JP2012107645A - Fluid dynamic bearing device and method of manufacturing the same - Google Patents

Fluid dynamic bearing device and method of manufacturing the same Download PDF

Info

Publication number
JP2012107645A
JP2012107645A JP2010254933A JP2010254933A JP2012107645A JP 2012107645 A JP2012107645 A JP 2012107645A JP 2010254933 A JP2010254933 A JP 2010254933A JP 2010254933 A JP2010254933 A JP 2010254933A JP 2012107645 A JP2012107645 A JP 2012107645A
Authority
JP
Japan
Prior art keywords
shaft
end surface
shaft portion
hub
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010254933A
Other languages
Japanese (ja)
Inventor
Atsushi Hiraide
淳 平出
Natsuhiko Mori
夏比古 森
Nobuyoshi Yamashita
信好 山下
Hidekazu Hirano
秀和 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2010254933A priority Critical patent/JP2012107645A/en
Publication of JP2012107645A publication Critical patent/JP2012107645A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluid dynamic bearing device which is high in rigidity and has a hub-integrated shaft in which a flange is accurately fixed to a shaft part.SOLUTION: The hub-integrated shaft 9 is formed of metal, the lower end face 2c of the shaft part 2 is ground, and the shaft part 2 and the flange 11a are fixed to each other in a state that the ground lower end face 2c of the shaft part 2 is made to abut on the upper-side end face 11a1 of the flange 11a.

Description

本発明は、流体動圧軸受装置及びその製造方法に関する。   The present invention relates to a fluid dynamic bearing device and a manufacturing method thereof.

流体動圧軸受装置は、軸受部材の内周面と軸部の外周面との間のラジアル軸受隙間に生じる潤滑油の動圧作用により、軸部を相対回転自在に支持するものである。流体動圧軸受装置は、優れた回転精度および静粛性を有するため、例えば、各種ディスク駆動装置(HDDの磁気ディスク駆動装置や、CD−ROM等の光ディスク駆動装置等)のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ用、あるいはプロジェクタのカラーホイールモータ用として好適に使用されている。   The fluid dynamic pressure bearing device supports a shaft portion so as to be relatively rotatable by a dynamic pressure action of lubricating oil generated in a radial bearing gap between an inner peripheral surface of a bearing member and an outer peripheral surface of the shaft portion. Since the fluid dynamic bearing device has excellent rotational accuracy and quietness, for example, for spindle motors of various disk drive devices (such as HDD magnetic disk drive devices and CD-ROM optical disk drive devices), laser beams, etc. It is suitably used for a polygon scanner motor of a printer (LBP) or a color wheel motor of a projector.

例えば特許文献1に示されている流体動圧軸受装置は、軸部、及び、軸部の一端から外径に突出したハブ部とを一体に有する樹脂製のハブ一体軸と、軸部の他端に固定されたフランジ部と、内周に軸部が挿入された軸受部材(軸受スリーブ及びハウジング)とを備える。ハブ部には、ディスク搭載面が形成される。ハブ一体軸が回転すると、軸部の外周面と軸受部材の内周面との間にラジアル軸受隙間が形成されると共に、ハウジングの上端面とハブ部の下側端面との間、及び、フランジ部の上端面と軸受スリーブの下端面との間にそれぞれスラスト軸受隙間が形成され、これらのラジアル軸受隙間及びスラスト軸受隙間の油膜に生じる動圧作用で、ハブ一体軸が回転自在に支持される。   For example, a fluid dynamic pressure bearing device disclosed in Patent Document 1 includes a resin-integrated hub integrated shaft integrally including a shaft portion and a hub portion projecting from one end of the shaft portion to an outer diameter, and other shaft portions. A flange portion fixed to the end, and a bearing member (bearing sleeve and housing) having a shaft portion inserted in the inner periphery thereof are provided. A disk mounting surface is formed in the hub portion. When the hub integrated shaft rotates, a radial bearing gap is formed between the outer peripheral surface of the shaft portion and the inner peripheral surface of the bearing member, and between the upper end surface of the housing and the lower end surface of the hub portion, and the flange Thrust bearing gaps are formed between the upper end surface of the bearing and the lower end surface of the bearing sleeve, and the hub integrated shaft is rotatably supported by the dynamic pressure action generated in the oil film in the radial bearing gap and the thrust bearing gap. .

特開2007−263168号公報JP 2007-263168 A

しかし、上記の流体動圧軸受装置では、ハブ一体軸が樹脂で形成されているため、十分な強度が得られない恐れがある。特に、HDDのディスク駆動装置に組み込まれる流体動圧軸受装置では、HDDの高容量化の要求に応えるべくハブ部に複数枚のディスクが搭載されることもあり、樹脂製のハブ一体軸では搭載されるのディスクの負荷に耐えられない恐れがある。   However, in the above fluid dynamic bearing device, since the hub integrated shaft is formed of resin, there is a possibility that sufficient strength cannot be obtained. In particular, in a fluid dynamic pressure bearing device incorporated in a disk drive device of an HDD, a plurality of disks may be mounted on the hub portion to meet the demand for higher capacity of the HDD. There is a risk that it will not be able to withstand the load of the disk.

また、上記のようにハブ部と軸部とを一体に形成した場合、ハブ部とフランジ部との軸方向間に軸受部材を配するために、別途形成したフランジ部を軸部の端部に固定する必要がある。このとき、フランジ部の軸部に対する相対的な位置決め精度(例えば直角度)が悪いと、フランジ部が軸方向に振れながら回転するため、回転トルクの増大を招く恐れがある。特に、フランジ部がスラスト軸受隙間に面する場合、フランジ部に振れまわりが生じるとスラスト方向の支持力が低下する恐れがある。このため、フランジ部は軸部に対して精度良く固定する必要がある。   In addition, when the hub portion and the shaft portion are integrally formed as described above, in order to place the bearing member between the hub portion and the flange portion in the axial direction, a separately formed flange portion is provided at the end portion of the shaft portion. Need to be fixed. At this time, if the relative positioning accuracy (for example, squareness) of the flange portion relative to the shaft portion is poor, the flange portion rotates while swinging in the axial direction, which may increase the rotational torque. In particular, when the flange portion faces the thrust bearing gap, if the runout occurs in the flange portion, the supporting force in the thrust direction may be reduced. For this reason, it is necessary to fix the flange portion to the shaft portion with high accuracy.

本発明の解決すべき課題は、高強度なハブ一体軸を有し、且つ、ハブ一体軸の軸部に対してフランジ部が高精度に固定された流体動圧軸受装置を提供することにある。   The problem to be solved by the present invention is to provide a fluid dynamic bearing device having a high-strength hub integrated shaft and a flange portion fixed to the shaft portion of the hub integrated shaft with high accuracy. .

前記課題を解決するためになされた本発明は、軸部、及び、軸部の一端から外径に突出し、軸方向と直交する回転体搭載面が形成されたハブ部とを一体に有する金属製のハブ一体軸と、軸部の他端に固定されたフランジ部と、内周に軸部が挿入された軸受部材と、軸部の外周面と軸受部材の内周面との間のラジアル軸受隙間に生じる潤滑流体の動圧作用で軸部をラジアル方向に支持するラジアル軸受部とを備えた流体動圧軸受装置において、軸部の他端面が研削された面であり、この他端面とフランジ部の一端面とを当接させた流体動圧軸受装置を提供する。   The present invention made in order to solve the above-mentioned problems is a metal part integrally including a shaft part and a hub part that protrudes from one end of the shaft part to the outer diameter and is formed with a rotating body mounting surface orthogonal to the axial direction. Hub integrated shaft, a flange portion fixed to the other end of the shaft portion, a bearing member having the shaft portion inserted into the inner periphery, and a radial bearing between the outer peripheral surface of the shaft portion and the inner peripheral surface of the bearing member In a fluid dynamic pressure bearing device including a radial bearing portion that supports a shaft portion in a radial direction by a dynamic pressure action of a lubricating fluid generated in a gap, the other end surface of the shaft portion is a ground surface, and the other end surface and the flange Provided is a fluid dynamic bearing device in which one end surface of the part is brought into contact.

このように、ハブ一体軸を金属で形成することで、ハブ一体軸、特にハブ部の強度を高めることができる。また、ハブ一体軸の軸部の他端面を研削して高精度に仕上げ、この高精度な他端面にフランジ部の一端面を当接させた状態させることにより、フランジ部を軸部に対して高精度に位置決めすることができるため、フランジ部の振れ回りを防止できる。特に、フランジ部の一端面がスラスト軸受隙間に面する場合、フランジ部の振れ回りを防止することでスラスト方向の支持力を高めることができる。   In this way, by forming the hub integrated shaft from metal, the strength of the hub integrated shaft, particularly the hub portion, can be increased. Also, the other end surface of the shaft portion of the hub-integrated shaft is ground to a high accuracy, and the flange portion is attached to the shaft portion by bringing the one end surface of the flange portion into contact with this highly accurate other end surface. Since the positioning can be performed with high accuracy, the swing of the flange portion can be prevented. In particular, when one end surface of the flange portion faces the thrust bearing gap, it is possible to increase the supporting force in the thrust direction by preventing the flange portion from swinging.

