ部26、27、28が形成されている。   Above one of the radial dynamic pressure groove regions 23a, a tapered surface 24 that gradually decreases in diameter toward the shaft tip is formed adjacently, and a cylindrical surface 25 that serves as a mounting portion of the disk hub 3 is formed above the tapered surface 24. ing. Between the two radial dynamic pressure groove regions 23a and 23b, between the other radial dynamic pressure groove region 23b and the flange portion 22 and between the taper surface 24 and the cylindrical surface 25, an annular nose portion 26, 27 and 28 are formed.

軸部21のテーパ面24と、テーパ面24に対向するシール部材9の内周面9aとの間には、ハウジング7の底部7b側から上方に向けて半径方向寸法が漸次拡大する環状のシール空間Sが形成される。組立て完了後の動圧軸受装置1(図4参照)においては、シール空間Sの範囲内に油面が維持される。   Between the taper surface 24 of the shaft portion 21 and the inner peripheral surface 9a of the seal member 9 facing the taper surface 24, an annular seal whose radial dimension gradually increases from the bottom 7b side of the housing 7 upward. A space S is formed. In the hydrodynamic bearing device 1 (see FIG. 4) after the assembly is completed, the oil level is maintained within the range of the seal space S.

上述の如く構成された動圧軸受装置1において、軸部材2を回転させると、軸受スリーブ8の内周に形成された円筒面8aと、円筒面8aに対向する軸部21のラジアル動圧溝領域23a、23bとの間のラジアル軸受隙間に潤滑油の動圧が発生し、軸部材2の軸部21がラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが形成される。また、軸受スリーブ8の下側端面8cと、下側端面8cに対向するフランジ部22上側(軸部側)のスラスト動圧溝領域22aとの間の第1スラスト軸受隙間、および底部7bの上側端面7b1と、上側端面7b1に対向するフランジ部22下側(反軸部側)のスラスト動圧溝領域22bとの間の第2スラスト軸受隙間に潤滑油の動圧がそれぞれ発生し、軸部材2のフランジ部22が両スラスト方向に回転自在に非接触支持される。これにより、軸部材2をスラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが形成される。   In the dynamic pressure bearing device 1 configured as described above, when the shaft member 2 is rotated, the cylindrical surface 8a formed on the inner periphery of the bearing sleeve 8 and the radial dynamic pressure groove of the shaft portion 21 facing the cylindrical surface 8a. The dynamic pressure of the lubricating oil is generated in the radial bearing gap between the regions 23a and 23b, and the shaft portion 21 of the shaft member 2 is supported in a non-contact manner so as to be rotatable in the radial direction. As a result, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are formed. Further, the first thrust bearing gap between the lower end surface 8c of the bearing sleeve 8 and the thrust dynamic pressure groove region 22a on the upper side (shaft side) of the flange portion 22 facing the lower end surface 8c, and the upper side of the bottom portion 7b. The dynamic pressure of the lubricating oil is generated in the second thrust bearing gap between the end surface 7b1 and the thrust dynamic pressure groove region 22b on the lower side (on the opposite shaft side) of the flange portion 22 facing the upper end surface 7b1, respectively. The two flange portions 22 are supported in a non-contact manner so as to be rotatable in both thrust directions. Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which support the shaft member 2 in a non-contact manner so as to be rotatable in the thrust direction are formed.

以下、上記動圧軸受装置1を構成する軸部材2の製造方法について説明する。   Hereinafter, the manufacturing method of the shaft member 2 which comprises the said dynamic-pressure bearing apparatus 1 is demonstrated.

軸部材2は、主に(A)成形工程、(B)研削工程の2工程を経て製造される。このうちの(A)の成形工程には、軸素材成形加工(A−1)と、スラスト動圧溝領域成形加工(A−2)と、ラジアル動圧溝領域成形加工(A−3)と、軸部矯正加工(A−4)とが含まれる。また、(B)の研削工程には、幅研削加工(B−1)と、全面研削加工(B−2)と、仕上げ研削加工(B−3)とが含まれる。   The shaft member 2 is manufactured mainly through two steps of (A) forming step and (B) grinding step. Of these, the molding process (A) includes a shaft material molding process (A-1), a thrust dynamic pressure groove area molding process (A-2), and a radial dynamic pressure groove area molding process (A-3). And shaft part straightening (A-4). The grinding process (B) includes a width grinding process (B-1), a whole surface grinding process (B-2), and a finish grinding process (B-3).

(A)成形工程
(A−1)軸素材成形加工、および(A−2)スラスト動圧溝領域成形加工
まず、成形すべき軸部材2の素材となるステンレス鋼等の金属材を、金型を用いて例えば冷間で圧縮成形することにより(鍛造加工)、例えば図5に示すように、軸部対応領域(以下、単に軸部という。)11およびフランジ部対応領域(以下、単にフランジ部という。)12を一体に有する軸素材10が形成される(軸素材成形加工(A−1))。また、この軸素材10の鍛造成形に使用する金型は、この実施形態では、フランジ部12にスラスト動圧溝領域12a、12bを成形するための金型を兼ねている。そのため、軸素材10の鍛造成形と同時に、フランジ部12の両端面に対応する箇所に塑性加工が施され、例えば図6(a)、(b)に示すように、複数の動圧溝12a1、12b1と、これら動圧溝12a1、12b1を区画する区画部12a2、12b2とからなるスラスト動圧溝領域12a(軸部側)、12b(反軸部側)が形成される(スラスト動圧溝領域形成加工(A−2))。
(A) Molding step (A-1) Shaft material molding process, and (A-2) Thrust dynamic pressure groove region molding process First, a metal material such as stainless steel, which is a material of the shaft member 2 to be molded, is molded into a mold. For example, as shown in FIG. 5, for example, as shown in FIG. 5, a shaft-corresponding region (hereinafter simply referred to as a shaft portion) 11 and a flange-corresponding region (hereinafter simply referred to as a flange portion) are used. That is, the shaft material 10 having the integral body 12 is formed (shaft material forming process (A-1)). Moreover, the metal mold | die used for the forge molding of this shaft raw material 10 serves as the metal mold | die for shape | molding the thrust dynamic pressure groove area | region 12a, 12b in the flange part 12 in this embodiment. Therefore, at the same time as forging of the shaft material 10, plastic working is performed at locations corresponding to both end faces of the flange portion 12. For example, as shown in FIGS. 6 (a) and 6 (b), a plurality of dynamic pressure grooves 12 a 1, Thrust dynamic pressure groove regions 12a (shaft side) and 12b (counter shaft side) are formed (thrust dynamic pressure groove region), which includes 12b1 and partition portions 12a2 and 12b2 that partition these dynamic pressure grooves 12a1 and 12b1. Forming process (A-2)).

上記成形工程における冷間鍛造の方式としては、押出し加工、据込み加工、ヘッディング加工等の何れか、もしくはこれらの組合わせを採用することもできる。図示例では、鍛造加工後の軸部11の外周面11aを、テーパ面14およびテーパ面14と上方に向けて連続し他所より小径の円筒面15とを介在させた異径形状としているが、テーパ面14を省略し全長に亘って均一径に成形することもできる。なお、この実施形態では、軸素材10の成形と、スラスト動圧溝領域12a、12bの成形を鍛造加工で同時に行った場合を説明したが、両工程を必ずしも同時に行う必要はなく、軸素材10を鍛造成形した後に、スラスト動圧溝領域12a、12bを塑性加工、例えば鍛造加工やプレス加工等で成形しても構わない。   As a method of cold forging in the forming step, any of extrusion processing, upsetting processing, heading processing, or the like, or a combination thereof can be adopted. In the illustrated example, the outer peripheral surface 11a of the shaft portion 11 after forging has a different diameter shape with the tapered surface 14 and the tapered surface 14 being continuous upward and a cylindrical surface 15 having a smaller diameter than that of the other portion. The tapered surface 14 may be omitted and the uniform diameter may be formed over the entire length. In this embodiment, the case where the forming of the shaft material 10 and the forming of the thrust dynamic pressure groove regions 12a and 12b are performed simultaneously by forging is described. However, both steps are not necessarily performed at the same time. Then, the thrust dynamic pressure groove regions 12a and 12b may be formed by plastic working, for example, forging or pressing.

