JP5000382B2 - Method for manufacturing shaft member for hydrodynamic bearing device - Google Patents

Method for manufacturing shaft member for hydrodynamic bearing device Download PDF

Info

Publication number
JP5000382B2
JP5000382B2 JP2007147118A JP2007147118A JP5000382B2 JP 5000382 B2 JP5000382 B2 JP 5000382B2 JP 2007147118 A JP2007147118 A JP 2007147118A JP 2007147118 A JP2007147118 A JP 2007147118A JP 5000382 B2 JP5000382 B2 JP 5000382B2
Authority
JP
Japan
Prior art keywords
grinding
shaft
outer peripheral
peripheral surface
shaft member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007147118A
Other languages
Japanese (ja)
Other versions
JP2008298234A (en
Inventor
淳 平出
弘次 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2007147118A priority Critical patent/JP5000382B2/en
Publication of JP2008298234A publication Critical patent/JP2008298234A/en
Application granted granted Critical
Publication of JP5000382B2 publication Critical patent/JP5000382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Sliding-Contact Bearings (AREA)

Description

本発明は、流体軸受装置に用いられる軸部材の製造方法に関する。   The present invention relates to a method for manufacturing a shaft member used in a hydrodynamic bearing device.

流体軸受装置は、その高回転精度および静粛性から、情報機器、例えばHDD等の磁気ディスク駆動装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク駆動装置、MD、MO等の光磁気ディスク駆動装置等のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイール、あるいは電気機器の冷却ファン等に使用されるファンモータなどの小型モータ用として好適に使用可能である。   Due to its high rotational accuracy and quietness, the hydrodynamic bearing device is an information device, for example, a magnetic disk drive device such as HDD, an optical disk drive device such as CD-ROM, CD-R / RW, DVD-ROM / RAM, MD, MO, etc. Suitable for small motors such as fan motors used for spindle motors such as magneto-optical disk drive devices, etc., polygon scanner motors for laser beam printers (LBP), color wheels for projectors, cooling fans for electrical equipment, etc. It can be used.

例えば特許文献1には、外周面がラジアル軸受隙間に面する流体軸受装置用軸部材の製造方法が示されている。この製造方法は、(1)鍛造加工によりフランジ部を有する軸素材を形成し、(2)幅研削加工により軸素材の両端面を研削し、(3)その両端面を基準として、軸素材の外周面を所定形状に研削加工を施し、(4)さらに、両端面を基準として外周面に仕上げ研削加工を施すものである。   For example, Patent Document 1 discloses a method for manufacturing a shaft member for a hydrodynamic bearing device whose outer peripheral surface faces a radial bearing gap. In this manufacturing method, (1) a shaft material having a flange portion is formed by forging, (2) both end surfaces of the shaft material are ground by width grinding, and (3) The outer peripheral surface is ground into a predetermined shape. (4) Further, the outer peripheral surface is subjected to finish grinding with reference to both end surfaces.

特開2006−77861号公報JP 2006-77861 A

ところで、最近の情報機器の高性能化に伴い、上記のような流体軸受装置には更なる回転精度や振れ精度の向上が求められている。また、上記のような軸部材の外周面はラジアル軸受隙間に面するため、その加工精度は、ラジアル軸受隙間の隙間幅、すなわち軸受性能に直結する。このとき、製造した軸部材ごとに外周面の精度のバラつきが大きいと、軸受性能にバラつきが生じ、所定の軸受性能が得られない不良品の割合が増大する恐れがある。従って、製品ごとの加工精度、特に外周面の加工精度のバラつきを抑えることが求められている。   By the way, with the recent improvement in performance of information equipment, the hydrodynamic bearing device as described above is required to further improve rotational accuracy and runout accuracy. Further, since the outer peripheral surface of the shaft member as described above faces the radial bearing gap, the processing accuracy is directly related to the gap width of the radial bearing gap, that is, the bearing performance. At this time, if there is a large variation in the accuracy of the outer peripheral surface for each manufactured shaft member, the bearing performance varies, which may increase the proportion of defective products for which the predetermined bearing performance cannot be obtained. Accordingly, it is required to suppress variations in processing accuracy for each product, particularly processing accuracy on the outer peripheral surface.

上記の特許文献1に示されている軸部材の製造方法では、幅研削加工が施された軸素材の両端面を基準として、外周面に最終的な仕上げ研削加工を施している。このような幅研削加工によりある程度端面の精度を高めることはできるが、さらなる高精度化は難しい。従って、製品単体の端面自体が上記要求に応えるだけの十分な精度で加工されず、かかる端面を基準として外周面の研削加工を行うことで、端面の外周面に対する直角度や振れ精度等の加工精度を十分に高められない恐れがある。また、製品ごとの端面精度のバラつきが十分に抑えられず、製品ごとの外周面精度にバラつきが生じる恐れがある。   In the shaft member manufacturing method disclosed in Patent Document 1 described above, final finish grinding is performed on the outer peripheral surface with reference to both end surfaces of the shaft material that has been subjected to width grinding. Although the end face accuracy can be increased to some extent by such width grinding, it is difficult to achieve higher accuracy. Therefore, the end surface itself of the product itself is not processed with sufficient accuracy to meet the above requirements, and by processing the outer peripheral surface with reference to such an end surface, processing such as perpendicularity to the outer peripheral surface of the end surface and runout accuracy, etc. There is a risk that the accuracy cannot be increased sufficiently. In addition, variation in end surface accuracy for each product cannot be sufficiently suppressed, and variation in outer surface accuracy for each product may occur.

そこで、本発明は、外周面の加工精度を十分に高めると共に、製品ごとの外周面精度のバラつきを抑えることができる流体軸受装置用軸部材の製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method of the shaft member for hydrodynamic bearing apparatuses which can fully raise the processing precision of an outer peripheral surface, and can suppress the variation in the outer peripheral surface precision for every product.

前記目的を達成するために、本発明は、外周面がラジアル軸受隙間に面する流体軸受装置用軸部材を製造するための方法であって、軸素材の外周面に両端面を基準とした第1の研削加工を施した後、その外周面を基準として軸素材の両端面に第2の研削加工を施し、さらにその両端面を基準として外周面に第3の研削加工を施すことを特徴とする。   In order to achieve the above object, the present invention provides a method for manufacturing a shaft member for a hydrodynamic bearing device having an outer peripheral surface facing a radial bearing gap, wherein the outer peripheral surface of the shaft material is based on both end surfaces. After the first grinding process is performed, the second grinding process is performed on both end faces of the shaft material with reference to the outer peripheral face, and the third grinding process is performed on the outer peripheral face with reference to the both end faces. To do.

このように、本発明の製造方法では、軸素材の外周面に両端面を基準とした第1の研削加工を施すことにより外周面の精度を高めた上で、両端面に外周面を基準とした第2の研削加工を施す。これにより、従来のような幅研削加工と比べ、両端面の面精度が高められると共に、製品ごとのバラつきが抑えられる。この端面を基準として外周面に第3の研削加工を施すと、外周面の端面に対する直角度や振れ精度が十分に高められると共に、製品ごとのバラつきを抑えることができる。   Thus, in the manufacturing method of the present invention, the accuracy of the outer peripheral surface is improved by performing the first grinding process on the outer peripheral surface of the shaft material on the basis of the both end surfaces, and the outer peripheral surface is used as the reference on both end surfaces. The second grinding process is performed. Thereby, compared with the conventional width grinding process, the surface accuracy of both end faces is increased, and variations between products are suppressed. When the third grinding process is performed on the outer peripheral surface with this end surface as a reference, the squareness and runout accuracy of the outer peripheral surface with respect to the end surface can be sufficiently increased, and variations in each product can be suppressed.