また、上記の流体動圧軸受装置が、軸受部材の一端面とハブ部の一端面との間のスラスト軸受隙間に生じる潤滑流体の動圧作用でハブ一体軸をスラスト方向一方に支持する第1のスラスト軸受部と、軸受部材の他端面とフランジ部の一端面との間のスラスト軸受隙間に生じる潤滑流体の動圧作用でハブ一体軸をスラスト方向一方に支持する第2のスラスト軸受部とを備える場合、ハブ部の一端面はスラスト軸受隙間に面するため、研削を施して高精度に仕上げておくことが望ましい。また、この場合、軸受部材の両端面がスラスト軸受隙間に面するため、軸受部材の両端面間の軸方向寸法L1と、ハブ部の一端面とフランジ部の一端面(すなわち軸部の他端面)との間の軸方向寸法L2との差(L2−L1)によってスラスト軸受隙間の大きさが設定される(図2参照)。そこで、ハブ部の一端面と軸部の他端面とを同じ砥石で同時研削すれば、これらの面の間の軸方向寸法L2を高精度に設定することができ、スラスト軸受隙間の精度向上が図られる。   Further, the fluid dynamic pressure bearing device according to the first aspect supports the hub integrated shaft in one thrust direction by the dynamic pressure action of the lubricating fluid generated in the thrust bearing gap between the one end surface of the bearing member and the one end surface of the hub portion. And a second thrust bearing portion that supports the hub integrated shaft in one thrust direction by a dynamic pressure action of a lubricating fluid generated in a thrust bearing gap between the other end surface of the bearing member and one end surface of the flange portion. In this case, since the one end surface of the hub portion faces the thrust bearing gap, it is desirable to finish with high precision by grinding. In this case, since both end faces of the bearing member face the thrust bearing gap, the axial dimension L1 between both end faces of the bearing member, one end face of the hub portion, and one end face of the flange portion (that is, the other end face of the shaft portion). ) To the axial dimension L2 (L2−L1), the size of the thrust bearing gap is set (see FIG. 2). Therefore, by simultaneously grinding one end surface of the hub portion and the other end surface of the shaft portion with the same grindstone, the axial dimension L2 between these surfaces can be set with high accuracy, and the accuracy of the thrust bearing gap can be improved. Figured.

また、軸部の外周面はラジアル軸受隙間に面するため、研削を施して高精度に仕上げておくことが望ましい。この場合、軸部の外周面と他端面とを同じ砥石で同時研削すれば、軸部の外周面に対する他端面の面精度を精度良く設定できるため、軸部の外周面に対するフランジ部の一端面の面精度(例えば振れ精度)を高めることができる。   In addition, since the outer peripheral surface of the shaft portion faces the radial bearing gap, it is desirable to finish with high precision by grinding. In this case, if the outer peripheral surface of the shaft portion and the other end surface are simultaneously ground with the same grindstone, the surface accuracy of the other end surface with respect to the outer peripheral surface of the shaft portion can be set with high accuracy, so one end surface of the flange portion with respect to the outer peripheral surface of the shaft portion The surface accuracy (for example, runout accuracy) can be increased.

また、ハブ部の回転体搭載面の面精度が悪いと回転体の回転精度が低下するため、研削を施して高精度に仕上げておくことが望ましい。この場合、研削により高精度に仕上げられた回転体搭載面(あるいは回転体搭載面と同時研削された面)を基準として軸部の外周面を研削すれば、軸部の外周面の面精度をさらに高めることができる。また、これにより、軸部の外周面に対する回転体搭載面の相対的な位置精度(例えば振れ精度)を高めることができるため、回転体の回転精度を高めることができる。   Moreover, if the surface accuracy of the rotating body mounting surface of the hub portion is poor, the rotating accuracy of the rotating body is lowered. Therefore, it is desirable to perform grinding to finish with high accuracy. In this case, if the outer peripheral surface of the shaft portion is ground on the basis of the rotating body mounting surface (or the surface ground simultaneously with the rotating body mounting surface) finished with high precision by grinding, the surface accuracy of the outer peripheral surface of the shaft portion can be improved. It can be further increased. Moreover, since the relative positional accuracy (for example, deflection accuracy) of the rotating body mounting surface with respect to the outer peripheral surface of the shaft portion can be increased, the rotating accuracy of the rotating body can be increased.

ハブ一体軸は、例えば、金属板の塑性加工により軸部及びハブ部を一体成形した素形材に研削仕上げを施して形成することができる。このように、ハブ一体軸を塑性加工で形成することで、形成が容易化される。特に、金属板の塑性加工で素形材を形成することで、例えばブロック状のブランク材から素形材を形成する場合と比べて塑性加工による変形量を抑えることができるため、素形材の寸法精度が高められ、研削仕上げの加工量を低減することができる。   The hub-integrated shaft can be formed, for example, by subjecting a shaped material in which the shaft portion and the hub portion are integrally formed by plastic working of a metal plate to a grinding finish. Thus, formation is facilitated by forming the hub integrated shaft by plastic working. In particular, by forming a shaped material by plastic working of a metal plate, the amount of deformation due to plastic working can be suppressed compared to, for example, forming a shaped material from a block-shaped blank material. The dimensional accuracy can be increased and the amount of grinding finishing can be reduced.

以上のように、本発明のハブ一体軸は、ハブ一体軸を金属で形成することで強度を高めることができる。また、軸部の他端面を研削し、この面にフランジ部を当接させることで、フランジ部を軸部に対して高精度に固定することができるため、フランジ部の振れ回りを防止できる。   As described above, the hub integrated shaft of the present invention can increase the strength by forming the hub integrated shaft from metal. Further, by grinding the other end surface of the shaft portion and bringing the flange portion into contact with this surface, the flange portion can be fixed to the shaft portion with high accuracy, so that the swinging of the flange portion can be prevented.

HDDのスピンドルモータを示す断面図である。It is sectional drawing which shows the spindle motor of HDD. 上記スピンドルモータに組み込まれた本発明の実施形態に係る流体動圧軸受装置の断面図である。It is sectional drawing of the fluid dynamic pressure bearing apparatus which concerns on embodiment of this invention integrated in the said spindle motor. 上記流体動圧軸受装置の軸受スリーブの断面図である。It is sectional drawing of the bearing sleeve of the said fluid dynamic pressure bearing apparatus. 上記軸受スリーブの上面図である。It is a top view of the said bearing sleeve. 上記軸受スリーブの下面図である。It is a bottom view of the said bearing sleeve. (a)〜(e)は、金属板を塑性加工して、軸部及びハブ部を一体に有する素形材を成形する工程を示す断面図である。(A)-(e) is sectional drawing which shows the process of plastically processing a metal plate and shape | molding the raw material which has a shaft part and a hub part integrally. 素形材に研削仕上げを施す様子を示す断面図である。It is sectional drawing which shows a mode that grinding finishing is performed on a base material. 素形材に研削仕上げを施す様子を示す断面図である。It is sectional drawing which shows a mode that grinding finishing is performed on a base material.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、例えば2.5インチHDDのディスク駆動装置に用いられるスピンドルモータを示す。このスピンドルモータは、本発明の一実施形態に係るハブ一体軸9を回転自在に支持する流体動圧軸受装置1と、流体動圧軸受装置1が取り付けられたブラケット6と、半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はブラケット6に取り付けられ、ロータマグネット5はハブ一体軸9にヨーク10を介して取り付けられる。ハブ一体軸9には、回転体としてのディスクDが所定の枚数(図示例では1枚)保持される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、これによりハブ一体軸9及びディスクDが一体となって回転する。   FIG. 1 shows a spindle motor used in, for example, a 2.5-inch HDD disk drive device. This spindle motor includes a fluid dynamic pressure bearing device 1 that rotatably supports a hub integrated shaft 9 according to an embodiment of the present invention, a bracket 6 to which the fluid dynamic pressure bearing device 1 is attached, and a radial gap. And a stator magnet 4 and a rotor magnet 5 which are opposed to each other. The stator coil 4 is attached to the bracket 6, and the rotor magnet 5 is attached to the hub integrated shaft 9 via the yoke 10. The hub integrated shaft 9 holds a predetermined number of disks D (one in the illustrated example) as a rotating body. When the stator coil 4 is energized, the rotor magnet 5 is rotated by electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the hub integrated shaft 9 and the disk D are rotated together.

流体動圧軸受装置1は、図2に示すように、軸部2及びハブ部3を有するハブ一体軸9と、ハブ一体軸9を回転自在に支持する軸受部材とで構成される。本実施形態では、軸受部材が、内周にハブ一体軸9の軸部2を挿入した軸受スリーブ8と、内周に軸受スリーブ8を保持する有底筒状のハウジング7とで構成される。ハブ一体軸9の軸部2の下端には、抜け止め部材11が設けられる。尚、以下では、説明の便宜上、軸方向でハウジング7の開口側を上側、閉塞側を下側とする。   As shown in FIG. 2, the fluid dynamic bearing device 1 includes a hub integrated shaft 9 having a shaft portion 2 and a hub portion 3, and a bearing member that rotatably supports the hub integrated shaft 9. In the present embodiment, the bearing member includes a bearing sleeve 8 in which the shaft portion 2 of the hub integrated shaft 9 is inserted on the inner periphery, and a bottomed cylindrical housing 7 that holds the bearing sleeve 8 on the inner periphery. A retaining member 11 is provided at the lower end of the shaft portion 2 of the hub integrated shaft 9. In the following, for convenience of explanation, the opening side of the housing 7 in the axial direction is the upper side and the closing side is the lower side.