(A−3)ラジアル動圧溝領域成形加工、および(A−4)軸部矯正加工
先の工程において鍛造成形された軸素材10の軸部11を、例えば図示は省略するが、一対の転造ダイス(例えば平ダイスや丸ダイス等)で加圧挟持し、前記一対の転造ダイスを互いに逆方向に往復動させることで、前記一対の転造ダイスのうち、何れか一方の挟持面に予め形成した動圧溝転写面を、軸部11の外周面11aに転写する(ラジアル動圧溝領域成形加工(A−3))。また、上記一対の転造ダイスは、この実施形態では、軸素材10の軸部11を矯正加工するための矯正工具を兼ねているため、軸部11の外周面11aには、上記動圧溝の転写と同時に、円筒度矯正のための転造加工が施される(軸部矯正加工(A−4))。この結果、軸部11の外周面11aに、例えば図5に示すような形状をなすラジアル動圧溝領域13a、13bが軸方向に離隔して2箇所形成されると共に、軸部外周面11aのうち、ラジアル動圧溝領域13a、13b(例えば、動圧溝13a1、13b1の底面や、動圧溝13a1、13b1を区画する区画部13a2、13b2の外周面)を含む面13が矯正され、矯正加工を施した面13の円筒度が所望の範囲内(例えば10μm以下)に改善される。これと同時に、軸部11上端の円筒面15にも矯正加工が施され、円筒面15の円筒度が同様に改善される。
(A-3) Radial dynamic pressure groove region forming process, and (A-4) Shaft part straightening process The shaft part 11 of the shaft material 10 forged and formed in the previous step is omitted, for example, although a pair of rolling parts is omitted. By pressing and clamping with a forming die (for example, a flat die or a round die) and reciprocating the pair of rolling dies in opposite directions, either one of the pair of rolling dies is held on one clamping surface. The previously formed dynamic pressure groove transfer surface is transferred to the outer peripheral surface 11a of the shaft portion 11 (radial dynamic pressure groove region forming process (A-3)). In addition, in this embodiment, the pair of rolling dies also serves as a correction tool for correcting the shaft portion 11 of the shaft material 10, so that the dynamic pressure groove is formed on the outer peripheral surface 11 a of the shaft portion 11. Simultaneously with the transfer, a rolling process for correcting the cylindricity is performed (shaft part correcting process (A-4)). As a result, on the outer peripheral surface 11a of the shaft portion 11, for example, radial dynamic pressure groove regions 13a and 13b having a shape as shown in FIG. Among them, the surface 13 including the radial dynamic pressure groove regions 13a and 13b (for example, the bottom surfaces of the dynamic pressure grooves 13a1 and 13b1 and the outer peripheral surfaces of the partition portions 13a2 and 13b2 that partition the dynamic pressure grooves 13a1 and 13b1) is corrected and corrected. The cylindricity of the processed surface 13 is improved within a desired range (for example, 10 μm or less). At the same time, the cylindrical surface 15 at the upper end of the shaft portion 11 is also corrected, and the cylindricity of the cylindrical surface 15 is similarly improved.

このように、ラジアル動圧溝領域13a、13bの成形と、軸部外周面11aの矯正は、共に転造でかつ同時に行うことができるが、これ以外にも、例えば、軸部11の外周面11aに矯正加工を施した後、矯正加工を施した面にラジアル動圧溝領域13a、13bを転造加工する手順を採ることもできる。その場合、円筒度の矯正加工には、転造加工をはじめ、絞りやしごき、あるいは割り型のプレス(挟み込み)によるサイジング加工等など、種々の加工方法を採用することができる。また、矯正加工は軸部11の外周面11a全長に亘って行う他、ラジアル動圧溝領域13a、13bを含む限り、外周面11aの一部のみに行うこともできる。   As described above, the formation of the radial dynamic pressure groove regions 13a and 13b and the correction of the shaft outer peripheral surface 11a can be both performed by rolling and at the same time. It is also possible to take a procedure of rolling the radial dynamic pressure groove regions 13a and 13b on the surface subjected to the straightening process after the straightening process is performed on 11a. In this case, various processing methods such as rolling, squeezing and ironing, or sizing by split-type press (pinching), etc. can be employed for the correction of cylindricity. Further, the correction process can be performed over the entire length of the outer peripheral surface 11a of the shaft portion 11 and can be performed only on a part of the outer peripheral surface 11a as long as the radial dynamic pressure groove regions 13a and 13b are included.

このように、軸部11とフランジ部12とを一体に備えた軸素材10の成形と、フランジ部12両端面へのスラスト動圧溝領域12a、12bの成形とを、共に鍛造でかつ同時に行うことで、また、ラジアル動圧溝領域13a、13bの成形と、軸部外周面11aの矯正加工とを共に転造でかつ同時に行うことで、斯かる加工工程を簡略化して、加工時間の大幅な短縮化を図ることができる。また、切削加工やエッチング加工等に比べて、加工品1個当りのサイクルタイムが短い鍛造加工や転造加工を採用することで、さらなる加工時間の短縮化が図られ、より一層のコストダウンと量産性の向上が可能となる。   In this manner, the shaft material 10 integrally including the shaft portion 11 and the flange portion 12 and the thrust dynamic pressure groove regions 12a and 12b on both end surfaces of the flange portion 12 are both forged and simultaneously performed. In addition, since the radial dynamic pressure groove regions 13a and 13b and the straightening of the shaft outer peripheral surface 11a are both rolled and performed at the same time, the machining process is simplified and the machining time is greatly increased. Can be shortened. In addition, by adopting forging and rolling processes that have a shorter cycle time per workpiece compared to cutting and etching processes, the processing time can be further shortened, further reducing costs. Mass productivity can be improved.

上記成形工程(A)を完了した段階では、例えば図7(a)に示すように、スラスト動圧溝領域12bにおける、動圧溝12b1の底面12b3から区画部12b2の軸方向端面12b4までの高さh1は、上記鍛造加工時の成形精度、および後述する軸素材10の幅研削加工(B−1)の際の研削代を考慮して、適切な値に設定される。また、ラジアル動圧溝領域13a、13bにおける、各動圧溝13a1、13b1の底面から各区画部13a2、13b2の外周面までの高さ(図示略)や、軸部11側のスラスト動圧溝領域12aにおける、動圧溝12a1の底面から区画部12a2の軸方向端面までの高さ(図示略)は、それぞれ上記鍛造加工時の成形精度、および後述する軸素材10の全面研削加工(B−2)や仕上げ研削加工(B−3)の際の研削代を考慮して、適切な値に設定される。   At the stage where the molding step (A) is completed, as shown in FIG. 7A, for example, in the thrust dynamic pressure groove region 12b, the height from the bottom surface 12b3 of the dynamic pressure groove 12b1 to the axial end surface 12b4 of the partition portion 12b2 is increased. The length h1 is set to an appropriate value in consideration of the forming accuracy during the forging process and the grinding allowance for the width grinding process (B-1) of the shaft material 10 described later. Further, in the radial dynamic pressure groove regions 13a and 13b, the height (not shown) from the bottom surface of each of the dynamic pressure grooves 13a1 and 13b1 to the outer peripheral surface of each of the partition portions 13a2 and 13b2, and the thrust dynamic pressure groove on the shaft portion 11 side In the region 12a, the height (not shown) from the bottom surface of the dynamic pressure groove 12a1 to the end surface in the axial direction of the partition portion 12a2 is the molding accuracy at the time of the forging process and the overall grinding process (B- In consideration of the grinding allowance in the case of 2) and finish grinding (B-3), it is set to an appropriate value.

