JP2012225385A - Hub-integrated shaft, fluid dynamic pressure bearing device including same, and spindle motor - Google Patents

Hub-integrated shaft, fluid dynamic pressure bearing device including same, and spindle motor Download PDF

Info

Publication number
JP2012225385A
JP2012225385A JP2011092034A JP2011092034A JP2012225385A JP 2012225385 A JP2012225385 A JP 2012225385A JP 2011092034 A JP2011092034 A JP 2011092034A JP 2011092034 A JP2011092034 A JP 2011092034A JP 2012225385 A JP2012225385 A JP 2012225385A
Authority
JP
Japan
Prior art keywords
hub
shaft
shaft portion
dynamic pressure
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011092034A
Other languages
Japanese (ja)
Inventor
Hiroyuki Noda
浩行 野田
Natsuhiko Mori
夏比古 森
Atsushi Hiraide
淳 平出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2011092034A priority Critical patent/JP2012225385A/en
Publication of JP2012225385A publication Critical patent/JP2012225385A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve yield and productivity of a material of a rotor hub assembled in a fluid dynamic pressure bearing device.SOLUTION: The hub part 3 of a hub-integrated shaft 9 is made of sintered metal. As a result, large quantity of chips is not generated unlike the case of forming the hub part 3 by machining, Thus, yield and productivity of a material of the hub part 3 are improved. The formation of the hub part 3 by the sintered metal achieves finishing with higher size accuracy than forging. Thus, the amount of working by post-working is reduced to improve productivity.

Description

本発明は、ハブ一体軸、これを備えた流体動圧軸受装置、及びスピンドルモータに関する。   The present invention relates to a hub integrated shaft, a fluid dynamic pressure bearing device including the same, and a spindle motor.

流体動圧軸受装置は、軸受部材の内周面と軸部の外周面との間のラジアル軸受隙間に生じる潤滑油の動圧作用により、軸部を相対回転自在に支持するものである。流体動圧軸受装置は、優れた回転精度および静粛性を有するため、例えば、各種ディスク駆動装置(HDDの磁気ディスク駆動装置や、CD−ROM等の光ディスク駆動装置等)のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ用、あるいはプロジェクタのカラーホイールモータ用として好適に使用されている。   The fluid dynamic pressure bearing device supports a shaft portion so as to be relatively rotatable by a dynamic pressure action of lubricating oil generated in a radial bearing gap between an inner peripheral surface of a bearing member and an outer peripheral surface of the shaft portion. Since the fluid dynamic bearing device has excellent rotational accuracy and quietness, for example, for spindle motors of various disk drive devices (such as HDD magnetic disk drive devices and CD-ROM optical disk drive devices), laser beams, etc. It is suitably used for a polygon scanner motor of a printer (LBP) or a color wheel motor of a projector.

例えばHDD用スピンドルモータや光ディスク用スピンドルモータに組み込まれる流体動圧軸受装置では、軸部材に固定されたロータハブに回転体(磁気ディスクあるいは光ディスク)が搭載される。このようなロータハブは、棒材からの削り出し(例えば特許文献1参照)や、鍛造加工(例えば特許文献2参照)で製作されていた。   For example, in a fluid dynamic pressure bearing device incorporated in a spindle motor for HDD or a spindle motor for optical disk, a rotating body (magnetic disk or optical disk) is mounted on a rotor hub fixed to a shaft member. Such a rotor hub has been manufactured by cutting out from a bar (see, for example, Patent Document 1) or forging (see, for example, Patent Document 2).

特開2006−226523号公報JP 2006-226523 A 特開2009−264571号公報JP 2009-264571 A

しかし、ロータハブを削り出しで作ると、多量の切り屑が発生するため材料の歩留まりが低くなり、加工時間も長くかかってしまう。また、加工量が多いために工具交換頻度も高くなり、設備停止時間が長くなって生産性が低下すると共に工具費用が高くなる。   However, when the rotor hub is cut out, a large amount of chips are generated, resulting in a low material yield and a long processing time. In addition, since the amount of machining is large, the frequency of tool change is increased, the equipment stop time is lengthened, the productivity is lowered, and the tool cost is increased.

これに対し、ロータハブを鍛造で製作すれば、切り屑が発生しないため、材料の歩留まりは高められる。しかし、ロータハブは、軸部から外径に突出し、且つ、ディスク等の回転体が搭載される回転体搭載面を有する複雑な形状を成しているため、鍛造で精度良く成形するのは非常に困難である。このため、鍛造を多数回に分けて行う必要があり、加工時間が長くなる。また、ロータハブの回転体搭載面は回転体の回転精度に影響するため、高い寸法精度が要求されるが、鍛造による成形精度はそれ程高くないため、後加工による加工量が多くなる。   On the other hand, if the rotor hub is manufactured by forging, chips are not generated, so that the yield of the material is increased. However, since the rotor hub has a complex shape that protrudes from the shaft portion to the outer diameter and has a rotating body mounting surface on which a rotating body such as a disk is mounted, it is very difficult to form with high precision by forging. Have difficulty. For this reason, it is necessary to perform forging in many times, and processing time becomes long. Moreover, since the rotating body mounting surface of the rotor hub affects the rotation accuracy of the rotating body, high dimensional accuracy is required, but the forming accuracy by forging is not so high, and the amount of processing by post-processing increases.

本発明の解決すべき課題は、流体動圧軸受装置に組み込まれるロータハブの材料の歩留まり及び生産性を高めることにある。   The problem to be solved by the present invention is to increase the yield and productivity of the material of the rotor hub incorporated in the fluid dynamic bearing device.

前記課題を解決するためになされた本発明は、軸部と、軸部から外径に突出して設けられ、軸方向と直交する回転体搭載面を有するハブ部とを備え、軸部の外周面がラジアル軸受隙間に面する流体動圧軸受装置用のハブ一体軸であって、少なくともハブ部が焼結金属で形成されたことを特徴とするものである。   The present invention made in order to solve the above-mentioned problems comprises a shaft portion, and a hub portion provided to protrude from the shaft portion to the outer diameter and having a rotating body mounting surface orthogonal to the axial direction, and the outer peripheral surface of the shaft portion Is a hub-integrated shaft for a fluid dynamic pressure bearing device facing a radial bearing gap, and is characterized in that at least the hub portion is formed of sintered metal.

このように、ハブ部を焼結金属で形成することにより、削り出しで製作する場合と比べて、切り屑が発生することが無いため材料の歩留まりが向上すると共に、加工時間が短縮されて生産性が向上する。また、焼結金属製のハブ部は、金属粉末を圧縮成形(型成形)した圧粉体を焼結して得られるため、金属材料を塑性流動させて成形する鍛造加工と比べて成形性が高く、優れた寸法精度が得られる。これにより、後加工が不要となるか、あるいは後加工による加工量を低減できるため、鍛造で成形する場合と比べてもハブ一体軸の生産性が向上する。   In this way, by forming the hub part from sintered metal, there is no generation of chips compared to the case of manufacturing by cutting, so that the yield of materials is improved and the processing time is shortened to produce. Improves. In addition, since the sintered metal hub is obtained by sintering a green compact obtained by compression molding (molding) metal powder, it has better formability than forging process in which metal material is plastically flowed. High and excellent dimensional accuracy can be obtained. This eliminates the need for post-processing or reduces the amount of processing by post-processing, so that the productivity of the hub-integrated shaft is improved compared to the case of forming by forging.

ところで、最近、ネットブックに代表されるノートパソコン等の情報機器の薄型化が進み、これらに使用される2.5インチHDD用のスピンドルモータにも薄型化が要求されている。これに伴い、スピンドルモータに組み込まれる流体動圧軸受装置の小型化(軸方向寸法の縮小)が要求され、その対策としてハブ部が薄肉化される傾向にある。ハブ部を薄肉化すると、軸部材との締結面積が縮小されるため、両者の締結強度不足が問題となる。   Recently, information devices such as notebook personal computers represented by netbooks have been made thinner, and 2.5 inch HDD spindle motors used for these devices are also required to be made thinner. Along with this, miniaturization (reduction in axial dimension) of the fluid dynamic bearing device incorporated in the spindle motor is required, and the hub portion tends to be thinned as a countermeasure. When the hub portion is thinned, the fastening area with the shaft member is reduced, so that the lack of fastening strength between the two becomes a problem.