ハブ一体軸9は金属で形成され、例えば鉄系金属、特にステンレス鋼で形成される。本実施形態のハブ一体軸9は、金属板の塑性加工(プレス加工)で成形された素形材に研削仕上げを施してなる。ステンレス鋼は一般に延性が乏しいため、ステンレス鋼の中でも比較的延性に富んだフェライト系(例えば、SUS430)を使用することが好ましい。また、延性を高めるために、ステンレス鋼のCの含有量を0.2%以下とすることが好ましく、同じ目的でステンレス鋼にTiを重量比で0.05%以上配合することが好ましい。この他、例えば一般構造用鋼、アルミ合金、あるいはチタン合金等でハブ一体軸9を形成することもできる。尚、ハブ一体軸9は塑性加工に限らず、例えば旋削等の機械加工で形成することもできる。   The hub integrated shaft 9 is made of metal, for example, iron-based metal, particularly stainless steel. The hub integrated shaft 9 of the present embodiment is formed by grinding a shaped material formed by plastic working (press work) of a metal plate. Since stainless steel generally has poor ductility, it is preferable to use a ferritic material (for example, SUS430) that is relatively rich in ductility among stainless steels. Moreover, in order to improve ductility, it is preferable to make content of C of stainless steel 0.2% or less, and it is preferable to mix | blend Ti 0.05% or more by weight ratio with stainless steel for the same purpose. In addition, the hub integrated shaft 9 can be formed of, for example, general structural steel, aluminum alloy, titanium alloy, or the like. The hub integrated shaft 9 is not limited to plastic working, and can be formed by machining such as turning.

軸部2は、ハブ一体軸9の軸心に設けられ、外径が2〜4mm程度に設定される。軸部2は、凹凸の無いストレートな円筒面状の外周面2aと、軸心に設けられた軸方向穴2bとを有する。軸方向穴2bは、軸部2を軸方向に貫通して設けられ、その内周面にネジ溝が形成される。   The shaft portion 2 is provided at the axis of the hub integrated shaft 9 and has an outer diameter of about 2 to 4 mm. The shaft portion 2 has a straight cylindrical outer peripheral surface 2a having no irregularities and an axial hole 2b provided in the shaft center. The axial hole 2b is provided so as to penetrate the shaft portion 2 in the axial direction, and a screw groove is formed on the inner peripheral surface thereof.

軸部2の外周面2aに、表面硬化処理又はコーティング処理、あるいはこれらの双方を施してもよい。表面硬化処理としては、例えば真空焼入れ、真空浸炭処理、真空窒化処理、ガス軟窒化処理、あるいはイオン窒化処理等による表面硬化処理が挙げられる。コーティング処理としては、例えば無電解Niめっき、DLC、TiN、TiAlN、あるいはTiCによるコーティング処理が挙げられる。尚、ハブ一体軸9をステンレス鋼で形成する場合、上記のようにCの含有量を0.2%以下とすると、焼入れによる硬化処理が困難となるため、真空焼入れ以外の表面効果処理、あるいはコーティング処理を施すことが好ましい。尚、表面処理やコーティング処理は、軸部2の外周面2aだけでなく、他の領域、例えばスラスト軸受隙間に面するハブ部3の円盤部3aの下側端面3a1に施しても良い。あるいは、軸部2の外周面2aの耐摩耗性が十分であれば、表面効果処理やコーティング処理を省略してもよい。   The outer peripheral surface 2a of the shaft portion 2 may be subjected to surface hardening treatment or coating treatment, or both. Examples of the surface hardening treatment include surface hardening treatment such as vacuum quenching, vacuum carburizing treatment, vacuum nitriding treatment, gas soft nitriding treatment, or ion nitriding treatment. Examples of the coating process include a coating process using electroless Ni plating, DLC, TiN, TiAlN, or TiC. When the hub integrated shaft 9 is formed of stainless steel, if the C content is 0.2% or less as described above, the hardening process by quenching becomes difficult, so surface effect treatment other than vacuum quenching, or A coating treatment is preferably performed. The surface treatment and the coating treatment may be performed not only on the outer peripheral surface 2a of the shaft portion 2, but also on other regions, for example, the lower end surface 3a1 of the disk portion 3a of the hub portion 3 facing the thrust bearing gap. Alternatively, if the wear resistance of the outer peripheral surface 2a of the shaft portion 2 is sufficient, the surface effect treatment or the coating treatment may be omitted.

ハブ部3は、軸部2の上端部から外径に延び、軸方向と直交する回転体搭載面を備えている。本実施形態のハブ部3は、ハウジング7の開口部を覆う円盤部3aと、円盤部3aの外周部から軸方向下方に延びた円筒部3bと、円筒部3bの下端部からさらに外径に延びた鍔部3cとで構成され、鍔部3cの上側端面に回転体搭載面としてのディスク搭載面3dが形成される。円筒部3bの外周面には、ディスク嵌合面3eが形成される。ディスクDをディスク嵌合面3eに嵌合すると共にディスク搭載面3dの上に載置し、この状態で図示しないクランパによってディスクDの上面を押さえてディスク搭載面3d上に押し付けることにより、ディスクDがハブ部3に保持される。尚、軸部2の軸方向穴2bの上部は、クランパを固定するためのネジ穴として機能する。   The hub portion 3 includes a rotating body mounting surface extending from the upper end portion of the shaft portion 2 to the outer diameter and orthogonal to the axial direction. The hub portion 3 of the present embodiment includes a disc portion 3a that covers the opening of the housing 7, a cylindrical portion 3b that extends downward in the axial direction from the outer peripheral portion of the disc portion 3a, and a further outer diameter from the lower end portion of the cylindrical portion 3b. A disk mounting surface 3d as a rotating body mounting surface is formed on the upper end surface of the flange 3c. A disk fitting surface 3e is formed on the outer peripheral surface of the cylindrical portion 3b. The disk D is fitted onto the disk fitting surface 3e and placed on the disk mounting surface 3d. In this state, the upper surface of the disk D is pressed by a clamper (not shown) and pressed onto the disk mounting surface 3d. Is held by the hub portion 3. In addition, the upper part of the axial direction hole 2b of the axial part 2 functions as a screw hole for fixing a clamper.

ハブ一体軸9は、所定の箇所が研削された面となっている。本実施形態では、図2に点線で示す箇所、すなわち、ディスク搭載面3d、ディスク嵌合面3e、円盤部3aの上側端面3a2の外周部、円盤部3aの下側端面3a1の内周部、軸部2の外周面2a、及び軸部2の下端面2cが、研削面である。上記のうち、ディスク搭載面3d、ディスク嵌合面3e、円盤部3aの上側端面3a2の外周部は一つの砥石で同時研削されている。これらの研削面を基準として、円盤部3aの下側端面3a1の内周部、軸部2の外周面2a、及び軸部2の下端面2cとが一つの砥石で同時研削されている。   The hub integrated shaft 9 has a surface ground at a predetermined location. In the present embodiment, the locations indicated by dotted lines in FIG. 2, that is, the disc mounting surface 3d, the disc fitting surface 3e, the outer peripheral portion of the upper end surface 3a2 of the disc portion 3a, the inner peripheral portion of the lower end surface 3a1 of the disc portion 3a, The outer peripheral surface 2a of the shaft portion 2 and the lower end surface 2c of the shaft portion 2 are grinding surfaces. Among the above, the outer peripheral portion of the disk mounting surface 3d, the disk fitting surface 3e, and the upper end surface 3a2 of the disk portion 3a is simultaneously ground with one grindstone. Using these grinding surfaces as a reference, the inner peripheral portion of the lower end surface 3a1 of the disk portion 3a, the outer peripheral surface 2a of the shaft portion 2, and the lower end surface 2c of the shaft portion 2 are simultaneously ground by one grindstone.

抜け止め部材11は金属あるいは樹脂で形成され、円盤形状のフランジ部11aと、フランジ部11aの軸心から上方に延びた固定部11bとを有する。固定部11bの外周にはネジ溝が形成され、軸部2の軸方向穴2bの内周面に形成されたネジ穴の下端にネジ固定される。フランジ部11aは軸部2の外周面2aよりも外径に突出し、その上側端面11a1が軸部2の下端面2cと当接している。フランジ部11aは、軸受スリーブ8の下側端面8cとハウジング7の底部7bの上側端面7b1との軸方向間に配される。軸部2の下端に固定されたフランジ部11aと軸受スリーブ8とが軸方向で係合することにより、軸部2の軸受スリーブ8からの抜け止めが行われる。   The retaining member 11 is made of metal or resin, and has a disk-shaped flange portion 11a and a fixing portion 11b extending upward from the axis of the flange portion 11a. A screw groove is formed on the outer periphery of the fixing portion 11b, and is fixed to the lower end of the screw hole formed on the inner peripheral surface of the axial hole 2b of the shaft portion 2. The flange portion 11 a protrudes to the outer diameter from the outer peripheral surface 2 a of the shaft portion 2, and the upper end surface 11 a 1 is in contact with the lower end surface 2 c of the shaft portion 2. The flange portion 11 a is disposed between the lower end surface 8 c of the bearing sleeve 8 and the upper end surface 7 b 1 of the bottom portion 7 b of the housing 7 in the axial direction. The flange portion 11 a fixed to the lower end of the shaft portion 2 and the bearing sleeve 8 are engaged in the axial direction, whereby the shaft portion 2 is prevented from coming off from the bearing sleeve 8.

フランジ部11aの上側端面11a1は、後述する第2のスラスト軸受部T2のスラスト軸受隙間に面するスラスト軸受面として機能する。軸部2の下端面2cは研削により高精度な平坦面に仕上げられているため、フランジ部11aの上側端面11a1は軸部2の下端面2cの全面と良好に密着し、これにより、軸部2に対してフランジ部11aを高精度に位置決めすることができる。また、フランジ部11aの上側端面11a1と軸部2の下端面2cとを全周で密着させることにより、軸部2の軸方向穴2bへの潤滑油の侵入を抑えることができるため、ハウジング7の内部に満たされた潤滑油が軸方向穴2bを介して外部に漏れだす恐れを低減できる。   The upper end surface 11a1 of the flange portion 11a functions as a thrust bearing surface that faces a thrust bearing gap of a second thrust bearing portion T2 described later. Since the lower end surface 2c of the shaft portion 2 is finished to be a high-precision flat surface by grinding, the upper end surface 11a1 of the flange portion 11a is in good contact with the entire lower end surface 2c of the shaft portion 2, whereby the shaft portion 2, the flange portion 11a can be positioned with high accuracy. In addition, since the upper end surface 11a1 of the flange portion 11a and the lower end surface 2c of the shaft portion 2 are in close contact with each other around the entire circumference, the intrusion of lubricating oil into the axial hole 2b of the shaft portion 2 can be suppressed. The risk of the lubricating oil filling the inside leaking out through the axial hole 2b can be reduced.