(B)研削工程
(B−1)幅研削加工
成形工程を経た軸素材10の両端面となる、軸部端面11bおよびフランジ部12のスラスト動圧溝領域12bが形成された側の反軸部側端面(図6(b)を参照)を、前記矯正加工を施した面13を基準として研削加工する。この研削工程に用いられる研削装置40は、例えば図8(a)、(b)に示すように、ワークとしての軸素材10を複数保持するキャリア41と、キャリア41によって保持された軸素材10の軸部端面11bおよびフランジ部12のスラスト動圧溝領域12bを含む反軸部側端面を研削する一対の砥石42、42とを備えている。
(B) Grinding Step (B-1) Width Grinding Work The opposite shaft portion on the side where the shaft end surface 11b and the thrust dynamic pressure groove region 12b of the flange portion 12 are formed, which are both end surfaces of the shaft material 10 that has undergone the forming step. A side end surface (see FIG. 6B) is ground using the surface 13 subjected to the correction processing as a reference. For example, as shown in FIGS. 8A and 8B, a grinding device 40 used in this grinding process includes a carrier 41 that holds a plurality of shaft materials 10 as workpieces, and a shaft material 10 that is held by the carriers 41. A pair of grindstones 42 and 42 that grind the end surface on the side opposite to the shaft including the shaft end surface 11b and the thrust dynamic pressure groove region 12b of the flange portion 12 are provided.

図示のように、キャリア41の外周縁の円周方向一部領域には、複数の切欠き43が円周方向等ピッチに設けられる。軸素材10は、その矯正加工面13を切欠き43の内面43aにアンギュラコンタクトさせた状態で切欠き43に収容される。軸素材10の矯正加工面13はキャリア41の外周面よりも僅かに突出しており、キャリアの外径側には、軸素材10の突出部分を外径側から拘束する形でベルト44が張設されている。切欠き43に軸素材10を収容したキャリア41の軸方向両端側には、例えば図9に示すように、一対の砥石42、42がその端面(研削面)同士を対向させて所定の間隔で同軸配置されている。   As shown in the drawing, a plurality of notches 43 are provided at equal pitches in the circumferential direction in a partial region in the circumferential direction of the outer peripheral edge of the carrier 41. The shaft material 10 is accommodated in the notch 43 in a state in which the straightened surface 13 is in angular contact with the inner surface 43 a of the notch 43. The straightened surface 13 of the shaft material 10 protrudes slightly from the outer peripheral surface of the carrier 41, and a belt 44 is stretched on the outer diameter side of the carrier so as to constrain the protruding portion of the shaft material 10 from the outer diameter side. Has been. For example, as shown in FIG. 9, a pair of grindstones 42, 42 face each other (grinding surfaces) at predetermined intervals on both ends in the axial direction of the carrier 41 in which the shaft material 10 is accommodated in the notch 43. Coaxially arranged.

キャリア41の回転に伴い、軸素材10が定位置から切欠き43に順次投入される。投入された軸素材10は、切欠き43からの脱落をベルト44で拘束された状態で、回転する砥石42、42の端面上をその外径端から内径端にかけて横断する。これに伴い、軸素材10の両端面、換言すれば軸部端面11bとフランジ部12のスラスト動圧溝領域12bを含む反軸部側端面とが砥石42、42の端面で研削される(図9参照)。この際、軸素材10の矯正加工面13がキャリア41に支持され、かつこの矯正加工面13が高い円筒度を有するので、予め砥石42の回転軸心と砥石42の研削面との直角度、および砥石42の回転軸心とキャリア41の回転軸心との平行度等を高精度に管理しておけば、この矯正加工面13を基準として、軸素材10の両端面(軸部端面11b、フランジ部12のスラスト動圧溝領域12bを含む反軸部側端面)を高精度に仕上げることができ、矯正加工面13に対する直角度の値を小さく抑えることができる。また、軸素材10の軸方向幅(フランジ部12を含めた全長)が所定寸法に仕上げられる。   As the carrier 41 rotates, the shaft material 10 is sequentially put into the notch 43 from a fixed position. The thrown shaft material 10 traverses from the outer diameter end to the inner diameter end on the end faces of the rotating grindstones 42 and 42 in a state where the dropping from the notch 43 is restrained by the belt 44. Along with this, both end surfaces of the shaft material 10, in other words, the shaft end surface 11b and the non-shaft side end surface including the thrust dynamic pressure groove region 12b of the flange portion 12 are ground by the end surfaces of the grindstones 42, 42 (see FIG. 9). At this time, since the straightened surface 13 of the shaft material 10 is supported by the carrier 41 and the straightened surface 13 has a high degree of cylindricity, the perpendicularity between the rotation axis of the grindstone 42 and the ground surface of the grindstone 42 in advance, If the parallelism between the rotation axis of the grindstone 42 and the rotation axis of the carrier 41 is managed with high accuracy, both end surfaces of the shaft material 10 (the shaft end surface 11b, The end surface on the side opposite to the shaft portion including the thrust dynamic pressure groove region 12b of the flange portion 12) can be finished with high accuracy, and the value of the squareness with respect to the straightened surface 13 can be kept small. Moreover, the axial direction width | variety (full length including the flange part 12) of the shaft raw material 10 is finished to a predetermined dimension.

この研削工程では、上述のように、フランジ部12のスラスト動圧溝領域12bが研削され、例えば図7(b)に示すように、区画部12b2が、鍛造成形時の高さh1から所定の研削代(同図ではh1-h2)だけ研削される。これにより、区画部12b2の高さ(動圧溝12b1の深さ)が所定の値h2(例えば3μm〜15μm)に揃えられ、対向する部材(この実施形態では、ハウジング7の底部7b)との間のスラスト軸受隙間を数μm〜数十μm間隔で高精度に管理することができる。 In this grinding process, as described above, the thrust dynamic pressure groove region 12b of the flange portion 12 is ground, for example, as shown in FIG. 7 (b), partition section 12b2 is given from the height h 1 at the time of forging Is ground by a grinding allowance (h 1 -h 2 in the figure). Thereby, the height of the partition portion 12b2 (depth of the dynamic pressure groove 12b1) is aligned to a predetermined value h 2 (for example, 3 μm to 15 μm), and the opposing member (in this embodiment, the bottom portion 7b of the housing 7). Can be managed with high accuracy at intervals of several μm to several tens of μm.

(B−2)全面研削加工
次いで、研削した軸素材10の両端面(軸部端面11b、フランジ部12のスラスト動圧溝領域12bを含む反軸部側端面)を基準として軸素材10の外周面10aおよびフランジ部12のスラスト動圧溝領域12aを含む軸部側端面の研削加工を行う。この研削工程で用いられる研削装置50は、例えば図10に示すように、バッキングプレート54およびプレッシャプレート55を軸素材10の両端面に押し当てながら砥石53でプランジ研削するものである。軸素材10の矯正加工面13はシュー52によって回転自在に支持される。
(B-2) Whole surface grinding process Next, the outer periphery of the shaft material 10 with reference to both end surfaces of the ground shaft material 10 (the end surface 11b of the flange portion, the opposite end surface including the thrust dynamic pressure groove region 12b of the flange portion 12). Grinding of the end face on the shaft part side including the surface 10a and the thrust dynamic pressure groove region 12a of the flange part 12 is performed. A grinding device 50 used in this grinding process performs plunge grinding with a grindstone 53 while pressing a backing plate 54 and a pressure plate 55 against both end surfaces of the shaft material 10 as shown in FIG. The straightened surface 13 of the shaft material 10 is rotatably supported by a shoe 52.