上記のような不具合を解消するためには、例えば、軸部とハブ部とを焼結拡散接合により固定すれば良い。具体的には、金属粉末を圧縮成形してハブ部と同形状の圧粉体を形成し、この圧粉体に軸部を圧入して一体化した状態で焼結することにより、ハブ部と軸部とが拡散接合により固定される。拡散接合は、圧入や接着などと比べて高い締結強度を得ることができるため、ハブ部を薄肉化して軸部との締結面積が縮小された場合でも、軸部とハブ部とを十分な強度で固定することができる。   In order to eliminate the above problems, for example, the shaft portion and the hub portion may be fixed by sintered diffusion bonding. Specifically, the metal powder is compression-molded to form a green compact having the same shape as the hub portion, and the shaft portion is press-fitted into the green compact and sintered in an integrated state, whereby the hub portion and The shaft portion is fixed by diffusion bonding. Diffusion bonding can provide higher fastening strength than press-fitting or bonding, so even if the hub part is thinned and the fastening area with the shaft part is reduced, the shaft part and hub part have sufficient strength. It can be fixed with.

上記のようなハブ一体軸では、軸部とハブ部とで要求される特性が異なる。すなわち、軸部の外周面は、ラジアル軸受隙間に面するため高い寸法精度及び耐摩耗性が要求される。このため、軸部は高硬度の材料で形成することが好ましい。一方、ハブ部は、回転体を固定するクランパ等により曲げ応力が加わることが多く、硬度が高すぎると割れが発生する恐れがあるため、軸部と比べて硬度が若干低い材料で形成することが好ましい。従って、軸部とハブ部とを別体に形成することで、軸部及びハブ部を、それぞれに要求される特性を満たす材料で形成することができる。具体的には、ハブ部を焼結金属で形成する一方で、軸部を機械加工品としたり、あるいは軸部をハブ部とは別体の焼結金属品としたりすることができる。   In the hub integrated shaft as described above, required characteristics are different between the shaft portion and the hub portion. That is, since the outer peripheral surface of the shaft portion faces the radial bearing gap, high dimensional accuracy and wear resistance are required. For this reason, the shaft portion is preferably formed of a material having high hardness. On the other hand, the hub part is often made of a material whose hardness is slightly lower than that of the shaft part because bending stress is often applied by a clamper or the like that fixes the rotating body, and cracks may occur if the hardness is too high. Is preferred. Therefore, by forming the shaft portion and the hub portion separately, the shaft portion and the hub portion can be formed of materials satisfying the characteristics required for each. Specifically, while the hub portion is formed of sintered metal, the shaft portion can be a machined product, or the shaft portion can be a sintered metal product separate from the hub portion.

また、上記の不具合を解消するために、軸部とハブ部とを焼結金属で一体成形しても良い。具体的には、金属粉末を圧縮成形してハブ一体軸と同形状の圧粉体を形成し、この圧粉体を焼結することにより、焼結金属製のハブ一体軸が成形される。この場合、ハブ部と軸部との境界は存在しないため、ハブ部を薄肉化した場合でも軸部との間で十分な締結強度が得られる。   Moreover, in order to eliminate said malfunction, you may integrally mold a shaft part and a hub part with a sintered metal. Specifically, the metal powder is compression-molded to form a green compact having the same shape as the hub integrated shaft, and the green compact is sintered to form a sintered metal hub integrated shaft. In this case, since there is no boundary between the hub portion and the shaft portion, sufficient fastening strength can be obtained between the hub portion and the shaft portion even when the hub portion is thinned.

焼結金属製のハブ部の端面がスラスト軸受隙間に面する場合、焼結金属の表面の微小凹部に保持された潤滑流体がスラスト軸受隙間に供給されることで、スラスト軸受隙間を介して対向するハブ部と相手材との潤滑性が向上し、耐摩耗性及び耐焼き付き性が良好となる。   When the end surface of the hub made of sintered metal faces the thrust bearing gap, the lubricating fluid held in the minute recesses on the surface of the sintered metal is supplied to the thrust bearing gap, so that it faces through the thrust bearing gap. The lubricity between the hub portion and the mating material is improved, and the wear resistance and seizure resistance are improved.

軸部の外周面の面精度はラジアル軸受隙間の精度に直結するため、なるべく高精度に仕上げる必要がある。このため、軸部の外周面には研削仕上げを施すことが好ましい。特に、ハブ部の回転体搭載面を基準として軸部の外周面に研削仕上げを施すと、軸部の外周面に対する回転体搭載面の相対的な位置精度が高められるため、回転体の回転精度の向上が期待できる。   Since the surface accuracy of the outer peripheral surface of the shaft portion is directly linked to the accuracy of the radial bearing gap, it is necessary to finish it as highly accurately as possible. For this reason, it is preferable to grind the outer peripheral surface of the shaft portion. In particular, if the outer peripheral surface of the shaft portion is ground with respect to the rotating body mounting surface of the hub portion, the relative positional accuracy of the rotating body mounting surface with respect to the outer peripheral surface of the shaft portion is increased, so the rotational accuracy of the rotating body is increased. Improvement can be expected.

軸部の外周面には、ラジアル軸受隙間の潤滑流体に動圧作用を発生させるラジアル動圧発生部を形成することができる。特に、軸部を焼結金属で形成する場合、軸部の外周面に転造加工によりラジアル動圧発生部を形成すれば、転造加工したときの材料の塑性流動を焼結金属の内部気孔で吸収することができるため、転造加工による軸部表面の盛り上がりが防止され、ラジアル動圧発生部を精度良く形成することができる。   A radial dynamic pressure generating portion that generates a dynamic pressure action on the lubricating fluid in the radial bearing gap can be formed on the outer peripheral surface of the shaft portion. In particular, when the shaft portion is formed of sintered metal, if the radial dynamic pressure generating portion is formed on the outer peripheral surface of the shaft portion by rolling, the plastic flow of the material at the time of rolling processing is determined by the internal pores of the sintered metal. Therefore, the surface of the shaft portion can be prevented from rising due to the rolling process, and the radial dynamic pressure generating portion can be formed with high accuracy.

上記のようなハブ一体軸は、ハブ一体軸と、ハブ一体軸の軸部が挿入される軸受部材と、軸部の外周面と軸受部材の内周面との間のラジアル軸受隙間に生じる潤滑流体の動圧作用で軸部を相対回転可能に支持するラジアル軸受部とを備えた流体動圧軸受装置に組み込むことができる。また、このような流体動圧軸受装置は、HDD用スピンドルモータや光ディスク用スピンドルモータに組み込むことができる。   The hub integrated shaft as described above is lubricated in a hub integrated shaft, a bearing member into which the shaft portion of the hub integrated shaft is inserted, and a radial bearing gap between the outer peripheral surface of the shaft portion and the inner peripheral surface of the bearing member. It can be incorporated in a fluid dynamic pressure bearing device including a radial bearing portion that supports the shaft portion so as to be relatively rotatable by the fluid dynamic pressure action. Further, such a fluid dynamic pressure bearing device can be incorporated into a HDD spindle motor or an optical disk spindle motor.

以上のように、本発明によれば、ハブ部を焼結金属で形成することで、ハブ一体軸の材料の歩留まり及び生産性を高めることができる。   As described above, according to the present invention, the yield of the material of the hub integrated shaft and the productivity can be improved by forming the hub portion with sintered metal.

HDD用スピンドルモータの断面図である。It is sectional drawing of the spindle motor for HDD. 上記スピンドルモータに組み込まれた流体動圧軸受装置の断面図である。It is sectional drawing of the fluid dynamic pressure bearing apparatus integrated in the said spindle motor. (a)〜(d)は、上記流体動圧軸受装置に組み込まれた本発明の一実施形態に係るハブ一体軸の製造工程を示す断面図である。(A)-(d) is sectional drawing which shows the manufacturing process of the hub integrated shaft which concerns on one Embodiment of this invention integrated in the said fluid dynamic pressure bearing apparatus. 上記流体動圧軸受装置の軸受スリーブの断面図である。It is sectional drawing of the bearing sleeve of the said fluid dynamic pressure bearing apparatus. 上記軸受スリーブの上面図である。It is a top view of the said bearing sleeve. 上記軸受スリーブの下面図である。It is a bottom view of the said bearing sleeve. (a)〜(d)は、他の実施形態に係るハブ一体軸の製造工程を示す断面図である。(A)-(d) is sectional drawing which shows the manufacturing process of the hub integrated shaft which concerns on other embodiment. (a)〜(c)は、他の実施形態に係るハブ一体軸の製造工程を示す断面図である。(A)-(c) is sectional drawing which shows the manufacturing process of the hub integrated shaft which concerns on other embodiment.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、例えば2.5インチHDDのディスク駆動装置に用いられるスピンドルモータを示す。このスピンドルモータは、本発明の一実施形態に係るハブ一体軸9を回転自在に支持する流体動圧軸受装置1と、流体動圧軸受装置1が取り付けられたブラケット6と、半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はブラケット6に取り付けられ、ロータマグネット5はハブ一体軸9にヨーク10を介して取り付けられる。ハブ一体軸9には、回転体としてのディスクDが所定の枚数(図示例では1枚)保持される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、これによりハブ一体軸9及びディスクDが一体となって回転する。   FIG. 1 shows a spindle motor used in, for example, a 2.5-inch HDD disk drive device. This spindle motor includes a fluid dynamic pressure bearing device 1 that rotatably supports a hub integrated shaft 9 according to an embodiment of the present invention, a bracket 6 to which the fluid dynamic pressure bearing device 1 is attached, and a radial gap. And a stator magnet 4 and a rotor magnet 5 which are opposed to each other. The stator coil 4 is attached to the bracket 6, and the rotor magnet 5 is attached to the hub integrated shaft 9 via the yoke 10. The hub integrated shaft 9 holds a predetermined number of disks D (one in the illustrated example) as a rotating body. When the stator coil 4 is energized, the rotor magnet 5 is rotated by electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the hub integrated shaft 9 and the disk D are rotated together.

流体動圧軸受装置1は、図2に示すように、軸部2及びハブ部3を有するハブ一体軸9と、ハブ一体軸9を回転自在に支持する軸受部材とで構成される。本実施形態では、ハブ一体軸9の軸部2及びハブ部3が別体に形成される。また、本実施形態では、軸受部材が、内周にハブ一体軸9の軸部2を挿入した軸受スリーブ8と、内周に軸受スリーブ8を保持する有底筒状のハウジング7とで構成される。ハブ一体軸9の軸部2の下端には、抜け止め部材11が設けられる。尚、以下では、説明の便宜上、軸方向でハウジング7の開口側を上側、閉塞側を下側とする。   As shown in FIG. 2, the fluid dynamic bearing device 1 includes a hub integrated shaft 9 having a shaft portion 2 and a hub portion 3, and a bearing member that rotatably supports the hub integrated shaft 9. In the present embodiment, the shaft portion 2 and the hub portion 3 of the hub integrated shaft 9 are formed separately. In the present embodiment, the bearing member includes a bearing sleeve 8 in which the shaft portion 2 of the hub integrated shaft 9 is inserted on the inner periphery, and a bottomed cylindrical housing 7 that holds the bearing sleeve 8 on the inner periphery. The A retaining member 11 is provided at the lower end of the shaft portion 2 of the hub integrated shaft 9. In the following, for convenience of explanation, the opening side of the housing 7 in the axial direction is the upper side and the closing side is the lower side.

軸部2は、外径が2〜4mm程度の略円筒状に形成される。本実施形態では、軸部2は金属(溶製材、例えば鉄系金属、特にステンレス鋼)の機械加工(例えば旋削加工)により形成される。軸部2は、凹凸の無いストレートな円筒面状の大径外周面2aと、大径外周面2aの上側に設けられた小径外周面2bと、これらの間に形成された軸方向と直交する肩面2cとを有する。軸部2の大径外周面2aは、ラジアル軸受隙間に面するラジアル軸受面として機能する。軸部2の軸心には軸方向の貫通穴2dが設けられ、貫通穴2dの内周面にはネジ溝が形成される。   The shaft portion 2 is formed in a substantially cylindrical shape having an outer diameter of about 2 to 4 mm. In the present embodiment, the shaft portion 2 is formed by machining (for example, turning) of metal (melting material, for example, iron-based metal, particularly stainless steel). The shaft portion 2 is orthogonal to the axial direction formed between the large-diameter outer peripheral surface 2a having a straight cylindrical surface without irregularities, the small-diameter outer peripheral surface 2b provided above the large-diameter outer peripheral surface 2a. And a shoulder surface 2c. The large-diameter outer peripheral surface 2a of the shaft portion 2 functions as a radial bearing surface that faces the radial bearing gap. An axial through hole 2d is provided in the shaft center of the shaft portion 2, and a thread groove is formed on the inner peripheral surface of the through hole 2d.

ハブ部3は、軸部2の上端部から外径に延び、軸方向と直交する回転体搭載面を備えている。本実施形態のハブ部3は、ハウジング7の開口部を覆う円盤部3aと、円盤部3aの外径端から軸方向下方に延びた円筒部3bと、円筒部3bの下端部からさらに外径に延びた鍔部3cとで構成される。円盤部3aの下側端面3a1は、スラスト軸受隙間に面するスラスト軸受面として機能する。鍔部3cの上側端面には、回転体搭載面としてのディスク搭載面3dが形成され、円筒部3bの外周面には、ディスク嵌合面3eが形成される。ディスクDをディスク嵌合面3eに嵌合すると共にディスク搭載面3dの上に載置し、この状態で図示しないクランパによってディスクDの上面を押さえてディスク搭載面3d上に押し付けることにより、ディスクDがハブ部3に保持される。軸部2の貫通穴2dの上部は、クランパを固定するためのネジ穴として機能する。   The hub portion 3 includes a rotating body mounting surface extending from the upper end portion of the shaft portion 2 to the outer diameter and orthogonal to the axial direction. The hub portion 3 of the present embodiment includes a disc portion 3a that covers the opening of the housing 7, a cylindrical portion 3b that extends downward in the axial direction from the outer diameter end of the disc portion 3a, and an outer diameter further from the lower end portion of the cylindrical portion 3b. It is comprised with the collar part 3c extended in. The lower end surface 3a1 of the disk portion 3a functions as a thrust bearing surface that faces the thrust bearing gap. A disk mounting surface 3d as a rotating body mounting surface is formed on the upper end surface of the flange portion 3c, and a disk fitting surface 3e is formed on the outer peripheral surface of the cylindrical portion 3b. The disk D is fitted onto the disk fitting surface 3e and placed on the disk mounting surface 3d. In this state, the upper surface of the disk D is pressed by a clamper (not shown) and pressed onto the disk mounting surface 3d. Is held by the hub portion 3. The upper part of the through hole 2d of the shaft part 2 functions as a screw hole for fixing the clamper.

ハブ部3は、焼結金属(例えば鉄を主成分とする焼結金属)で形成される。具体的には、まず、図3(a)に示すように、金属粉末を圧縮成形してハブ部3と同一形状の円盤部3a’、円筒部3b’、及び鍔部3c’を有するハブ圧粉体3’を形成する。そして、図3(b)に示すように、ハブ圧粉体3’の内周面3a3’に軸部2の小径外周面2bを軽圧入すると共に、ハブ圧粉体3’の円盤部3a’の下側端面3a1’を軸部2の肩面2cに当接させ、軸部2とハブ圧粉体3’とを一体化する。この一体品を焼結炉に投入し、所定の焼結温度で加熱することにより(図3(c)参照)、ハブ圧粉体3’が焼結されてハブ部3が形成されると共に、ハブ部3の内周面3a3と軸部2の小径外周面2bとが拡散接合される。これにより、軸部2とハブ部3とが焼結拡散接合により固定されたハブ一体軸9が得られる(図3(d)参照)。このように、軸部2とハブ部3とを焼結拡散接合で固定することで、ハブ部3を薄肉化した場合(例えば肉厚を1mm以下とした場合)でも、十分な締結強度を得ることができる。   The hub portion 3 is formed of a sintered metal (for example, a sintered metal containing iron as a main component). Specifically, first, as shown in FIG. 3 (a), a hub pressure having a disk portion 3a ′, a cylindrical portion 3b ′, and a flange portion 3c ′ having the same shape as the hub portion 3 by compression molding metal powder. Powder 3 'is formed. Then, as shown in FIG. 3B, the small-diameter outer peripheral surface 2b of the shaft portion 2 is lightly press-fitted into the inner peripheral surface 3a3 ′ of the hub green compact 3 ′, and the disk portion 3a ′ of the hub green compact 3 ′. The lower end surface 3a1 ′ is brought into contact with the shoulder surface 2c of the shaft portion 2, and the shaft portion 2 and the hub green compact 3 ′ are integrated. By putting this integrated product into a sintering furnace and heating it at a predetermined sintering temperature (see FIG. 3C), the hub compact 3 'is sintered to form the hub portion 3, The inner peripheral surface 3a3 of the hub portion 3 and the small-diameter outer peripheral surface 2b of the shaft portion 2 are diffusion bonded. Thereby, the hub integrated shaft 9 in which the shaft portion 2 and the hub portion 3 are fixed by sintering diffusion bonding is obtained (see FIG. 3D). Thus, sufficient fastening strength is obtained even when the hub portion 3 is thinned (for example, when the thickness is 1 mm or less) by fixing the shaft portion 2 and the hub portion 3 by sintering diffusion bonding. be able to.

ところで、上記のように軸部2をハブ圧粉体3’に圧入する際、両者の嵌合面の圧力を大きくすれば、すなわち、軸部2の小径外周面2bとハブ圧粉体3’の内周面3a3’との圧入代を大きくすれば、その後の軸部2とハブ部3との拡散接合による締結強度を高めることができる。しかし、ハブ圧粉体3’は、焼結前の強度が低い状態であるため、軸部2との圧入代を大きくし過ぎるとハブ圧粉体3’に変形や損傷が生じる恐れがある。特に、ハブ部3を薄肉化した場合、圧入によりハブ圧粉体3’に変形や損傷が生じる恐れが高い。従って、軸部2とハブ圧粉体3’との圧入代は、ハブ圧粉体3’に変形や損傷が生じることなく、且つ、軸部2とハブ部3との拡散接合により十分な締結強度が得られるように設定され、本実施形態では圧入代が5〜15μmの範囲内(例えば10μm程度)に設定される。   By the way, when the shaft portion 2 is press-fitted into the hub green compact 3 ′ as described above, if the pressure on the fitting surface of both is increased, that is, the small-diameter outer peripheral surface 2b of the shaft portion 2 and the hub green compact 3 ′. If the press-fitting allowance with the inner peripheral surface 3a3 ′ is increased, the fastening strength by diffusion bonding between the shaft portion 2 and the hub portion 3 can be increased. However, since the hub green compact 3 'is in a state of low strength before sintering, if the press-fitting allowance with the shaft portion 2 is too large, the hub green compact 3' may be deformed or damaged. In particular, when the hub portion 3 is thinned, there is a high possibility that the hub compact 3 'is deformed or damaged by press fitting. Therefore, the press-fitting allowance between the shaft portion 2 and the hub green compact 3 ′ is sufficiently fastened by diffusion bonding between the shaft portion 2 and the hub portion 3 without causing deformation or damage to the hub green compact 3 ′. In this embodiment, the press-fitting allowance is set within a range of 5 to 15 μm (for example, about 10 μm).

また、ハブ部3は、流体動圧軸受装置1の内部に満たされた潤滑流体(本実施形態では潤滑油)と接触するため、焼結金属の内部気孔を介して潤滑油が外部に漏れだすことを防止する必要がある。例えば、焼結金属の密度を高めて内部気孔が全て独立気孔となるようにしたり、ハブ部3の表面(例えば潤滑油と接触する面、特にスラスト軸受面)に研磨やコーティング等の封孔処理を施したりすることで、油漏れを防止することができる。   Moreover, since the hub part 3 contacts the lubricating fluid (in this embodiment, lubricating oil) filled in the fluid dynamic bearing device 1, the lubricating oil leaks to the outside through the internal pores of the sintered metal. It is necessary to prevent this. For example, the density of the sintered metal is increased so that all the internal pores become independent pores, or the surface of the hub portion 3 (for example, the surface in contact with the lubricating oil, particularly the thrust bearing surface) is sealed with polishing or coating. Oil leakage can be prevented.

また、ハブ一体軸9を形成した後、特に高精度が要求される面に研削仕上げを施してもよい。本実施形態では、軸部2の大径外周面2a(ラジアル軸受面)に研削仕上げが施される。これに加えて、円盤部3aの下側端面3a1(スラスト軸受面)や、スラスト軸受隙間の精度に影響する軸部2の下端面2eに研削仕上げを施しても良い。さらには、ハブ部3のディスク搭載面3d及びディスク嵌合面3eに研削仕上げを施してもよい。本実施形態では、まず、ハブ部3のディスク搭載面3d及びディスク嵌合面3eに研削仕上げを施し、その後、これらの研削仕上げされた面を基準として(例えば、研削仕上げされた面に治具を当接させてハブ一体軸9を回転させながら)、軸部2の大径外周面2a及び下端面2eと円盤部3aの下側端面3a1とに研削仕上げが施される。これにより、ラジアル軸受面及びスラスト軸受面に対するディスク搭載面3d及びディスク嵌合面3eの位置精度が高精度に設定されるため、ディスクDの回転精度が高められる。   In addition, after the hub integrated shaft 9 is formed, a grinding finish may be applied to a surface that requires particularly high accuracy. In the present embodiment, the large-diameter outer peripheral surface 2a (radial bearing surface) of the shaft portion 2 is ground. In addition, the lower end surface 3a1 (thrust bearing surface) of the disk portion 3a and the lower end surface 2e of the shaft portion 2 that affects the accuracy of the thrust bearing gap may be ground. Furthermore, the disc mounting surface 3d and the disc fitting surface 3e of the hub portion 3 may be ground. In the present embodiment, first, the disk mounting surface 3d and the disk fitting surface 3e of the hub portion 3 are ground and then the ground surface is used as a reference (for example, a jig is applied to the ground surface). The large diameter outer peripheral surface 2a and the lower end surface 2e of the shaft portion 2 and the lower end surface 3a1 of the disc portion 3a are ground. Thereby, since the positional accuracy of the disk mounting surface 3d and the disk fitting surface 3e with respect to the radial bearing surface and the thrust bearing surface is set with high accuracy, the rotational accuracy of the disk D is increased.

このようにハブ一体軸9のハブ部3に研削仕上げを施す場合でも、焼結金属製のハブ部3が高い寸法精度で成形されているため、研削仕上げによる加工量が抑えられ、加工時間の短縮、及び工具コストの低減が図られる。   As described above, even when the hub portion 3 of the hub integrated shaft 9 is ground, the sintered metal hub portion 3 is formed with high dimensional accuracy. The shortening and the tool cost can be reduced.

抜け止め部材11は金属や樹脂で形成され、円盤形状のフランジ部11aと、フランジ部11aの軸心から上方に延びた固定部11bとを有する。固定部11bの外周にはネジ溝が形成され、軸部2の貫通穴2dの内周面に形成されたネジ穴の下端にネジ固定される。フランジ部11aは軸部2の大径外周面2aよりも外径に突出し、その上側端面11a1が軸部2の下端面2eと当接している。フランジ部11aは、軸受スリーブ8の下側端面8cとハウジング7の底部7bの上側端面7b1との軸方向間に配される。軸部2の下端に固定されたフランジ部11aと軸受スリーブ8とが軸方向で係合することにより、軸部2の軸受スリーブ8からの抜け止めが行われる。   The retaining member 11 is made of metal or resin, and has a disk-shaped flange portion 11a and a fixing portion 11b extending upward from the axis of the flange portion 11a. A screw groove is formed on the outer periphery of the fixing portion 11b, and is screwed to the lower end of the screw hole formed on the inner peripheral surface of the through hole 2d of the shaft portion 2. The flange portion 11 a protrudes to an outer diameter from the large-diameter outer peripheral surface 2 a of the shaft portion 2, and the upper end surface 11 a 1 is in contact with the lower end surface 2 e of the shaft portion 2. The flange portion 11 a is disposed between the lower end surface 8 c of the bearing sleeve 8 and the upper end surface 7 b 1 of the bottom portion 7 b of the housing 7 in the axial direction. The flange portion 11 a fixed to the lower end of the shaft portion 2 and the bearing sleeve 8 are engaged in the axial direction, whereby the shaft portion 2 is prevented from coming off from the bearing sleeve 8.

フランジ部11aの上側端面11a1は、スラスト軸受隙間に面するスラスト軸受面として機能する。軸部2の下端面2eは研削仕上げにより高精度な平坦面とされているため、フランジ部11aの上側端面11a1が軸部2の下端面2eの全面と良好に密着し、これにより、軸部2に対してフランジ部11aを高精度に位置決めすることができる。また、フランジ部11aの上側端面11a1と軸部2の下端面2eとを全周で密着させることにより、軸部2の貫通穴2dへの潤滑油の侵入を抑えることができるため、ハウジング7の内部に満たされた潤滑油が貫通穴2dを介して外部に漏れだす恐れを低減できる。   The upper end surface 11a1 of the flange portion 11a functions as a thrust bearing surface that faces the thrust bearing gap. Since the lower end surface 2e of the shaft portion 2 is a high-precision flat surface by grinding finish, the upper end surface 11a1 of the flange portion 11a is in good contact with the entire lower end surface 2e of the shaft portion 2, and thereby the shaft portion 2, the flange portion 11a can be positioned with high accuracy. In addition, since the upper end surface 11a1 of the flange portion 11a and the lower end surface 2e of the shaft portion 2 are brought into close contact with each other around the circumference, the penetration of the lubricating oil into the through hole 2d of the shaft portion 2 can be suppressed. The risk that the lubricating oil filled inside leaks out through the through hole 2d can be reduced.

軸受スリーブ8は、金属や樹脂で円筒状に形成され、本実施形態では、例えば銅を主成分とする焼結金属で形成される。軸受スリーブ8の内周面8aは、ラジアル軸受隙間に面するラジアル軸受面として機能する。この面には、図4に示すように、ラジアル動圧発生部として、例えば軸方向に離隔した2つの領域にヘリングボーン形状の動圧溝8a1,8a2がそれぞれ形成される(クロスハッチングは丘部)。図示例では、上側の動圧溝8a1は軸方向非対称に形成されており、具体的には、軸方向中央部mより上側の領域の軸方向寸法X1が、下側の領域の軸方向寸法X2よりも大きくなっている(X1>X2)。下側の動圧溝8a2は軸方向対称に形成されている。軸受スリーブ8の外周面8dには、軸方向溝8d1が軸方向全長にわたって形成され、例えば3本の軸方向溝8d1が円周方向に等配される。   The bearing sleeve 8 is formed in a cylindrical shape from metal or resin, and in this embodiment, is formed from a sintered metal containing copper as a main component, for example. The inner peripheral surface 8a of the bearing sleeve 8 functions as a radial bearing surface that faces the radial bearing gap. As shown in FIG. 4, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 are formed on the surface as radial dynamic pressure generating portions, for example, in two regions separated in the axial direction (cross hatching is a hill portion). ). In the illustrated example, the upper dynamic pressure groove 8a1 is formed asymmetrically in the axial direction. Specifically, the axial dimension X1 of the region above the axial center part m is the axial dimension X2 of the lower region. (X1> X2). The lower dynamic pressure groove 8a2 is formed symmetrically in the axial direction. An axial groove 8d1 is formed over the entire length in the axial direction on the outer peripheral surface 8d of the bearing sleeve 8. For example, three axial grooves 8d1 are equally arranged in the circumferential direction.

軸受スリーブ8の上側端面8b及び下側端面8cは、それぞれスラスト軸受隙間に面するスラスト軸受面として機能する。これらの面には、図5及び図6に示すように、それぞれスラスト動圧発生部として、例えばポンプインタイプのスパイラル形状の動圧溝8b1,8c1が形成される(クロスハッチングは丘部)。軸受スリーブ8の外周面8dには、軸方向溝8d1が形成される。軸方向溝8d1の本数は任意であり、例えば3本の軸方向溝8d1が円周方向等間隔に配される。   The upper end surface 8b and the lower end surface 8c of the bearing sleeve 8 each function as a thrust bearing surface that faces the thrust bearing gap. As shown in FIGS. 5 and 6, for example, pump-in type spiral dynamic pressure grooves 8b1 and 8c1 are formed on these surfaces as thrust dynamic pressure generating portions (cross hatching is a hill portion). An axial groove 8 d 1 is formed on the outer peripheral surface 8 d of the bearing sleeve 8. The number of the axial grooves 8d1 is arbitrary. For example, three axial grooves 8d1 are arranged at equal intervals in the circumferential direction.

ハウジング7は、金属や樹脂で形成され、本実施形態では例えば樹脂の射出成形で形成される。ハウジング7は、図2に示すように、側部7a及び底部7bを一体に有する有底円筒状に形成される。側部7aの内周面7a1は、ストレートな円筒面状に形成される。側部7aの外周面の上端には、図2に示すように、上方に向かって漸次拡径するテーパ状のシール面7a3が形成される。このシール面7a3は、ハブ部3の円筒部3bの内周面3b1との間に、上方に向けて半径方向寸法が漸次縮小した環状のシール空間Sを形成する。シール空間Sは、ハブ一体軸9の回転時、ハブ部3の円盤部3aの下側端面3a1とハウジング7の上端面7a2との間の隙間を介して、第1のスラスト軸受部T1のスラスト軸受隙間の外径側、及び、軸方向溝8d1の上端と連通している。このシール空間Sの毛細管力により、ハウジング7の内部に充満された潤滑油の漏れ出しを防止する。   The housing 7 is formed of metal or resin, and in this embodiment, is formed by, for example, resin injection molding. As shown in FIG. 2, the housing 7 is formed in a bottomed cylindrical shape integrally having a side portion 7a and a bottom portion 7b. The inner peripheral surface 7a1 of the side portion 7a is formed in a straight cylindrical surface shape. At the upper end of the outer peripheral surface of the side portion 7a, as shown in FIG. 2, a tapered seal surface 7a3 that gradually increases in diameter upward is formed. The seal surface 7a3 forms an annular seal space S whose radial dimension is gradually reduced upward, between the seal surface 7a3 and the inner peripheral surface 3b1 of the cylindrical portion 3b of the hub portion 3. When the hub integrated shaft 9 is rotated, the seal space S is provided through a gap between the lower end surface 3a1 of the disk portion 3a of the hub portion 3 and the upper end surface 7a2 of the housing 7, so that the thrust of the first thrust bearing portion T1. It communicates with the outer diameter side of the bearing gap and the upper end of the axial groove 8d1. The capillary force of the seal space S prevents the lubricating oil filled in the housing 7 from leaking out.

上記の部材からなる流体動圧軸受装置1は、以下のようにして組み立てることができる。まず、軸受スリーブ8の内周にハブ一体軸9の軸部2を挿入し、この状態で軸部2の貫通穴2dの下端に抜け止め部材11の固定部11bをネジ固定して仮アッシ品を構成する。このとき、フランジ部11aの上側端面11a1と軸部2の下端面2eとを当接させることにより、フランジ部11aの軸部2に対する位置決めが行われる。この仮アッシ品の状態で、ハブ部3の円盤部3aの下側端面3a1とフランジ部11aの上側端面11a1との間の軸方向寸法L2(図2参照)が決定されるため、この軸方向寸法L2と、軸受スリーブ8の両端面8b,8c間の軸方向寸法L1との差(L2−L1)により、第1及び第2スラスト軸受部T1,T2のスラスト軸受隙間の合計量が設定される。   The fluid dynamic bearing device 1 composed of the above-described members can be assembled as follows. First, the shaft portion 2 of the hub integrated shaft 9 is inserted into the inner periphery of the bearing sleeve 8, and in this state, the fixing portion 11 b of the retaining member 11 is fixed to the lower end of the through hole 2 d of the shaft portion 2 with a temporary assembly product. Configure. At this time, positioning of the flange portion 11a with respect to the shaft portion 2 is performed by bringing the upper end surface 11a1 of the flange portion 11a into contact with the lower end surface 2e of the shaft portion 2. Since the axial dimension L2 (see FIG. 2) between the lower end surface 3a1 of the disk portion 3a of the hub portion 3 and the upper end surface 11a1 of the flange portion 11a is determined in the state of this temporary assembly, this axial direction The total amount of the thrust bearing gaps of the first and second thrust bearing portions T1, T2 is set by the difference (L2-L1) between the dimension L2 and the axial dimension L1 between the both end faces 8b, 8c of the bearing sleeve 8. The

このとき、ハブ一体軸9の軸部2の下端面2e及びハブ部3の円盤部3aの下側端面3a1が、何れもディスク搭載面3dを基準として研削仕上げが施されているため、これらの間の軸方向寸法は高精度に設定されている。従って、軸部2の下端面2eにフランジ部11aの上側端面11a1を当接させることで、フランジ部11aの上側端面11a1とハブ部3の円盤部3aの下側端面3a1との軸方向寸法L2が高精度に設定される。一方、軸受スリーブ8は、成形性に優れた焼結金属で形成されるため、両端面8b,8cの間の軸方向寸法L1は高精度に設定される。従って、これらの軸方向寸法の差(L2−L1)で設定される第1及び第2スラスト軸受部T1,T2のスラスト軸受隙間の合計量が高精度に設定される。   At this time, since the lower end surface 2e of the shaft portion 2 of the hub integrated shaft 9 and the lower end surface 3a1 of the disk portion 3a of the hub portion 3 are both ground and finished with reference to the disk mounting surface 3d, these The axial dimension between them is set with high accuracy. Accordingly, by bringing the upper end surface 11a1 of the flange portion 11a into contact with the lower end surface 2e of the shaft portion 2, the axial dimension L2 between the upper end surface 11a1 of the flange portion 11a and the lower end surface 3a1 of the disk portion 3a of the hub portion 3 is determined. Is set with high accuracy. On the other hand, since the bearing sleeve 8 is formed of a sintered metal having excellent formability, the axial dimension L1 between the both end faces 8b and 8c is set with high accuracy. Therefore, the total amount of the thrust bearing gaps of the first and second thrust bearing portions T1 and T2 set by the difference between these axial dimensions (L2−L1) is set with high accuracy.

こうして、スラスト軸受隙間が設定された仮アッシ品の軸受スリーブ8をハウジング7の内周に挿入し、軸受スリーブ8の外周面8dをハウジング7の内周面7a1に隙間接着、圧入、接着剤介在下の圧入等により固定する。そして、軸受スリーブ8の内部気孔を含めたハウジング7の内部の空間に潤滑油を充満させることにより、図2に示す流体動圧軸受装置1が完成する。このとき、油面はシール空間Sの内部に保持される。   Thus, the temporary assembly bearing sleeve 8 in which the thrust bearing clearance is set is inserted into the inner periphery of the housing 7, and the outer peripheral surface 8 d of the bearing sleeve 8 is bonded to the inner peripheral surface 7 a 1 of the housing 7 with clearance, press-fit, and adhesive interposed. Fix by press fitting below. Then, the fluid dynamic bearing device 1 shown in FIG. 2 is completed by filling the space inside the housing 7 including the internal pores of the bearing sleeve 8 with the lubricating oil. At this time, the oil level is held inside the seal space S.

ハブ一体軸9が回転すると、軸受スリーブ8の内周面8aと軸部2の大径外周面2aとの間にラジアル軸受隙間が形成されると共に、ラジアル動圧発生部(動圧溝8a1,8a2)により上記ラジアル軸受隙間に満たされた潤滑油の圧力が高められ、この圧力(動圧作用)によりハブ一体軸9をラジアル方向に回転自在に非接触支持するラジアル軸受部R1,R2が構成される。   When the hub integrated shaft 9 rotates, a radial bearing gap is formed between the inner peripheral surface 8a of the bearing sleeve 8 and the large-diameter outer peripheral surface 2a of the shaft portion 2, and a radial dynamic pressure generating portion (dynamic pressure groove 8a1, 8a2) increases the pressure of the lubricating oil filled in the radial bearing gap, and this pressure (dynamic pressure action) constitutes radial bearing portions R1 and R2 that support the hub integrated shaft 9 in a non-contact manner so as to be rotatable in the radial direction. Is done.

これと同時に、ハブ部3の円盤部3aの下側端面3a1と軸受スリーブ8の上側端面8bとの間、及び、フランジ部11aの上側端面11a1と軸受スリーブ8の下側端面8cとの間にそれぞれスラスト軸受隙間が形成されると共に、スラスト動圧発生部(動圧溝8b1,8c1)により各スラスト軸受隙間に満たされた潤滑油の圧力が高められ、この圧力(動圧作用)によりハブ一体軸9をスラスト方向一方(持ち上げる方向)に回転自在に非接触支持する第1のスラスト軸受部T1と、ハブ一体軸9をスラスト方向他方(押し下げる方向)に回転自在に非接触支持する第2のスラスト軸受部T2とが構成される。   At the same time, between the lower end surface 3a1 of the disk portion 3a of the hub portion 3 and the upper end surface 8b of the bearing sleeve 8, and between the upper end surface 11a1 of the flange portion 11a and the lower end surface 8c of the bearing sleeve 8. Each thrust bearing gap is formed, and the thrust dynamic pressure generating portion (dynamic pressure grooves 8b1, 8c1) increases the pressure of the lubricating oil filled in each thrust bearing gap, and this pressure (dynamic pressure action) integrates the hub. A first thrust bearing portion T1 that supports the shaft 9 in a non-contact manner so as to be rotatable in one of the thrust directions (lifting direction), and a second thrust member that supports the hub-integrated shaft 9 in a non-contact manner so as to be freely rotatable in the other thrust direction (the pushing-down direction). And a thrust bearing portion T2.

このとき、軸受スリーブ8が焼結金属で形成されているため、軸受スリーブ8の内部気孔に含浸された潤滑油が内周面8a及び上下端面8b,8cからラジアル軸受隙間及びスラスト軸受隙間に供給され、ラジアル軸受部R1,R2及びスラスト軸受部T1,T2における潤滑性が高められる。また、ハブ部3が焼結金属で形成されているため、ハブ部3の内部気孔に含浸された潤滑油がスラスト軸受隙間に供給される。尚、たとえハブ部3の表面に封孔処理が施されている場合でも、通常、ハブ部3の表面は完全に平滑化されることはなく、表面に無数の微小凹部が形成されるため、この微小凹部に保持された潤滑油がスラスト軸受隙間に供給される。これにより、第1スラスト軸受部T1における潤滑性がより一層高められ、ハブ部3及び軸受部材(本実施形態では軸受スリーブ8)の耐摩耗性や耐焼き付き性がさらに向上する。特に、ハブ部3に加わる下向きの負荷が大きい場合(例えば複数枚のディスクDが搭載される場合)は、上記のように第1スラスト軸受部T1のスラスト軸受隙間を介して対向するハブ部3及び軸受スリーブ8を何れも焼結金属製として潤滑性を高めることが有効となる。   At this time, since the bearing sleeve 8 is formed of sintered metal, the lubricating oil impregnated in the internal pores of the bearing sleeve 8 is supplied from the inner peripheral surface 8a and the upper and lower end surfaces 8b and 8c to the radial bearing gap and the thrust bearing gap. Thus, the lubricity in the radial bearing portions R1, R2 and the thrust bearing portions T1, T2 is improved. Further, since the hub portion 3 is formed of sintered metal, the lubricating oil impregnated in the internal pores of the hub portion 3 is supplied to the thrust bearing gap. Even if the surface of the hub part 3 is subjected to sealing treatment, the surface of the hub part 3 is usually not completely smoothed, and innumerable minute recesses are formed on the surface. Lubricating oil held in the minute recesses is supplied to the thrust bearing gap. Thereby, the lubricity in the first thrust bearing portion T1 is further enhanced, and the wear resistance and seizure resistance of the hub portion 3 and the bearing member (the bearing sleeve 8 in the present embodiment) are further improved. In particular, when a downward load applied to the hub portion 3 is large (for example, when a plurality of discs D are mounted), the hub portion 3 that faces the thrust bearing gap of the first thrust bearing portion T1 as described above. It is effective to increase the lubricity by making the bearing sleeve 8 both made of sintered metal.

また、軸受スリーブ8の外周面8dに形成された軸方向溝8d1により、潤滑油が流通可能な連通路が形成される。この連通路により、ハウジング7の内部に満たされた潤滑油に局部的な負圧が発生する事態を防止できる。特に本実施形態では、図3に示すように、軸受スリーブ8の内周面8aに形成された上側の動圧溝8a1が軸方向非対称な形状に形成されているため、ハブ一体軸9の回転に伴ってラジアル軸受隙間の潤滑油が下方に押し込まれ、上記の連通路を介して潤滑油が循環し、これにより局部的な負圧の発生を確実に防止できる。   The axial groove 8d1 formed in the outer peripheral surface 8d of the bearing sleeve 8 forms a communication path through which lubricating oil can flow. This communication path can prevent a local negative pressure from being generated in the lubricating oil filled in the housing 7. In particular, in the present embodiment, as shown in FIG. 3, the upper dynamic pressure groove 8a1 formed in the inner peripheral surface 8a of the bearing sleeve 8 is formed in an axially asymmetric shape, so that the rotation of the hub integrated shaft 9 is performed. Along with this, the lubricating oil in the radial bearing gap is pushed downward, and the lubricating oil circulates through the communication path, thereby reliably preventing the generation of local negative pressure.

本発明は、上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と同様の機能を有する箇所には同一の符号を付して重複説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, although other embodiment of this invention is described, the same code | symbol is attached | subjected to the location which has the same function as said embodiment, and duplication description is abbreviate | omitted.

上記の実施形態では、軸部2が溶製材の機械加工で形成された場合を示したが、これに限らず、例えば図7に示すように、軸部2を、ハブ部3とは別体の焼結金属品としてもよい。この場合、まず、ハブ部3と同一形状のハブ圧粉体3’を形成し(図7(a)参照)、このハブ圧粉体3’の内周面3a3’に、軸部2と同一形状の軸圧粉体2’の小径外周面2b’を圧入すると共に、ハブ圧粉体3’の円盤部3a’の下側端面3a1’を軸圧粉体2’の肩面2c’に当接させて一体化する(図7(b)参照)。この一体品を焼結することにより(図7(c)参照)、軸圧粉体2’及びハブ圧粉体3’が焼結されて軸部2及びハブ部3が形成されると同時に、軸部2の小径外周面2bとハブ部3の内周面3a3とが拡散接合により固定される(図7(d)参照))。軸部2及びハブ部3は、それぞれに要求される特性を満たす焼結材料で形成することができる。例えば、軸部2を銅を主成分とする焼結金属で形成し、ハブ部3を鉄を主成分とする焼結金属で形成することができる。これに限らず、軸部2及びハブ部3を同じ材料で形成してもよい。   In the above embodiment, the case where the shaft portion 2 is formed by machining of the molten material is shown. However, the present invention is not limited thereto, and the shaft portion 2 is separated from the hub portion 3 as shown in FIG. It may be a sintered metal product. In this case, first, a hub compact 3 ′ having the same shape as the hub portion 3 is formed (see FIG. 7A), and the same as the shaft portion 2 is formed on the inner peripheral surface 3a3 ′ of the hub compact 3 ′. The small-diameter outer peripheral surface 2b ′ of the shaped axial compact 2 ′ is press-fitted, and the lower end surface 3a1 ′ of the disk portion 3a ′ of the hub compact 3 ′ is brought into contact with the shoulder surface 2c ′ of the axial compact 2 ′. They are brought into contact with each other (see FIG. 7B). By sintering this integrated product (see FIG. 7C), the shaft compact 2 'and the hub compact 3' are sintered to form the shaft 2 and the hub 3 simultaneously. The small-diameter outer peripheral surface 2b of the shaft portion 2 and the inner peripheral surface 3a3 of the hub portion 3 are fixed by diffusion bonding (see FIG. 7 (d)). The shaft portion 2 and the hub portion 3 can be formed of a sintered material that satisfies the characteristics required for each. For example, the shaft portion 2 can be formed of a sintered metal whose main component is copper, and the hub portion 3 can be formed of a sintered metal whose main component is iron. Not limited to this, the shaft portion 2 and the hub portion 3 may be formed of the same material.

また、上記の実施形態では、焼結していないハブ圧粉体3’に軸部2を圧入し(図3参照)、あるいは焼結していない圧粉体3’に焼結していない軸圧粉体2’を圧入している(図7参照)が、これに限られない。例えば、ハブ圧粉体3’や軸圧粉体2’を仮焼結して強度を高めてから圧入して一体化し、この一体品をさらに焼結してもよい(図示省略)。   In the above embodiment, the shaft portion 2 is press-fitted into the unsintered hub green compact 3 ′ (see FIG. 3), or the shaft is not sintered into the non-sintered green compact 3 ′. The green compact 2 ′ is press-fitted (see FIG. 7), but is not limited thereto. For example, the hub green compact 3 ′ and the shaft green compact 2 ′ may be pre-sintered to increase the strength and then press-fitted and integrated, and the integrated product may be further sintered (not shown).

また、上記の実施形態では、ハブ一体軸9の軸部2とハブ部3とを別体に形成しているが、これに限らず、例えば図8に示すように、軸部2とハブ部3とを焼結金属で一体成形してもよい。この場合、ハブ一体軸9の軸部2及びハブ部3と同一形状の軸部2’及びハブ部3’を有する圧粉体9’を形成し(図8(a)参照)、この圧粉体9’を焼結することにより(図8(b)参照)、軸部2及びハブ部3を有する焼結金属製のハブ一体軸9が一体成形される(図7(d)参照))。この場合、軸部2及びハブ部3は同一材料で形成されるため、必要に応じて、ハブ一体軸9に表面硬化処理やコーティング処理を施してもよい。例えば、軸部2の大径外周面2a(ラジアル軸受面)や、ハブ部3の円盤部3aの下側端面3a1(スラスト軸受面)に、表面硬化処理等を施してもよい。   In the above-described embodiment, the shaft portion 2 and the hub portion 3 of the hub integrated shaft 9 are formed separately. However, the present invention is not limited to this. For example, as shown in FIG. 3 may be integrally formed of sintered metal. In this case, a green compact 9 ′ having a shaft portion 2 ′ and a hub portion 3 ′ having the same shape as the shaft portion 2 and the hub portion 3 of the hub integrated shaft 9 is formed (see FIG. 8A). By sintering the body 9 '(see FIG. 8 (b)), the sintered metal hub integrated shaft 9 having the shaft portion 2 and the hub portion 3 is integrally formed (see FIG. 7 (d)). . In this case, since the shaft portion 2 and the hub portion 3 are formed of the same material, the hub integrated shaft 9 may be subjected to surface hardening treatment or coating treatment as necessary. For example, surface hardening treatment or the like may be applied to the large-diameter outer peripheral surface 2a (radial bearing surface) of the shaft portion 2 or the lower end surface 3a1 (thrust bearing surface) of the disk portion 3a of the hub portion 3.

また、上記の実施形態では、ラジアル動圧発生部(動圧溝8a1,8a2)が軸受スリーブ8の内周面8aに形成される場合を示したが、これに限らず、例えば軸部2の大径外周面2aにラジアル動圧発生部を形成してもよい(図示省略)。特に、図7や図8に示すように軸部2を焼結金属で形成する場合、ラジアル動圧発生部を転造加工で形成すれば、転造をしたときの軸部2の材料の塑性流動を焼結金属の内部気孔で吸収することができるため、軸部2の大径外周面2aが盛り上がらず、ラジアル動圧発生部を精度よく形成することができる。   In the above-described embodiment, the case where the radial dynamic pressure generating portions (dynamic pressure grooves 8a1 and 8a2) are formed on the inner peripheral surface 8a of the bearing sleeve 8 is shown. A radial dynamic pressure generator may be formed on the large-diameter outer peripheral surface 2a (not shown). In particular, when the shaft portion 2 is formed of a sintered metal as shown in FIGS. 7 and 8, if the radial dynamic pressure generating portion is formed by rolling, the plasticity of the material of the shaft portion 2 when rolled. Since the flow can be absorbed by the internal pores of the sintered metal, the large-diameter outer peripheral surface 2a of the shaft portion 2 does not rise, and the radial dynamic pressure generating portion can be accurately formed.

また、上記の実施形態では、ラジアル動圧発生部としてヘリングボーン形状の動圧溝8a1,8a2が形成されているが、これに限らず、スパイラル形状等の他の動圧溝、多円弧軸受、ステップ軸受などでラジアル動圧発生部を構成してもよい。あるいは、ラジアル動圧発生部を設けず、軸部2の大径外周面2a及び軸受スリーブ8の内周面8aをいずれも平滑な円筒面としてもよい。   In the above embodiment, the herringbone-shaped dynamic pressure grooves 8a1 and 8a2 are formed as the radial dynamic pressure generating portion. However, the present invention is not limited to this, and other dynamic pressure grooves such as a spiral shape, a multi-arc bearing, The radial dynamic pressure generating unit may be configured by a step bearing or the like. Alternatively, the radial dynamic pressure generating portion is not provided, and the large-diameter outer peripheral surface 2a of the shaft portion 2 and the inner peripheral surface 8a of the bearing sleeve 8 may both be smooth cylindrical surfaces.

また、上記の実施形態では、スラスト動圧発生部(動圧溝8b1,8c1)が軸受スリーブ8の上側端面8b及び下側端面8cに形成されているが、これに限らず、これらとスラスト軸受隙間を介して対向するハブ部3の円盤部3aの下側端面3a1や、抜け止め部材11のフランジ部11aの上側端面11a1にスラスト動圧発生部を形成してもよい。   Further, in the above embodiment, the thrust dynamic pressure generating portions (dynamic pressure grooves 8b1 and 8c1) are formed on the upper end surface 8b and the lower end surface 8c of the bearing sleeve 8. A thrust dynamic pressure generating portion may be formed on the lower end surface 3a1 of the disk portion 3a of the hub portion 3 and the upper end surface 11a1 of the flange portion 11a of the retaining member 11 that are opposed to each other via a gap.

また、上記の実施形態では、スラスト動圧発生部としてスパイラル形状の動圧溝8b1,8c1で形成されているが、これに限らず、ヘリングボーン形状の動圧溝やステップ軸受などでスラスト動圧発生部を構成してもよい。   In the above-described embodiment, the spiral dynamic pressure grooves 8b1 and 8c1 are formed as the thrust dynamic pressure generating portion. However, the present invention is not limited to this, and the thrust dynamic pressure is generated by a herringbone-shaped dynamic pressure groove or a step bearing. You may comprise a generating part.

また、上記の実施形態では、潤滑流体が潤滑油である場合を示しているが、これに限らず、例えば磁性流体や空気等の流体を使用することも可能である。   In the above embodiment, the lubricating fluid is a lubricating oil. However, the present invention is not limited to this. For example, a fluid such as a magnetic fluid or air can be used.

また、上記の実施形態では、本発明に係るハブ一体軸9をHDD用スピンドルモータの流体動圧軸受装置に組み込んだ例を示しているが、これに限られない。例えば、CDやDVD等の光ディスク用スピンドルモータの流体動圧軸受装置や、ポリゴンスキャナモータの流体動圧軸受装置、あるいはカラーホイールモータの流体動圧軸受装置に本発明のハブ一体軸を適用することもできる。   In the above embodiment, the hub integrated shaft 9 according to the present invention is incorporated in the fluid dynamic bearing device of the HDD spindle motor. However, the present invention is not limited to this. For example, the hub integrated shaft of the present invention is applied to a fluid dynamic pressure bearing device of a spindle motor for optical disks such as CD and DVD, a fluid dynamic pressure bearing device of a polygon scanner motor, or a fluid dynamic pressure bearing device of a color wheel motor. You can also.

1 流体動圧軸受装置
2 軸部
2’ 軸圧粉体
3 ハブ部
3’ ハブ圧粉体
4 ステータコイル
5 ロータマグネット
6 ブラケット
7 ハウジング
8 軸受スリーブ
9 ハブ一体軸
9’ 圧粉体
10 ヨーク
11 抜け止め部材
D ディスク
R1,R2 ラジアル軸受部
T1,T2 スラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1 Fluid dynamic pressure bearing apparatus 2 Shaft part 2 'Shaft compact 3 Hub part 3' Hub compact 4 Stator coil 5 Rotor magnet 6 Bracket 7 Housing 8 Bearing sleeve 9 Hub integrated shaft 9 'Compact 10 Yoke 11 Removal Stopping member D Disc R1, R2 Radial bearing portion T1, T2 Thrust bearing portion S Seal space

Claims (13)

軸部と、前記軸部から外径に突出して設けられ、軸方向と直交する回転体搭載面を有するハブ部とを備え、前記軸部の外周面がラジアル軸受隙間に面する流体動圧軸受装置用のハブ一体軸であって、
少なくとも前記ハブ部が焼結金属で形成されたことを特徴とするハブ一体軸。
A fluid dynamic pressure bearing comprising: a shaft portion; and a hub portion provided to protrude from the shaft portion to an outer diameter and having a rotating body mounting surface orthogonal to the axial direction, wherein an outer peripheral surface of the shaft portion faces a radial bearing gap A hub integrated shaft for the device,
A hub-integrated shaft, wherein at least the hub portion is formed of sintered metal.
前記軸部と前記ハブ部とが焼結拡散接合により固定された請求項1のハブ一体軸。   The hub integrated shaft according to claim 1, wherein the shaft portion and the hub portion are fixed by sintered diffusion bonding. 前記軸部を機械加工品とした請求項2のハブ一体軸。   The hub integrated shaft according to claim 2, wherein the shaft portion is a machined product. 前記軸部を、前記ハブ部とは別体の焼結金属品とした請求項2のハブ一体軸。   The hub integrated shaft according to claim 2, wherein the shaft portion is a sintered metal product separate from the hub portion. 前記軸部及び前記ハブ部が焼結金属で一体成形された請求項1のハブ一体軸。   The hub integrated shaft according to claim 1, wherein the shaft portion and the hub portion are integrally formed of sintered metal. 前記ハブ部の端面がスラスト軸受隙間に面する請求項1〜5何れかのハブ一体軸。   The hub integrated shaft according to any one of claims 1 to 5, wherein an end surface of the hub portion faces a thrust bearing gap. 少なくとも前記軸部の外周面に研削仕上げが施された請求項1〜6何れかのハブ一体軸。   The hub integrated shaft according to claim 1, wherein at least an outer peripheral surface of the shaft portion is ground. 前記ハブ部の回転体搭載面を基準として、前記軸部の外周面に研削仕上げが施された請求項7のハブ一体軸。   The hub integrated shaft according to claim 7, wherein the outer peripheral surface of the shaft portion is ground with respect to the rotating body mounting surface of the hub portion. 前記軸部の外周面に、ラジアル軸受隙間の潤滑流体に動圧作用を発生させるラジアル動圧発生部が形成された請求項1〜8何れかのハブ一体軸。   The hub integrated shaft according to any one of claims 1 to 8, wherein a radial dynamic pressure generating portion for generating a dynamic pressure action in a lubricating fluid in a radial bearing gap is formed on an outer peripheral surface of the shaft portion. 前記軸部の外周面に、ラジアル軸受隙間の潤滑流体に動圧作用を発生させるラジアル動圧発生部が転造加工により形成された請求項4または5のハブ一体軸。   The hub integrated shaft according to claim 4 or 5, wherein a radial dynamic pressure generating portion for generating a dynamic pressure action in the lubricating fluid in the radial bearing gap is formed on the outer peripheral surface of the shaft portion by rolling. 請求項1〜10何れかのハブ一体軸と、前記ハブ一体軸の軸部が挿入される軸受部材と、前記軸部の外周面と前記軸受部材の内周面との間のラジアル軸受隙間に生じる潤滑流体の動圧作用で前記軸部を相対回転可能に支持するラジアル軸受部とを備えた流体動圧軸受装置。   A hub integrated shaft according to any one of claims 1 to 10, a bearing member into which a shaft portion of the hub integrated shaft is inserted, and a radial bearing gap between an outer peripheral surface of the shaft portion and an inner peripheral surface of the bearing member. A fluid dynamic pressure bearing device comprising a radial bearing portion that supports the shaft portion so as to be relatively rotatable by the dynamic pressure action of the generated lubricating fluid. 請求項11の流体動圧軸受装置を備えたHDD用スピンドルモータ。   A spindle motor for HDD comprising the fluid dynamic bearing device according to claim 11. 請求項11の流体動圧軸受装置を備えた光ディスク用スピンドルモータ。   An optical disk spindle motor comprising the fluid dynamic bearing device according to claim 11.
JP2011092034A 2011-04-18 2011-04-18 Hub-integrated shaft, fluid dynamic pressure bearing device including same, and spindle motor Withdrawn JP2012225385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011092034A JP2012225385A (en) 2011-04-18 2011-04-18 Hub-integrated shaft, fluid dynamic pressure bearing device including same, and spindle motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011092034A JP2012225385A (en) 2011-04-18 2011-04-18 Hub-integrated shaft, fluid dynamic pressure bearing device including same, and spindle motor

Publications (1)

Publication Number Publication Date
JP2012225385A true JP2012225385A (en) 2012-11-15

Family

ID=47275785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011092034A Withdrawn JP2012225385A (en) 2011-04-18 2011-04-18 Hub-integrated shaft, fluid dynamic pressure bearing device including same, and spindle motor

Country Status (1)

Country Link
JP (1) JP2012225385A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014321A (en) * 2013-07-05 2015-01-22 日本電産株式会社 Bearing mechanism, motor and blower fan

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014321A (en) * 2013-07-05 2015-01-22 日本電産株式会社 Bearing mechanism, motor and blower fan

Similar Documents

Publication Publication Date Title
US7647690B2 (en) Manufacturing method of bearing member and manufacturing method of sleeve unit
US8113715B2 (en) Fluid dynamic bearing device
JP3893021B2 (en) Hydrodynamic bearing unit
JP3981564B2 (en) Hydrodynamic bearing device and manufacturing method thereof
US8876385B2 (en) Bearing member and fluid dynamic bearing device using same
US8578610B2 (en) Method for manufacturing fluid dynamic bearing device
JP6422755B2 (en) Fluid dynamic bearing device and motor including the same
JP2012247052A (en) Fluid dynamic pressure bearing device
JP2012225385A (en) Hub-integrated shaft, fluid dynamic pressure bearing device including same, and spindle motor
JP4226559B2 (en) Method for manufacturing hydrodynamic bearing device
JP5726687B2 (en) Fluid dynamic bearing device
JP2009228873A (en) Fluid bearing device
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP2008144847A (en) Dynamic pressure bearing device
JP5784777B2 (en) Fluid dynamic bearing device
JP2012031969A (en) Hub integrated shaft for fluid dynamic pressure bearing device, and method for manufacturing the same
JP4642416B2 (en) Manufacturing method of shaft member for hydrodynamic bearing device
JP2013053692A (en) Fluid dynamic pressure bearing device and method of manufacturing the same
JP4554324B2 (en) Hydrodynamic bearing device
JP4832736B2 (en) Hydrodynamic bearing unit
JP2012107645A (en) Fluid dynamic bearing device and method of manufacturing the same
JP4498932B2 (en) Hydrodynamic bearing device
JP2012197931A (en) Fluid dynamic pressure bearing device and method for manufacturing thereof
JP5602535B2 (en) Fluid dynamic bearing device
JP2007016849A (en) Dynamic pressure bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701