軸受スリーブ8は、金属や樹脂で円筒状に形成され、本実施形態では、例えば銅を主成分とする焼結金属で形成される。軸受スリーブ8の内周面8aには、図3に示すように、ラジアル動圧発生部として、例えば軸方向に離隔した2つの領域にヘリングボーン形状の動圧溝8a1,8a2がそれぞれ形成される(クロスハッチングは丘部)。図示例では、上側の動圧溝8a1は軸方向非対称に形成されており、具体的には、軸方向中央部mより上側の領域の軸方向寸法X1が、下側の領域の軸方向寸法X2よりも大きくなっている(X1>X2)。下側の動圧溝8a2は軸方向対称に形成されている。軸受スリーブ8の外周面8dには、軸方向溝8d1が軸方向全長にわたって形成され、例えば3本の軸方向溝8d1が円周方向に等配される。   The bearing sleeve 8 is formed in a cylindrical shape from metal or resin, and in this embodiment, is formed from a sintered metal containing copper as a main component, for example. As shown in FIG. 3, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 are formed on the inner peripheral surface 8a of the bearing sleeve 8 as radial dynamic pressure generating portions, for example, in two regions separated in the axial direction. (Cross hatching is hill). In the illustrated example, the upper dynamic pressure groove 8a1 is formed asymmetrically in the axial direction. Specifically, the axial dimension X1 of the region above the axial center part m is the axial dimension X2 of the lower region. (X1> X2). The lower dynamic pressure groove 8a2 is formed symmetrically in the axial direction. An axial groove 8d1 is formed over the entire length in the axial direction on the outer peripheral surface 8d of the bearing sleeve 8. For example, three axial grooves 8d1 are equally arranged in the circumferential direction.

軸受スリーブ8の上側端面8b及び下側端面8cには、図4及び図5に示すように、それぞれスラスト動圧発生部として、例えばポンプインタイプのスパイラル形状の動圧溝8b1,8c1が形成される(クロスハッチングは丘部)。軸受スリーブ8の外周面8dには、軸方向溝8d1が形成される。軸方向溝8d1の本数は任意であり、例えば3本の軸方向溝8d1が円周方向等間隔に配される。   As shown in FIGS. 4 and 5, for example, pump-in type spiral-shaped dynamic pressure grooves 8b1 and 8c1 are formed on the upper end surface 8b and the lower end surface 8c of the bearing sleeve 8 as thrust dynamic pressure generating portions, respectively. (Cross hatching is a hill). An axial groove 8 d 1 is formed on the outer peripheral surface 8 d of the bearing sleeve 8. The number of the axial grooves 8d1 is arbitrary. For example, three axial grooves 8d1 are arranged at equal intervals in the circumferential direction.

ハウジング7は、金属や樹脂で形成され、本実施形態では例えば樹脂の射出成形で形成される。ハウジング7は、図2に示すように、側部7a及び底部7bを一体に有する有底円筒状に形成される。側部7aの内周面7a1は、ストレートな円筒面状に形成され、軸受スリーブ8の外周面8dが隙間接着、圧入、接着剤介在下の圧入等により固定される。側部7aの外周面の上端には、図2に示すように、上方に向かって漸次拡径するテーパ状のシール面7a3が形成される。このシール面7a3は、ハブ部3の円筒部3bの内周面3b1との間に、上方に向けて半径方向寸法が漸次縮小した環状のシール空間Sを形成する。シール空間Sは、ハブ一体軸9の回転時、ハブ部3の円盤部3aの下側端面3a1とハウジング7の上端面7a2との間の隙間を介して、第1のスラスト軸受部T1のスラスト軸受隙間の外径側、及び、軸方向溝8d1の上端と連通している。このシール空間Sの毛細管力により、ハウジング7の内部に充満された潤滑油の漏れ出しを防止する。   The housing 7 is formed of metal or resin, and in this embodiment, is formed by, for example, resin injection molding. As shown in FIG. 2, the housing 7 is formed in a bottomed cylindrical shape integrally having a side portion 7a and a bottom portion 7b. The inner peripheral surface 7a1 of the side portion 7a is formed in a straight cylindrical surface shape, and the outer peripheral surface 8d of the bearing sleeve 8 is fixed by gap bonding, press-fitting, press-fitting with an adhesive interposed therebetween, or the like. At the upper end of the outer peripheral surface of the side portion 7a, as shown in FIG. 2, a tapered seal surface 7a3 that gradually increases in diameter upward is formed. The seal surface 7a3 forms an annular seal space S whose radial dimension is gradually reduced upward, between the seal surface 7a3 and the inner peripheral surface 3b1 of the cylindrical portion 3b of the hub portion 3. When the hub integrated shaft 9 is rotated, the seal space S is provided through a gap between the lower end surface 3a1 of the disk portion 3a of the hub portion 3 and the upper end surface 7a2 of the housing 7, so that the thrust of the first thrust bearing portion T1. It communicates with the outer diameter side of the bearing gap and the upper end of the axial groove 8d1. The capillary force of the seal space S prevents the lubricating oil filled in the housing 7 from leaking out.

上記の部材からなる流体動圧軸受1は、以下のようにして組み立てることができる。まず、軸受スリーブ8の内周にハブ一体軸9の軸部2を挿入し、この状態で軸部2の軸方向穴2bの下端に抜け止め部材11の固定部11bをネジ固定して仮アッシ品を構成する。このとき、フランジ部11aの上側端面11a1と軸部2の下端面2cとを当接させることにより、フランジ部11aの軸部2に対する位置決めが行われる。この仮アッシ品の状態で、ハブ部3の円盤部3aの下側端面3a1とフランジ部11aの上側端面11a1との間の軸方向寸法L2が決定されるため、この軸方向寸法L2と、軸受スリーブ8の両端面8b,8c間の軸方向寸法L1との差により、第1及び第2スラスト軸受部T1,T2のスラスト軸受隙間の合計量が設定される。   The fluid dynamic pressure bearing 1 composed of the above-described members can be assembled as follows. First, the shaft portion 2 of the hub integrated shaft 9 is inserted into the inner periphery of the bearing sleeve 8, and in this state, the fixing portion 11 b of the retaining member 11 is screwed to the lower end of the axial hole 2 b of the shaft portion 2 and temporarily assembled. Composing goods. At this time, positioning of the flange portion 11a with respect to the shaft portion 2 is performed by bringing the upper end surface 11a1 of the flange portion 11a into contact with the lower end surface 2c of the shaft portion 2. Since the axial dimension L2 between the lower end surface 3a1 of the disk portion 3a of the hub portion 3 and the upper end surface 11a1 of the flange portion 11a is determined in the state of the temporary assembly product, the axial dimension L2 and the bearing The total amount of thrust bearing gaps of the first and second thrust bearing portions T1 and T2 is set based on the difference from the axial dimension L1 between both end faces 8b and 8c of the sleeve 8.

このとき、ハブ一体軸9の軸部2の下端面2cとハブ部3の円盤部3aの下側端面3a1とは同じ砥石で同時研削された面であるため、これらの間の軸方向寸法は高精度に設定されている。従って、軸部2の下端面2cにフランジ部11aの上側端面11a1を当接させることで、フランジ部11aの上側端面11a1とハブ部3の円盤部3aの下側端面3a1との軸方向寸法L2が高精度に設定される。一方、軸受スリーブ8は、成形性に優れた焼結金属で形成されるため、両端面8b,8cの間の軸方向寸法L1は高精度に設定される。従って、これらの軸方向寸法の差(L2−L1)で設定される第1及び第2スラスト軸受部T1,T2のスラスト軸受隙間の合計量が高精度に設定される。   At this time, since the lower end surface 2c of the shaft portion 2 of the hub integrated shaft 9 and the lower end surface 3a1 of the disc portion 3a of the hub portion 3 are surfaces that are simultaneously ground with the same grindstone, the axial dimension therebetween is as follows. High accuracy is set. Accordingly, by bringing the upper end surface 11a1 of the flange portion 11a into contact with the lower end surface 2c of the shaft portion 2, the axial dimension L2 between the upper end surface 11a1 of the flange portion 11a and the lower end surface 3a1 of the disk portion 3a of the hub portion 3 is determined. Is set with high accuracy. On the other hand, since the bearing sleeve 8 is formed of a sintered metal having excellent formability, the axial dimension L1 between the both end faces 8b and 8c is set with high accuracy. Therefore, the total amount of the thrust bearing gaps of the first and second thrust bearing portions T1 and T2 set by the difference between these axial dimensions (L2−L1) is set with high accuracy.

こうして、スラスト軸受隙間が設定された仮アッシ品の軸受スリーブ8をハウジング7の内周に挿入し、軸受スリーブ8の外周面8dをハウジング7の内周面7a1に固定する。そして、軸受スリーブ8の内部気孔を含めたハウジング7の内部の空間に潤滑油を充満させることにより、図2に示す流体動圧軸受装置1が完成する。このとき、油面はシール空間Sの内部に保持される。   Thus, the temporary assembly bearing sleeve 8 having a thrust bearing gap is inserted into the inner periphery of the housing 7, and the outer peripheral surface 8 d of the bearing sleeve 8 is fixed to the inner peripheral surface 7 a 1 of the housing 7. Then, the fluid dynamic bearing device 1 shown in FIG. 2 is completed by filling the space inside the housing 7 including the internal pores of the bearing sleeve 8 with the lubricating oil. At this time, the oil level is held inside the seal space S.