砥石53は、完成品としての軸部材2の外周面形状に対応した研削面56を備える総形砥石である。研削面56は、軸部11の軸方向全長に亘る外周面11aおよびフランジ部12の外周面12cを研削する円筒研削部56aと、フランジ部12のスラスト動圧溝領域12aを含む軸部側端面を研削する平面研削部56bとを備えている。図示例の砥石53は、円筒研削部56aとして、軸部材2のラジアル動圧溝領域23a、23bに対応する領域を研削する部分56a1・56a2、テーパ面24に対応する領域を研削する部分56a3、円筒面25に対応する領域を研削する部分56a4、各ヌスミ部26〜28を研削加工する部分56a5〜56a7、フランジ部22の外周面22cに対応する領域を研削する部分56a8を備えている。   The grindstone 53 is a general-purpose grindstone provided with a grinding surface 56 corresponding to the outer peripheral surface shape of the shaft member 2 as a finished product. The grinding surface 56 includes a cylindrical grinding portion 56a that grinds the outer circumferential surface 11a over the entire axial length of the shaft portion 11 and the outer circumferential surface 12c of the flange portion 12, and a shaft portion side end surface including the thrust dynamic pressure groove region 12a of the flange portion 12. The surface grinding part 56b which grinds. In the illustrated example, the grindstone 53 includes, as the cylindrical grinding portion 56a, portions 56a1 and 56a2 for grinding the regions corresponding to the radial dynamic pressure groove regions 23a and 23b of the shaft member 2, portions 56a3 for grinding the regions corresponding to the tapered surface 24, A portion 56a4 for grinding a region corresponding to the cylindrical surface 25, portions 56a5 to 56a7 for grinding each of the portions 26 to 28, and a portion 56a8 for grinding a region corresponding to the outer peripheral surface 22c of the flange portion 22 are provided.

上記構成の研削装置50における研削加工は以下の手順で行われる。まず、軸素材10および砥石53を回転させた状態で砥石53を斜め方向(図中の矢印1方向)に送り、軸素材10のフランジ部12軸部側端面(スラスト動圧溝領域12aの側)に砥石53の平面研削部56bを押し当て、フランジ部12のスラスト動圧溝領域12aを含む軸部側端面を研削する。これにより、軸部材2のフランジ部22軸部側端面が形成されると共に、スラスト動圧溝領域12aの研削が完了し、軸部材2のスラスト動圧溝領域22aが形成される。次いで、砥石53を軸素材10の回転軸心と直交する方向(図中の矢印2方向)に送り、軸素材10の軸部11の外周面11aおよびフランジ部12の外周面12cに砥石53の円筒研削部56aを押し当てて、各面11a、12cを研削する。これにより、軸部材2の軸部21外周面のうち、ラジアル動圧溝領域23a、23bおよび円筒面25に対応する領域がそれぞれ研削されると共に、テーパ面24、フランジ部22の外周面22c、さらに各ヌスミ部26〜28が形成される。なお、上記研削の際には、例えば図10に示すように、計測ゲージ57で残りの研削代を計測しつつ研削を行うのが好ましい。   The grinding process in the grinding apparatus 50 having the above-described configuration is performed according to the following procedure. First, with the shaft material 10 and the grindstone 53 rotated, the grindstone 53 is fed in an oblique direction (in the direction of arrow 1 in the figure), and the flange portion 12 shaft side end surface (the thrust dynamic pressure groove region 12a side) of the shaft material 10 is sent. ) Is pressed against the surface grinding portion 56b of the grindstone 53, and the shaft portion side end surface including the thrust dynamic pressure groove region 12a of the flange portion 12 is ground. Thereby, the flange 22 of the shaft member 2 and the shaft-side end surface are formed, and the grinding of the thrust dynamic pressure groove region 12a is completed, so that the thrust dynamic pressure groove region 22a of the shaft member 2 is formed. Next, the grindstone 53 is fed in a direction orthogonal to the rotational axis of the shaft blank 10 (in the direction of arrow 2 in the figure), and the grindstone 53 is placed on the outer circumferential surface 11 a of the shaft portion 11 and the outer circumferential surface 12 c of the flange portion 12. The cylindrical grinding portion 56a is pressed to grind the surfaces 11a and 12c. Thereby, among the outer peripheral surface of the shaft portion 21 of the shaft member 2, the regions corresponding to the radial dynamic pressure groove regions 23a, 23b and the cylindrical surface 25 are ground, respectively, and the tapered surface 24, the outer peripheral surface 22c of the flange portion 22, Further, each of the nosumi portions 26 to 28 is formed. In the above grinding, for example, as shown in FIG. 10, it is preferable to perform grinding while measuring the remaining grinding allowance with a measurement gauge 57.

この研削工程(全面研削加工)においては、フランジ部12の軸部側端面に形成されたスラスト動圧溝領域12aの区画部12a2が、例えば図示は省略するが、スラスト動圧溝領域12bの場合と同様に、鍛造成形時の高さから所定の研削代だけ研削される。これにより、区画部12a2の高さ(動圧溝12a1の深さ)が所定の値に揃えられ、対向する部材(この実施形態では、軸受スリーブ8の下側端面8c)との間のスラスト軸受隙間が高精度に管理される。この実施形態では、事前に幅研削加工で軸素材10の両端面(軸部端面11b、フランジ部12反軸部側端面)の直角度の精度出しが行われているため、スラスト動圧溝領域12aの研削をより精密に行うことができる。   In this grinding step (entire grinding), the partition portion 12a2 of the thrust dynamic pressure groove region 12a formed on the end surface on the shaft portion side of the flange portion 12 is, for example, omitted, but in the case of the thrust dynamic pressure groove region 12b In the same manner as described above, grinding is performed for a predetermined grinding allowance from the height during forging. As a result, the height of the partition portion 12a2 (depth of the dynamic pressure groove 12a1) is set to a predetermined value, and a thrust bearing between the opposing member (the lower end surface 8c of the bearing sleeve 8 in this embodiment) is opposed. The gap is managed with high accuracy. In this embodiment, since the accuracy of the perpendicularity of both end faces (shaft end face 11b, flange part 12 opposite end part end face) of the shaft blank 10 is determined in advance by width grinding, the thrust dynamic pressure groove region The grinding of 12a can be performed more precisely.

(B−3)仕上げ研削加工
(B−2)全面研削加工で研削を施した面のうち、軸部材2のラジアル動圧溝領域23a、23b、および円筒面25に対応する領域に最終的な仕上げ研削を施す。この研削加工に用いる研削装置は、図11に示す円筒研削盤で、バッキングプレート64とプレッシャプレート65とで挟持した軸素材10を回転させながら、砥石63でプランジ研削するものである。軸素材10は、シュー62で回転自在に支持される。砥石63の研削面63aは、軸部材2のラジアル動圧溝領域23a、23bに対応する領域(同図中13a、13bに示す領域)を研削する第一の円筒研削部63a1と、円筒面25に対応する領域(同図中15に示す領域)を研削する第二の円筒研削部63a2とからなる。
(B-3) Finishing grinding process (B-2) Of the surfaces ground by the whole surface grinding process, the final grinding is performed in the regions corresponding to the radial dynamic pressure groove regions 23 a and 23 b and the cylindrical surface 25 of the shaft member 2. Apply finish grinding. The grinding apparatus used for this grinding process is a cylindrical grinder shown in FIG. 11 that performs plunge grinding with the grindstone 63 while rotating the shaft material 10 sandwiched between the backing plate 64 and the pressure plate 65. The shaft material 10 is rotatably supported by the shoe 62. The grinding surface 63a of the grindstone 63 includes a first cylindrical grinding portion 63a1 for grinding a region corresponding to the radial dynamic pressure groove regions 23a and 23b of the shaft member 2 (regions indicated by 13a and 13b in the figure), and a cylindrical surface 25. And a second cylindrical grinding portion 63a2 for grinding a region corresponding to (a region indicated by 15 in the figure).