この第2の研削加工は、例えば芯無し研削により行うことができる。芯無し研削は、短時間で端面を高精度に仕上げることが出来る点で有利な加工方法である。   This second grinding process can be performed by, for example, coreless grinding. Coreless grinding is an advantageous processing method in that the end face can be finished with high accuracy in a short time.

また、前記第1の研削加工を行う前に、軸素材の両端面に予備研削加工を施しておくと、端面精度を高めた上で前記第1の研削加工を行うことができるため、第2の研削加工の基準となる両端面の加工精度をより一層高めることができる。   In addition, if preliminary grinding is performed on both end faces of the shaft material before performing the first grinding, the first grinding can be performed with improved end face accuracy. It is possible to further increase the processing accuracy of both end surfaces which are the basis of the grinding process.

この製造方法により、例えば軸端にフランジ部を一体に有する軸部材を製造することもできる。この場合、軸素材の端部にフランジ部を設け、このフランジ部の端面に第2の研削加工が施される。   With this manufacturing method, for example, a shaft member integrally having a flange portion at the shaft end can be manufactured. In this case, a flange portion is provided at the end portion of the shaft material, and a second grinding process is performed on the end surface of the flange portion.

以上のように、本発明の流体軸受装置用軸部材の製造方法によると、外周面の端面に対する直角度や振れ精度が十分に高められると共に、製品ごとの外周面精度のバラつきを抑えることができる。   As described above, according to the method for manufacturing a shaft member for a hydrodynamic bearing device of the present invention, the squareness and runout accuracy with respect to the end surface of the outer peripheral surface can be sufficiently increased, and variations in the outer peripheral surface accuracy of each product can be suppressed. .

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図2は、本発明に係る製造方法で製作された流体軸受装置用軸部材2(以下、単に軸部材2と称す)を有する流体軸受装置(動圧軸受装置)1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。この情報機器用スピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に取り付けられたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6とを備えている。ステータコイル4はブラケット6の外周に取り付けられ、ロータマグネット5は、ディスクハブ3の内周に取り付けられる。ブラケット6は、その内周に動圧軸受装置1を装着している。また、ディスクハブ3は、その外周に磁気ディスク等のディスクDを一枚または複数枚保持している。この情報機器用スピンドルモータは、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の磁力によりロータマグネット5が回転し、それに伴って、ディスクハブ3および軸部材2が一体となって回転する。   FIG. 2 is for information equipment incorporating a fluid dynamic bearing device (dynamic pressure bearing device) 1 having a fluid dynamic bearing device shaft member 2 (hereinafter simply referred to as a shaft member 2) manufactured by the manufacturing method according to the present invention. 1 shows a conceptual example of a configuration of a spindle motor. This spindle motor for information equipment is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2 in a non-contact manner, a disk hub 3 attached to the shaft member 2, For example, a stator coil 4 and a rotor magnet 5 which are opposed to each other via a gap in the radial direction, and a bracket 6 are provided. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The bracket 6 has the hydrodynamic bearing device 1 mounted on the inner periphery thereof. The disk hub 3 holds one or more disks D such as magnetic disks on the outer periphery thereof. In this spindle motor for information equipment, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the magnetic force between the stator coil 4 and the rotor magnet 5, and accordingly, the disk hub 3 and the shaft member 2 are integrated. Rotate.

図3は、動圧軸受装置1を示している。この動圧軸受装置1は、一端に底部7bを有するハウジング7と、ハウジング7の内周に固定された軸受スリーブ8と、軸受スリーブ8の内周に挿入される軸部材2とを主な構成部品として構成される。なお、説明の便宜上、ハウジング7の底部7bの側を下側、底部7bと反対の側を上側として以下説明を行う。   FIG. 3 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 mainly includes a housing 7 having a bottom 7 b at one end, a bearing sleeve 8 fixed to the inner periphery of the housing 7, and a shaft member 2 inserted into the inner periphery of the bearing sleeve 8. Configured as a part. For convenience of explanation, the following description will be made with the bottom 7b side of the housing 7 as the lower side and the side opposite the bottom 7b as the upper side.

この動圧軸受装置1では、軸部材2の軸部21の外周面に形成されたラジアル軸受面23a、23bと軸受スリーブ8の内周面8aとの間に、軸部材2をラジアル方向に回転自在に非接触支持するラジアル軸受部R1、R2が形成される。また、軸部材2のフランジ部22の上側端面に形成されたスラスト軸受面22aと軸受スリーブ8の下側端面8bとの間、及びフランジ部22の下側端面に形成されたスラスト軸受面22bとハウジング7の底部7bの上側端面7b1との間に、軸部材2をスラスト方向に回転自在に非接触支持するスラスト軸受部T1、T2がそれぞれ形成される。   In the hydrodynamic bearing device 1, the shaft member 2 is rotated in the radial direction between radial bearing surfaces 23 a and 23 b formed on the outer peripheral surface of the shaft portion 21 of the shaft member 2 and the inner peripheral surface 8 a of the bearing sleeve 8. Radial bearing portions R1 and R2 that are freely contactlessly supported are formed. Further, a thrust bearing surface 22b formed between the thrust bearing surface 22a formed on the upper end surface of the flange portion 22 of the shaft member 2 and the lower end surface 8b of the bearing sleeve 8, and a thrust bearing surface 22b formed on the lower end surface of the flange portion 22. Between the upper end surface 7b1 of the bottom 7b of the housing 7, thrust bearing portions T1 and T2 for supporting the shaft member 2 in a non-contact manner so as to be rotatable in the thrust direction are formed.

本発明に係る製造方法で形成される軸部材2は、例えば図1に示すように、軸部21と軸部21の下端に設けられたフランジ部22とを一体に備える断面T字形をなす。軸部21の外周には、ラジアル軸受隙間に面する平滑な円筒面状のラジアル軸受面23a、23bが、軸方向に離隔して2箇所形成される。このラジアル軸受面23a、23bは、軸部材2を動圧軸受装置1に組み込んだ際に形成されるラジアル軸受隙間に面する。一方のラジアル軸受面23aの上方には、軸先端に向けて漸次縮径するテーパ面24が隣接して形成され、さらにその上方に後述するディスクハブ3の取り付け部となる円筒面25が形成されている。二つのラジアル軸受面23a、23bの間、他方のラジアル軸受面23bとフランジ部22との間、およびテーパ面24と円筒面25との間には、それぞれ環状のヌスミ部26、27、28が形成されている。   For example, as shown in FIG. 1, the shaft member 2 formed by the manufacturing method according to the present invention has a T-shaped cross section integrally including a shaft portion 21 and a flange portion 22 provided at the lower end of the shaft portion 21. On the outer periphery of the shaft portion 21, smooth cylindrical radial bearing surfaces 23a and 23b facing the radial bearing gap are formed at two locations separated in the axial direction. The radial bearing surfaces 23 a and 23 b face radial bearing gaps formed when the shaft member 2 is incorporated into the fluid dynamic bearing device 1. Above one of the radial bearing surfaces 23a, a tapered surface 24 that gradually decreases in diameter toward the tip of the shaft is formed adjacently, and a cylindrical surface 25 that serves as a mounting portion of the disk hub 3 described later is further formed thereabove. ing. Between the two radial bearing surfaces 23a, 23b, between the other radial bearing surface 23b and the flange portion 22 and between the tapered surface 24 and the cylindrical surface 25, annular nuisance portions 26, 27, 28 are respectively provided. Is formed.

フランジ部22の両端面には、平滑な平面状のスラスト軸受面22a、22bが形成され、このスラスト軸受面22a、22bは、軸部材2を動圧軸受装置1に組み込んだ際に形成されるスラスト軸受隙間に面する。   Smooth flat thrust bearing surfaces 22 a and 22 b are formed on both end surfaces of the flange portion 22, and the thrust bearing surfaces 22 a and 22 b are formed when the shaft member 2 is assembled into the hydrodynamic bearing device 1. Facing the thrust bearing gap.