ハブ一体軸9が回転すると、軸受スリーブ8の内周面8aと軸部2の外周面2aとの間にラジアル軸受隙間が形成される。そして、ラジアル動圧発生部(動圧溝8a1,8a2)により上記ラジアル軸受隙間に満たされた潤滑油の圧力が高められ、この圧力(動圧作用)によりハブ一体軸9をラジアル方向に回転自在に非接触支持するラジアル軸受部R1,R2が構成される。   When the hub integrated shaft 9 rotates, a radial bearing gap is formed between the inner peripheral surface 8 a of the bearing sleeve 8 and the outer peripheral surface 2 a of the shaft portion 2. The radial dynamic pressure generating portion (dynamic pressure grooves 8a1, 8a2) increases the pressure of the lubricating oil filled in the radial bearing gap, and the hub integrated shaft 9 can be rotated in the radial direction by this pressure (dynamic pressure action). The radial bearing portions R1 and R2 that are supported in a non-contact manner are configured.

これと同時に、ハブ部3の円盤部3aの下側端面3a1と軸受スリーブ8の上側端面8bとの間、及び、フランジ部11aの上側端面11a1と軸受スリーブ8の下側端面8cとの間にそれぞれスラスト軸受隙間が形成される。そして、スラスト動圧発生部(動圧溝8b1,8c1)により各スラスト軸受隙間に満たされた潤滑油の圧力が高められ、この圧力(動圧作用)によりハブ一体軸9をスラスト方向一方(持ち上げる方向)に回転自在に非接触支持する第1のスラスト軸受部T1と、ハブ一体軸9をスラスト方向他方(押し下げる方向)に回転自在に非接触支持する第2のスラスト軸受部T2とが構成される。   At the same time, between the lower end surface 3a1 of the disk portion 3a of the hub portion 3 and the upper end surface 8b of the bearing sleeve 8, and between the upper end surface 11a1 of the flange portion 11a and the lower end surface 8c of the bearing sleeve 8. A thrust bearing gap is formed in each case. The thrust dynamic pressure generating portions (dynamic pressure grooves 8b1 and 8c1) increase the pressure of the lubricating oil filled in the thrust bearing gaps, and this pressure (dynamic pressure action) raises the hub integrated shaft 9 in one direction in the thrust direction (lifts up). Direction) and a second thrust bearing portion T2 for supporting the hub integrated shaft 9 rotatably in the thrust direction in the other direction (pressing down direction). The

このとき、軸受スリーブ8の外周面8dに形成された軸方向溝8d1により、潤滑油が流通可能な連通路が形成される。この連通路により、ハウジング7の内部に満たされた潤滑油に局部的な負圧が発生する事態を防止できる。特に本実施形態では、図3に示すように、軸受スリーブ8の内周面8aに形成された上側の動圧溝8a1が軸方向非対称な形状に形成されているため、ハブ一体軸9の回転に伴ってラジアル軸受隙間の潤滑油が下方に押し込まれ、上記の連通路を介して潤滑油が循環し、これにより局部的な負圧の発生を確実に防止できる。   At this time, the axial groove 8d1 formed in the outer peripheral surface 8d of the bearing sleeve 8 forms a communication path through which lubricating oil can flow. This communication path can prevent a local negative pressure from being generated in the lubricating oil filled in the housing 7. In particular, in the present embodiment, as shown in FIG. 3, the upper dynamic pressure groove 8a1 formed in the inner peripheral surface 8a of the bearing sleeve 8 is formed in an axially asymmetric shape, so that the rotation of the hub integrated shaft 9 is performed. Along with this, the lubricating oil in the radial bearing gap is pushed downward, and the lubricating oil circulates through the communication path, thereby reliably preventing the generation of local negative pressure.

以下、ハブ一体軸9の製造方法について説明する。   Hereinafter, a method for manufacturing the hub integrated shaft 9 will be described.

ハブ一体軸9は、金属板を塑性加工して軸部2及びハブ部3を一体に有する素形材を形成する素形材成形工程と、この素形材の所定箇所に研削仕上げを施す研削仕上げ工程とを経て形成される。   The hub-integrated shaft 9 is formed by molding a metal plate to form a shaped material having the shaft portion 2 and the hub portion 3 integrally, and grinding for finishing a predetermined portion of the shaped material. It is formed through a finishing process.

(1)素形材成形工程
素形材形成工程では、まず、図6(a)に示すように、鉄系材料、例えばステンレス鋼、特にTiを0.5%以上含んだフェライト系ステンレス鋼からなる金属板20を準備する。例えば、本実施形態のような2.5インチHDDのスピンドルモータ用のハブ一体軸9の場合、金属板の厚さは1mm程度とされる。
(1) Shaped material forming step In the shaped material forming step, first, as shown in FIG. 6 (a), from an iron-based material, for example, stainless steel, particularly ferritic stainless steel containing 0.5% or more of Ti. A metal plate 20 is prepared. For example, in the case of the hub integrated shaft 9 for the spindle motor of the 2.5 inch HDD as in this embodiment, the thickness of the metal plate is about 1 mm.

そして、図6(b)に示すように、冷間の塑性加工(深絞り加工)により金属板20の軸心を下方に突出させ、軸部21を成形する。このとき、図示しない金型で軸部21を押し込んで突出させるため、軸部21の軸心には軸方向穴21aが成形される。   Then, as shown in FIG. 6B, the shaft center 21 is formed by projecting the shaft center of the metal plate 20 downward by cold plastic working (deep drawing). At this time, an axial hole 21 a is formed in the shaft center of the shaft portion 21 in order to push the shaft portion 21 to protrude by a mold (not shown).

次に、図6(c)に示すように、冷間の塑性加工(プレス加工)により軸部21の周囲にハブ部22を成形する。具体的には、軸部21から外径に延びる円盤部22aと、円盤部22aの外径端から下方に延びる円筒部22bと、円筒部22bの下端から外径に延びる鍔部22cとが成形される。このとき、鍔部22cの上側端面22c1の内径端には、環状の凹部(逃げ部)22c10が同時に成形される。   Next, as shown in FIG.6 (c), the hub part 22 is shape | molded around the axial part 21 by cold plastic working (press work). Specifically, a disk part 22a extending from the shaft part 21 to the outer diameter, a cylindrical part 22b extending downward from the outer diameter end of the disk part 22a, and a flange part 22c extending from the lower end of the cylindrical part 22b to the outer diameter are formed. Is done. At this time, an annular recess (relief portion) 22c10 is simultaneously formed at the inner diameter end of the upper end surface 22c1 of the flange portion 22c.

その後、図6(d)に示すように、軸部21の先端部(下端部)を切断除去し、軸方向穴21aを軸部21の下端に開口させる。これと共に、軸部21の軸方向穴21aの内周面にネジ溝を形成する。   Thereafter, as shown in FIG. 6D, the tip end portion (lower end portion) of the shaft portion 21 is cut and removed, and the axial hole 21 a is opened at the lower end of the shaft portion 21. At the same time, a thread groove is formed on the inner peripheral surface of the axial hole 21 a of the shaft portion 21.

最後に、図6(e)に示すように、ハブ部22の鍔部22cと金属板20とを切り離し、軸部21及びハブ部22を有する素形材30を金属板20から分離する。   Finally, as shown in FIG. 6 (e), the flange portion 22 c of the hub portion 22 and the metal plate 20 are separated, and the material 30 having the shaft portion 21 and the hub portion 22 is separated from the metal plate 20.

このように素形材30を金属板20から形成することで、素形材30の肉厚はおおよそ均一になっている。具体的には、軸部21の径方向の肉厚、ハブ部22の円盤部22aの軸方向の肉厚、円筒部22bの径方向の肉厚、及び、鍔部22cの軸方向の肉厚が、おおよそ均一になっている。詳しくは、上記の塑性加工により絞られて軸方向に延びる箇所(軸部21及び円筒部22b)の肉厚は、軸方向と直交する方向の面(円盤部22a及び鍔部22c)の肉厚よりも若干薄くなっている。例えば、1mm程度の金属板20を用いて素形材30を形成する場合、円盤部22a及び鍔部22cの肉厚が約0.8mmであるのに対し、軸部21及び円筒部22bの肉厚は約0.5mmとなる。すなわち、本実施形態では、金属板20から素形材30を得るときの肉厚の変化量が50%以下となっている。このように、金属板20からの変形量が比較的小さいことで、素形材30を精度良く塑性加工することができる。   By forming the base material 30 from the metal plate 20 in this way, the thickness of the base material 30 is approximately uniform. Specifically, the radial thickness of the shaft portion 21, the axial thickness of the disk portion 22a of the hub portion 22, the radial thickness of the cylindrical portion 22b, and the axial thickness of the flange portion 22c. However, it is almost uniform. Specifically, the thickness of the portion (the shaft portion 21 and the cylindrical portion 22b) that is squeezed by the plastic processing and extends in the axial direction is the thickness of the surface (the disk portion 22a and the flange portion 22c) in the direction orthogonal to the axial direction. Is slightly thinner. For example, when forming the shaped member 30 using the metal plate 20 of about 1 mm, the thickness of the disk portion 22a and the flange portion 22c is about 0.8 mm, whereas the thickness of the shaft portion 21 and the cylindrical portion 22b. The thickness is about 0.5 mm. That is, in this embodiment, the amount of change in thickness when obtaining the shaped member 30 from the metal plate 20 is 50% or less. Thus, since the deformation amount from the metal plate 20 is relatively small, the base material 30 can be plastically processed with high accuracy.