上記構成の研削装置60において、回転する砥石63に半径方向の送りを与えることにより、ラジアル動圧溝領域23a、23bおよび円筒面25に対応する領域13a、13b、および15がそれぞれ研削され、これらの領域が最終的な表面精度に仕上げられる。この研削工程においては、ラジアル動圧溝領域13a、13bの区画部13a2、13b2が、例えば図示は省略するが、スラスト動圧溝領域12a、12bの場合と同様に、転造成形時の高さから所定の研削代だけ研削される。これにより、区画部13a2、13b2の高さ(動圧溝13a1、13b1の深さ)が所定の値に揃えられ、対向する部材(この実施形態では、軸受スリーブ8の円筒面8a)との間のラジアル軸受隙間が高精度に管理される。   In the grinding device 60 having the above-described configuration, the radial dynamic pressure groove regions 23a, 23b and the regions 13a, 13b, and 15 corresponding to the cylindrical surface 25 are ground by applying a radial feed to the rotating grindstone 63. Is finished to the final surface accuracy. In this grinding step, the partitioning portions 13a2 and 13b2 of the radial dynamic pressure groove regions 13a and 13b are not illustrated, for example, but the height at the time of rolling forming is the same as in the case of the thrust dynamic pressure groove regions 12a and 12b. Grinding is performed for a predetermined grinding allowance. As a result, the heights of the partition portions 13a2 and 13b2 (the depths of the dynamic pressure grooves 13a1 and 13b1) are adjusted to a predetermined value, and between the opposing members (in this embodiment, the cylindrical surface 8a of the bearing sleeve 8). The radial bearing clearance is managed with high accuracy.

上記(A)成形工程および(B)研削工程を経た後、必要に応じて熱処理や洗浄処理を施すことで、図1に示す軸部材2が完成する。   After passing through the forming step (A) and the grinding step (B), the shaft member 2 shown in FIG. 1 is completed by performing heat treatment and cleaning treatment as necessary.

上述の製造方法によって製造した軸部材2は、軸部21の外周に転造加工で上下2箇所に離隔して形成したラジアル動圧溝領域23a、23bを有し、ラジアル動圧溝領域23a、23bの区画部23a2、23b2の外周面が研削面となる構造を成す。また、フランジ部22の両端面に鍛造加工で形成したスラスト動圧溝領域22a、22bを有し、スラスト動圧溝領域22a、22bの軸方向端面が研削面となる構造を成す。ラジアル動圧溝領域23a、23bにおける区画部23a2、23b2の研削面は、(B−2)全面研削加工および(B−3)仕上げ研削加工の際に形成される。また、スラスト動圧溝領域22aにおける区画部22a2の研削面は(B−2)全面研削加工の際に、スラスト動圧溝領域22bにおける区画部22b2の研削面は(B−1)幅研削加工の際にそれぞれ形成される。   The shaft member 2 manufactured by the above-described manufacturing method has radial dynamic pressure groove regions 23a and 23b formed on the outer periphery of the shaft portion 21 at two locations in the upper and lower portions by rolling, and the radial dynamic pressure groove region 23a, The outer peripheral surfaces of the partition portions 23a2 and 23b2 of 23b form a ground surface. Further, thrust dynamic pressure groove regions 22a and 22b formed by forging are formed on both end surfaces of the flange portion 22, and the axial end surfaces of the thrust dynamic pressure groove regions 22a and 22b are ground surfaces. The grinding surfaces of the partition portions 23a2 and 23b2 in the radial dynamic pressure groove regions 23a and 23b are formed during (B-2) full surface grinding and (B-3) finish grinding. Further, the grinding surface of the partition portion 22a2 in the thrust dynamic pressure groove region 22a is (B-2), and the grinding surface of the partition portion 22b2 in the thrust dynamic pressure groove region 22b is (B-1) width grinding. Each is formed at the time.

このように、軸素材10のラジアル動圧溝領域13a、13bを転造加工で形成し、ラジアル動圧溝領域13a、13bのうち、各区画部13a2、13b2の外径部を研削することで、各動圧溝領域23a、23bを低コストで成形しつつも、その外径寸法精度や表面粗さを高精度に仕上げることができる。スラスト動圧溝領域22a、22bについても、同様の理由で、低コスト成形と高精度仕上げとを両立することができる。これにより、動圧軸受装置1におけるラジアル軸受隙間およびスラスト軸受隙間を高精度に管理することができ、軸受性能を安定して発揮することが可能となる。   As described above, the radial dynamic pressure groove regions 13a and 13b of the shaft material 10 are formed by rolling, and the outer diameter portions of the partition portions 13a2 and 13b2 are ground in the radial dynamic pressure groove regions 13a and 13b. The outer diameter dimensional accuracy and the surface roughness can be finished with high accuracy while the dynamic pressure groove regions 23a and 23b are formed at low cost. For the same reason, the thrust dynamic pressure groove regions 22a and 22b can achieve both low-cost molding and high-precision finishing. Thereby, the radial bearing gap and the thrust bearing gap in the fluid dynamic bearing device 1 can be managed with high accuracy, and the bearing performance can be stably exhibited.

また、上記製造方法によれば、軸部21外周に形成されたラジアル動圧溝領域23a、23bの円筒度を高精度に仕上げることもできる。これにより、例えば動圧軸受装置1における軸受スリーブ8内周の円筒面8aとの間に形成されるラジアル軸受隙間の、円周方向あるいは軸方向へのばらつきが所定の範囲内に抑えられ、上記ラジアル軸受隙間のばらつきによる軸受性能への悪影響を回避することができる。また、研削時における区画部の研削代(図7(b)でいえば、h1−h2)は、鍛造成形あるいは転造成形時の成形精度により変動するが、この実施形態に示すように、軸部21の円筒度を矯正することで、特にラジアル動圧溝領域23a、23bにおける区画部23a2、23b2の成形精度を改善でき、研削時における研削代を減らすことができる。これにより、さらなる加工時間の短縮や、加工コストの低減が可能となる。あるいは、鍛造あるいは転造成形時における動圧溝領域の成形精度を高めておくことで、研削時の研削代を減らすこともできる。 Moreover, according to the said manufacturing method, the cylindrical degree of the radial dynamic pressure groove area | regions 23a and 23b formed in the axial part 21 outer periphery can also be finished with high precision. Thereby, for example, the variation in the circumferential direction or the axial direction of the radial bearing gap formed between the inner circumference of the bearing sleeve 8 and the cylindrical surface 8a in the hydrodynamic bearing device 1 is suppressed within a predetermined range. The adverse effect on the bearing performance due to the variation in the radial bearing gap can be avoided. Further, the grinding allowance (h 1 -h 2 in FIG. 7B) at the time of grinding varies depending on the forming accuracy at the time of forging or roll forming, as shown in this embodiment. By correcting the cylindricity of the shaft portion 21, it is possible to improve the forming accuracy of the partition portions 23a2 and 23b2 particularly in the radial dynamic pressure groove regions 23a and 23b, and to reduce the grinding allowance during grinding. As a result, the processing time can be further shortened and the processing cost can be reduced. Or the grinding allowance at the time of grinding can also be reduced by raising the shaping | molding precision of the dynamic pressure groove area | region at the time of forge or roll forming.

また、この実施形態では、軸部21の円筒面25に対応する領域に仕上げ研削加工(図11参照)を行っているので、円筒面25の円筒度も高精度に仕上げられ、ディスクハブ3等の部材を軸部材2に取付ける際の組付け精度が高められる。これにより、ディスクDをディスクハブ3に保持するためのクランパ等を軸部材2に固定する際の精度を高めることができ、クランパとディスクハブ3との間でクランプ固定されるディスクDの軸部材2に対する組付け精度がより一層高められ、さらなるモータ性能の向上が図られる。   Further, in this embodiment, since the finish grinding process (see FIG. 11) is performed on the region corresponding to the cylindrical surface 25 of the shaft portion 21, the cylindricity of the cylindrical surface 25 is also finished with high accuracy, and the disk hub 3 and the like. Assembling accuracy when attaching the member to the shaft member 2 is improved. As a result, it is possible to improve the accuracy when fixing a clamper or the like for holding the disk D to the disk hub 3 to the shaft member 2, and the shaft member of the disk D clamped and fixed between the clamper and the disk hub 3. Assembling accuracy with respect to 2 is further increased, and further improvement in motor performance is achieved.