ハウジング7は、図3に示すように、例えば樹脂材料で円筒状に形成された側部7aと、側部7aの一端側に位置し、例えば金属材料で形成された底部7bとで構成されている。側部7aの樹脂材料は、例えば非晶性樹脂として、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等、結晶性樹脂として、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等を用いることができる。また、上記の樹脂に充填する充填材の種類も特に限定されないが、例えば、充填材として、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、カーボンファイバー、カーボンブラック、黒鉛、カーボンナノマテリアル、金属粉末等の繊維状又は粉末状の導電性充填材を用いることができる。これらの充填材は、単独で用い、あるいは、二種以上を混合して使用しても良い。   As shown in FIG. 3, the housing 7 is composed of, for example, a side portion 7a formed in a cylindrical shape with a resin material, and a bottom portion 7b located on one end side of the side portion 7a and formed with a metal material, for example. Yes. The resin material of the side portion 7a is, for example, an amorphous resin such as polysulfone (PSF), polyethersulfone (PES), polyphenylsulfone (PPSU), polyetherimide (PEI), or the like as a crystalline resin, or liquid crystal. A polymer (LCP), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), or the like can be used. The type of filler to be filled in the resin is not particularly limited. For example, as the filler, fibrous filler such as glass fiber, whisker-like filler such as potassium titanate, and scaly filler such as mica. A fibrous or powdery conductive filler such as carbon fiber, carbon black, graphite, carbon nanomaterial, or metal powder can be used. These fillers may be used alone or in combination of two or more.

底部7bは、この実施形態では側部7aとは別体として成形され、側部7aの下部内周に後付けされている。底部7bの上側端面7b1の一部環状領域には、動圧発生部として、図示は省略するが、例えばスパイラル状の動圧溝が形成されている。なお、底部7bはこれに限らず、例えば側部7aと樹脂材料で一体に型成形することもできる。その際、上側端面7b1に設けられる動圧溝は、側部7aおよび底部7bからなるハウジング7の射出成形と同時に型成形することができ、これにより別途底部7bに動圧溝を成形する手間を省くことができる。   In this embodiment, the bottom portion 7b is formed as a separate body from the side portion 7a, and is retrofitted to the lower inner periphery of the side portion 7a. In the partial annular region of the upper end surface 7b1 of the bottom portion 7b, for example, a spiral dynamic pressure groove is formed as a dynamic pressure generating portion, although illustration is omitted. The bottom portion 7b is not limited to this, and can be integrally molded with the side portion 7a and a resin material, for example. At that time, the dynamic pressure groove provided in the upper end surface 7b1 can be molded simultaneously with the injection molding of the housing 7 composed of the side portion 7a and the bottom portion 7b, thereby eliminating the trouble of separately forming the dynamic pressure groove in the bottom portion 7b. It can be omitted.

軸受スリーブ8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体で円筒状に形成され、ハウジング7の内周面7cの所定位置に固定される。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body made of sintered metal, in particular, a sintered metal porous body mainly composed of copper, and is fixed at a predetermined position on the inner peripheral surface 7 c of the housing 7. The

軸受スリーブ8の内周面8aの全面又は一部円筒面領域には、動圧発生部としての動圧溝が形成される。この実施形態では、例えば図4に示すように、へリングボーン形状の動圧溝8a1、8a2がそれぞれ軸方向に離隔して2箇所形成される。上側の動圧溝8a1は、軸方向中間部に形成された環状平滑部に対して軸方向非対称に形成されており、環状平滑部より上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている(X1>X2)。   A dynamic pressure groove as a dynamic pressure generating portion is formed on the entire inner surface 8a of the bearing sleeve 8 or a partial cylindrical surface region. In this embodiment, for example, as shown in FIG. 4, herringbone-shaped dynamic pressure grooves 8 a 1 and 8 a 2 are formed at two locations in the axial direction. The upper dynamic pressure groove 8a1 is formed to be axially asymmetric with respect to the annular smooth portion formed in the axially intermediate portion, and the axial dimension X1 of the upper region from the annular smooth portion is the axial dimension of the lower region. It is larger than X2 (X1> X2).

軸受スリーブ8の下側端面8bの全面あるいは一部環状領域には、動圧発生部として、図示は省略するが、例えばスパイラル形状の動圧溝が形成される。   For example, a spiral-shaped dynamic pressure groove is formed on the entire lower surface 8b of the bearing sleeve 8 or a partial annular region as a dynamic pressure generating portion, although illustration is omitted.

軸受スリーブ8の外周面8dには、円周方向複数箇所(例えば3箇所)に軸方向溝8d1が形成される。また、軸受スリーブ8の上側端面8cには、外周面8dの軸方向溝8d1と連通する位置に径方向溝8c1が形成される。   On the outer peripheral surface 8d of the bearing sleeve 8, axial grooves 8d1 are formed at a plurality of locations (for example, three locations) in the circumferential direction. Further, a radial groove 8c1 is formed on the upper end surface 8c of the bearing sleeve 8 at a position communicating with the axial groove 8d1 of the outer peripheral surface 8d.

シール部材9は、例えば真ちゅう等の軟質金属材料やその他の金属材料、あるいは樹脂材料で環状に形成され、ハウジング7の側部7aの上部内周に圧入、接着等の手段で固定される。この実施形態において、シール部材9の内周面9aは円筒状に形成され、シール部材9の下側端面9bは軸受スリーブ8の上側端面8cと当接している。   The seal member 9 is formed in a ring shape from, for example, a soft metal material such as brass, another metal material, or a resin material, and is fixed to the inner periphery of the upper portion of the side portion 7a of the housing 7 by means such as press fitting or adhesion. In this embodiment, the inner peripheral surface 9 a of the seal member 9 is formed in a cylindrical shape, and the lower end surface 9 b of the seal member 9 is in contact with the upper end surface 8 c of the bearing sleeve 8.

軸部21のテーパ面24と、テーパ面24に対向するシール部材9の内周面9aとの間には、ハウジング7の底部7b側から上方に向けて半径方向寸法が漸次拡大する環状のシール空間Sが形成される。組み立て完了後の動圧軸受装置1(図3参照)においては、シール空間Sの範囲内に油面がある。   Between the taper surface 24 of the shaft portion 21 and the inner peripheral surface 9a of the seal member 9 facing the taper surface 24, an annular seal whose radial dimension gradually increases from the bottom 7b side of the housing 7 upward. A space S is formed. In the hydrodynamic bearing device 1 (see FIG. 3) after completion of assembly, the oil level is within the range of the seal space S.

上述の如く構成された動圧軸受装置1において、軸部材2を回転させると、軸受スリーブ8内周の動圧溝8a1、8a2の形成領域(上下2箇所)と、これらの領域にそれぞれ対向する軸部21のラジアル軸受面23a、23bとの間のラジアル軸受隙間に潤滑油の動圧が発生し、軸部材2の軸部21がラジアル方向に回転自在に非接触支持される。この軸部材2をラジアル方向に回転自在に非接触支持する部分を、概念的に第1ラジアル軸受部R1及び第2ラジアル軸受部R2と称する。また、軸受スリーブ8の下側端面8bに形成される動圧溝領域と、この動圧溝領域に対向するフランジ部22の上側(軸部側)のスラスト軸受面22aとの間の第1スラスト軸受隙間、および底部7bの上側端面7b1に形成される動圧溝領域と、この面と対向するフランジ部22の下側(反軸部側)のスラスト軸受面22bとの間の第2スラスト軸受隙間に潤滑油の動圧がそれぞれ発生し、軸部材2のフランジ部22が両スラスト方向に回転自在に非接触支持される。この軸部材2をスラスト方向に回転自在に非接触支持する部分を、それぞれ概念的に第1スラスト軸受部T1及び第2スラスト軸受部T2と称する。   In the dynamic pressure bearing device 1 configured as described above, when the shaft member 2 is rotated, the formation regions (two upper and lower portions) of the dynamic pressure grooves 8a1 and 8a2 on the inner periphery of the bearing sleeve 8 are opposed to these regions, respectively. The dynamic pressure of the lubricating oil is generated in the radial bearing gap between the radial bearing surfaces 23a and 23b of the shaft portion 21, and the shaft portion 21 of the shaft member 2 is supported in a non-contact manner so as to be rotatable in the radial direction. The portions that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are conceptually referred to as a first radial bearing portion R1 and a second radial bearing portion R2. The first thrust between the dynamic pressure groove region formed on the lower end surface 8b of the bearing sleeve 8 and the thrust bearing surface 22a on the upper side (shaft side) of the flange portion 22 facing the dynamic pressure groove region. The second thrust bearing between the bearing clearance and the dynamic pressure groove region formed in the upper end surface 7b1 of the bottom portion 7b and the thrust bearing surface 22b on the lower side (on the opposite shaft side) of the flange portion 22 facing this surface. The dynamic pressure of the lubricating oil is generated in the gap, and the flange portion 22 of the shaft member 2 is supported in a non-contact manner so as to be rotatable in both thrust directions. The portions that support the shaft member 2 in a non-contact manner so as to be rotatable in the thrust direction are conceptually referred to as a first thrust bearing portion T1 and a second thrust bearing portion T2, respectively.