(2)研削仕上げ工程
上記のようにして成形した素形材30の所定箇所に、研削仕上げが施される。尚、図7及び図8に示す研削仕上げ工程では、素形材30の軸方向を水平にして加工を行っているが、素形材30の各部位には上記と同様の名称を付している。
(2) Grinding finishing process Grinding finishing is performed on a predetermined portion of the shaped material 30 formed as described above. In the grinding finishing process shown in FIG. 7 and FIG. 8, the axial direction of the shaped material 30 is horizontal, and processing is performed, but each part of the shaped material 30 is given the same name as above. Yes.

まず、素形材30のハブ部22の所定箇所に研削仕上げが施される。具体的には、図7に示すように、素形材30の軸部21の軸方向穴21aに回転センタ41、42を装着して素形材30を回転自在に支持すると共に、ハブ部22の鍔部22cの下側端面22c2をバッキングプレート43で支持する。そして、バッキングプレート43を回転駆動して素形材30を軸部21を中心に回転させ、この状態でアンギュラ砥石44を素形材30に接触させる。詳しくは、アンギュラ砥石44の砥面44a,44b,及び44cを、鍔部22cの上側端面22c1(ディスク搭載面に相当)、円筒部22bの外周面22b1(ディスク嵌合面に相当)、及び、円盤部22aの上側端面22a1の外周部に当接させ、これらの面を同時研削する。このとき、鍔部22cの上側端面22c1の内径端に逃げ部22c10が設けられているため、アンギュラ砥石44の砥面44a及び44bを、鍔部22cの上側端面22c1及び円筒部22bの外周面22b1に密着させることができる。   First, a grinding finish is applied to a predetermined portion of the hub portion 22 of the raw material 30. Specifically, as shown in FIG. 7, rotation centers 41 and 42 are attached to the axial holes 21 a of the shaft portion 21 of the shaped material 30 to rotatably support the shaped material 30, and the hub portion 22. The lower end surface 22c2 of the collar portion 22c is supported by the backing plate 43. Then, the backing plate 43 is rotationally driven to rotate the base material 30 around the shaft portion 21, and the angular grindstone 44 is brought into contact with the base material 30 in this state. Specifically, the grinding surfaces 44a, 44b, and 44c of the angular grindstone 44 are divided into an upper end surface 22c1 (corresponding to a disc mounting surface) of the flange portion 22c, an outer peripheral surface 22b1 (corresponding to a disc fitting surface) of the cylindrical portion 22b, and Abutting on the outer peripheral portion of the upper end surface 22a1 of the disk portion 22a, these surfaces are ground simultaneously. At this time, since the escape portion 22c10 is provided at the inner diameter end of the upper end surface 22c1 of the flange portion 22c, the abrasive surfaces 44a and 44b of the angular grindstone 44 are replaced by the upper end surface 22c1 of the flange portion 22c and the outer peripheral surface 22b1 of the cylindrical portion 22b. Can be adhered to.

次に、図8に示すように、ハブ部22の研削仕上げ面(図中に点線で示す)を基準として、軸部21の外周面21b及び下端面21cと、ハブ部22の円盤部22aの下側端面22a2(スラスト軸受隙間に面する領域)とに研削仕上げを施す。例えば、ハブ部22の円盤部22aの上側端面22a1の外周部をマグネットチャック51で吸着支持すると共に、円筒部22bの外周面22b1をシュー52で摺動支持する。この状態で、マグネットチャック51を回転駆動して素形材30を軸部21を中心に回転させ、アンギュラ砥石53を素形材30に接触させる。詳しくは、アンギュラ砥石53の砥面53a,53b,及び53cを、軸部21の外周面21b、軸部21の下端面21c、及び円盤部22aの下側端面22a2の内周部にそれぞれ当接させ、これらの面を同時研削する。以上により、軸部2及びハブ部3を有するハブ一体軸9(図2参照)が完成する。   Next, as shown in FIG. 8, the outer peripheral surface 21 b and the lower end surface 21 c of the shaft portion 21 and the disk portion 22 a of the hub portion 22 are defined with reference to the ground finish surface of the hub portion 22 (indicated by a dotted line in the drawing). The lower end surface 22a2 (region facing the thrust bearing gap) is ground. For example, the outer peripheral portion of the upper end surface 22 a 1 of the disk portion 22 a of the hub portion 22 is attracted and supported by the magnet chuck 51, and the outer peripheral surface 22 b 1 of the cylindrical portion 22 b is slidably supported by the shoe 52. In this state, the magnet chuck 51 is rotationally driven to rotate the base material 30 around the shaft portion 21, and the angular grindstone 53 is brought into contact with the base material 30. Specifically, the abrasive surfaces 53a, 53b, and 53c of the angular grindstone 53 are in contact with the outer peripheral surface 21b of the shaft portion 21, the lower end surface 21c of the shaft portion 21, and the inner peripheral portion of the lower end surface 22a2 of the disk portion 22a. And these surfaces are ground simultaneously. Thus, the hub integrated shaft 9 (see FIG. 2) having the shaft portion 2 and the hub portion 3 is completed.

以上のように、ハブ一体軸9の軸部2の外周面2a(ラジアル軸受面)、円盤部3aの下側端面3a1の内周部(第1のスラスト軸受部T1のスラスト軸受面)、及び、軸部2の下端面2cに研削仕上げを施すことで、これらの面が高精度に仕上げられ、ラジアル軸受部及び第1のスラスト軸受部T2による支持力が高められる。また、高精度に仕上げられた軸部2の下端面2cにフランジ部11aの上側端面11a1(第2のスラスト軸受部T2のスラスト軸受面)を当接させることで、フランジ部11aの位置決め精度が向上し、フランジ部11aの振れ回りが抑えられる。   As described above, the outer peripheral surface 2a (radial bearing surface) of the shaft portion 2 of the hub integrated shaft 9, the inner peripheral portion (thrust bearing surface of the first thrust bearing portion T1) of the lower end surface 3a1 of the disk portion 3a, and By applying a grinding finish to the lower end surface 2c of the shaft portion 2, these surfaces are finished with high accuracy, and the supporting force by the radial bearing portion and the first thrust bearing portion T2 is enhanced. Further, the upper end surface 11a1 of the flange portion 11a (the thrust bearing surface of the second thrust bearing portion T2) is brought into contact with the lower end surface 2c of the shaft portion 2 finished with high accuracy, so that the positioning accuracy of the flange portion 11a is increased. This improves the swinging of the flange portion 11a.

また、ハブ一体軸9の軸部2の外周面2a、円盤部3aの下側端面3a1の内周部、及び、軸部2の下端面2cを同時研削することで、これらの面の相対的な位置精度が高精度に設定される。これにより、軸部2の外周面2a(ラジアル軸受面)に対する、円盤部3aの下側端面3a1の内周部(第1のスラスト軸受部T1のスラスト軸受面)、及び、軸部2の下端面2cに当接するフランジ部11aの上側端面11a1(第1のスラスト軸受部T1のスラスト軸受面)の相対的な位置精度が高精度に設定される。これにより、ハブ一体軸9の回転時におけるハブ部3やフランジ部11aの振れ回りがより確実に抑えられ、ハブ一体軸9の回転精度を高めることができる。例えば、本実施形態のように軸径が2〜4mm程度である場合、上記の方法でハブ一体軸9を形成すれば、ハブ一体軸9のラジアル軸受面に対する各スラスト軸受面の振れ精度を高めることができ、例えばラジアル軸受面に対する第1のスラスト軸受部T1のスラスト軸受面の振れ精度を4μm以下、ラジアル軸受面に対する第2のスラスト軸受部T2のスラスト軸受面の振れ精度を5μm以下に設定することができる。換言すれば、これらの条件を満たしていれば、ハブ一体軸9の軸部2の外周面2a、円盤部3aの下側端面3a1の内周部、及び、軸部2の下端面2cが同じ砥石で同時研削されていると推定することができる。   Further, by simultaneously grinding the outer peripheral surface 2a of the shaft portion 2 of the hub integrated shaft 9, the inner peripheral portion of the lower end surface 3a1 of the disk portion 3a, and the lower end surface 2c of the shaft portion 2, the relative relationship between these surfaces can be reduced. Position accuracy is set to high accuracy. As a result, the inner peripheral portion (thrust bearing surface of the first thrust bearing portion T1) of the lower end surface 3a1 of the disc portion 3a with respect to the outer peripheral surface 2a (radial bearing surface) of the shaft portion 2 and the lower portion of the shaft portion 2 The relative positional accuracy of the upper end surface 11a1 (the thrust bearing surface of the first thrust bearing portion T1) of the flange portion 11a in contact with the end surface 2c is set with high accuracy. Thereby, the swinging of the hub portion 3 and the flange portion 11a during the rotation of the hub integrated shaft 9 can be more reliably suppressed, and the rotation accuracy of the hub integrated shaft 9 can be increased. For example, when the shaft diameter is about 2 to 4 mm as in this embodiment, if the hub integrated shaft 9 is formed by the above method, the deflection accuracy of each thrust bearing surface with respect to the radial bearing surface of the hub integrated shaft 9 is increased. For example, the deflection accuracy of the thrust bearing surface of the first thrust bearing portion T1 with respect to the radial bearing surface is set to 4 μm or less, and the deflection accuracy of the thrust bearing surface of the second thrust bearing portion T2 with respect to the radial bearing surface is set to 5 μm or less. can do. In other words, if these conditions are satisfied, the outer peripheral surface 2a of the shaft portion 2 of the hub integrated shaft 9, the inner peripheral portion of the lower end surface 3a1 of the disk portion 3a, and the lower end surface 2c of the shaft portion 2 are the same. It can be estimated that grinding is performed simultaneously with a grindstone.