また、上述のように、軸部材2の外周にラジアル動圧溝領域23a、23bを形成すれば、軸受スリーブ8内周への動圧溝加工が不要となるので、軸受スリーブ8の内周を円筒面8aとすることができ、斯かる加工コストを低減することができる。また、軸受スリーブ8の内周に動圧溝を加工せずに済むのであれば、軸受スリーブ8とハウジング7とを別部材とする必要がないため、図示は省略するが、これらを一体化することができる。これにより、部品点数を減らし、係る製造コストを低減することができる。   Further, as described above, if the radial dynamic pressure groove regions 23 a and 23 b are formed on the outer periphery of the shaft member 2, the dynamic pressure groove processing on the inner periphery of the bearing sleeve 8 becomes unnecessary. It can be set as the cylindrical surface 8a, and such processing cost can be reduced. Further, if it is not necessary to process a dynamic pressure groove on the inner periphery of the bearing sleeve 8, the bearing sleeve 8 and the housing 7 need not be formed as separate members. be able to. Thereby, the number of parts can be reduced and the manufacturing cost can be reduced.

以上の実施形態では、ラジアル動圧溝領域23a、23bを転造加工で成形する場合を説明したが、これ以外にも、例えば、軸素材やスラスト動圧溝領域の鍛造成形と同時にラジアル動圧溝領域23a、23bを鍛造成形することも可能である。この場合、鍛造成形による動圧溝形状の制限は特になく、例えばへリングボーン状やスパイラル状など、種々の動圧溝形状を採ることができる。   In the above embodiment, the case where the radial dynamic pressure groove regions 23a and 23b are formed by rolling is described. However, for example, the radial dynamic pressure simultaneously with the forging of the shaft material or the thrust dynamic pressure groove region. It is also possible to forge the groove regions 23a and 23b. In this case, the dynamic pressure groove shape is not particularly limited by forging, and various dynamic pressure groove shapes such as a herringbone shape and a spiral shape can be employed.

また、以上の実施形態では、スラスト動圧溝領域22a、22bをフランジ部22の両端面に形成した場合を説明したが、特にこの形態に限ることなく、例えばフランジ部22の両端面とそれぞれ対向する軸受スリーブ8の下側端面8cや底部7bの上側端面7b1の側に、スラスト動圧溝領域を設けることもできる。   Moreover, although the above embodiment demonstrated the case where the thrust dynamic pressure groove area | regions 22a and 22b were formed in the both end surfaces of the flange part 22, it does not restrict in particular to this form, for example, respectively opposes the both end surfaces of the flange part 22. A thrust dynamic pressure groove region can be provided on the lower end surface 8c of the bearing sleeve 8 and the upper end surface 7b1 of the bottom 7b.

また、以上の実施形態では、動圧軸受装置1の内部に充満し、軸受スリーブ8と軸部材2との間のラジアル軸受隙間や、軸受スリーブ8およびハウジング7と軸部材2との間のスラスト軸受隙間に動圧作用を生じる流体として、潤滑油を例示したが、特にこの流体に限定されるものではない。動圧溝領域を有する各軸受隙間に動圧を発生可能な流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤を使用することもできる。   Moreover, in the above embodiment, the inside of the hydrodynamic bearing device 1 is filled, and the radial bearing gap between the bearing sleeve 8 and the shaft member 2 and the thrust between the bearing sleeve 8 and the housing 7 and the shaft member 2 are filled. Although the lubricating oil is exemplified as the fluid that causes the dynamic pressure action in the bearing gap, it is not particularly limited to this fluid. A fluid capable of generating a dynamic pressure in each bearing gap having the dynamic pressure groove region, for example, a gas such as air, or a fluid lubricant such as a magnetic fluid may be used.

本発明の一実施形態に係る動圧軸受装置用の軸部材の側面図である。It is a side view of the shaft member for fluid dynamic bearing devices concerning one embodiment of the present invention. (a)は軸部材のフランジ部を矢印aから見た平面図、(b)はフランジ部を矢印bから見た底面図である。(A) is the top view which looked at the flange part of the shaft member from arrow a, (b) is the bottom view which looked at the flange part from arrow b. 軸部材を備えた動圧軸受装置を組み込んだ情報機器用スピンドルモータの断面図である。It is sectional drawing of the spindle motor for information devices incorporating the dynamic pressure bearing apparatus provided with the shaft member. 動圧軸受装置の縦断面図である。It is a longitudinal cross-sectional view of a fluid dynamic bearing device. 鍛造加工により成形された軸素材の側面図である。It is a side view of the shaft raw material shape | molded by the forging process. (a)は軸素材のフランジ部を矢印aから見た平面図、(b)はフランジ部を矢印bから見た底面図である。(A) is the top view which looked at the flange part of the shaft raw material from arrow a, (b) is the bottom view which looked at the flange part from arrow b. (a)はフランジ部の反軸部側端面に形成されたスラスト動圧溝領域の、研削加工前における拡大断面図、(b)はスラスト動圧溝領域の、研削加工後における拡大断面図である。(A) is an enlarged sectional view of the thrust dynamic pressure groove region formed on the end surface on the opposite shaft side of the flange portion before grinding, and (b) is an enlarged sectional view of the thrust dynamic pressure groove region after grinding. is there. (a)は軸素材の幅研削工程に係る研削装置の一例を示す概略図、(b)は軸素材を保持するキャリアの切欠き周辺の拡大図である。(A) is the schematic which shows an example of the grinding apparatus which concerns on the width grinding process of a shaft raw material, (b) is an enlarged view of the notch periphery of the carrier holding a shaft raw material. 上記幅研削工程に係る研削装置の一例を示す一部断面図である。It is a partial cross section figure showing an example of a grinding device concerning the above-mentioned width grinding process. 軸素材の全面研削工程に係る研削装置の一例を示す概略図である。It is the schematic which shows an example of the grinding device which concerns on the shaft material whole surface grinding process. 軸素材の研削仕上げ工程に係る研削装置の一例を示す概略図である。It is the schematic which shows an example of the grinding apparatus which concerns on the grinding finishing process of a shaft raw material.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
3 ディスクハブ
4 ステータコイル
5 ロータマグネット
7 ハウジング
8 軸受スリーブ
9 シール部材
10 軸素材
11 軸部
11b 端面
12 フランジ部
12a、12b スラスト動圧溝領域
12a1、12b1 動圧溝
12a2、12b2 区画部
12b3 底面
12b4 軸方向端面
13 矯正加工面
13a、13b ラジアル動圧溝領域
13a1、13b1 動圧溝
13a2、13b2 区画部
14 テーパ面
15 円筒面
21 軸部
21b 端面
22 フランジ部
22a、22b スラスト動圧溝領域
22a1、22b1 動圧溝
22a2、22b2 区画部
23a、23b ラジアル動圧溝領域
23a1、23b1 動圧溝
23a2、23b2 区画部
24 テーパ面
25 円筒面
26、27、28 ヌスミ部
40 研削装置
41 キャリア
42 砥石
43 切欠き
43a 内面
50、60 研削装置
52、62 シュー
53、63 砥石
54、64 バッキングプレート
55、65 プレッシャプレート
56 研削面
56a 円筒研削部
56b 平面研削部
57、67 計測ゲージ
63 砥石
63a 研削面
h1 研削加工前における区画部の高さ
h2 研削加工後における区画部の高さ
D ディスク
S シール空間
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 3 Disc hub 4 Stator coil 5 Rotor magnet 7 Housing 8 Bearing sleeve 9 Seal member 10 Shaft material 11 Shaft part 11b End surface 12 Flange part 12a, 12b Thrust dynamic pressure groove area | region 12a1, 12b1 Dynamic pressure groove 12a2, 12b2 Partition portion 12b3 Bottom surface 12b4 Axial end surface 13 Straightening processed surface 13a, 13b Radial dynamic pressure groove region 13a1, 13b1 Dynamic pressure groove 13a2, 13b2 Partition portion 14 Tapered surface 15 Cylindrical surface 21 Shaft portion 21b End surface 22 Flange portion 22a, 22b Thrust dynamic pressure groove region 22a1, 22b1 Dynamic pressure groove 22a2, 22b2 Partition portion 23a, 23b Radial dynamic pressure groove region 23a1, 23b1 Dynamic pressure groove 23a2, 23b2 Partition portion 24 Tapered surface 25 Cylindrical surface 26, 27, 28 Nusumi portion 40 Grinding device 41 Carrier 42 Grinding wheel 43 Notch 43a Inner surface 50, 60 Grinding device 52, 62 Shoe 53, 63 Grinding wheel 54, 64 Backing plate 55, 65 Pressure plate 56 Grinding surface 56a Cylindrical grinding unit 56b Surface grinding unit 57, 67 Measuring gauge 63 Grinding wheel 63a Grinding surface h1 Height of the partition part before grinding h2 Height of the partition part after grinding D Disk S Seal space R1, R2 Radial bearing part T1, T2 Thrust bearing part