また、図3に示すように、軸受スリーブ8の外周面8dに形成された軸方向溝8d1及び上側端面8cに形成された径方向溝8c1により、ラジアル軸受隙間の上端と第1スラスト軸受隙間の外径端とが連通される。これにより、軸受装置の内部空間での圧力バランスを適正に保つことができる。さらに、本実施形態では、図4に示すように、軸受スリーブ8の内周面8aの動圧溝8a1を、軸方向中間部に形成した環状の平滑部に対して軸方向非対称、具体的には、環状平滑部より上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている(X1>X2)。このため、軸部材2の回転時、動圧溝8a1による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。この引き込み力の差圧によって、ラジアル軸受隙間に満たされた潤滑油が下方に流動し、第1スラスト軸受隙間→軸方向溝8d1→径方向溝8c1を流動して、再びラジアル軸受隙間に戻る。このように、ラジアル軸受隙間の潤滑油を強制的に循環させることにより、軸受装置の内部空間での局所的な負圧の発生をより効果的に防止できる。なお、このようにラジアル軸受隙間で潤滑油を強制的に流動させる必要がないときは、動圧溝8a1の形状を環状平滑部に対して軸方向対称に形成してもよい。   As shown in FIG. 3, the axial groove 8d1 formed on the outer peripheral surface 8d of the bearing sleeve 8 and the radial groove 8c1 formed on the upper end surface 8c allow the upper end of the radial bearing gap and the first thrust bearing gap to be The outer diameter end is communicated. Thereby, the pressure balance in the internal space of the bearing device can be properly maintained. Furthermore, in this embodiment, as shown in FIG. 4, the dynamic pressure groove 8a1 of the inner peripheral surface 8a of the bearing sleeve 8 is axially asymmetric with respect to the annular smooth portion formed in the axially intermediate portion, specifically The axial dimension X1 of the upper region from the annular smooth portion is larger than the axial dimension X2 of the lower region (X1> X2). For this reason, when the shaft member 2 rotates, the pulling force (pumping force) of the lubricating oil by the dynamic pressure groove 8a1 is relatively larger in the upper region than in the lower region. Due to the differential pressure of the pulling force, the lubricating oil filled in the radial bearing gap flows downward, flows in the first thrust bearing gap → the axial groove 8d1 → the radial groove 8c1, and returns to the radial bearing gap again. Thus, by forcibly circulating the lubricating oil in the radial bearing gap, it is possible to more effectively prevent the generation of a local negative pressure in the internal space of the bearing device. When there is no need to force the lubricating oil to flow through the radial bearing gap as described above, the shape of the dynamic pressure groove 8a1 may be formed symmetrically with respect to the annular smooth portion.

以下、本発明に係る軸部材2の製造方法、特に軸部材2の表面研削加工方法の実施形態について説明する。   Hereinafter, an embodiment of a method for manufacturing the shaft member 2 according to the present invention, in particular, a surface grinding method for the shaft member 2 will be described.

まず、成形すべき軸部材2の素材となるステンレス鋼等の金属材を、鍛造や旋削等の任意の方法で加工して、図5に示すように軸部11及びフランジ部12を一体に有する断面T字形の軸素材10を成形する。図5に示す例では、軸部11の外周面11aに、大径外周面13、テーパ面14、及び小径外周面15とを有する形状を成している。軸部11の形状はこれに限らず、例えば外周面11aの全長を均一径とした円筒面とすることもできる。   First, a metal material such as stainless steel as a material of the shaft member 2 to be formed is processed by an arbitrary method such as forging or turning, and the shaft portion 11 and the flange portion 12 are integrally provided as shown in FIG. A shaft material 10 having a T-shaped cross section is formed. In the example shown in FIG. 5, the outer peripheral surface 11 a of the shaft portion 11 has a shape having a large-diameter outer peripheral surface 13, a tapered surface 14, and a small-diameter outer peripheral surface 15. The shape of the shaft portion 11 is not limited thereto, and for example, it can be a cylindrical surface having a uniform diameter over the entire length of the outer peripheral surface 11a.

こうして形成された軸素材10の表面に、(1)幅研削加工(予備研削加工)、(2)アンギュラ研削加工(第1の研削加工)、(3)芯無し研削加工(第2の研削加工)、及び、(4)仕上げ研削加工(第3の研削加工)を施す。以下、これらの研削加工工程の詳細を説明する。   On the surface of the shaft blank 10 thus formed, (1) width grinding (preliminary grinding), (2) angular grinding (first grinding), and (3) coreless grinding (second grinding) ) And (4) Finish grinding (third grinding) is performed. Hereinafter, details of these grinding steps will be described.

(1)幅研削加工(予備研削加工)
軸素材10の両端面、すなわち軸部端面11bおよびフランジ部12の反軸部側端面12b(図5参照)を、軸部外周面11aの大径外周面13を基準として研削加工する。この研削工程に用いられる研削装置40は、例えば図6、図7に示すように、ワークとしての軸素材10を複数保持するキャリア41と、キャリア41によって保持された軸素材10の軸部端面11b、およびフランジ部12の反軸部側端面12bを研削する一対の砥石42、42とを備えている。
(1) Width grinding (preliminary grinding)
Both end surfaces of the shaft blank 10, that is, the shaft end surface 11b and the opposite shaft end surface 12b (see FIG. 5) of the flange portion 12 are ground with reference to the large-diameter outer peripheral surface 13 of the shaft outer peripheral surface 11a. For example, as shown in FIGS. 6 and 7, a grinding device 40 used in this grinding process includes a carrier 41 that holds a plurality of shaft materials 10 as workpieces, and a shaft end face 11 b of the shaft material 10 held by the carriers 41. And a pair of grindstones 42 and 42 for grinding the opposite end surface 12b of the flange portion 12.