また、上記のように、高精度に加工されたハブ部22の研削仕上げ面を基準として、軸部21の外周面21bに研削仕上げを施すことで、ハブ一体軸9の軸部2の外周面2a(ラジアル軸受面)を高精度に加工することができる。特に、ディスク搭載面3dに相当する鍔部22cの上側端面22c1と同時研削されたハブ部22の円盤部22aの上側端面22a1を基準として、軸部21の外周面21bを研削することで、ハブ一体軸9の軸部2の外周面2aに対するディスク搭載面3dの面精度が高精度に設定される。その結果、例えば、軸部2の外周面2aに対するディスク搭載面3dの振れ精度は5μm以下に設定され、ディスクDの回転精度が高められる。また、本実施形態では、ディスク嵌合面3eに相当する円筒部22bの外周面22b1を基準として軸部21の外周面21bを研削することで、軸部2の外周面2aに対するディスク嵌合面3eの同軸度は5μm以下に設定される。換言すれば、軸部2の外周面2aに対するディスク搭載面3d及びディスク嵌合面3eの寸法精度が上記の範囲内であれば、軸部2の外周面2aが、ディスク搭載面3d及びディスク嵌合面3e(あるいはこれらの面と同時研削された面)を基準として研削仕上げされていると推定することができる。尚、振れ精度及び同軸度の定義は、JIS B 0021:1998による。   Further, as described above, the outer peripheral surface of the shaft portion 2 of the hub integrated shaft 9 is obtained by grinding the outer peripheral surface 21b of the shaft portion 21 with reference to the ground finish surface of the hub portion 22 processed with high accuracy. 2a (radial bearing surface) can be processed with high accuracy. In particular, the hub 21 is ground by grinding the outer peripheral surface 21b of the shaft portion 21 with reference to the upper end surface 22a1 of the disk portion 22a of the hub portion 22 simultaneously ground with the upper end surface 22c1 of the flange portion 22c corresponding to the disk mounting surface 3d. The surface accuracy of the disk mounting surface 3d with respect to the outer peripheral surface 2a of the shaft portion 2 of the integral shaft 9 is set with high accuracy. As a result, for example, the deflection accuracy of the disk mounting surface 3d with respect to the outer peripheral surface 2a of the shaft portion 2 is set to 5 μm or less, and the rotation accuracy of the disk D is increased. Moreover, in this embodiment, the disk fitting surface with respect to the outer peripheral surface 2a of the shaft part 2 is ground by grinding the outer peripheral surface 21b of the shaft part 21 on the basis of the outer peripheral surface 22b1 of the cylindrical part 22b corresponding to the disk fitting surface 3e. The coaxiality of 3e is set to 5 μm or less. In other words, if the dimensional accuracy of the disc mounting surface 3d and the disc fitting surface 3e with respect to the outer peripheral surface 2a of the shaft portion 2 is within the above range, the outer peripheral surface 2a of the shaft portion 2 is connected to the disc mounting surface 3d and the disc fitting surface. It can be estimated that the ground surface 3e (or a surface ground simultaneously with these surfaces) is ground. The definition of runout accuracy and coaxiality is based on JIS B 0021: 1998.

尚、本実施形態では、軸部21の外周面21bを研削する際に、鍔部22cの上側端面22c1を直接支持するのではなく、円盤部22aの上側端面22a1の外周部をマグネットチャック51で支持している。円盤部22aの上側端面22a1の外周部と、鍔部22cの上側端面22c1とは同時研削されているため、これらの面の平行度は極めて高精度に設定される。従って、円盤部22aの上側端面22a1の外周部をマグネットチャック51で支持することで、鍔部22cの上側端面22c1を間接的に基準とすることができる。もちろん、可能であれば、鍔部22cの上側端面22c1をマグネットチャック51で吸着支持し、この面を直接的に基準としてもよい。   In this embodiment, when the outer peripheral surface 21b of the shaft portion 21 is ground, the upper end surface 22c1 of the flange portion 22c is not directly supported, but the outer peripheral portion of the upper end surface 22a1 of the disk portion 22a is covered by the magnet chuck 51. I support it. Since the outer peripheral portion of the upper end surface 22a1 of the disk portion 22a and the upper end surface 22c1 of the flange portion 22c are ground simultaneously, the parallelism of these surfaces is set with extremely high accuracy. Therefore, by supporting the outer peripheral portion of the upper end surface 22a1 of the disk portion 22a with the magnet chuck 51, the upper end surface 22c1 of the flange portion 22c can be indirectly used as a reference. Of course, if possible, the upper end surface 22c1 of the flange 22c may be attracted and supported by the magnet chuck 51, and this surface may be directly used as a reference.

また、研削仕上げを施したハブ一体軸9の軸部2の外周面2aに、必要に応じて表面硬化処理あるいはコーティング処理を施してもよい。表面硬化処理あるいはコーティング処理を、上記の研削仕上げ工程に先立って行えば、研削による疵を抑えることができる。また、上記の研削仕上げ工程の後にコーティング処理を施せば、研削による疵をコーティングで覆うことができる。また、表面硬化処理及びコーティング処理の双方を施してもよく、例えば軸部2の外周面2aに表面硬化処理を施した後、上記の研削仕上げ工程を行い、さらにこの面にコーティング処理を施してもよい。   Moreover, you may perform a surface hardening process or a coating process to the outer peripheral surface 2a of the axial part 2 of the hub integrated shaft 9 which gave grinding finishing as needed. If surface hardening treatment or coating treatment is performed prior to the above-mentioned grinding finishing step, wrinkles due to grinding can be suppressed. Moreover, if a coating process is performed after said grinding finishing process, the grinding | polishing wrinkles can be covered with a coating. Further, both surface hardening treatment and coating treatment may be performed. For example, after the surface hardening treatment is performed on the outer peripheral surface 2a of the shaft portion 2, the above-described grinding finishing process is performed, and further this surface is coated. Also good.

本発明は、上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と同様の機能を有する箇所には同一の符号を付して重複説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, although other embodiment of this invention is described, the same code | symbol is attached | subjected to the location which has the same function as said embodiment, and duplication description is abbreviate | omitted.

上記の実施形態では、軸部2の下端面2cにフランジ部11aがネジ固定されているが、これに限らず、例えば溶接や接着、溶着により固定することもできる。この場合、軸部2の下端面2cとフランジ部11aの上側端面11a1との間の隙間を接着剤等で完全に封止すれば、軸部2の軸方向穴2bを介した油漏れを確実に防止できる。   In the above-described embodiment, the flange portion 11a is screwed to the lower end surface 2c of the shaft portion 2. However, the present invention is not limited to this, and for example, it can be fixed by welding, adhesion, or welding. In this case, if the gap between the lower end surface 2c of the shaft portion 2 and the upper end surface 11a1 of the flange portion 11a is completely sealed with an adhesive or the like, oil leakage through the axial hole 2b of the shaft portion 2 is ensured. Can be prevented.

また、上記の実施形態では、軸受スリーブ8の上側端面8bとハブ部3の円盤部3aの下側端面3a1との間に第1スラスト軸受部T1のスラスト軸受隙間が形成されているが、これに限られない。例えば、ハウジング7の上端面7a2とハブ部3の円盤部3aの下側端面3a1との間に第1スラスト軸受部T1のスラスト軸受隙間を形成してもよい。この場合、円盤部3aの下側端面3a1の外周部に研削が施される。   In the above embodiment, the thrust bearing gap of the first thrust bearing portion T1 is formed between the upper end surface 8b of the bearing sleeve 8 and the lower end surface 3a1 of the disk portion 3a of the hub portion 3. Not limited to. For example, a thrust bearing gap of the first thrust bearing portion T1 may be formed between the upper end surface 7a2 of the housing 7 and the lower end surface 3a1 of the disk portion 3a of the hub portion 3. In this case, the outer peripheral portion of the lower end surface 3a1 of the disk portion 3a is ground.

また、上記の実施形態では、図7及び図8に示すように、素形材30のハブ部22のディスク搭載面(鍔部22cの上側端面22c1)及びディスク嵌合面(円筒部22bの外周面22b1)に研削仕上げを施し、これらの面(あるいはこれらと同時研削された面)を基準として軸部21の外周面21bに研削仕上げを施しているが、これに限られない。例えば、研削仕上げを施したディスク搭載面のみを基準として、軸部21の外周面21bに研削仕上げを施してもよい。   In the above embodiment, as shown in FIGS. 7 and 8, the disk mounting surface (upper end surface 22c1 of the flange 22c) and the disk fitting surface (the outer periphery of the cylindrical portion 22b) of the hub portion 22 of the shaped member 30 are used. The surface 22b1) is ground and the outer peripheral surface 21b of the shaft portion 21 is ground with reference to these surfaces (or the surfaces ground at the same time), but is not limited thereto. For example, the outer peripheral surface 21b of the shaft portion 21 may be ground with reference to only the disk mounting surface that has been ground.

また、上記の実施形態では、潤滑流体が潤滑油である場合を示しているが、これに限らず、例えば磁性流体や空気等の流体を使用することも可能である。   In the above embodiment, the lubricating fluid is a lubricating oil. However, the present invention is not limited to this. For example, a fluid such as a magnetic fluid or air can be used.

また、上記の実施形態では、本発明に係るハブ一体軸9をHDDのスピンドルモータ用の流体動圧軸受装置に組み込んだ例を示しているが、これに限られない。例えば、ポリゴンスキャナモータ用の流体動圧軸受装置や、カラーホイールモータ用の流体動圧軸受装置に本発明のハブ一体軸を適用することもできる。   In the above embodiment, an example in which the hub integrated shaft 9 according to the present invention is incorporated in a fluid dynamic bearing device for an HDD spindle motor is shown, but the present invention is not limited to this. For example, the hub integrated shaft of the present invention can be applied to a fluid dynamic pressure bearing device for a polygon scanner motor or a fluid dynamic pressure bearing device for a color wheel motor.

1 流体動圧軸受装置
2 軸部
3 ハブ部
3d ディスク搭載面
3e ディスク嵌合面
4 ステータコイル
5 ロータマグネット
6 ブラケット
7 ハウジング
8 軸受スリーブ
9 ハブ一体軸
10 ヨーク
11 抜け止め部材
11a フランジ部
11b 固定部
20 金属板
21 軸部
22 ハブ部
30 素形材
41 回転センタ
43 バッキングプレート
44 アンギュラ砥石
51 マグネットチャック
52 シュー
53 アンギュラ砥石
D ディスク
R1,R2 ラジアル軸受部
T1 第1のスラスト軸受部
T2 第2のスラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1 Fluid dynamic pressure bearing apparatus 2 Shaft part 3 Hub part 3d Disk mounting surface 3e Disk fitting surface 4 Stator coil 5 Rotor magnet 6 Bracket 7 Housing 8 Bearing sleeve 9 Hub integrated shaft 10 Yoke 11 Retaining member 11a Flange part 11b Fixing part 20 Metal plate 21 Shaft portion 22 Hub portion 30 Shaped material 41 Rotating center 43 Backing plate 44 Angular whetstone 51 Magnet chuck 52 Shoe 53 Angular whetstone D Disc R1, R2 Radial bearing portion T1 First thrust bearing portion T2 Second thrust Bearing part S Seal space

Claims (8)

軸部、及び、軸部の一端から外径に突出し、軸方向と直交する回転体搭載面が形成されたハブ部とを一体に有する金属製のハブ一体軸と、軸部の他端に固定されたフランジ部と、内周に軸部が挿入された軸受部材と、軸部の外周面と軸受部材の内周面との間のラジアル軸受隙間に生じる潤滑流体の動圧作用で軸部をラジアル方向に支持するラジアル軸受部とを備えた流体動圧軸受装置において、
軸部の他端面が研削面であり、この他端面にフランジ部の一端面を当接させた流体動圧軸受装置。
A metal hub integrated shaft that integrally has a shaft portion and a hub portion that projects from one end of the shaft portion to the outer diameter and is formed with a rotating body mounting surface orthogonal to the axial direction, and is fixed to the other end of the shaft portion The shaft portion by the hydrodynamic action of the lubricating fluid generated in the radial bearing gap between the flange portion, the bearing member having the shaft portion inserted into the inner periphery, and the outer peripheral surface of the shaft portion and the inner peripheral surface of the bearing member. In a fluid dynamic pressure bearing device including a radial bearing portion supported in a radial direction,
A fluid dynamic bearing device in which the other end surface of the shaft portion is a ground surface and one end surface of the flange portion is brought into contact with the other end surface.
フランジ部の一端面がスラスト軸受隙間に面する請求項1の流体動圧軸受装置。   2. The fluid dynamic bearing device according to claim 1, wherein one end surface of the flange portion faces the thrust bearing gap. 軸受部材の一端面とハブ部の一端面との間のスラスト軸受隙間に生じる潤滑流体の動圧作用でハブ一体軸をスラスト方向一方に支持する第1のスラスト軸受部と、軸受部材の他端面とフランジ部の一端面との間のスラスト軸受隙間に生じる潤滑流体の動圧作用でハブ一体軸をスラスト方向他方に支持する第2のスラスト軸受部とをさらに備えた請求項2の流体動圧軸受装置。   A first thrust bearing portion that supports the hub integrated shaft in one thrust direction by the dynamic pressure action of a lubricating fluid generated in a thrust bearing gap between one end surface of the bearing member and one end surface of the hub portion, and the other end surface of the bearing member The fluid dynamic pressure according to claim 2, further comprising a second thrust bearing portion that supports the hub integrated shaft in the other thrust direction by the dynamic pressure action of the lubricating fluid generated in the thrust bearing gap between the flange portion and one end surface of the flange portion. Bearing device. ハブ部の一端面と軸部の他端面とが同時研削された面である請求項3の流体動圧軸受装置。   4. The fluid dynamic bearing device according to claim 3, wherein the one end surface of the hub portion and the other end surface of the shaft portion are simultaneously ground surfaces. 軸部の外周面と他端面とが同時研削された面である請求項1〜4何れかの流体動圧軸受装置。   The fluid dynamic pressure bearing device according to any one of claims 1 to 4, wherein the outer peripheral surface and the other end surface of the shaft portion are simultaneously ground surfaces. 研削された回転体搭載面あるいは回転体搭載面と同時研削された面を基準として、軸部の外周面が研削された請求項1〜5何れかの流体動圧軸受装置。   The fluid dynamic pressure bearing device according to any one of claims 1 to 5, wherein the outer peripheral surface of the shaft portion is ground based on the ground rotating body mounting surface or a surface ground simultaneously with the rotating body mounting surface. ハブ一体軸が、金属板の塑性加工により軸部及びハブ部を一体成形した素形材に研削仕上げを施して形成されたものである請求項1〜6何れかの流体動圧軸受装置。   The fluid dynamic pressure bearing device according to any one of claims 1 to 6, wherein the hub integrated shaft is formed by grinding a base material integrally formed with the shaft portion and the hub portion by plastic working of a metal plate. 軸部、及び、軸部の一端から外径に突出し、軸方向と直交する回転体搭載面が形成されたハブ部とを一体に有するハブ一体軸と、軸部の他端に固定されたフランジ部と、内周に軸部が挿入された軸受部材と、軸部の外周面と軸受部材の内周面との間のラジアル軸受隙間に生じる潤滑流体の動圧作用で軸部をラジアル方向に支持するラジアル軸受部とを備えた流体動圧軸受装置を製造するための方法であって、
軸部の他端面に研削を施し、この他端面にフランジ部の一端面を当接させた状態で、フランジ部を軸部に固定する流体動圧軸受装置の製造方法。
A hub integrated shaft integrally including a shaft portion, a hub portion projecting from one end of the shaft portion to an outer diameter, and formed with a rotating body mounting surface orthogonal to the axial direction, and a flange fixed to the other end of the shaft portion And the bearing member in which the shaft portion is inserted into the inner periphery, and the shaft portion in the radial direction by the dynamic pressure action of the lubricating fluid generated in the radial bearing gap between the outer peripheral surface of the shaft portion and the inner peripheral surface of the bearing member. A method for manufacturing a fluid dynamic bearing device comprising a supporting radial bearing portion,
A method of manufacturing a fluid dynamic bearing device, wherein the other end surface of the shaft portion is ground and the flange portion is fixed to the shaft portion in a state where the other end surface is in contact with one end surface of the flange portion.
JP2010254933A 2010-11-15 2010-11-15 Fluid dynamic bearing device and method of manufacturing the same Pending JP2012107645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010254933A JP2012107645A (en) 2010-11-15 2010-11-15 Fluid dynamic bearing device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010254933A JP2012107645A (en) 2010-11-15 2010-11-15 Fluid dynamic bearing device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012107645A true JP2012107645A (en) 2012-06-07

Family

ID=46493482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010254933A Pending JP2012107645A (en) 2010-11-15 2010-11-15 Fluid dynamic bearing device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012107645A (en)

Similar Documents

Publication Publication Date Title
US6921208B2 (en) Dynamic bearing device and method for making same
US7647690B2 (en) Manufacturing method of bearing member and manufacturing method of sleeve unit
JP2008035605A (en) Method of manufacturing motor, and motor
JP3981564B2 (en) Hydrodynamic bearing device and manufacturing method thereof
WO2007083491A1 (en) Shaft member for dynamic pressure bearing device
US7708465B2 (en) Hydrodynamic bearing device, spindle motor, and method for manufacturing hydrodynamic bearing device
JP3991215B2 (en) Hydrodynamic bearing device
JP2012031969A (en) Hub integrated shaft for fluid dynamic pressure bearing device, and method for manufacturing the same
JP2012247052A (en) Fluid dynamic pressure bearing device
US20080211334A1 (en) Spindle motor
JP2006077863A (en) Shaft member for dynamic pressure type bearing device and manufacturing method thereof
JP2012107645A (en) Fluid dynamic bearing device and method of manufacturing the same
JP2001317545A (en) Dynamic pressure bearing device and method for manufacturing thereof
US5924798A (en) Hydrodynamic bearing apparatus and method for manufacturing thereof
JP2011074951A (en) Fluid dynamic bearing device
WO2015029677A1 (en) Shaft member for fluid dynamic bearing device and manufacturing method for shaft member
JP2012225385A (en) Hub-integrated shaft, fluid dynamic pressure bearing device including same, and spindle motor
JP2008144847A (en) Dynamic pressure bearing device
JP2005188747A (en) Hydrodynamic bearing device and its manufacturing method
JP2012189089A (en) Fluid dynamic pressure bearing device and method of manufacturing the same
JP2013053692A (en) Fluid dynamic pressure bearing device and method of manufacturing the same
JP2016178818A (en) motor
JP2008111520A (en) Dynamic pressure bearing device
JP4498932B2 (en) Hydrodynamic bearing device
JP4554324B2 (en) Hydrodynamic bearing device