Claims (13)

軸部とフランジ部とを一体に備えた金属製の動圧軸受装置用軸部材において、
前記軸部の外周に、複数の動圧溝および動圧溝をヘリングボーン形状に区画する区画部からなり、塑性加工により軸方向の二箇所に離隔形成されたラジアル動圧溝領域と、二つのラジアル動圧溝領域の間に形成されたヌスミ部とを有し、両ラジアル動圧溝領域のそれぞれの軸方向両端で、動圧溝の端部を区画部で区画せずに開放し、ヌスミ部の軸方向両側を両ラジアル動圧溝領域の動圧溝につなげ、軸部の外周面の区画部以外の領域が区画部よりも小径であり、前記ラジアル動圧溝領域における区画部の外周面が研削加工で仕上げられていることを特徴とする動圧軸受装置用軸部材。
In a shaft member for a hydrodynamic bearing device that is integrally provided with a shaft portion and a flange portion,
On the outer periphery of the shaft portion, a plurality of dynamic pressure grooves and a partition portion that divides the dynamic pressure grooves into a herringbone shape, a radial dynamic pressure groove region that is formed at two locations in the axial direction by plastic working, and two A radial portion formed between the radial dynamic pressure groove regions, and the end portions of the dynamic pressure grooves are opened at both ends in the axial direction of both radial dynamic pressure groove regions without being divided by the partition portions. The axially opposite sides of the portion are connected to the dynamic pressure grooves of both radial dynamic pressure groove regions, and the region other than the partition portion on the outer peripheral surface of the shaft portion has a smaller diameter than the partition portion, and the outer periphery of the partition portion in the radial dynamic pressure groove region A shaft member for a hydrodynamic bearing device, wherein the surface is finished by grinding.
前記フランジ部の両端面に、複数の動圧溝と各動圧溝を区画する区画部とからなるスラスト動圧溝領域が塑性加工により形成され、前記スラスト動圧溝領域における区画部の軸方向端面が研削面であることを特徴とする請求項1記載の動圧軸受装置用軸部材。   A thrust dynamic pressure groove region including a plurality of dynamic pressure grooves and a partition portion partitioning each dynamic pressure groove is formed by plastic working on both end faces of the flange portion, and the axial direction of the partition portion in the thrust dynamic pressure groove region The shaft member for a hydrodynamic bearing device according to claim 1, wherein the end surface is a ground surface. 前記ラジアル動圧溝領域が転造加工あるいは鍛造加工により形成されたことを特徴とする請求項1記載の動圧軸受装置用軸部材。   The shaft member for a hydrodynamic bearing device according to claim 1, wherein the radial dynamic pressure groove region is formed by rolling or forging. 前記スラスト動圧溝領域が鍛造加工により形成されたことを特徴とする請求項2記載の動圧軸受装置用軸部材。   3. The shaft member for a hydrodynamic bearing device according to claim 2, wherein the thrust hydrodynamic groove region is formed by forging. 前記軸部と前記フランジ部とを鍛造で一体成形したことを特徴とする請求項1〜4の何れかに記載の動圧軸受装置用軸部材。   The shaft member for a hydrodynamic bearing device according to claim 1, wherein the shaft portion and the flange portion are integrally formed by forging. 請求項1〜5の何れかに記載の動圧軸受装置用軸部材と、該軸部材が内周に挿入され、前記軸部材との間でラジアル軸受隙間を形成するスリーブ部材とを備え、前記ラジアル軸受隙間に生じた流体の動圧作用で前記軸部材と前記スリーブ部材とを非接触に保持する動圧軸受装置。   A shaft member for a hydrodynamic bearing device according to any one of claims 1 to 5, and a sleeve member in which the shaft member is inserted into an inner periphery and forms a radial bearing gap with the shaft member, A hydrodynamic bearing device that holds the shaft member and the sleeve member in a non-contact manner by a hydrodynamic action of a fluid generated in a radial bearing gap. スリーブ部材が含油焼結金属で形成されている請求項6記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 6, wherein the sleeve member is made of oil-impregnated sintered metal. ラジアル軸受隙間に面する軸部の外周面に、流体の動圧作用を生じるための動圧溝が軸方向に非対称に形成されている請求項6記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 6, wherein a hydrodynamic groove for generating a hydrodynamic action of fluid is formed asymmetrically in the axial direction on the outer peripheral surface of the shaft portion facing the radial bearing gap. 請求項6〜8の何れか記載の動圧軸受装置と、ロータマグネットと、ステ−タコイルとを備えるモータ。   A motor comprising the hydrodynamic bearing device according to any one of claims 6 to 8, a rotor magnet, and a stator coil. 軸部とフランジ部とを一体に備え、前記軸部の外周に、複数の動圧溝および各動圧溝をヘリングボーン形状に区画する区画部からなるラジアル動圧溝領域と、二つのラジアル動圧溝領域の間に形成されたヌスミ部とを有し、両ラジアル動圧溝領域のそれぞれの軸方向両端で、動圧溝の端部を区画部で区画せずに開放し、ヌスミ部の軸方向両側を両ラジアル動圧溝領域の動圧溝につなげた動圧軸受装置用軸部材の製造方法において、
軸素材の軸部外周に前記ラジアル動圧溝領域を塑性加工で形成し、二つのラジアル動圧溝領域の間に前記ヌスミ部を形成して、軸部の外周面の区画部以外の領域を区画部よりも小径とし、その後、前記ラジアル動圧溝領域における区画部の外周面の仕上げを、該区画部の外周面だけに研削加工を施して行うことを特徴とする動圧軸受装置用軸部材の製造方法。
A shaft portion and a flange portion are integrally provided, and on the outer periphery of the shaft portion, a plurality of dynamic pressure grooves and a radial dynamic pressure groove region including a partition portion that divides each dynamic pressure groove into a herringbone shape, and two radial motions and a grinding undercut portion formed between the groove regions, in each of the axial ends of the two radial dynamic pressure groove region, the end of the dynamic pressure grooves is opened without partitioned by partition portion, grinding undercut portion In the method of manufacturing a shaft member for a hydrodynamic bearing device in which both axial sides are connected to the hydrodynamic grooves in both radial hydrodynamic groove regions ,
The radial dynamic pressure groove region is formed on the outer periphery of the shaft portion of the shaft material by plastic working, and the Nusumi portion is formed between the two radial dynamic pressure groove regions, so that a region other than the partition portion on the outer peripheral surface of the shaft portion is formed. a smaller diameter than the partition part, then, the finish of the outer circumferential surface of the partition portion in the radial dynamic pressure groove region, the dynamic pressure bearing device and performs subjected to grinding only the outer peripheral surface of the compartment unit Manufacturing method of shaft member.
前記軸素材および前記ラジアル動圧溝領域を共に鍛造で成形し、かつ両者の鍛造加工を同時に行うことを特徴とする請求項10記載の動圧軸受装置用軸部材の製造方法。   11. The method for manufacturing a shaft member for a hydrodynamic bearing device according to claim 10, wherein both the shaft material and the radial dynamic pressure groove region are formed by forging, and the forging process of both is simultaneously performed. 前記ラジアル動圧溝領域の形成と、前記軸部のラジアル動圧溝領域を含む部分の円筒度の矯正とを共に転造で行い、かつ両者の転造加工を同時に行うことを特徴とする請求項10記載の動圧軸受装置用軸部材の製造方法。   The formation of the radial dynamic pressure groove region and the correction of cylindricity of the portion including the radial dynamic pressure groove region of the shaft portion are both performed by rolling, and both of the rolling processes are simultaneously performed. Item 11. A method for producing a shaft member for a hydrodynamic bearing device according to Item 10. 前記軸素材の成形と、フランジ部の両端面への、動圧溝と各動圧溝を区画する区画部とからなるスラスト動圧溝領域の形成とを共に鍛造で行い、かつ両者の鍛造加工を同時に行うことを特徴とする請求項10又は11記載の動圧軸受装置用軸部材の製造方法。   Forming the shaft material and forming a thrust dynamic pressure groove region composed of a dynamic pressure groove and a partition portion that divides each dynamic pressure groove on both end faces of the flange portion are both performed by forging, and both are forged. The method for manufacturing a shaft member for a hydrodynamic bearing device according to claim 10 or 11, wherein the steps are performed simultaneously.
JP2004261452A 2004-09-08 2004-09-08 Shaft member for hydrodynamic bearing device and manufacturing method thereof Expired - Fee Related JP4786157B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004261452A JP4786157B2 (en) 2004-09-08 2004-09-08 Shaft member for hydrodynamic bearing device and manufacturing method thereof
KR1020077000956A KR101164462B1 (en) 2004-09-08 2005-08-31 Shaft member for dynamic pressure bearing device and method of producing the same
US11/629,910 US20070278881A1 (en) 2004-09-08 2005-08-31 Shaft Member For Hydrodynamic Bearing Apparatuses And A Method For Producing The Same
PCT/JP2005/015952 WO2006027986A1 (en) 2004-09-08 2005-08-31 Shaft member for dynamic pressure bearing device and method of producing the same
CN2005800255692A CN101014777B (en) 2004-09-08 2005-08-31 Shaft member for dynamic pressure type bearing device and manufacturing method thereof
US13/149,313 US9003664B2 (en) 2004-09-08 2011-05-31 Method for producing shaft member for hydrodynamic bearing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004261452A JP4786157B2 (en) 2004-09-08 2004-09-08 Shaft member for hydrodynamic bearing device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006077863A JP2006077863A (en) 2006-03-23
JP4786157B2 true JP4786157B2 (en) 2011-10-05