キャリア41の外周縁の円周方向一部領域には、複数の切欠き43が円周方向等ピッチに設けられる(図6(a)参照)。軸素材10は、その矯正加工面13を切欠き43の内面43aにアンギュラコンタクトさせた状態で切欠き43に収容される(図6(b)参照)。軸素材10の大径外周面13はキャリア41の外周面よりも僅かに突出しており、キャリアの外径側には、軸素材10の突出部分(大径外周面13)を外径側から拘束する形でベルト44が張設されている。切欠き43に収容した軸素材10のキャリア41の軸方向両端側には、一対の砥石42、42がその端面(研削面)同士を対向させて所定の間隔で同軸配置されている。   A plurality of notches 43 are provided at equal circumferential circumferential pitches in a partial circumferential region of the outer peripheral edge of the carrier 41 (see FIG. 6A). The shaft material 10 is accommodated in the notch 43 in a state in which the straightened surface 13 is in angular contact with the inner surface 43a of the notch 43 (see FIG. 6B). The large-diameter outer peripheral surface 13 of the shaft material 10 protrudes slightly from the outer peripheral surface of the carrier 41, and the protruding portion (large-diameter outer peripheral surface 13) of the shaft material 10 is restrained from the outer diameter side on the outer diameter side of the carrier. In this manner, the belt 44 is stretched. A pair of grindstones 42 and 42 are coaxially arranged at predetermined intervals on both ends in the axial direction of the carrier 41 of the shaft material 10 accommodated in the notch 43 so that the end surfaces (grinding surfaces) thereof face each other.

キャリア41の回転に伴い、軸素材10が定位置から切欠き43に順次投入される。投入された軸素材10は、切欠き43からの脱落をベルト44で拘束された状態で、回転する砥石42、42の端面上をその外径端から内径端にかけて横断する。これに伴い、軸素材10の両端面、すなわち軸部端面11bとフランジ部12の反軸部側端面12bとが砥石42、42の端面で研削される。これと同時に、軸素材10の軸方向幅(フランジ部12を含めた全長)が所定寸法に仕上げられる。   As the carrier 41 rotates, the shaft material 10 is sequentially put into the notch 43 from a fixed position. The thrown shaft material 10 traverses from the outer diameter end to the inner diameter end on the end faces of the rotating grindstones 42 and 42 in a state where the dropping from the notch 43 is restrained by the belt 44. Accordingly, both end faces of the shaft material 10, that is, the shaft end face 11 b and the opposite end face 12 b of the flange section 12 are ground by the end faces of the grindstones 42 and 42. At the same time, the axial width (the entire length including the flange portion 12) of the shaft material 10 is finished to a predetermined dimension.

(2)アンギュラ研削加工(第1の研削加工)
次いで、前記幅研削加工(予備研削加工)を施した軸素材の両端面11b、12bを基準として、軸素材10の外周面10bおよびフランジ部12の軸部側端面12aの研削加工を行う(アンギュラ研削加工)。この研削工程で用いられる研削装置50は、例えば図8に示すように、バッキングプレート54およびプレッシャプレート55を軸素材10の両端面に押し当てながら、砥石53で軸素材10の外周面11aをプランジ研削するものである。このとき、シュー52によって軸素材10の大径外周面13が回転自在に支持される。
(2) Angular grinding (first grinding)
Next, the outer peripheral surface 10b of the shaft material 10 and the shaft portion side end surface 12a of the flange portion 12 are ground (angular) with reference to both end surfaces 11b and 12b of the shaft material subjected to the width grinding (preliminary grinding). Grinding). For example, as shown in FIG. 8, the grinding device 50 used in this grinding process plunges the outer peripheral surface 11 a of the shaft material 10 with the grindstone 53 while pressing the backing plate 54 and the pressure plate 55 against both end surfaces of the shaft material 10. It is to be ground. At this time, the large-diameter outer peripheral surface 13 of the shaft material 10 is rotatably supported by the shoe 52.

砥石53は、完成品としての軸部材2の外周面形状に対応した研削面56を備える総形砥石である。研削面56は、軸部11の軸方向全長に亘る外周面11aおよびフランジ部12の外周面12cを研削する円筒研削部56aと、フランジ部12の軸部側端面12aを研削する平面研削部56bとを備えている。図示例の砥石53では、円筒研削部56aとして、軸部材2のラジアル軸受面23a、23bに対応する領域を研削する部分56a1・56a2、テーパ面24に対応する領域を研削する部分56a3、円筒面25に対応する領域を研削する部分56a4、各ヌスミ部26〜28を研削加工する部分56a5〜56a7、フランジ部12の外周面12cを研削する部分56a8を備えている。   The grindstone 53 is a general-purpose grindstone provided with a grinding surface 56 corresponding to the outer peripheral surface shape of the shaft member 2 as a finished product. The grinding surface 56 includes a cylindrical grinding portion 56a that grinds the outer peripheral surface 11a over the entire axial length of the shaft portion 11 and the outer peripheral surface 12c of the flange portion 12, and a surface grinding portion 56b that grinds the shaft portion side end surface 12a of the flange portion 12. And. In the illustrated grindstone 53, as the cylindrical grinding portion 56a, the portions 56a1 and 56a2 for grinding the regions corresponding to the radial bearing surfaces 23a and 23b of the shaft member 2, the portion 56a3 for grinding the region corresponding to the tapered surface 24, and the cylindrical surface 25, a portion 56 a 4 for grinding the region corresponding to 25, portions 56 a 5 to 56 a 7 for grinding each of the portions 26 to 28, and a portion 56 a 8 for grinding the outer peripheral surface 12 c of the flange portion 12.

上記構成の研削装置50における研削加工は以下の手順で行われる。まず、軸素材10および砥石53を回転させた状態で砥石53を斜め方向(図中の矢印1方向)に送り、軸素材10のフランジ部12の軸部側端面12aに砥石53の平面研削部56bを押し当て、主として軸部側端面12aを研削する。これにより、軸部材2のフランジ部22における軸部側端面12aが研削される。次いで、砥石53を軸素材10の回転軸心と直交する方向(図中の矢印2方向)に送り、軸素材10の軸部11の外周面11aおよびフランジ部12の外周面12cに砥石53の円筒研削部56aを押し当てて、各面11a、12cを研削する。これにより、軸部材2の軸部21外周面のうち、軸素材10のラジアル軸受面23a,23bに対応する領域13a・13b、テーパ面24、円筒面25に対応する領域15、およびフランジ部22の外周面22cが研削され、さらに各ヌスミ部26〜28が形成される。なお、上記研削の際には、例えば図8に示すように、計測ゲージ57で残りの研削代を計測しつつ研削を行うのが好ましい。このように、直前の幅研削加工加工で精度が高められた両端面11b、12bを基準としてアンギュラ研削加工を行うことにより、軸素材10の外周面等を高精度に加工することができる。   The grinding process in the grinding apparatus 50 having the above-described configuration is performed according to the following procedure. First, with the shaft material 10 and the grindstone 53 rotated, the grindstone 53 is fed in an oblique direction (in the direction of arrow 1 in the figure), and the surface grinding portion of the grindstone 53 is placed on the shaft portion side end surface 12a of the flange portion 12 of the shaft material 10. 56b is pressed and the axial part side end surface 12a is mainly ground. Thereby, the shaft part side end surface 12a in the flange part 22 of the shaft member 2 is ground. Next, the grindstone 53 is fed in a direction orthogonal to the rotational axis of the shaft blank 10 (in the direction of arrow 2 in the figure), and the grindstone 53 is placed on the outer circumferential surface 11 a of the shaft portion 11 and the outer circumferential surface 12 c of the flange portion 12. The cylindrical grinding portion 56a is pressed to grind the surfaces 11a and 12c. Thereby, out of the outer peripheral surface of the shaft portion 21 of the shaft member 2, the regions 13 a and 13 b corresponding to the radial bearing surfaces 23 a and 23 b of the shaft material 10, the tapered surface 24, the region 15 corresponding to the cylindrical surface 25, and the flange portion 22. The outer peripheral surface 22c is ground, and further each of the pussies 26 to 28 are formed. In the grinding, for example, as shown in FIG. 8, it is preferable to perform grinding while measuring the remaining grinding allowance with a measurement gauge 57. Thus, the outer peripheral surface of the shaft material 10 and the like can be processed with high accuracy by performing the angular grinding process on the basis of the both end faces 11b and 12b whose accuracy has been increased by the immediately preceding width grinding process.

(3)芯無し研削加工(第2の研削加工)
次に、上記のアンギュラ研削加工(第1の研削加工)により研削された外周面を基準として、軸素材10の両端面11b、12bに研削加工を施す。ここで使用される研削装置60は、図9に示すように、いわゆる2ロール1シュー方式の芯無し研削を行うものである。詳しくは、2つの駆動ロール61,62、及びシュー63で軸素材10の軸部11を外周から三点接触で支持しながら、駆動ロール61及び62を図9(b)に矢印aで示す方向に回転させ、軸素材10を矢印bで示す方向に回転駆動する。この状態で、軸部11の端面11bをプレッシャプレート65で支持しながら、砥石64をフランジ部12の反軸部側端面12bに押し当てて研削する。この芯無し研削の基準面となる軸部11の外周面11aは、前記アンギュラ研削加工が施されているため高い円筒度を有する。従って、この面を基準としてフランジ部12の反軸部側端面12bを研削することにより、この面を高精度に仕上げることができる。特に、フランジ部12の反軸部側端面12bの研削を芯無し研削で行うことにより、芯無し研削の特性から、基準面となる外周面11aに対するフランジ部12の反軸部側端面12bの直角度や振れ精度を高めることができる。上記と同様にして、外周面11aを基準とした芯無し研削加工により、軸部11の端面11bを研削する。
(3) Coreless grinding (second grinding)
Next, the both end surfaces 11b and 12b of the shaft blank 10 are ground with reference to the outer peripheral surface ground by the above-described angular grinding (first grinding). As shown in FIG. 9, the grinding device 60 used here performs so-called two-roll one-shoe type coreless grinding. Specifically, the two driving rolls 61 and 62 and the shoe 63 support the shaft portion 11 of the shaft material 10 from the outer periphery with three-point contact, while the driving rolls 61 and 62 are in the direction indicated by the arrow a in FIG. To rotate the shaft blank 10 in the direction indicated by the arrow b. In this state, while the end surface 11b of the shaft portion 11 is supported by the pressure plate 65, the grindstone 64 is pressed against the end surface 12b opposite to the shaft portion of the flange portion 12 and is ground. The outer peripheral surface 11a of the shaft portion 11 serving as a reference surface for the centerless grinding has a high cylindricity because the angular grinding is performed. Therefore, this surface can be finished with high accuracy by grinding the opposite end surface 12b of the flange portion 12 on the basis of this surface. In particular, by grinding the non-shaft side end surface 12b of the flange portion 12 by coreless grinding, due to the characteristics of the coreless grinding, the straight surface of the nonshaft side end surface 12b of the flange portion 12 with respect to the outer peripheral surface 11a serving as the reference surface is obtained. Angle and runout accuracy can be increased. In the same manner as described above, the end surface 11b of the shaft portion 11 is ground by a centerless grinding process using the outer peripheral surface 11a as a reference.

(4)仕上げ研削加工(第3の研削加工)
前記芯無し研削加工(第2の研削加工)を施した軸素材10の両端面12b、11bを基準として、軸部材2のラジアル軸受面23a,23b、および円筒面25に対応する領域13a・13b、15に最終的な仕上げ研削を施す。この研削加工に用いる研削装置70は、図10に示す円筒研削盤で、バッキングプレート74とプレッシャプレート75とで挾持した軸素材10を回転させながら、砥石73でプランジ研削するものである。このとき、軸素材10はシュー72で回転自在に支持される。砥石73の研削面73aは、ラジアル軸受面23a,23bに対応する領域13a・13bを研削する第1の円筒研削部73a1と、円筒面25に対応する領域15を研削する第2の円筒研削部73a2とからなる。
(4) Finish grinding (third grinding)
Areas 13a and 13b corresponding to the radial bearing surfaces 23a and 23b of the shaft member 2 and the cylindrical surface 25 with reference to both end faces 12b and 11b of the shaft blank 10 subjected to the centerless grinding process (second grinding process). , 15 is subjected to final finish grinding. A grinding apparatus 70 used for this grinding is a cylindrical grinder shown in FIG. 10, and plunge-grinds with a grindstone 73 while rotating the shaft material 10 held between the backing plate 74 and the pressure plate 75. At this time, the shaft material 10 is rotatably supported by the shoe 72. The grinding surface 73a of the grindstone 73 includes a first cylindrical grinding portion 73a1 for grinding the regions 13a and 13b corresponding to the radial bearing surfaces 23a and 23b, and a second cylindrical grinding portion for grinding the region 15 corresponding to the cylindrical surface 25. 73a2.

上記構成の研削装置70において、回転する砥石73に半径方向外方から軸素材10の外周面に接触させることにより、ラジアル軸受面23a,23bおよび円筒面25に対応する領域13a・13b、15がそれぞれ研削され、これらの領域が最終的な表面精度に仕上げられる。このとき、基準面となる軸素材10の両端面12b、11bは、前記芯無し研削が施されているため、これらの面は高い平面度、直角度、振れ精度等を有する。従って、この面を基準として軸部材2の外周面、特にラジアル軸受面23a,23bを仕上げ研削することで、これらの面の加工精度を高めることができると共に、製品ごとの精度のバラつきを抑えることができる。尚、この実施形態では、ラジアル軸受面23a,23bに対応する領域と円筒面25に対応する領域の双方を仕上げ研削しているが、円筒面25に対応する領域の研削は省略することもできる。   In the grinding device 70 having the above-described configuration, the regions 13a, 13b, and 15 corresponding to the radial bearing surfaces 23a and 23b and the cylindrical surface 25 are formed by bringing the rotating grindstone 73 into contact with the outer peripheral surface of the shaft blank 10 from the outside in the radial direction. Each is ground to finish these areas to final surface accuracy. At this time, since both end surfaces 12b and 11b of the shaft blank 10 serving as the reference surface are subjected to the centerless grinding, these surfaces have high flatness, squareness, runout accuracy, and the like. Accordingly, by finishing grinding the outer peripheral surface of the shaft member 2, particularly the radial bearing surfaces 23a and 23b, with reference to this surface, the processing accuracy of these surfaces can be increased and the variation in accuracy of each product can be suppressed. Can do. In this embodiment, both the region corresponding to the radial bearing surfaces 23a and 23b and the region corresponding to the cylindrical surface 25 are finish-ground, but grinding of the region corresponding to the cylindrical surface 25 can be omitted. .

上記のような研削工程を経た後、必要に応じて熱処理や洗浄処理を施すことで、図1に示す軸部材2が完成する。   After passing through the grinding process as described above, the shaft member 2 shown in FIG. 1 is completed by performing heat treatment or cleaning treatment as necessary.

以上のように、本発明の流体軸受装置用軸部材の製造方法では、外周面のラジアル軸受面23a、23bに施される最終的な仕上げ研削加工(第3の研削加工)の基準面となる軸素材10の両端面11b、12bに、前もって芯無し研削加工(第2の研削加工)を施している。さらに、この芯無し研削加工の基準面となる軸素材10の外周面11aに、前もってアンギュラ研削加工(第1の研削加工)を施している。このように、次工程の基準面となる面に前もって研削加工を施して表面精度を高めることで、最終的な仕上げ研削加工の精度を高めることができると共に、製品ごとの外周面研削精度のバラつきを抑えることができる。   As described above, in the method for manufacturing a shaft member for a hydrodynamic bearing device according to the present invention, it becomes a reference surface for final finish grinding (third grinding) applied to the radial bearing surfaces 23a and 23b on the outer peripheral surface. The both ends 11b and 12b of the shaft blank 10 are subjected to coreless grinding (second grinding) in advance. Further, an angular grinding process (first grinding process) is performed in advance on the outer peripheral surface 11a of the shaft blank 10 which is a reference surface for the coreless grinding process. In this way, it is possible to improve the accuracy of the final finish grinding process by pre-grinding the surface that will be the reference surface for the next process in advance, and to improve the accuracy of the outer peripheral surface grinding for each product. Can be suppressed.

さらに、第1の研削加工の前段階で、この加工の基準面となる軸素材10の両端面に研削加工(予備研削加工)を施すことにより、より一層最終的な仕上げ研削加工の精度を高めることができる。   Further, by performing grinding processing (preliminary grinding processing) on both end faces of the shaft blank 10 which is the reference surface of this processing at the first stage of the first grinding processing, the accuracy of the final finish grinding processing is further improved. be able to.

また、以上の説明では、図8に示すアンギュラ研削加工において、軸素材10の外周面10bの円筒研削とフランジ部12の軸部側端面12aの平面研削とを共通の砥石53で行うこととしているが、両者を別砥石を用いて別工程で行うこともできる。   In the above description, in the angular grinding process shown in FIG. 8, the cylindrical grinding of the outer peripheral surface 10 b of the shaft material 10 and the surface grinding of the shaft portion side end surface 12 a of the flange portion 12 are performed by the common grindstone 53. However, it is also possible to perform both in separate steps using separate whetstones.

また、以上の説明では、軸部材2のヌスミ部26〜28を、図8に示すアンギュラ研削加工で形成する場合を例示したが、これらのヌスミ部26〜28は、図5に示す軸素材10に予め形成しておくこともできる。この場合、特に軸部21とフランジ部22との間の角部のヌスミ部27を図11に示すように傾斜状に形成することにより、アンギュラ研削加工(図8参照)において、フランジ部12の軸部側端面12aと軸部外周面11aとを同時研削する際の砥石53の逃げとして機能させることができる。   Moreover, in the above description, although the case where the pussies 26-28 of the shaft member 2 were formed by the angular grinding process shown in FIG. 8 was illustrated, these stubs 26-28 are the shaft raw material 10 shown in FIG. It can also be formed in advance. In this case, in particular, the angular portion (see FIG. 8) of the flange portion 12 is formed by forming the corner portion 27 between the shaft portion 21 and the flange portion 22 in an inclined shape as shown in FIG. It can be made to function as relief of the grindstone 53 at the time of grinding the shaft part side end surface 12a and the shaft part outer peripheral surface 11a simultaneously.

また、以上の実施形態では、軸部材2のラジアル軸受面23a、23bおよびスラスト軸受面22a、22bを、全て動圧溝のない平滑面とした場合を例示したが、これらの軸受面に動圧溝を形成することもできる。この場合、ラジアル動圧溝は、図8に示すアンギュラ研削加工の前の段階で、転造あるいは鍛造により形成することができ、スラスト動圧溝は、プレスあるいは鍛造により形成することができる。   Moreover, although the radial bearing surfaces 23a and 23b and the thrust bearing surfaces 22a and 22b of the shaft member 2 are all smooth surfaces without dynamic pressure grooves in the above embodiment, the dynamic pressure is applied to these bearing surfaces. Grooves can also be formed. In this case, the radial dynamic pressure groove can be formed by rolling or forging before the angular grinding process shown in FIG. 8, and the thrust dynamic pressure groove can be formed by pressing or forging.

また、以上の実施形態では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2を構成する動圧軸受として、例えばへリングボーン形状やスパイラル形状の動圧溝からなる動圧発生部を用いた軸受を例示しているが、動圧発生部の構成はこれに限定されるものではない。ラジアル軸受部R1、R2として、例えば多円弧軸受、ステップ軸受、テーパ軸受、テーパ・フラット軸受等を使用することもでき、スラスト軸受部T1、T2として、ステップ軸受や波型軸受等を使用することもできる。   Further, in the above embodiment, as the dynamic pressure bearings constituting the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2, for example, a dynamic pressure generating portion including a herringbone shape or a spiral shape dynamic pressure groove is used. Although the bearing is illustrated, the configuration of the dynamic pressure generating unit is not limited to this. For example, multi-arc bearings, step bearings, taper bearings, taper / flat bearings can be used as the radial bearing portions R1, R2, and step bearings, wave bearings, etc. are used as the thrust bearing portions T1, T2. You can also.

また、以上の実施形態では、ラジアル軸受部R1、R2が軸方向に離隔して設けられているが、これらを軸方向に連続的に設けても良い。あるいは、ラジアル軸受部R1、R2の何れか一方のみを設けても良い。   Moreover, in the above embodiment, radial bearing part R1, R2 is provided in the axial direction apart, However, You may provide these continuously in an axial direction. Alternatively, only one of the radial bearing portions R1 and R2 may be provided.

また、以上の実施形態では、動圧発生部によりラジアル軸受隙間の潤滑油に動圧を強制的に発生させる場合が示されているが、軸部材2の外周面及び軸受スリーブ8の内周面8aを何れも円筒面としたいわゆる真円軸受を構成することもできる。   Moreover, although the case where the dynamic pressure is forcibly generated in the lubricating oil in the radial bearing gap by the dynamic pressure generating portion is shown in the above embodiment, the outer peripheral surface of the shaft member 2 and the inner peripheral surface of the bearing sleeve 8 are shown. It is also possible to constitute a so-called perfect circle bearing in which all 8a are cylindrical surfaces.

また、以上の実施形態では、動圧軸受装置1の内部に充満し、軸受スリーブ8と軸部材2との間のラジアル軸受隙間や、軸受スリーブ8およびハウジング7と軸部材2との間のスラスト軸受隙間に動圧作用を生じる流体として、潤滑油を例示したが、特にこの流体に限定されるものではない。動圧溝を有する各軸受隙間に動圧作用を生じ得る流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤を使用することもできる。   Moreover, in the above embodiment, the inside of the hydrodynamic bearing device 1 is filled, and the radial bearing gap between the bearing sleeve 8 and the shaft member 2 and the thrust between the bearing sleeve 8 and the housing 7 and the shaft member 2 are filled. Although the lubricating oil is exemplified as the fluid that causes the dynamic pressure action in the bearing gap, it is not particularly limited to this fluid. A fluid capable of generating a dynamic pressure action in each bearing gap having the dynamic pressure grooves, for example, a gas such as air, or a fluid lubricant such as a magnetic fluid may be used.

また、本発明の製造方法による軸部材を有する流体軸受装置は、上記のようにHDD等のディスク駆動装置に用いられるスピンドルモータに限らず、光ディスクの光磁気ディスク駆動用のスピンドルモータ等、高速回転下で使用される情報機器用の小型モータ、レーザビームプリンタのポリゴンスキャナモータ等における回転軸支持用、あるいは電気機器の冷却ファン用のファンモータとしても好適に使用することができる。   In addition, the hydrodynamic bearing device having the shaft member according to the manufacturing method of the present invention is not limited to the spindle motor used for the disk drive device such as the HDD as described above, but is a high-speed rotation such as a spindle motor for driving the magneto-optical disk of the optical disk. It can also be suitably used as a fan motor for rotating shaft support in a small motor for information equipment used below, a polygon scanner motor of a laser beam printer, or a cooling fan for electrical equipment.

軸部材の側面図である。It is a side view of a shaft member. 動圧軸受装置を組み込んだ情報機器用スピンドルモータの断面図である。It is sectional drawing of the spindle motor for information equipment incorporating the dynamic pressure bearing apparatus. 動圧軸受装置の縦断面図である。It is a longitudinal cross-sectional view of a fluid dynamic bearing device. 軸受スリーブの縦断面図である。It is a longitudinal cross-sectional view of a bearing sleeve. 鍛造加工により成形された軸素材の側面図である。It is a side view of the shaft raw material shape | molded by the forging process. (a)は軸素材の幅研削工程に係る研削装置の一例を示す平面図、(b)は軸素材を保持するキャリアの切欠き周辺の拡大図である。(A) is a top view which shows an example of the grinding apparatus which concerns on the width grinding process of a shaft raw material, (b) is an enlarged view of the notch periphery of the carrier holding a shaft raw material. 上記幅研削工程(予備研削加工)に係る研削装置の一例を示す一部断面側面図である。It is a partial cross section side view which shows an example of the grinding device which concerns on the said width grinding process (preliminary grinding process). 軸素材のアンギュラ研削工程(第1の研削加工)に係る研削装置の一例を示す側面図である。It is a side view which shows an example of the grinding device which concerns on the angular grinding process (1st grinding process) of a shaft raw material. 軸素材の芯無し研削工程(第2の研削加工)に係る研削装置の一例を示す側面図である。It is a side view which shows an example of the grinding device which concerns on the coreless grinding process (2nd grinding process) of a shaft raw material. 軸素材の研削仕上げ工程(第3の研削加工)に係る研削装置の一例を示す側面図である。It is a side view which shows an example of the grinding device which concerns on the grinding finishing process (3rd grinding process) of a shaft raw material. 軸部材の軸部とフランジ部との角部周辺の拡大断面図である。It is an expanded sectional view of a corner part periphery of a shaft part and a flange part of a shaft member.

符号の説明Explanation of symbols

1 動圧軸受装置
2 流体軸受装置用軸部材
21 軸部
22 フランジ部
22a,22b スラスト軸受面
23a,23b ラジアル軸受面
7 ハウジング
8 軸受スリーブ
9 シール部材
10 軸素材
11 軸部
11a 外周面
11b 軸部端面
12 フランジ部
12a 軸部側端面
12b 反軸部側端面
40,50,60,70 研削装置
D ディスク
R1,R2 ラジアル軸受部
T1,T2 スラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 21 for fluid dynamic bearing apparatuses Shaft part 22 Flange part 22a, 22b Thrust bearing surface 23a, 23b Radial bearing surface 7 Housing 8 Bearing sleeve 9 Seal member 10 Shaft material 11 Shaft part 11a Outer surface 11b Shaft part End surface 12 Flange portion 12a Shaft side end surface 12b Countershaft side end surface 40, 50, 60, 70 Grinding device D Disc R1, R2 Radial bearing portion T1, T2 Thrust bearing portion S Seal space

Claims (5)

外周面がラジアル軸受隙間に面する流体軸受装置用軸部材を製造するための方法であって、
軸素材の外周面に両端面を基準とした第1の研削加工を施した後、その外周面を基準として軸素材の両端面に第2の研削加工を施し、さらにその両端面を基準として外周面に第3の研削加工を施すことを特徴とする流体軸受装置用軸部材の製造方法。
A method for manufacturing a shaft member for a hydrodynamic bearing device with an outer peripheral surface facing a radial bearing gap,
After the first grinding process is performed on the outer peripheral surface of the shaft material with reference to both end surfaces, the second grinding process is performed on the both end surfaces of the shaft material with reference to the outer peripheral surface. A method for manufacturing a shaft member for a hydrodynamic bearing device, characterized in that a third grinding process is performed on the surface.
前記第2の研削加工が芯無し研削である請求項1記載の流体軸受装置用軸部材の製造方法。   The method for manufacturing a shaft member for a hydrodynamic bearing device according to claim 1, wherein the second grinding is centerless grinding. 軸素材の両端面に予備研削加工を施した後、外周面に前記第1の研削加工を行う請求項1記載の流体軸受装置用軸部材の製造方法。   The method of manufacturing a shaft member for a hydrodynamic bearing device according to claim 1, wherein the first grinding process is performed on the outer peripheral surface after the both end surfaces of the shaft material are preliminarily ground. 軸素材の端部にフランジ部を一体に設け、このフランジ部の端面に前記第2の研削加工を施す請求項1記載の流体軸受装置用軸部材の製造方法。   The method of manufacturing a shaft member for a hydrodynamic bearing device according to claim 1, wherein a flange portion is integrally provided at an end portion of the shaft material, and the second grinding process is performed on an end surface of the flange portion. 請求項1〜4の何れかに記載の方法により製造された流体軸受装置用軸部材。   A shaft member for a hydrodynamic bearing device manufactured by the method according to claim 1.
JP2007147118A 2007-06-01 2007-06-01 Method for manufacturing shaft member for hydrodynamic bearing device Active JP5000382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007147118A JP5000382B2 (en) 2007-06-01 2007-06-01 Method for manufacturing shaft member for hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007147118A JP5000382B2 (en) 2007-06-01 2007-06-01 Method for manufacturing shaft member for hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2008298234A JP2008298234A (en) 2008-12-11
JP5000382B2 true JP5000382B2 (en) 2012-08-15

Family

ID=40171932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007147118A Active JP5000382B2 (en) 2007-06-01 2007-06-01 Method for manufacturing shaft member for hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP5000382B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6621575B2 (en) * 2013-08-29 2019-12-18 Ntn株式会社 Shaft member for fluid dynamic pressure bearing device and manufacturing method thereof
JP6464666B2 (en) * 2014-10-29 2019-02-06 住友金属鉱山株式会社 Cylindrical target material and manufacturing method thereof, and cylindrical sputtering target and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3555318B2 (en) * 1996-03-25 2004-08-18 豊田工機株式会社 Grinding method
JP3907977B2 (en) * 2001-07-11 2007-04-18 株式会社ジェイテクト Crankshaft grinding method and grinding apparatus
JP3990181B2 (en) * 2002-04-15 2007-10-10 Ntn株式会社 Manufacturing method of hydrodynamic bearing device
JP4642416B2 (en) * 2004-09-08 2011-03-02 Ntn株式会社 Manufacturing method of shaft member for hydrodynamic bearing device
JP4786157B2 (en) * 2004-09-08 2011-10-05 Ntn株式会社 Shaft member for hydrodynamic bearing device and manufacturing method thereof
JP4610973B2 (en) * 2004-09-08 2011-01-12 Ntn株式会社 Method for manufacturing shaft member for hydrodynamic bearing device

Also Published As

Publication number Publication date
JP2008298234A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP3893021B2 (en) Hydrodynamic bearing unit
JP3990181B2 (en) Manufacturing method of hydrodynamic bearing device
JP5000382B2 (en) Method for manufacturing shaft member for hydrodynamic bearing device
US20080037918A1 (en) Hydrodynamic Bearing Device
JP2005282779A (en) Fluid bearing device
CN101216074A (en) Fluid bearing device
JP4786157B2 (en) Shaft member for hydrodynamic bearing device and manufacturing method thereof
JP4610973B2 (en) Method for manufacturing shaft member for hydrodynamic bearing device
US20180178343A1 (en) Shaft member for fluid dynamic bearing device and manufacturing method for shaft member
JP6757219B2 (en) Shaft members for fluid bearing equipment, their manufacturing methods, and fluid bearing equipment
JP4642416B2 (en) Manufacturing method of shaft member for hydrodynamic bearing device
JP4504391B2 (en) Manufacturing method of hydrodynamic bearing device
JP2008144847A (en) Dynamic pressure bearing device
JP2007064278A (en) Fluid bearing device, spindle motor using it and method of manufacturing fluid bearing device
JP4832736B2 (en) Hydrodynamic bearing unit
JP2012225385A (en) Hub-integrated shaft, fluid dynamic pressure bearing device including same, and spindle motor
JP4731852B2 (en) Hydrodynamic bearing unit
JP2013053692A (en) Fluid dynamic pressure bearing device and method of manufacturing the same
JP2006077860A (en) Fluid bearing device and its sealing member manufacturing method
JP2006200583A (en) Dynamic pressure bearing device
JP2006234176A (en) Dynamic pressure bearing device
JP2005003172A (en) Cone-type dynamic pressure bearing device
JPH11218123A (en) Dynamic pressure type bearing and spindle motor for information equipment
JP2006071029A (en) Dynamic pressure bearing device
JP2006189082A (en) Fluid bearing device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120516

R150 Certificate of patent or registration of utility model

Ref document number: 5000382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250