Family

ID=36157494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004261452A Expired - Fee Related JP4786157B2 (en) 2004-09-08 2004-09-08 Shaft member for hydrodynamic bearing device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4786157B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5000382B2 (en) * 2007-06-01 2012-08-15 Ntn株式会社 Method for manufacturing shaft member for hydrodynamic bearing device
CN103415716B (en) 2011-03-09 2016-06-08 Ntn株式会社 Fluid dynamic-pressure bearing device
WO2012121053A1 (en) * 2011-03-09 2012-09-13 Ntn株式会社 Fluid dynamic pressure bearing device
JP5819078B2 (en) * 2011-03-09 2015-11-18 Ntn株式会社 Fluid dynamic bearing device
JP5819077B2 (en) * 2011-03-09 2015-11-18 Ntn株式会社 Method for manufacturing fluid dynamic bearing device
JP6275369B2 (en) * 2012-03-19 2018-02-07 Ntn株式会社 Material for fluid dynamic pressure bearing, shaft member using the same material and fluid dynamic pressure bearing using coaxial member
GB2547821B (en) 2015-07-02 2018-02-14 Panasonic Ip Man Co Ltd Cover and portable electronic apparatus
JP6757219B2 (en) * 2016-09-27 2020-09-16 Ntn株式会社 Shaft members for fluid bearing equipment, their manufacturing methods, and fluid bearing equipment
CN113555998A (en) * 2021-07-29 2021-10-26 中国船舶重工集团公司第七0七研究所 Dynamic pressure air-bearing structure with pollution filtering device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63280914A (en) * 1987-05-12 1988-11-17 Sanwa Niidorubearingu Kk Radial bearing device with fluid holding groove and its manufacture
JP2746830B2 (en) * 1993-05-12 1998-05-06 株式会社リコー Dynamic pressure air bearing device and method of manufacturing groove for generating dynamic pressure
JPH084753A (en) * 1994-06-15 1996-01-09 Sankyo Seiki Mfg Co Ltd Dynamic pressure bearing and its manufacture
JPH11317004A (en) * 1998-05-08 1999-11-16 Nippon Seiko Kk Spindle motor
JP2000230557A (en) * 1999-02-12 2000-08-22 Seiko Instruments Inc Method and device for forming fluid holding groove of radial bearing and drive motor for hard disk
JP3893021B2 (en) * 2000-11-28 2007-03-14 Ntn株式会社 Hydrodynamic bearing unit

Also Published As

Publication number Publication date
JP2006077863A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
KR101233307B1 (en) Method of producing shaft member for fluid bearing device
CN1203261C (en) Mfg. method of thrust plate and mfg. method of shaft for fluid power bearing
KR101164462B1 (en) Shaft member for dynamic pressure bearing device and method of producing the same
US8499456B2 (en) Method for producing a housing for a fluid bearing apparatus
JP4786157B2 (en) Shaft member for hydrodynamic bearing device and manufacturing method thereof
JP4610973B2 (en) Method for manufacturing shaft member for hydrodynamic bearing device
JP4642416B2 (en) Manufacturing method of shaft member for hydrodynamic bearing device
JP6621575B2 (en) Shaft member for fluid dynamic pressure bearing device and manufacturing method thereof
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP5819077B2 (en) Method for manufacturing fluid dynamic bearing device
JP5000382B2 (en) Method for manufacturing shaft member for hydrodynamic bearing device
JP6757219B2 (en) Shaft members for fluid bearing equipment, their manufacturing methods, and fluid bearing equipment
JP5901979B2 (en) Method for manufacturing fluid dynamic bearing device
JP2010133437A (en) Fluid dynamic-pressure bearing device, and method and device of manufacturing the same
JP4275631B2 (en) Sintered oil-impregnated bearing
JP2013053692A (en) Fluid dynamic pressure bearing device and method of manufacturing the same
JP2003227512A (en) Oil impregnated sintered bearing and manufacturing method therefor
JP2012225385A (en) Hub-integrated shaft, fluid dynamic pressure bearing device including same, and spindle motor
JP2005127525A (en) Hydrodynamic bearing device
JP2006220216A (en) Fluid bearing device housing and its manufacturing method
JPH11218123A (en) Dynamic pressure type bearing and spindle motor for information equipment
JP2013036475A (en) Fluid dynamic bearing device and motor having the same
JP2012067895A (en) Fluid dynamic pressure bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070514

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110713

R150 Certificate of patent or registration of utility model

Ref document number: 4786157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees