JP2012189089A - Fluid dynamic pressure bearing device and method of manufacturing the same - Google Patents

Fluid dynamic pressure bearing device and method of manufacturing the same Download PDF

Info

Publication number
JP2012189089A
JP2012189089A JP2011050946A JP2011050946A JP2012189089A JP 2012189089 A JP2012189089 A JP 2012189089A JP 2011050946 A JP2011050946 A JP 2011050946A JP 2011050946 A JP2011050946 A JP 2011050946A JP 2012189089 A JP2012189089 A JP 2012189089A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
shaft
peripheral surface
fluid dynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011050946A
Other languages
Japanese (ja)
Other versions
JP5819077B2 (en
Inventor
Hiroyuki Noda
浩行 野田
Natsuhiko Mori
夏比古 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2011050946A priority Critical patent/JP5819077B2/en
Priority to PCT/JP2012/054863 priority patent/WO2012121053A1/en
Priority to US14/002,037 priority patent/US8926183B2/en
Priority to CN201280012103.9A priority patent/CN103415716B/en
Publication of JP2012189089A publication Critical patent/JP2012189089A/en
Application granted granted Critical
Publication of JP5819077B2 publication Critical patent/JP5819077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To highly precisely form recessed parts, while reducing time and effort in forming the recessed parts for generating dynamic pressure by form rolling on the external peripheral surface of a shaft member.SOLUTION: A fluid dynamic pressure bearing device 1 has a plurality of recessed parts (dynamic pressure grooves Aa) for generating dynamic pressure action to lubricating oil interposed in a radial bearing gap, on the external peripheral surface 21a of a shaft part 21 which forms the radial bearing gap between the inner peripheral surface 8a of a bearing sleeve 8 and the external peripheral surface. The shaft part 21 has a surface cured layer formed by applying heat treatment to a shaft material and the dynamic pressure grooves Aa are formed by applying form rolling to the surface cured layer.

Description

本発明は、流体動圧軸受装置およびその製造方法に関する。   The present invention relates to a fluid dynamic bearing device and a manufacturing method thereof.

流体動圧軸受装置は、軸受隙間に生じる潤滑流体(例えば、潤滑油)の動圧作用で、軸受部材と、軸受部材の内周に挿入された軸部材を相対回転自在に非接触支持する軸受装置である。この流体動圧軸受装置は、高速回転、高回転精度、低騒音等の特徴を有するものであり、近年ではその特徴を活かして、ディスク駆動装置(例えば、HDD等の磁気ディスク駆動装置や、CD、DVD、ブルーレイディスク等の光ディスク駆動装置)のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、電気機器のファンモータ等のモータ用軸受装置として好適に使用されている。   A fluid dynamic pressure bearing device is a bearing that non-contact-supports a bearing member and a shaft member inserted in the inner periphery of the bearing member in a non-contact manner by a dynamic pressure action of a lubricating fluid (for example, lubricating oil) generated in a bearing gap. Device. This fluid dynamic pressure bearing device has characteristics such as high-speed rotation, high rotation accuracy, and low noise. Recently, a disk drive device (for example, a magnetic disk drive device such as an HDD or the like, a CD) In addition, it is suitably used as a motor bearing device such as a spindle motor of an optical disc driving apparatus such as a DVD or a Blu-ray disc, a polygon scanner motor of a laser beam printer (LBP), or a fan motor of an electric device.

例えばディスク駆動装置のスピンドルモータに組み込まれる流体動圧軸受装置は、軸受部材と軸部材のラジアル方向における相対回転を支持するラジアル軸受部と、軸受部材と軸部材のスラスト方向における相対回転を支持するスラスト軸受部とを具備しており、両軸受部のうち、ラジアル軸受部はいわゆる動圧軸受で構成されるのが一般的である。ラジアル軸受部を動圧軸受で構成する場合、ラジアル軸受隙間を介して対向する軸受部材の内周面又は軸部材の外周面に、ラジアル軸受隙間に流体動圧を発生させるための凹部(例えば動圧溝)が複数設けられる。動圧溝は、その溝深さや溝幅が数μm〜十数μm程度の微小溝に形成されるのが一般的であり、このような微小溝を精度良く形成するための方法として、例えば下記の特許文献1に記載されたものが公知である。   For example, a fluid dynamic bearing device incorporated in a spindle motor of a disk drive device supports a radial bearing portion that supports relative rotation of the bearing member and the shaft member in the radial direction, and supports relative rotation of the bearing member and the shaft member in the thrust direction. In general, the radial bearing portion is a so-called hydrodynamic bearing among the two bearing portions. When the radial bearing portion is constituted by a dynamic pressure bearing, a concave portion (for example, a dynamic pressure) for generating fluid dynamic pressure in the radial bearing gap is formed on the inner circumferential surface of the bearing member or the outer circumferential surface of the shaft member facing each other through the radial bearing gap. A plurality of pressure grooves are provided. The dynamic pressure groove is generally formed in a minute groove having a groove depth and a groove width of about several μm to several tens of μm. As a method for accurately forming such a minute groove, for example, the following What is described in Patent Document 1 is known.

詳しくは、軸受部材に加工される円筒状の焼結金属素材の内周に、外周面に動圧溝形状に対応した溝型部を有するコアロッドを挿入した状態で焼結金属素材に圧迫力を加え、焼結金属素材の内周面をコアロッドの外周面に食い付かせて溝型部の形状を焼結金属素材の内周面に転写し、その後、圧迫力の解放により生じる焼結金属素材のスプリングバックを利用して、動圧溝の形状を崩すことなく、焼結金属素材の内周からコアロッドを抜き取る、という方法である。   Specifically, a compression force is applied to the sintered metal material in a state where a core rod having a groove type portion corresponding to the dynamic pressure groove shape is inserted on the outer peripheral surface of the cylindrical sintered metal material processed into the bearing member. In addition, the sintered metal material generated by the release of the compression force after the inner peripheral surface of the sintered metal material bites into the outer peripheral surface of the core rod to transfer the shape of the groove mold part to the inner peripheral surface of the sintered metal material. The core rod is extracted from the inner periphery of the sintered metal material without breaking the shape of the dynamic pressure groove using the spring back.

しかしながら、上記のようにして焼結金属素材の内周面に動圧溝を型成形する際には、相当に大きな圧迫力を焼結金属素材に加える必要があることから、コアロッドや、焼結金属素材の外周面を拘束するために焼結金属素材の外周に配置される金型(ダイ)に加わる力も相当に大きなものとなる。そのため、コアロッドやダイが摩耗等し易く、頻繁に型交換を実施する必要があり、このことが動圧溝の形成コスト、ひいては流体動圧軸受装置の製造コストを増大させる一因となっている。そこで、動圧溝の形成コストを低廉化するための手段として、軸部材の外周面に動圧溝を形成することが再度注目されるに至っている。   However, when molding dynamic pressure grooves on the inner peripheral surface of a sintered metal material as described above, it is necessary to apply a considerably large pressing force to the sintered metal material. The force applied to the die (die) arranged on the outer periphery of the sintered metal material in order to constrain the outer peripheral surface of the metal material also becomes considerably large. Therefore, the core rod and the die are likely to be worn out, and it is necessary to frequently replace the mold, which contributes to an increase in the cost of forming the dynamic pressure groove and hence the manufacturing cost of the fluid dynamic bearing device. . Therefore, as a means for reducing the formation cost of the dynamic pressure groove, attention has been paid again to forming the dynamic pressure groove on the outer peripheral surface of the shaft member.

軸部材は、焼入れされたステンレス鋼等、高強度・高剛性の金属材料で形成されるのが一般的である。このような金属製軸部材の外周面に複数の動圧溝を形成するための手法として、切削、エッチングあるいは転造などを採用することができるが、この中でも、高精度の動圧溝を比較的容易かつ低コストに形成し得る転造が重用される傾向にある。例えば、下記の特許文献2には、軸部材の外周面に動圧溝を転造形成するに際して一般的に採用される具体的手順が記載されている。詳述すると、まず、所定の軸径に仕上げられた軸素材に転造型を押し付け、軸素材の外周面に動圧溝を形成した後、この軸素材に熱処理を施して焼入れ軸を得る。そして、外周面に動圧溝が形成された焼入れ軸の外周面に研削等の最終仕上げを施すことにより、動圧溝およびこれを画成する丘部を含め、外周面が所定精度に形成された完成品としての軸部材を得る、というものである。   The shaft member is generally formed of a high-strength and high-rigidity metal material such as hardened stainless steel. As a method for forming a plurality of dynamic pressure grooves on the outer peripheral surface of such a metal shaft member, cutting, etching, rolling, etc. can be adopted, but among these, high precision dynamic pressure grooves are compared. There is a tendency that rolling that can be formed easily and at low cost is used heavily. For example, Patent Document 2 below describes a specific procedure that is generally employed when a dynamic pressure groove is formed by rolling on the outer peripheral surface of a shaft member. More specifically, first, a rolling die is pressed against a shaft material finished to a predetermined shaft diameter, a dynamic pressure groove is formed on the outer peripheral surface of the shaft material, and then the shaft material is subjected to heat treatment to obtain a quenched shaft. Then, the outer peripheral surface including the dynamic pressure groove and the hill portion defining the dynamic pressure groove is formed with a predetermined accuracy by performing final finishing such as grinding on the outer peripheral surface of the quenching shaft having the dynamic pressure groove formed on the outer peripheral surface. A shaft member as a finished product is obtained.

特開平11−294458号公報JP 11-294458 A 特開平7−114766号公報Japanese Patent Laid-Open No. 7-114766

上記特許文献2に記載されているように、未熱処理の軸素材に転造加工を施せば、素材の肉が塑性流動し易いために、動圧溝を容易に形成することができるという利点がある。しかしながらその反面、転造型を押し付けるのに伴って素材の肉が凸部100の両側で大きく盛り上がるために、動圧溝101相互間で溝深さが大きくばらつき易いこと(図10を参照)、軸素材に内部応力が蓄積された状態で熱処理が施されるため、歪みによる変形が生じ易いこと、などの理由から、所望の回転精度を確保するためには研削等の最終仕上げが必須であり、かつ最終仕上げによる肉の取り代が大きい(材料ロスが多い)という問題がある。   As described in the above-mentioned Patent Document 2, if a rolling process is performed on an unheat-treated shaft material, since the material meat tends to plastically flow, there is an advantage that a dynamic pressure groove can be easily formed. is there. However, on the other hand, the thickness of the material greatly rises on both sides of the convex portion 100 as the rolling die is pressed, so that the groove depth is likely to vary greatly between the dynamic pressure grooves 101 (see FIG. 10). Because heat treatment is performed with the internal stress accumulated in the material, deformation due to strain is likely to occur, and final finishing such as grinding is essential to ensure the desired rotational accuracy. Moreover, there is a problem that the allowance for meat in the final finishing is large (a lot of material loss).

また、軸素材に熱処理を施すと、焼入れ軸の表面(表面硬化層の表層部)には、「黒皮」と称される酸化皮膜が形成される。黒皮が残存したままでは、軸受運転中にラジアル軸受隙間の流体圧力が高まるのに伴って黒皮が剥離し、これがコンタミとなって軸受性能を低下させるおそれがある。そのため、軸部材の製造過程では、研削等の最終仕上げとは別に、黒皮を除去するための除去加工を施すのが一般的である。上記した手順のように、動圧溝を形成してから軸素材に熱処理を施した場合には、各動圧溝内にも黒皮が残存することとなるが、溝深さや溝幅がミクロンオーダーの微小溝に形成される動圧溝内に残存する黒皮を完全に除去するのは容易ではない。もちろん、バレル加工等の除去加工を施せば動圧溝内の黒皮を除去することができるが、バッチ処理が必要となり、加工コストの増大を招来する。   Further, when the shaft material is subjected to heat treatment, an oxide film called “black skin” is formed on the surface of the quenched shaft (surface layer portion of the surface hardened layer). If the black skin remains, the black skin peels off as the fluid pressure in the radial bearing gap increases during the operation of the bearing, which may cause contamination and reduce bearing performance. Therefore, in the manufacturing process of the shaft member, a removal process for removing the black skin is generally performed separately from the final finishing such as grinding. If the shaft material is heat-treated after forming the dynamic pressure grooves as in the above procedure, black skin will remain in each dynamic pressure groove, but the groove depth and width are micron. It is not easy to completely remove the black skin remaining in the dynamic pressure grooves formed in the order minute grooves. Of course, if removal processing such as barrel processing is performed, the black skin in the dynamic pressure grooves can be removed, but batch processing is required, resulting in an increase in processing costs.

そこで、本発明は、軸部材の外周面に、ラジアル軸受隙間に介在する潤滑流体に動圧動圧作用を発生させるための凹部を転造で形成する際の手間を軽減しつつ、動圧発生用の凹部を高精度に形成することを可能とし、これにより、所期の軸受性能を発揮可能な流体動圧軸受装置の低コスト化を図ることを目的とする。   Therefore, the present invention reduces the time and effort required to form a recess for rolling the dynamic fluid pressure action in the lubricating fluid interposed in the radial bearing gap on the outer peripheral surface of the shaft member, while generating dynamic pressure. An object of the present invention is to reduce the cost of a fluid dynamic bearing device capable of forming a concave portion for use with high accuracy, and thereby exhibiting desired bearing performance.

本願発明者らは、ラジアル軸受隙間に介在する潤滑流体に動圧発生を発生させるための凹部(動圧発生用の凹部)に必要とされる深さ寸法がミクロンオーダーであるとの知見に基づき、上記の目的を達成するための具体的手段を見出すに至った。   The inventors of the present application based on the knowledge that the depth dimension required for the concave portion (the concave portion for generating dynamic pressure) for generating the dynamic pressure in the lubricating fluid interposed in the radial bearing gap is on the order of microns. As a result, they have found specific means to achieve the above-mentioned purpose.

すなわち、上記の目的を達成するために創案された本発明は、軸受部材と、軸受部材の内周に挿入された軸部材と、軸受部材の内周面と軸部材の外周面との間に形成されるラジアル軸受隙間とを備え、軸部材の外周面に、ラジアル軸受隙間に介在する潤滑流体に動圧作用を発生させるための凹部が複数設けられた流体動圧軸受装置において、軸部材が、軸素材に熱処理を施すことで形成された表面硬化層を有し、凹部を、表面硬化層に転造加工を施すことで形成したことを特徴とする。なお、ここでいう「凹部」の形状は特に問わず、軸方向に延びた軸方向溝や軸方向に対して傾斜した傾斜溝等のいわゆる動圧溝の他、ディンプル(窪み)などが含まれる。   That is, the present invention created to achieve the above object includes a bearing member, a shaft member inserted into the inner periphery of the bearing member, and an inner peripheral surface of the bearing member and an outer peripheral surface of the shaft member. In the fluid dynamic pressure bearing device, the shaft member is provided with a plurality of recesses for generating a dynamic pressure action on the lubricating fluid interposed in the radial bearing gap on the outer peripheral surface of the shaft member. It has a surface hardened layer formed by subjecting the shaft material to heat treatment, and the concave portion is formed by rolling the surface hardened layer. The shape of the “recess” here is not particularly limited, and includes dimples (dents) in addition to so-called dynamic pressure grooves such as axial grooves extending in the axial direction and inclined grooves inclined with respect to the axial direction. .

上記のように、軸部材の外周面に設けられる動圧発生用の凹部は、必要とされる深さ寸法がミクロンオーダーであることから、熱処理により形成された表面硬化層(焼入れ軸)に転造加工を施した場合でも所定の深さ寸法を具備した凹部を形成することができる。そして、表面硬化層に転造加工を施すことによって凹部を形成するようにすれば、未熱処理の軸素材に転造加工を施す場合と比較して、転造により生じる凸部の両側での肉の盛り上がり量が小さくなり、凹部相互間で深さ寸法にばらつきが生じるのを抑制することができる。しかも、凹部を転造形成した後、すなわち軸素材に内部応力が蓄積された状態で軸素材に熱処理を施す必要がなくなるため、歪みによる変形が生じ難くなる。従って、場合によっては最終仕上げを省略することができ、また、最終仕上げを施す場合であってもその加工量を少なくすることができる。さらに、本発明の構成上、転造加工を施すよりも先に、表面硬化層の表層部(焼入れ軸の外表面)に形成された黒皮の除去加工を実行することができる。転造加工前の焼入れ軸の外周面は、動圧発生用の凹部等の微小な凹凸が存在しない概ね平滑な円筒面状を呈することから、黒皮を容易に除去することができる。これにより、黒皮が軸部材から剥離してコンタミとなり、軸受性能が低下するような問題が生じ難くなる。   As described above, the dynamic pressure generating recess provided on the outer peripheral surface of the shaft member has a required depth dimension on the micron order, and therefore is transferred to a hardened surface layer (quenched shaft) formed by heat treatment. Even when the fabrication process is performed, a recess having a predetermined depth dimension can be formed. If the concave portions are formed by rolling the hardened surface layer, the meat on both sides of the convex portions generated by rolling is compared with the case of rolling the unheated shaft material. It is possible to reduce the amount of swell and to prevent variations in the depth dimension between the recesses. In addition, it is not necessary to heat-treat the shaft material after the recess is formed by rolling, that is, in a state where internal stress is accumulated in the shaft material, so that deformation due to strain hardly occurs. Therefore, the final finishing can be omitted depending on the case, and the processing amount can be reduced even when the final finishing is performed. Furthermore, the removal process of the black skin formed in the surface layer part (outer surface of the quenching shaft) of the surface hardened layer can be executed prior to the rolling process due to the configuration of the present invention. Since the outer peripheral surface of the quenching shaft before the rolling process has a substantially smooth cylindrical surface shape without minute irregularities such as concave portions for generating dynamic pressure, the black skin can be easily removed. As a result, the black skin peels off from the shaft member and becomes contaminated, and it is difficult for a problem that the bearing performance deteriorates to occur.

上記した各種効果を有効に享受するためには、硬度がHV450以上の表面硬化層を形成し、この表面硬化層に対して転造加工を施せば良い。   In order to effectively enjoy the various effects described above, a surface hardened layer having a hardness of HV450 or higher is formed, and the surface hardened layer may be subjected to a rolling process.

ラジアル軸受隙間は、軸方向に離隔した二箇所に形成することができる。このようにすれば、回転トルクの上昇を抑制しつつ、モーメント剛性を高めることができる。この場合、軸部材の外周面のうち、二つのラジアル軸受隙間の間に位置する領域に、凹部の底部よりも小径に形成された円筒状の中逃げ部を設けておくのが望ましい。このようにすれば、軸受部材の内周面を径一定の真円状円筒面に形成して、その製造コストを低廉化しつつ、軸部材の外周面と軸受部材の内周面との間に潤滑流体溜りを設けることができる。軸方向に隣接する二つのラジアル軸受隙間間に潤滑流体溜りが設けられていれば、ラジアル軸受隙間を常時潤沢な潤滑流体で満たすことが可能となり、ラジアル方向における回転精度の安定化が図られる。   The radial bearing gap can be formed at two locations separated in the axial direction. In this way, moment rigidity can be increased while suppressing an increase in rotational torque. In this case, it is desirable to provide a cylindrical middle relief portion having a smaller diameter than the bottom portion of the concave portion in a region located between the two radial bearing gaps on the outer peripheral surface of the shaft member. In this way, the inner peripheral surface of the bearing member is formed into a perfect circular cylindrical surface having a constant diameter, and the manufacturing cost is reduced, while the shaft member and the inner peripheral surface of the bearing member are spaced from each other. A lubricating fluid reservoir can be provided. If a lubricating fluid pool is provided between two radial bearing gaps adjacent to each other in the axial direction, the radial bearing gap can be always filled with abundant lubricating fluid, and the rotational accuracy in the radial direction can be stabilized.

軸受部材を焼結金属製とすれば、その内部気孔に保持された潤滑流体をラジアル軸受隙間に滲み出させることができるので、ラジアル軸受隙間に介在させるべき潤滑流体が不足するような事態が一層効果的に防止される。また、ラジアル軸受隙間に流体動圧を発生させるための凹部が軸部材の外周面に設けられる本発明の構成上、軸受部材の内周面に動圧発生用の凹部を設ける必要がなく、軸受部材の内周面を平滑な円筒面に形成することができる。そのため、軸受部材を焼結金属で形成したとしても、動圧発生用の凹部を焼結金属製の軸受部材の内周面に型成形する場合に懸念される製造コストの増大も可及的に防止される。   If the bearing member is made of sintered metal, the lubricating fluid held in the internal pores can be oozed out into the radial bearing gap, so there is a further situation where the lubricating fluid to be interposed in the radial bearing gap is insufficient. Effectively prevented. Further, since the concave portion for generating fluid dynamic pressure in the radial bearing gap is provided on the outer peripheral surface of the shaft member, there is no need to provide a concave portion for generating dynamic pressure on the inner peripheral surface of the bearing member. The inner peripheral surface of the member can be formed into a smooth cylindrical surface. For this reason, even if the bearing member is formed of sintered metal, the manufacturing cost is increased as much as possible when the concave portion for generating dynamic pressure is molded on the inner peripheral surface of the sintered metal bearing member. Is prevented.

軸部材は、動圧発生用の凹部を有する軸部と、軸部の一端に設けられ、軸受部材の端面との間にスラスト軸受隙間を形成するフランジ部とを備えるものとすることができる。軸部とフランジ部は一体的に設けることも可能であるが、動圧発生用の凹部を転造で形成する本発明の構成上、フランジ部が軸部と一体的に設けられていると凹部の加工性が低下する可能性がある。従って、フランジ部は、適宜の手段で軸部の一端に取り付け固定するのが望ましい。軸部に対するフランジ部の固定方法は特に問わず、フランジ部の形状や形成材料等に応じて、圧入、接着、圧入接着(圧入と接着の併用)、溶接、溶着、加締め等を採用することができる。   The shaft member may include a shaft portion having a concave portion for generating dynamic pressure, and a flange portion provided at one end of the shaft portion and forming a thrust bearing gap between the end surface of the bearing member. The shaft portion and the flange portion can be provided integrally. However, in the configuration of the present invention in which the concave portion for generating dynamic pressure is formed by rolling, the concave portion is provided when the flange portion is provided integrally with the shaft portion. There is a possibility that the workability of the steel will deteriorate. Therefore, it is desirable that the flange portion is attached and fixed to one end of the shaft portion by an appropriate means. The method of fixing the flange part to the shaft part is not particularly limited, and press-fitting, bonding, press-fitting adhesion (combination of press-fitting and bonding), welding, welding, caulking, etc., are adopted depending on the shape of the flange part and the forming material. Can do.

この場合、軸受部材の端面との間にスラスト軸受隙間を形成するフランジ部の端面に、スラスト軸受隙間に流体動圧を発生させるための凹部を複数設けることができる。このようにすれば、スラスト軸受隙間を介して対向する軸受部材の端面に、スラスト軸受隙間に流体動圧を発生させるための凹部を形成する必要がなくなるので、軸受部材の製造コストを低廉化することができる。   In this case, a plurality of recesses for generating fluid dynamic pressure in the thrust bearing gap can be provided on the end face of the flange portion that forms the thrust bearing gap with the end face of the bearing member. In this way, it is not necessary to form a recess for generating fluid dynamic pressure in the thrust bearing gap on the end face of the bearing member facing through the thrust bearing gap, thereby reducing the manufacturing cost of the bearing member. be able to.

以上で述べた本発明に係る流体動圧軸受装置はステータコイルと、ロータマグネットとを有するモータ、例えばディスク駆動装置用のスピンドルモータに組み込んで好適に使用可能である。   The fluid dynamic pressure bearing device according to the present invention described above can be suitably used by being incorporated in a motor having a stator coil and a rotor magnet, for example, a spindle motor for a disk drive device.

また、上記の目的を達成するため、本発明では、軸受部材と、軸受部材の内周に挿入された軸部材と、軸受部材の内周面と軸部材の外周面との間に形成されるラジアル軸受隙間とを備え、軸部材の外周面に、ラジアル軸受隙間に介在する潤滑流体に動圧作用を発生させるための凹部が複数設けられた流体動圧軸受装置の製造方法において、軸素材に熱処理を施すことにより、表面硬化層を有する焼入れ軸を形成する熱処理工程と、焼入れ軸の表面硬化層に転造加工を施すことにより、凹部を形成する転造工程と、を有することを特徴とする流体動圧軸受装置の製造方法を提供する。   Moreover, in order to achieve said objective, in this invention, it forms between the bearing member, the shaft member inserted in the inner periphery of a bearing member, the inner peripheral surface of a bearing member, and the outer peripheral surface of a shaft member. In a method of manufacturing a fluid dynamic bearing device, comprising a radial bearing gap, and a plurality of recesses for generating a dynamic pressure effect on a lubricating fluid interposed in the radial bearing gap on an outer peripheral surface of the shaft member. A heat treatment step for forming a hardened shaft having a surface hardened layer by applying a heat treatment; and a rolling step for forming a concave portion by subjecting the surface hardened layer of the hardened shaft to a rolling process. A method for manufacturing a fluid dynamic bearing device is provided.

この場合、転造工程では、少なくとも凹部を形成するための凹部形成部が、焼入れ軸の表面硬化層よりもHV100以上高硬度に形成された転造型を用いるのが望ましい。これにより、表面硬化層に、所定形状・所定深さの動圧発生用凹部を形成することができる。   In this case, in the rolling process, it is desirable to use a rolling mold in which at least the concave portion forming portion for forming the concave portion is formed to have a hardness of HV100 or more higher than the surface hardened layer of the quenching shaft. Thereby, the concave part for dynamic pressure generation of a predetermined shape and a predetermined depth can be formed in the surface hardened layer.

熱処理工程と転造工程との間には、表面硬化層の表層部(黒皮)を除去するための除去工程をさらに設けることができる。上記したように、本発明の構成上、転造加工前の焼入れ軸の外周面は、微小な凹凸が存在しない概ね平滑な円筒面状に形成されることから、黒皮を容易に除去することができる。これにより、黒皮が軸部材から剥離してコンタミとなり、軸受性能が低下するような問題が生じるのを容易に防止することが可能となる。   A removal step for removing the surface layer portion (black skin) of the surface hardened layer can be further provided between the heat treatment step and the rolling step. As described above, because of the configuration of the present invention, the outer peripheral surface of the quenching shaft before the rolling process is formed in a generally smooth cylindrical surface without minute irregularities, so that the black skin can be easily removed. Can do. As a result, it is possible to easily prevent the black skin from being peeled off from the shaft member to be contaminated and causing a problem that the bearing performance is deteriorated.

転造工程の後、焼入れ軸の外周面を所定精度に仕上げるための仕上げ工程をさらに設けることもできる。上記したように、本発明の構成を採用すれば、転造加工により生じる肉の盛り上がり量を小さくすることができることに加え、焼入れにより生じる変形の程度が小さくなることから、場合によっては仕上げ加工を省略しても構わない。従って、この仕上げ工程は必要に応じて設ければ足りる。なお、仕上げ加工の手法は特に問わず、研削、研磨、塑性加工等を採用することができる。   After the rolling process, a finishing process for finishing the outer peripheral surface of the quenching shaft with a predetermined accuracy can be further provided. As described above, if the configuration of the present invention is adopted, the amount of bulging of the meat generated by the rolling process can be reduced, and the degree of deformation caused by quenching can be reduced. It can be omitted. Therefore, it is sufficient to provide this finishing step as necessary. Note that the finishing method is not particularly limited, and grinding, polishing, plastic working, and the like can be employed.

以上に示すように、本発明によれば、軸部材の外周面に、ラジアル軸受隙間に流体動圧を発生させるための凹部を転造で形成する際の手間を軽減しつつ、上記凹部を高精度に形成することが可能となる。これにより、所期の軸受性能を発揮可能な流体動圧軸受装置の低コスト化を図ることができる。   As described above, according to the present invention, it is possible to reduce the time required for forming the concave portion for generating fluid dynamic pressure in the radial bearing gap by rolling on the outer peripheral surface of the shaft member, while increasing the concave portion. It becomes possible to form with accuracy. As a result, the cost of the fluid dynamic bearing device capable of exhibiting the desired bearing performance can be reduced.

流体動圧軸受装置が組み込まれた情報機器用スピンドルモータの一例を概念的に示す断面図である。It is sectional drawing which shows notionally an example of the spindle motor for information equipment with which the fluid dynamic pressure bearing apparatus was integrated. 本発明の第1実施形態に係る流体動圧軸受装置の含軸断面図である。1 is a cross-sectional view including a shaft of a fluid dynamic bearing device according to a first embodiment of the present invention. (a)図はフランジ部の上側端面を示す図、(b)図はフランジ部の下側端面を示す図である。(A) A figure is a figure which shows the upper end surface of a flange part, (b) A figure is a figure which shows the lower end surface of a flange part. 軸部材を構成する軸部の製造工程を示すブロック図である。It is a block diagram which shows the manufacturing process of the axial part which comprises a shaft member. 転造工程を模式的に示す正面図であり、(a)図は転造開始直後の状態を示す図、(b)図は転造終了後の状態を示す図である。It is a front view which shows a rolling process typically, (a) A figure is a figure which shows the state immediately after a rolling start, (b) A figure is a figure which shows the state after completion | finish of rolling. 仕上げ工程後における軸部の要部を概念的に示す図である。It is a figure which shows notionally the principal part of the axial part after a finishing process. 本発明の第2実施形態に係る流体動圧軸受装置の含軸断面図である。It is a shaft-containing sectional view of a fluid dynamic bearing device according to a second embodiment of the present invention. 本発明の第3実施形態に係る流体動圧軸受装置の含軸断面図である。It is a shaft-containing sectional view of a fluid dynamic bearing device according to a third embodiment of the present invention. 本発明の第4実施形態に係る流体動圧軸受装置の含軸断面図である。It is a shaft-containing sectional view of a fluid dynamic bearing device according to a fourth embodiment of the present invention. 従来方法の問題点を模式的に示す図である。It is a figure which shows the problem of the conventional method typically.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、流体動圧軸受装置が組み込まれた情報機器用スピンドルモータの一構成例を概念的に示す。このスピンドルモータは、HDD等のディスク駆動装置に用いられるものであり、軸部材2を回転自在に支持する流体動圧軸受装置1と、軸部材2に固定されたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、モータベース6とを備えている。ステータコイル4はモータベース6の外周に取付けられ、ロータマグネット5はディスクハブ3の内周に取付けられる。流体動圧軸受装置1の軸受部材9は、モータベース6の内周に固定される。ディスクハブ3にはディスクDが一又は複数枚(図示例は2枚)保持され、ディスクDは、軸部材2にねじ止めされたクランパ(図示省略)とディスクハブ3とで軸方向に挟持固定される。以上の構成において、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、ディスクハブ3およびディスクハブ3に保持されたディスクDが軸部材2と一体に回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment in which a fluid dynamic pressure bearing device is incorporated. The spindle motor is used in a disk drive device such as an HDD, and includes a fluid dynamic bearing device 1 that rotatably supports a shaft member 2, a disk hub 3 fixed to the shaft member 2, and a radial direction, for example. The stator coil 4 and the rotor magnet 5 that are opposed to each other through the gap, and the motor base 6 are provided. The stator coil 4 is attached to the outer periphery of the motor base 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The bearing member 9 of the fluid dynamic bearing device 1 is fixed to the inner periphery of the motor base 6. The disk hub 3 holds one or a plurality of disks D (two in the illustrated example), and the disk D is clamped and fixed in the axial direction by a clamper (not shown) screwed to the shaft member 2 and the disk hub 3. Is done. In the above configuration, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the disk hub 3 and the disk D held by the disk hub 3 are rotated. It rotates integrally with the shaft member 2.

図2に、本発明の第1実施形態に係る流体動圧軸受装置1を示す。この流体動圧軸受装置1は、軸方向の両端部が開口した軸受部材9と、軸受部材9の内周に挿入された軸部材2と、軸受部材9の一端開口を閉塞する蓋部材10とを構成部材として備え、内部空間には潤滑流体としての潤滑油(密な散点ハッチングで示す)が充填されている。本実施形態では、軸部材2を内周に挿入した軸受スリーブ8と、軸受スリーブ8を内周に保持(固定)したハウジング7とで軸受部材9が構成される。なお、以下では、便宜上、蓋部材10が設けられた側を下側、その軸方向反対側を上側として説明を進める。   FIG. 2 shows a fluid dynamic bearing device 1 according to the first embodiment of the present invention. The fluid dynamic pressure bearing device 1 includes a bearing member 9 having both ends opened in the axial direction, a shaft member 2 inserted into the inner periphery of the bearing member 9, and a lid member 10 that closes one end opening of the bearing member 9. The internal space is filled with lubricating oil (shown by dense dotted hatching) as a lubricating fluid. In the present embodiment, the bearing member 9 is configured by the bearing sleeve 8 in which the shaft member 2 is inserted into the inner periphery and the housing 7 in which the bearing sleeve 8 is held (fixed) in the inner periphery. In the following, for the sake of convenience, the description will be given with the side on which the lid member 10 is provided as the lower side and the opposite side in the axial direction as the upper side.

軸受スリーブ8は、焼結金属からなる多孔質体、例えば、銅あるいは鉄を主成分とする焼結金属の多孔質体で円筒状に形成される。軸受スリーブ8は、焼結金属以外のその他の多孔質体、例えば多孔質樹脂やセラミックスで形成することもできるし、黄銅、ステンレス鋼等の中実(非多孔質)の金属材料で形成することもできる。軸受スリーブ8の内周面8aは、凹凸のない平滑な円筒面に形成され、また軸受スリーブ8の外周面8dは、円周方向の一又は複数箇所に軸方向溝8d1が設けられている点を除き、凹凸のない平滑な円筒面に形成されている。軸受スリーブ8の下側端面8bは凹凸のない平坦面に形成されており、上側端面8cには、環状溝8c1と、外径端が環状溝8c1に繋がった径方向溝8c2とが形成されている。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body made of sintered metal, for example, a sintered metal porous body mainly composed of copper or iron. The bearing sleeve 8 can be made of a porous material other than sintered metal, such as a porous resin or ceramics, or a solid (non-porous) metal material such as brass or stainless steel. You can also. The inner peripheral surface 8a of the bearing sleeve 8 is formed as a smooth cylindrical surface without irregularities, and the outer peripheral surface 8d of the bearing sleeve 8 is provided with axial grooves 8d1 at one or a plurality of locations in the circumferential direction. Is formed on a smooth cylindrical surface without irregularities. The lower end surface 8b of the bearing sleeve 8 is formed as a flat surface without irregularities, and the upper end surface 8c is formed with an annular groove 8c1 and a radial groove 8c2 whose outer diameter end is connected to the annular groove 8c1. Yes.

蓋部材10は、金属材料でプレート状に形成される。詳細は後述するが、蓋部材10の上側端面10aは、軸部材2のフランジ部22の下側端面22bとの間に第2スラスト軸受部T2のスラスト軸受隙間を形成する環状領域を有する。この環状領域は平滑な平坦面に形成されており、動圧溝等、スラスト軸受隙間に介在する潤滑油に動圧作用を発生させるための凹部は設けられていない。   The lid member 10 is formed in a plate shape with a metal material. Although details will be described later, the upper end surface 10a of the lid member 10 has an annular region that forms a thrust bearing gap of the second thrust bearing portion T2 between the upper end surface 10a and the lower end surface 22b of the flange portion 22 of the shaft member 2. The annular region is formed on a smooth flat surface, and is not provided with a concave portion for generating a dynamic pressure action in the lubricating oil interposed in the thrust bearing gap, such as a dynamic pressure groove.

ハウジング7は、溶製材(例えば、黄銅やステンレス鋼等の中実の金属材料)で軸方向両端が開口した略円筒状に形成されており、軸受スリーブ8および蓋部材10を内周に保持した本体部7aと、本体部7aの上端から内径側に延びたシール部7bとを一体に有する。本体部7aの内周面には、相対的に小径の小径内周面7a1と、相対的に大径の大径内周面7a2とが設けられ、小径内周面7a1および大径内周面7a2には、軸受スリーブ8および蓋部材10がそれぞれ固定されている。ハウジング7に対する軸受スリーブ8および蓋部材10の固定手段は特に問わず、圧入、接着、圧入接着、溶接等、適宜の手段で固定することができる。本実施形態では、本体部7aの小径内周面7a1に軸受スリーブ8を隙間嵌めし、この隙間に接着剤を介在させるいわゆる隙間接着により、ハウジング7の内周に軸受スリーブ8が固定されている。小径内周面7a1の軸方向所定箇所には、接着剤溜りとして機能する環状溝7a3が形成されており、この環状溝7a3内に接着剤が充填され、固化することにより、ハウジング7に対する軸受スリーブ8の接着強度の向上が図られる。   The housing 7 is formed of a molten material (for example, a solid metal material such as brass or stainless steel) in a substantially cylindrical shape with both axial ends open, and holds the bearing sleeve 8 and the lid member 10 on the inner periphery. The main body portion 7a and the seal portion 7b extending from the upper end of the main body portion 7a to the inner diameter side are integrally provided. A relatively small-diameter small-diameter internal peripheral surface 7a1 and a relatively large-diameter large-diameter internal peripheral surface 7a2 are provided on the internal peripheral surface of the main body 7a, and the small-diameter internal peripheral surface 7a1 and the large-diameter internal peripheral surface are provided. A bearing sleeve 8 and a lid member 10 are fixed to 7a2. The fixing means for the bearing sleeve 8 and the lid member 10 with respect to the housing 7 is not particularly limited, and can be fixed by appropriate means such as press-fitting, adhesion, press-fitting adhesion, and welding. In the present embodiment, the bearing sleeve 8 is fixed to the inner periphery of the housing 7 by so-called gap bonding in which the bearing sleeve 8 is fitted into the small diameter inner circumferential surface 7a1 of the main body 7a and an adhesive is interposed in the gap. . An annular groove 7a3 functioning as an adhesive reservoir is formed at a predetermined position in the axial direction of the small-diameter inner peripheral surface 7a1, and the annular sleeve 7a3 is filled with an adhesive and solidified, whereby a bearing sleeve for the housing 7 is formed. 8 is improved in adhesive strength.

シール部7bの内周面7b1は、下方に向けて漸次縮径したテーパ面状に形成され、対向する軸部材2(軸部21)の外周面21aとの間に下方に向けて径方向寸法を漸次縮小させたくさび状のシール空間Sを形成する。シール部7bの下側端面7b2(の内径側領域)には、軸受スリーブ8の上側端面8cが当接しており、これにより、ハウジング7に対する軸受スリーブ8の軸方向における相対的な位置決めがなされている。シール部7bの下側端面7b2の外径側領域は、外径側に向かって徐々に上側に後退して軸受スリーブ8の上側端面8cとの間に環状隙間を形成している。環状隙間の内径端部は、軸受スリーブ8の上側端面8cの環状溝8c1に繋がっている。   The inner peripheral surface 7b1 of the seal portion 7b is formed in a tapered surface shape that is gradually reduced in diameter toward the lower side, and has a radial dimension toward the lower side between the outer peripheral surface 21a of the opposing shaft member 2 (shaft portion 21). Is formed in a wedge-shaped seal space S. The upper end surface 8c of the bearing sleeve 8 is in contact with the lower end surface 7b2 (the inner diameter side region thereof) of the seal portion 7b, whereby relative positioning in the axial direction of the bearing sleeve 8 with respect to the housing 7 is achieved. Yes. The outer diameter side region of the lower end surface 7b2 of the seal portion 7b gradually recedes upward toward the outer diameter side to form an annular gap with the upper end surface 8c of the bearing sleeve 8. An inner diameter end portion of the annular gap is connected to an annular groove 8 c 1 on the upper end surface 8 c of the bearing sleeve 8.

以上の構成を有するハウジング7は、樹脂の射出成形品とすることもできる。この場合、軸受スリーブ8をインサート部品としてハウジング7を樹脂で射出成形しても良い。また、ハウジング7は、マグネシウム合金やアルミニウム合金等に代表される低融点金属の射出成形品とすることもできるし、いわゆるMIM成形品とすることもできる。   The housing 7 having the above configuration may be a resin injection molded product. In this case, the housing 7 may be injection molded with resin using the bearing sleeve 8 as an insert part. The housing 7 can be an injection molded product of a low melting point metal represented by a magnesium alloy or an aluminum alloy, or can be a so-called MIM molded product.

軸部材2は、焼入れされたステンレス鋼(例えばSUS420J2)で中実軸状に形成された軸部21と、軸部21の下端から外径側に張り出したフランジ部22とを備える。フランジ部2bは、例えば、軸部21と同種のステンレス鋼、あるいは焼結金属の多孔質体で円環状に形成され、軸部21の下端外周に圧入、接着、圧入接着、溶接等の適宜の手段で固定されている。軸部21の外周面21aのうち、フランジ部22の固定領域には環状溝21bが形成されており、例えば接着剤を使用してフランジ部22を軸部21に固定するときには、環状溝21bが接着剤溜りとして機能するため軸部21に対するフランジ部22の固定強度向上が図られる。また、フランジ部22の内周面に形成した凸部を環状溝21bに嵌合させることにより、フランジ部22の抜け強度を高めることも可能である。   The shaft member 2 includes a shaft portion 21 that is formed of a hardened stainless steel (for example, SUS420J2) in a solid shaft shape, and a flange portion 22 that projects from the lower end of the shaft portion 21 to the outer diameter side. For example, the flange portion 2b is formed in an annular shape with the same kind of stainless steel as the shaft portion 21 or a porous body of sintered metal, and is appropriately fitted to the outer periphery of the lower end of the shaft portion 21 such as press-fitting, bonding, press-fitting adhesion, welding, or the like. It is fixed by means. An annular groove 21b is formed in the fixing region of the flange portion 22 in the outer peripheral surface 21a of the shaft portion 21. For example, when the flange portion 22 is fixed to the shaft portion 21 using an adhesive, the annular groove 21b is formed. Since it functions as an adhesive reservoir, the fixing strength of the flange portion 22 with respect to the shaft portion 21 can be improved. Further, by fitting a convex portion formed on the inner peripheral surface of the flange portion 22 into the annular groove 21b, it is possible to increase the pull-out strength of the flange portion 22.

軸部21の外周面21aには、対向する軸受スリーブ8の内周面8aとの間にラジアル軸受隙間を形成するラジアル軸受面A1,A2となる円筒状領域が軸方向の二箇所に離隔形成されている。ラジアル軸受面A1,A2には、それぞれ、ラジアル軸受隙間に介在する潤滑油に動圧作用を発生させる凹部としての動圧溝Aa(図2中、クロスハッチングで示す)が円周方向に複数設けられており、ここでは、複数の動圧溝Aaがヘリングボーン形状に配列されている。本実施形態において、上側のラジアル軸受面A1に設けられた各動圧溝Aaは、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。一方、下側のラジアル軸受面A2に設けられた各動圧溝Aaは軸方向対称に形成されている。各動圧溝Aaの溝深さは、数μm程度とされる。   On the outer peripheral surface 21 a of the shaft portion 21, cylindrical regions serving as radial bearing surfaces A <b> 1 and A <b> 2 that form a radial bearing gap between the inner peripheral surface 8 a of the opposing bearing sleeve 8 are formed at two positions in the axial direction. Has been. The radial bearing surfaces A1 and A2 are each provided with a plurality of dynamic pressure grooves Aa (indicated by cross-hatching in FIG. 2) as recesses that generate dynamic pressure action on the lubricating oil interposed in the radial bearing gap. Here, a plurality of dynamic pressure grooves Aa are arranged in a herringbone shape. In this embodiment, each dynamic pressure groove Aa provided on the upper radial bearing surface A1 is formed axially asymmetric with respect to the axial center m (the axial center of the region between the upper and lower inclined grooves). The axial dimension X1 of the upper region from the axial center m is larger than the axial dimension X2 of the lower region. On the other hand, each dynamic pressure groove Aa provided on the lower radial bearing surface A2 is formed symmetrically in the axial direction. The groove depth of each dynamic pressure groove Aa is about several μm.

軸部21の外周面21aのうち、2つのラジアル軸受面A1,A2間には、動圧溝Aaの底部よりも内径側に後退した(小径に形成された)円筒状の中逃げ部23が設けられている。軸部21の外周面21aにこのような中逃げ部23を設けたことにより、径一定の円筒面に形成された軸受スリーブ8の内周面8aとの間に円筒状の潤滑油溜りが形成される。これにより、軸受運転中には、潤滑油溜りと軸方向に隣接する2つのラジアル軸受隙間を常時潤沢な潤滑油で満たすことが可能となるので、ラジアル方向における回転精度の安定化が図られる。   Of the outer peripheral surface 21a of the shaft portion 21, between the two radial bearing surfaces A1 and A2, there is a cylindrical intermediate escape portion 23 that is retracted (formed to a smaller diameter) to the inner diameter side than the bottom portion of the dynamic pressure groove Aa. Is provided. By providing such an intermediate relief portion 23 on the outer peripheral surface 21a of the shaft portion 21, a cylindrical lubricating oil reservoir is formed between the inner peripheral surface 8a of the bearing sleeve 8 formed on a cylindrical surface having a constant diameter. Is done. As a result, during bearing operation, the lubricating oil reservoir and the two radial bearing gaps adjacent to each other in the axial direction can always be filled with abundant lubricating oil, so that the rotational accuracy in the radial direction can be stabilized.

図3(a)に示すように、フランジ部22の上側端面22aには、対向する軸受スリーブ8の下側端面8bとの間に第1スラスト軸受部T1のスラスト軸受隙間を形成するスラスト軸受面Bが設けられる。スラスト軸受面Bには、第1スラスト軸受部T1のスラスト軸受隙間に介在する潤滑油に動圧作用を発生させる凹部としての動圧溝Baが円周方向に複数設けられており、ここでは、動圧溝Baがスパイラル形状に配列されている。また、図3(b)に示すように、フランジ部22の下側端面22bには、対向する蓋部材10の上側端面10aとの間に、第2スラスト軸受部T2のスラスト軸受隙間を形成するスラスト軸受面Cが設けられる。スラスト軸受面Cには、第2スラスト軸受部T2のスラスト軸受隙間に介在する潤滑油に動圧作用を発生させる凹部としての動圧溝Caが円周方向に複数設けられており、ここでは、動圧溝Caがスパイラル形状に配列されている。動圧溝Ba,Caの何れか一方又は双方は、ヘリングボーン形状に配列することもできる。   As shown in FIG. 3A, the thrust bearing surface that forms the thrust bearing gap of the first thrust bearing portion T <b> 1 between the upper end surface 22 a of the flange portion 22 and the lower end surface 8 b of the opposing bearing sleeve 8. B is provided. The thrust bearing surface B is provided with a plurality of dynamic pressure grooves Ba as recesses for generating a dynamic pressure action in the lubricating oil interposed in the thrust bearing gap of the first thrust bearing portion T1, and here, The dynamic pressure grooves Ba are arranged in a spiral shape. Further, as shown in FIG. 3B, a thrust bearing gap of the second thrust bearing portion T2 is formed between the lower end surface 22b of the flange portion 22 and the upper end surface 10a of the facing lid member 10. A thrust bearing surface C is provided. The thrust bearing surface C is provided with a plurality of dynamic pressure grooves Ca as concave portions for generating a dynamic pressure action in the lubricating oil interposed in the thrust bearing gap of the second thrust bearing portion T2, in the circumferential direction, The dynamic pressure grooves Ca are arranged in a spiral shape. Either one or both of the dynamic pressure grooves Ba and Ca can be arranged in a herringbone shape.

以上の構成を有する軸部材2は、図4に示すように、軸素材製作工程P1、熱処理工程P2、除去工程P3、転造工程P4および仕上げ工程P5を順に経て製作された軸部21の下端に、別工程で製作したフランジ部22を固定することで完成する。以下、軸部21を製作するための各工程について詳述する。   As shown in FIG. 4, the shaft member 2 having the above-described configuration is a lower end of the shaft portion 21 manufactured through the shaft material manufacturing process P1, the heat treatment process P2, the removal process P3, the rolling process P4, and the finishing process P5 in this order. In addition, it is completed by fixing the flange portion 22 manufactured in a separate process. Hereafter, each process for manufacturing the axial part 21 is explained in full detail.

(1)軸素材製作工程P1
この軸素材製作工程P1では、長尺のバー材から所定長さに切り出された短尺のバー材に所定の加工を施すことにより、動圧溝Aaを除く部位が完成品としての軸部21に近似した形状に仕上げられた軸素材を得る。詳しくは、例えば、短尺のバー材に旋削加工を施すことにより、外周面に中逃げ部23や環状溝21bが形成されると共に、上記バー材の一端にタップ加工を施すことにより、一端面に開口したねじ孔(クランパをねじ止めするためのもの。図示は省略している)が形成された軸素材を得る。なお、軸素材の概略形状は、旋削等の機械加工以外にも、鍛造等の塑性加工で得ることも可能である。
(1) Shaft material production process P1
In this shaft material manufacturing process P1, by performing predetermined processing on a short bar material cut out to a predetermined length from a long bar material, a portion excluding the dynamic pressure groove Aa becomes a shaft part 21 as a finished product. Obtain a shaft material finished in an approximate shape. Specifically, for example, by turning a short bar material, the intermediate escape portion 23 and the annular groove 21b are formed on the outer peripheral surface, and by tapping one end of the bar material, A shaft blank having an open screw hole (for screwing the clamper, not shown) is obtained. The rough shape of the shaft material can be obtained by plastic working such as forging in addition to machining such as turning.

(2)熱処理工程P2
この熱処理工程P2では、軸素材製作工程P1で得られた軸素材のうち、少なくとも外周面に熱処理を施すことにより、硬度がHV450以上、より好ましくはHV500以上の表面硬化層を有する焼入れ軸21’[図5(a)参照]を得る。熱処理方法は特に問わず、高周波焼入れ、真空焼入れ、浸炭焼入れあるいは浸炭窒化焼入れ等の焼入れ、および焼入れ後の焼戻しなどを適宜組み合わせることができる。熱処理は、形成すべき動圧溝Aaの溝深さよりも厚みの大きい表面硬化層が形成されるように施せば良く、必ずしも軸素材の全体が高硬度化(焼入れ)されるように施さなくても良い。
(2) Heat treatment process P2
In this heat treatment step P2, the shaft material obtained in the shaft material production step P1 is subjected to heat treatment on at least the outer peripheral surface, whereby a hardened shaft 21 ′ having a surface hardened layer having a hardness of HV450 or more, more preferably HV500 or more. [See FIG. 5A]. The heat treatment method is not particularly limited, and induction hardening, vacuum quenching, carburizing quenching, carbonitriding quenching, and other quenching, and tempering after quenching can be appropriately combined. The heat treatment may be performed so that a hardened surface layer having a thickness larger than the depth of the dynamic pressure groove Aa to be formed is formed, and not necessarily so that the entire shaft material is hardened (quenched). Also good.

(3)除去工程P3
この粗仕上げ工程P3では、軸素材に熱処理を施すことにより焼入れ軸21’(表面硬化層)を形成するのに伴って、焼入れ軸21’の表面に形成される黒皮とも称される酸化皮膜が除去される。黒皮(酸化皮膜)は、例えば焼入れ軸21’にセンタレス研磨を施すことによって除去される。
(3) Removal step P3
In this rough finishing process P3, an oxide film also called a black skin formed on the surface of the quenched shaft 21 'as the quenched shaft 21' (surface hardened layer) is formed by subjecting the shaft material to heat treatment. Is removed. The black skin (oxide film) is removed, for example, by subjecting the quenching shaft 21 'to centerless polishing.

(4)転造工程P4
この転造工程P4では、(表面の黒皮が除去された)焼入れ軸21’の表面硬化層に転造加工を施すことにより、焼入れ軸21’の外周面に動圧溝Aaを形成する。本実施形態では、図5(a)(b)に示すように、相対スライド可能に設けられた一対の転造型31,32を用いて焼入れ軸21’の外周面に凹部としての動圧溝Aaを転造形成する。各転造型31,32の相手側との対向面には、凹部形成部としての動圧溝形成部34が設けられている。動圧溝形成部34は、個々の動圧溝Aa形状に対応する凸部33をヘリングボーン形状に並べて構成される。凸部33の高さ寸法は、後述する仕上げ工程P5で動圧溝Aaを画成する凸状の丘部を含めて焼入れ軸21’の外周面を所定量研削することを考慮し、ここでは、必要とされる動圧溝Aaの溝深さよりも所定量大きく設定される。また、転造型31,32のうち、少なくとも動圧溝形成部34(複数の凸部33)の硬度は、焼入れ軸21’の表面硬化層よりもHV100以上高硬度に設定される。
(4) Rolling process P4
In this rolling process P4, the hydrodynamic groove Aa is formed on the outer peripheral surface of the quenching shaft 21 'by rolling the surface hardened layer of the quenching shaft 21' (from which the black skin has been removed). In this embodiment, as shown in FIGS. 5 (a) and 5 (b), a dynamic pressure groove Aa as a recess is formed on the outer peripheral surface of the quenching shaft 21 'by using a pair of rolling dies 31, 32 provided so as to be relatively slidable. Formed by rolling. A dynamic pressure groove forming portion 34 as a concave portion forming portion is provided on the surface of each rolling die 31, 32 facing the other side. The dynamic pressure groove forming portion 34 is configured by arranging convex portions 33 corresponding to individual dynamic pressure groove Aa shapes in a herringbone shape. The height dimension of the convex portion 33 is determined by grinding a predetermined amount of the outer peripheral surface of the quenching shaft 21 ′ including the convex hill portion defining the dynamic pressure groove Aa in the finishing step P5 described later. The predetermined depth is set larger than the required groove depth of the dynamic pressure groove Aa. In addition, the hardness of at least the dynamic pressure groove forming portion 34 (the plurality of convex portions 33) of the rolling dies 31 and 32 is set to be HV100 or more higher than the surface hardened layer of the quenching shaft 21 ′.

そして、図5(a)に示すように、焼入れ軸21’を転造型31,32間に導入した後、転造型31,32を相対移動させ、転造型31,32の動圧溝形成部34を焼入れ軸21’の外周面に押し付ける。これにより、図5(b)に示すように、焼入れ軸21’の外周面のうち、動圧溝形成部34の凸部33が押し付けられた部位にあった肉が塑性流動して周囲に押し出され、動圧溝Aaを画成する丘部が形成され、またこれと同時に動圧溝Aaが形成される。なお、本実施形態では、上記のとおり、動圧溝形成部34を構成する各凸部33の高さ寸法が、必要とされる動圧溝Aaの溝深さよりも大きく設定されていることから、この段階での動圧溝Aaの溝深さは、完成品としての軸部21(軸部材2)の外周面に設けられた動圧溝Aaの溝深さよりも深くなっている。   Then, as shown in FIG. 5 (a), after introducing the quenching shaft 21 ′ between the rolling dies 31, 32, the rolling dies 31, 32 are relatively moved, and the dynamic pressure groove forming portion 34 of the rolling dies 31, 32. Is pressed against the outer peripheral surface of the quenching shaft 21 '. As a result, as shown in FIG. 5 (b), of the outer peripheral surface of the quenching shaft 21 ', the meat in the portion where the convex portion 33 of the dynamic pressure groove forming portion 34 is pressed is plastically flowed and pushed out. As a result, a hill portion defining the dynamic pressure groove Aa is formed, and at the same time, the dynamic pressure groove Aa is formed. In the present embodiment, as described above, the height dimension of each convex portion 33 constituting the dynamic pressure groove forming portion 34 is set to be larger than the required groove depth of the dynamic pressure groove Aa. The groove depth of the dynamic pressure groove Aa at this stage is deeper than the depth of the dynamic pressure groove Aa provided on the outer peripheral surface of the shaft portion 21 (shaft member 2) as a finished product.

なお、焼入れ軸21’の外周面に動圧溝Aaを形成するための凸部33(動圧溝形成部34)は、転造型31,32の何れか一方にのみ設けることも可能である。   The convex portion 33 (dynamic pressure groove forming portion 34) for forming the dynamic pressure groove Aa on the outer peripheral surface of the quenching shaft 21 'can be provided only on one of the rolling dies 31, 32.

(5)仕上げ工程P5
この仕上げ工程P5では、転造工程P4にて外周面に動圧溝Aaが転造形成された焼入れ軸21’の外周面が所定精度に仕上げられる。具体的には、焼入れ軸21’の外周面のうち、転造加工が施されることによって動圧溝Aaが形成された円筒状領域(軸部21のうち、ラジアル軸受面A1,A2となる円筒状領域)に研削、研磨、あるいは塑性加工を施すことにより、動圧溝Aaを画成する凸状の丘部Abが所定高さに仕上げられると共に、所定深さの動圧溝Aaが得られる。さらには、ラジアル軸受面A1,A2となる軸方向領域以外の軸方向領域、例えば中逃げ部23も所定精度に仕上げられる(以上、図6を参照)。これにより、完成品としての軸部21が得られる。
(5) Finishing process P5
In this finishing process P5, the outer peripheral surface of the quenching shaft 21 ′, in which the dynamic pressure grooves Aa are formed by rolling on the outer peripheral surface in the rolling process P4, is finished with a predetermined accuracy. Specifically, in the outer peripheral surface of the quenching shaft 21 ′, cylindrical regions in which the dynamic pressure grooves Aa are formed by rolling are formed (the radial bearing surfaces A 1 and A 2 in the shaft portion 21 are formed. By subjecting the cylindrical region) to grinding, polishing, or plastic working, the convex hill Ab defining the dynamic pressure groove Aa is finished to a predetermined height, and a dynamic pressure groove Aa having a predetermined depth is obtained. It is done. Further, the axial region other than the axial region serving as the radial bearing surfaces A1 and A2, for example, the middle escape portion 23 is also finished with a predetermined accuracy (see FIG. 6 above). Thereby, the shaft part 21 as a finished product is obtained.

以上の構成からなる流体動圧軸受装置1において、軸部材2が回転すると、軸部21のラジアル軸受面A1,A2と、これらに対向する軸受スリーブ8の内周面8aとの間にそれぞれラジアル軸受隙間が形成される。そして軸部材2の回転に伴い、両ラジアル軸受隙間に形成される油膜の圧力が動圧溝Aa,Aaの動圧作用によって高められ、その結果、軸部材2をラジアル方向に非接触支持するラジアル軸受部R1,R2が軸方向の二箇所に離隔形成される。これと同時に、フランジ部22の上側端面22aに設けたスラスト軸受面Bとこれに対向する軸受スリーブ8の下側端面8bとの間、および、フランジ部22の下側端面22bに設けたスラスト軸受面Cとこれに対向する蓋部材10の上側端面10aとの間に、第1および第2スラスト軸受隙間がそれぞれ形成される。そして、軸部材2の回転に伴い、両スラスト軸受隙間に形成される油膜の圧力が、動圧溝Ba,Caの動圧作用によってそれぞれ高められ、その結果、軸部材2をスラスト両方向に非接触支持する第1および第2スラスト軸受部T1,T2が形成される。   In the fluid dynamic pressure bearing device 1 having the above-described configuration, when the shaft member 2 rotates, each of the radial portions between the radial bearing surfaces A1 and A2 of the shaft portion 21 and the inner peripheral surface 8a of the bearing sleeve 8 facing the shaft member 2 is radial. A bearing gap is formed. As the shaft member 2 rotates, the pressure of the oil film formed in both radial bearing gaps is increased by the dynamic pressure action of the dynamic pressure grooves Aa, Aa, and as a result, the radial that supports the shaft member 2 in a non-contact manner in the radial direction. The bearing portions R1 and R2 are spaced apart from each other in two axial directions. At the same time, a thrust bearing provided between the thrust bearing surface B provided on the upper end surface 22a of the flange portion 22 and the lower end surface 8b of the bearing sleeve 8 facing the thrust bearing surface B, and on the lower end surface 22b of the flange portion 22. The first and second thrust bearing gaps are formed between the surface C and the upper end surface 10a of the lid member 10 facing the surface C, respectively. As the shaft member 2 rotates, the pressure of the oil film formed in both thrust bearing gaps is increased by the dynamic pressure action of the dynamic pressure grooves Ba and Ca. As a result, the shaft member 2 is not contacted in both thrust directions. Supporting first and second thrust bearing portions T1, T2 are formed.

また、シール空間Sが、ハウジング7の内部側に向かって径方向寸法を漸次縮小させたくさび形状を呈しているため、シール空間S内の潤滑油は毛細管力による引き込み作用によってハウジング7の内部側に向けて引き込まれる。また、シール空間Sは、ハウジング7の内部空間に充填された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内で潤滑油の油面を常にシール空間S内に保持する。そのため、ハウジング7内部からの潤滑油漏れが効果的に防止される。   Further, since the seal space S has a wedge shape in which the radial dimension is gradually reduced toward the inner side of the housing 7, the lubricating oil in the seal space S is pulled into the inner side of the housing 7 by a pulling action due to capillary force. It is drawn toward. Further, the seal space S has a buffer function for absorbing the volume change amount accompanying the temperature change of the lubricating oil filled in the internal space of the housing 7, and the oil surface of the lubricating oil is kept within the range of the assumed temperature change. It is always held in the seal space S. Therefore, lubricating oil leakage from the inside of the housing 7 is effectively prevented.

また、上述したように、上側の動圧溝Aaは、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっているため、軸部材2の回転時、動圧溝Aaによる潤滑油の引き込み力は上側領域が下側領域に比べて相対的に大きくなる。このような引き込み力の差圧により、軸受スリーブ8の内周面8aと軸部21の外周面21a1との間の隙間に充満された潤滑油は下方に流動し、第1スラスト軸受部T1のスラスト軸受隙間→軸受スリーブ8の軸方向溝8d1で形成される軸方向の流体通路11→軸受スリーブ8の上端外周チャンファ等で形成される環状空間→軸受スリーブ8の環状溝8c1および径方向溝8c2で形成される流体通路という経路を循環して、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。   In addition, as described above, the upper dynamic pressure groove Aa has the axial dimension X1 in the upper region from the axial center m larger than the axial dimension X2 in the lower region. The pulling force of the lubricating oil by the dynamic pressure groove Aa is relatively larger in the upper region than in the lower region. Due to such differential pressure of the pulling force, the lubricating oil filled in the gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 21a1 of the shaft portion 21 flows downward, and the first thrust bearing portion T1 Thrust bearing clearance → Axial fluid passage 11 formed by the axial groove 8d1 of the bearing sleeve 8 → Annular space formed by the upper peripheral chamfer or the like of the bearing sleeve 8 → The annular groove 8c1 and the radial groove 8c2 of the bearing sleeve 8 It is circulated through a path called a fluid passage formed by the above and is again drawn into the radial bearing gap of the first radial bearing portion R1.

このような構成とすることで、潤滑油の圧力バランスが保たれると同時に、局部的な負圧の発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。上記の循環経路には、シール空間Sが連通しているので、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際にシール空間S内の潤滑油の油面(気液界面)から外気に排出される。従って、気泡による悪影響は一層効果的に防止される。   By adopting such a configuration, the pressure balance of the lubricating oil is maintained, and at the same time, the generation of bubbles accompanying the generation of local negative pressure, the occurrence of lubricant leakage and vibration due to the generation of bubbles, etc. The problem can be solved. Since the sealing space S communicates with the above circulation path, even if bubbles are mixed in the lubricating oil for some reason, when the bubbles circulate with the lubricating oil, the lubricating oil in the sealing space S It is discharged from the oil surface (gas-liquid interface) to the outside air. Therefore, adverse effects due to bubbles can be prevented more effectively.

上記したように、軸部材2(軸部21)の外周面21aに設けられる動圧溝Aaは、必要とされる溝深さがミクロンオーダーであることから、焼入れ軸21’(表面硬化層)に転造加工を施した場合でも、必要最低限の条件さえ満たしていれば、所定の溝深さを具備した動圧溝Aaを形成することができることを本願発明者らは見出した。そして、焼入れ軸21’の表面硬化層に転造加工を施すことによって動圧発生用の凹部としての動圧溝Aaを形成すれば、未熱処理の軸素材に転造加工を施す場合と比較して、転造により生じる凸部Ab(図6を参照)の両側での肉の盛り上がり量が小さくなり、転造直後における動圧溝Aa相互間で溝深さにばらつきが生じ難くなる。しかも、動圧溝Aaを転造形成した後、すなわち軸素材に内部応力が蓄積された状態で軸素材に熱処理を施す必要がなくなるため、軸素材に歪みによる変形が生じ難くなる。従って、本実施形態のように仕上げ工程P5を設け、該仕上げ工程P5にて焼入れ軸21’に対して所定の最終仕上げを施す場合であっても、その加工量を少なくすることができる。   As described above, the dynamic pressure groove Aa provided on the outer peripheral surface 21a of the shaft member 2 (shaft portion 21) has a required groove depth on the order of microns, so that the quenched shaft 21 ′ (surface hardened layer). The inventors of the present application have found that the dynamic pressure groove Aa having a predetermined groove depth can be formed as long as the necessary minimum conditions are satisfied even when the rolling process is performed. And if the dynamic pressure groove Aa as the concave portion for generating dynamic pressure is formed by rolling the hardened surface of the quenching shaft 21 ', the rolling process is performed on the unheat-treated shaft material. Thus, the amount of rising of the meat on both sides of the convex Ab (see FIG. 6) generated by rolling is reduced, and the groove depth is less likely to vary between the dynamic pressure grooves Aa immediately after rolling. In addition, it is not necessary to heat-treat the shaft material after the dynamic pressure groove Aa is formed by rolling, that is, in a state where internal stress is accumulated in the shaft material. Therefore, even when the finishing step P5 is provided as in the present embodiment and a predetermined final finish is applied to the quenching shaft 21 'in the finishing step P5, the amount of processing can be reduced.

さらに、本発明の構成上、転造加工を施すよりも先に、焼入れ軸21’の外表面に形成された黒皮の除去加工を実行することができる。転造加工前の焼入れ軸21’の外周面は、動圧溝Aaおよびこれを画成する丘部Ab等の微小な凹凸(凹凸の繰り返し)が存在しない概ね平滑な円筒面状を呈することから、黒皮を容易に除去することができる。従って、軸部21の外周面21aに形成した動圧溝Aaの溝底に黒皮は存在せず、表面硬化層が露出する。これにより、流体動圧軸受装置1の運転中に軸部材2の軸部21から黒皮が剥離してコンタミとなり、軸受性能が低下するような問題が生じるのを効果的に防止することができる。   Furthermore, due to the configuration of the present invention, it is possible to perform the removal process of the black skin formed on the outer surface of the quenching shaft 21 ′ before performing the rolling process. The outer peripheral surface of the quenching shaft 21 ′ before the rolling process has a substantially smooth cylindrical surface shape that does not have minute irregularities (repetition of irregularities) such as the dynamic pressure groove Aa and the hill Ab that defines the dynamic pressure groove Aa. The black skin can be removed easily. Therefore, there is no black skin at the bottom of the dynamic pressure groove Aa formed on the outer peripheral surface 21a of the shaft portion 21, and the hardened surface layer is exposed. As a result, it is possible to effectively prevent the problem that the black skin peels off from the shaft portion 21 of the shaft member 2 during the operation of the fluid dynamic pressure bearing device 1 to cause contamination and the bearing performance deteriorates. .

また、ラジアル軸受隙間を形成する二面のうち、軸部21の外周面21aに動圧溝Aaを設けると共に、軸部21の外周面21aに中逃げ部23を設けた関係で、軸受スリーブ8の内周面8a(軸受部材の内周面)は凹凸のない平滑な円筒面に形成される。従って、焼結金属製とされる軸受スリーブ8を製造する際には、原料粉末の圧粉成形体を焼結することにより得られる焼結体に対して内周面および外周面の矯正加工(サイジング)を行うことで製造工程が完了し、内周面に動圧発生用の凹部を加圧成形する工程を設ける必要がない。従って、形状の単純化を通じて金型コストの低廉化が図られ、軸受スリーブ8、ひいては流体動圧軸受装置1全体としての製造コストを低廉化することができる。   Of the two surfaces forming the radial bearing gap, the bearing sleeve 8 has a relationship in which the dynamic pressure groove Aa is provided on the outer peripheral surface 21 a of the shaft portion 21 and the intermediate relief portion 23 is provided on the outer peripheral surface 21 a of the shaft portion 21. The inner peripheral surface 8a (the inner peripheral surface of the bearing member) is formed into a smooth cylindrical surface without any irregularities. Therefore, when manufacturing the bearing sleeve 8 made of sintered metal, the inner peripheral surface and the outer peripheral surface are straightened with respect to the sintered body obtained by sintering the green compact of the raw material powder ( By performing (sizing), the manufacturing process is completed, and there is no need to provide a step of pressure-forming a recess for generating dynamic pressure on the inner peripheral surface. Therefore, the die cost can be reduced through simplification of the shape, and the manufacturing cost of the bearing sleeve 8 and the fluid dynamic pressure bearing device 1 as a whole can be reduced.

以上のことから、本発明によれば、軸部材2の外周面に、ラジアル軸受隙間に流体動圧を発生させるための凹部としての動圧溝Aaを転造で形成する際の手間を軽減しつつ、動圧溝Aaを高精度に形成することが可能となる。これにより、所期の軸受性能を発揮可能な流体動圧軸受装置1の低コスト化を図ることができる。   From the above, according to the present invention, it is possible to reduce the labor when forming the dynamic pressure groove Aa as a recess for generating fluid dynamic pressure in the radial bearing gap on the outer peripheral surface of the shaft member 2 by rolling. However, the dynamic pressure groove Aa can be formed with high accuracy. Thereby, cost reduction of the fluid dynamic pressure bearing apparatus 1 which can exhibit desired bearing performance can be achieved.

以上の説明では、外周面21aに動圧溝Aaが形成された軸部21を得るための製造過程で、焼入れ軸21’の外周面を所定精度に仕上げるための仕上げ工程P5を設けたが、本発明の構成上、動圧溝Aaを従来方法に比べて高精度に形成することができるので、仕上げ工程P5は必ずしも設けなくとも足りる。仕上げ工程P5を省略すれば、軸部材2、ひいては流体動圧軸受装置1の一層の低コスト化に寄与することができる。   In the above description, in the manufacturing process for obtaining the shaft portion 21 in which the dynamic pressure groove Aa is formed on the outer peripheral surface 21a, the finishing step P5 for finishing the outer peripheral surface of the quenched shaft 21 ′ with a predetermined accuracy is provided. Since the dynamic pressure groove Aa can be formed with higher accuracy than the conventional method due to the configuration of the present invention, the finishing step P5 is not necessarily provided. If the finishing process P5 is omitted, it is possible to contribute to further cost reduction of the shaft member 2, and thus the fluid dynamic bearing device 1.

また以上では、軸部材2を構成する軸部21とフランジ部22とを別体とし、外周面21aに動圧溝Aaが形成された軸部21の下端に、別工程で製作したフランジ部22を固定することで軸部材2を得るようにしたが、軸素材として、フランジ部22となる円盤状の部分を一体に備えたものを用いることにより、軸部21とフランジ部22とを一体形成することも可能である。   In the above, the shaft portion 21 and the flange portion 22 constituting the shaft member 2 are separated, and the flange portion 22 manufactured in a separate process is formed at the lower end of the shaft portion 21 in which the dynamic pressure groove Aa is formed on the outer peripheral surface 21a. Although the shaft member 2 is obtained by fixing the shaft member 21, the shaft portion 21 and the flange portion 22 are integrally formed by using a shaft material that is integrally provided with a disk-shaped portion that becomes the flange portion 22. It is also possible to do.

本発明は、上記の実施形態に限定適用されるものではない。以下、本発明を適用可能な他の実施形態に係る流体動圧軸受装置1について図面を参照しながら説明する。以下に示す他の実施形態においては、説明を簡略化する観点から、上述した実施形態と実質的に同一の部材・部位には同一の参照番号を付し、重複説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, a fluid dynamic bearing device 1 according to another embodiment to which the present invention is applicable will be described with reference to the drawings. In other embodiments described below, from the viewpoint of simplifying the description, the same reference numerals are assigned to substantially the same members / parts as those of the above-described embodiment, and the duplicate description is omitted.

図7は、本発明の第2実施形態に係る流体動圧軸受装置1の含軸断面図である。同図に示す流体動圧軸受装置1が、図2に示すものと異なる主な点は、ハウジング7に、円筒状の本体部7aの下端を閉塞する円盤状の底部7cを一体的に設けると共に、本体部7aの上端内周に固定したリング状のシール部材12でシール空間Sを形成した点にある。すなわち、第2スラスト軸受部T2の第2スラスト軸受隙間は、フランジ部22の下側端面22bとハウジング底部7cの上側端面7c1との間に形成され、また、シール空間Sは、シール部材12の内周面12aと軸部21の外周面21aとの間に形成される。なお、ハウジング7の本体部7aと底部7cの境界部には段部7dが設けられており、この段部7dに軸受スリーブ8の下側端面8bを当接させることによって、ハウジング7に対する軸受スリーブ8の軸方向相対位置が決定付けられる。   FIG. 7 is an axial cross-sectional view of the fluid dynamic bearing device 1 according to the second embodiment of the present invention. The main difference of the fluid dynamic bearing device 1 shown in FIG. 2 from that shown in FIG. 2 is that the housing 7 is integrally provided with a disc-shaped bottom 7c that closes the lower end of the cylindrical body 7a. The seal space S is formed by the ring-shaped seal member 12 fixed to the inner periphery of the upper end of the main body portion 7a. That is, the second thrust bearing gap of the second thrust bearing portion T2 is formed between the lower end surface 22b of the flange portion 22 and the upper end surface 7c1 of the housing bottom portion 7c, and the seal space S is formed in the seal member 12. It is formed between the inner peripheral surface 12 a and the outer peripheral surface 21 a of the shaft portion 21. A step portion 7d is provided at the boundary between the main body portion 7a and the bottom portion 7c of the housing 7, and the lower end surface 8b of the bearing sleeve 8 is brought into contact with the step portion 7d, whereby a bearing sleeve for the housing 7 is provided. A relative axial position of 8 is determined.

図8は、本発明の第3実施形態に係る流体動圧軸受装置1の含軸断面図である。同図に示す流体動圧軸受装置1が図2に示すものと異なる主な点は、環状部3aと、環状部3aの外径端から軸方向に延びた略円筒状の筒状部3bとを一体に有するディスクハブ3を軸部材2(軸部21)の上端部に設け、このディスクハブ3の環状部3aの下側端面3a1と、これに対向するハウジング7(本体部7a)の上側端面7a4との間に第2スラスト軸受部T2の第2スラスト軸受隙間が設けられる点、およびハウジング7の上部外周面7a5とディスクハブ3の筒状部3bの内周面3b1との間にシール空間Sが設けられる点にある。また、この実施形態では、軸部21が厚肉の円筒状に形成され、フランジ部22が軸部21の下端にねじ止め固定されている。   FIG. 8 is an axial cross-sectional view of the fluid dynamic bearing device 1 according to the third embodiment of the present invention. The main differences of the fluid dynamic pressure bearing device 1 shown in FIG. 2 from that shown in FIG. 2 are that an annular portion 3a and a substantially cylindrical tubular portion 3b extending in the axial direction from the outer diameter end of the annular portion 3a. Is provided at the upper end portion of the shaft member 2 (shaft portion 21), the lower end surface 3a1 of the annular portion 3a of the disc hub 3 and the upper side of the housing 7 (main body portion 7a) facing this. A seal is provided between the end surface 7a4 and the second thrust bearing gap of the second thrust bearing portion T2 and between the upper outer peripheral surface 7a5 of the housing 7 and the inner peripheral surface 3b1 of the cylindrical portion 3b of the disk hub 3. The space S is provided. In this embodiment, the shaft portion 21 is formed in a thick cylindrical shape, and the flange portion 22 is fixed to the lower end of the shaft portion 21 with screws.

図9は、本発明の第4実施形態に係る流体動圧軸受装置1の含軸断面図である。同図に示す流体動圧軸受装置1が図2に示すものと異なる主な点は、軸受スリーブ8の上側に配置したフランジ部24を軸部21の外周面21aに固定し、軸部材2を構成する両フランジ部22,24の外周面22c,24cとハウジング7(本体部7a)の内周面7a1との間に潤滑油の油面を保持したシール空間Sをそれぞれ形成した点、およびフランジ部24の下側端面24aと軸受スリーブ8の上側端面8cとの間に第2スラスト軸受部T2の第2スラスト軸受隙間が形成される点にある。   FIG. 9 is an axial cross-sectional view of the fluid dynamic bearing device 1 according to the fourth embodiment of the present invention. The main difference of the fluid dynamic pressure bearing device 1 shown in FIG. 2 from that shown in FIG. 2 is that the flange portion 24 arranged on the upper side of the bearing sleeve 8 is fixed to the outer peripheral surface 21a of the shaft portion 21, and the shaft member 2 is fixed. The seal space S that holds the oil level of the lubricating oil is formed between the outer peripheral surfaces 22c, 24c of both flange portions 22, 24 and the inner peripheral surface 7a1 of the housing 7 (main body portion 7a), and the flange. The second thrust bearing gap of the second thrust bearing portion T2 is formed between the lower end surface 24a of the portion 24 and the upper end surface 8c of the bearing sleeve 8.

以上で説明した実施形態では、軸受部材9を、ハウジング7と、ハウジング7の内周に固定した軸受スリーブ8とで構成したが、軸受部材9は、ハウジング7に相当する部分と軸受スリーブ8に相当する部分とが一体的に設けられたもので構成することもできる。   In the embodiment described above, the bearing member 9 is configured by the housing 7 and the bearing sleeve 8 fixed to the inner periphery of the housing 7, but the bearing member 9 is provided in a portion corresponding to the housing 7 and the bearing sleeve 8. A corresponding portion may be integrally provided.

また、以上では、軸部21の外周面21aに動圧発生用の凹部としての動圧溝Aaをヘリングボーン形状に配列することにより、動圧軸受からなるラジアル軸受部R1,R2を構成する場合について説明を行ったが、動圧溝Aaは、スパイラル形状やステップ形状(軸方向に沿って延びる軸方向溝を円周方向に複数配列したもの)に配列することもできる。また、動圧発生用の凹部は、上記したような溝状ではなく、窪み状のディンプルで構成することもできる。   Further, in the above, the radial bearing portions R1 and R2 made of a dynamic pressure bearing are configured by arranging the dynamic pressure grooves Aa as the concave portions for generating dynamic pressure in the herringbone shape on the outer peripheral surface 21a of the shaft portion 21. However, the dynamic pressure grooves Aa can be arranged in a spiral shape or a step shape (a plurality of axial grooves extending in the axial direction are arranged in the circumferential direction). Further, the concave portion for generating dynamic pressure can be constituted by a dimple having a hollow shape instead of the groove shape as described above.

また、以上の実施形態では、動圧発生用の凹部としての動圧溝Ba,Caをフランジ部22の端面にスパイラル形状(あるいはヘリングボーン形状)に配列することにより、動圧軸受からなるスラスト軸受部T1,T2を構成した場合について説明を行ったが、動圧溝Ba,Caの何れか一方又は双方は、径方向に延びる放射状に形成することもできる(ステップ軸受)。また、動圧発生用の凹部は、スラスト軸受隙間を介してフランジ部22の端面22a,22bと対向する部材端面(図2に示す実施形態で言えば軸受スリーブ8の下側端面8bや蓋部材10の上側端面10a)に設けることも可能である。さらに、図示は省略するが、軸部材2にフランジ部22を設けずに、軸部21の一端(下端)を接触支持する、いわゆるピボット軸受でスラスト軸受部を構成することも可能である。   Moreover, in the above embodiment, the dynamic pressure grooves Ba and Ca as the concave portions for generating the dynamic pressure are arranged in a spiral shape (or herringbone shape) on the end surface of the flange portion 22 to thereby form a thrust bearing made of a dynamic pressure bearing. Although the case where the portions T1 and T2 are configured has been described, either one or both of the dynamic pressure grooves Ba and Ca can be formed radially (step bearings). Further, the concave portion for generating the dynamic pressure is a member end surface facing the end surfaces 22a, 22b of the flange portion 22 through the thrust bearing gap (the lower end surface 8b of the bearing sleeve 8 or the lid member in the embodiment shown in FIG. 2). 10 on the upper end face 10a). Furthermore, although illustration is omitted, it is also possible to constitute a thrust bearing portion with a so-called pivot bearing that does not provide the flange portion 22 on the shaft member 2 and contacts and supports one end (lower end) of the shaft portion 21.

また、以上の実施形態では、流体動圧軸受装置1の内部空間に充填する潤滑流体として潤滑油を用いたが、潤滑グリース、磁性流体、さらには空気等の気体を潤滑流体として用いた流体動圧軸受装置1にも本発明は好ましく適用し得る。   In the above embodiment, the lubricating oil is used as the lubricating fluid that fills the internal space of the fluid dynamic bearing device 1, but the fluid dynamics using a lubricating grease, a magnetic fluid, or a gas such as air as the lubricating fluid. The present invention can also be preferably applied to the pressure bearing device 1.

また、以上では、軸部材2を回転側、軸受スリーブ8等を静止側とした流体動圧軸受装置1に本発明を適用した場合について説明を行ったが、これとは逆に、軸部材2を静止側、軸受スリーブ8等を回転側とした流体動圧軸受装置1にも本発明は好ましく適用することができる。   In the above description, the case where the present invention is applied to the fluid dynamic bearing device 1 in which the shaft member 2 is the rotation side and the bearing sleeve 8 and the like is the stationary side has been described. The present invention can also be preferably applied to the fluid dynamic bearing device 1 in which the bearing is the stationary side and the bearing sleeve 8 is the rotating side.

1 流体動圧軸受装置
2 軸部材
7 ハウジング
8 軸受スリーブ
9 軸受部材
10 蓋部材
21 軸部
21’ 焼入れ軸
22 フランジ部
23 中逃げ部
31,32 転造型
33 凸部
34 動圧溝形成部
Aa 動圧溝(凹部)
Ba 動圧溝(凹部)
Ca 動圧溝(凹部)
R1、R2 ラジアル軸受部
T1 第1スラスト軸受部
T2 第2スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Fluid dynamic pressure bearing apparatus 2 Shaft member 7 Housing 8 Bearing sleeve 9 Bearing member 10 Lid member 21 Shaft part 21 'Hardening shaft 22 Flange part 23 Middle relief | exclusion part 31, 32 Rolling die 33 Convex part 34 Dynamic pressure groove formation part Aa Dynamic Pressure groove (concave)
Ba Dynamic pressure groove (concave)
Ca dynamic pressure groove (concave)
R1, R2 Radial bearing portion T1 First thrust bearing portion T2 Second thrust bearing portion

Claims (10)

軸受部材と、軸受部材の内周に挿入された軸部材と、軸受部材の内周面と軸部材の外周面との間に形成されるラジアル軸受隙間とを備え、軸部材の外周面に、ラジアル軸受隙間に介在する潤滑流体に動圧作用を発生させるための凹部が複数設けられた流体動圧軸受装置において、
軸部材が、軸素材に熱処理を施すことで形成された表面硬化層を有し、前記凹部を、表面硬化層に転造加工を施すことで形成したことを特徴とする流体動圧軸受装置。
A bearing member; a shaft member inserted in the inner periphery of the bearing member; and a radial bearing gap formed between the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft member. In the fluid dynamic pressure bearing device provided with a plurality of recesses for generating a dynamic pressure action in the lubricating fluid interposed in the radial bearing gap,
The fluid dynamic bearing device, wherein the shaft member has a surface hardened layer formed by subjecting the shaft material to heat treatment, and the concave portion is formed by rolling the surface hardened layer.
表面硬化層の硬度が、HV450以上である請求項1に記載の流体動圧軸受装置。   The fluid dynamic bearing device according to claim 1, wherein the hardness of the surface hardened layer is HV450 or more. 軸方向に離隔した二箇所にラジアル軸受隙間が形成され、
軸部材の外周面のうち、二つのラジアル軸受隙間の間に位置する領域に、前記凹部の底部よりも小径に形成された円筒状の中逃げ部が設けられた請求項1に記載の流体動圧軸受装置。
Radial bearing gaps are formed at two locations separated in the axial direction,
2. The fluid dynamics according to claim 1, wherein a cylindrical middle escape portion having a smaller diameter than a bottom portion of the concave portion is provided in a region located between two radial bearing gaps on an outer peripheral surface of the shaft member. Pressure bearing device.
軸受部材が焼結金属で形成された請求項1に記載の流体動圧軸受装置。   The fluid dynamic bearing device according to claim 1, wherein the bearing member is formed of a sintered metal. 軸部材が、前記凹部を有する軸部と、軸部の一端に取り付け固定され、軸受部材の端面との間にスラスト軸受隙間を形成するフランジ部とを備える請求項1に記載の流体動圧軸受装置。   The fluid dynamic pressure bearing according to claim 1, wherein the shaft member includes a shaft portion having the concave portion and a flange portion that is attached and fixed to one end of the shaft portion and forms a thrust bearing gap between the end surface of the bearing member. apparatus. スラスト軸受隙間を形成するフランジ部の端面に、スラスト軸受隙間に介在する潤滑流体に動圧作用を発生させるための凹部が複数設けられた請求項5に記載の流体動圧軸受装置。   6. The fluid dynamic pressure bearing device according to claim 5, wherein a plurality of recesses for generating a dynamic pressure action on the lubricating fluid interposed in the thrust bearing gap are provided on an end face of the flange portion forming the thrust bearing gap. 軸受部材と、軸受部材の内周に挿入された軸部材と、軸受部材の内周面と軸部材の外周面との間に形成されるラジアル軸受隙間とを備え、軸部材の外周面に、ラジアル軸受隙間に介在する潤滑流体に動圧作用を発生させるための凹部が複数設けられた流体動圧軸受装置の製造方法において、
軸素材に熱処理を施すことにより、表面硬化層を有する焼入れ軸を形成する熱処理工程と、焼入れ軸の表面硬化層に転造加工を施すことにより、前記凹部を形成する転造工程と、を有することを特徴とする流体動圧軸受装置の製造方法。
A bearing member; a shaft member inserted in the inner periphery of the bearing member; and a radial bearing gap formed between the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft member. In the manufacturing method of the fluid dynamic pressure bearing device provided with a plurality of recesses for generating a dynamic pressure action in the lubricating fluid interposed in the radial bearing gap,
A heat treatment step for forming a hardened shaft having a surface hardened layer by subjecting the shaft material to a heat treatment; and a rolling step for forming the concave portion by subjecting the surface hardened layer of the hardened shaft to a rolling process. A method for manufacturing a fluid dynamic pressure bearing device.
転造工程では、少なくとも前記凹部を形成するための凹部形成部が、表面硬化層よりもHV100以上高硬度に形成された転造型を用いる請求項7に記載の流体動圧軸受装置の製造方法。   The method for manufacturing a fluid dynamic bearing device according to claim 7, wherein in the rolling step, at least a concave portion forming portion for forming the concave portion uses a rolling die having a hardness of HV100 or higher than the hardened surface layer. 熱処理工程と転造工程との間に、表面硬化層の表層部を除去するための除去工程をさらに設けた請求項7に記載の流体動圧軸受装置の製造方法。   The method for manufacturing a fluid dynamic bearing device according to claim 7, further comprising a removing step for removing a surface layer portion of the surface hardened layer between the heat treatment step and the rolling step. 転造工程の後、焼入れ軸の外周面を所定精度に仕上げるための仕上げ工程をさらに設けた請求項7に記載の流体動圧軸受装置の製造方法。   8. The method of manufacturing a fluid dynamic bearing device according to claim 7, further comprising a finishing step for finishing the outer peripheral surface of the quenching shaft with a predetermined accuracy after the rolling step.
JP2011050946A 2011-03-09 2011-03-09 Method for manufacturing fluid dynamic bearing device Expired - Fee Related JP5819077B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011050946A JP5819077B2 (en) 2011-03-09 2011-03-09 Method for manufacturing fluid dynamic bearing device
PCT/JP2012/054863 WO2012121053A1 (en) 2011-03-09 2012-02-28 Fluid dynamic pressure bearing device
US14/002,037 US8926183B2 (en) 2011-03-09 2012-02-28 Fluid dynamic bearing device
CN201280012103.9A CN103415716B (en) 2011-03-09 2012-02-28 Fluid dynamic-pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011050946A JP5819077B2 (en) 2011-03-09 2011-03-09 Method for manufacturing fluid dynamic bearing device

Publications (2)

Publication Number Publication Date
JP2012189089A true JP2012189089A (en) 2012-10-04
JP5819077B2 JP5819077B2 (en) 2015-11-18

Family

ID=47082504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011050946A Expired - Fee Related JP5819077B2 (en) 2011-03-09 2011-03-09 Method for manufacturing fluid dynamic bearing device

Country Status (1)

Country Link
JP (1) JP5819077B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194811A (en) * 2012-03-19 2013-09-30 Ntn Corp Material for fluid dynamic bearing, shaft member employing the material, and the fluid dynamic bearing employing the shaft member
WO2015137059A1 (en) * 2014-03-11 2015-09-17 Ntn株式会社 Sintered bearing, fluid dynamic bearing device and motor comprising same, and sintered bearing manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH102328A (en) * 1996-06-13 1998-01-06 Nippon Seiko Kk Bearing device
JP2002161912A (en) * 2000-11-22 2002-06-07 Nsk Ltd Manufacturing method of fluid bearing unit
JP2002168240A (en) * 2000-11-28 2002-06-14 Ntn Corp Dynamic-pressure type bearing unit
JP2003307213A (en) * 2002-04-16 2003-10-31 Citizen Watch Co Ltd Bearing device and motor using the device
JP2006077863A (en) * 2004-09-08 2006-03-23 Ntn Corp Shaft member for dynamic pressure type bearing device and manufacturing method thereof
JP2009281464A (en) * 2008-05-21 2009-12-03 Ntn Corp Fluid bearing device
JP2010223246A (en) * 2009-03-19 2010-10-07 Ntn Corp Sintered metal bearing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH102328A (en) * 1996-06-13 1998-01-06 Nippon Seiko Kk Bearing device
JP2002161912A (en) * 2000-11-22 2002-06-07 Nsk Ltd Manufacturing method of fluid bearing unit
JP2002168240A (en) * 2000-11-28 2002-06-14 Ntn Corp Dynamic-pressure type bearing unit
JP2003307213A (en) * 2002-04-16 2003-10-31 Citizen Watch Co Ltd Bearing device and motor using the device
JP2006077863A (en) * 2004-09-08 2006-03-23 Ntn Corp Shaft member for dynamic pressure type bearing device and manufacturing method thereof
JP2009281464A (en) * 2008-05-21 2009-12-03 Ntn Corp Fluid bearing device
JP2010223246A (en) * 2009-03-19 2010-10-07 Ntn Corp Sintered metal bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194811A (en) * 2012-03-19 2013-09-30 Ntn Corp Material for fluid dynamic bearing, shaft member employing the material, and the fluid dynamic bearing employing the shaft member
WO2015137059A1 (en) * 2014-03-11 2015-09-17 Ntn株式会社 Sintered bearing, fluid dynamic bearing device and motor comprising same, and sintered bearing manufacturing method

Also Published As

Publication number Publication date
JP5819077B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
US8926183B2 (en) Fluid dynamic bearing device
US7008112B2 (en) Hydrodynamic bearing device
WO2013141205A1 (en) Sintered metal bearing
JP5819077B2 (en) Method for manufacturing fluid dynamic bearing device
JP2004144205A (en) Dynamic pressure bearing device
JP6275369B2 (en) Material for fluid dynamic pressure bearing, shaft member using the same material and fluid dynamic pressure bearing using coaxial member
JP4979950B2 (en) Shaft member for hydrodynamic bearing device
EP3051159B1 (en) Sintered metal bearing and method for producing same
JP2009103280A (en) Dynamic pressure bearing device and its manufacturing method
JP2006077863A (en) Shaft member for dynamic pressure type bearing device and manufacturing method thereof
JP5172576B2 (en) Fluid dynamic bearing device and manufacturing method thereof
JP5132887B2 (en) Shaft member for hydrodynamic bearing device
WO2012121053A1 (en) Fluid dynamic pressure bearing device
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP5901979B2 (en) Method for manufacturing fluid dynamic bearing device
JP2007218379A (en) Shaft member for hydrodynamic bearing device and its manufacturing method
JP2017129226A (en) Fluid dynamic pressure bearing sleeve and manufacturing method thereof, and fluid dynamic pressure bearing device
JP2009228873A (en) Fluid bearing device
JP2012031969A (en) Hub integrated shaft for fluid dynamic pressure bearing device, and method for manufacturing the same
JP4459669B2 (en) Hydrodynamic bearing device
JP4188288B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
JP2005265180A (en) Dynamic pressure bearing device
JP4642416B2 (en) Manufacturing method of shaft member for hydrodynamic bearing device
JP4738831B2 (en) Hydrodynamic bearing device
JP2004340385A (en) Dynamic pressure type bearing unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150930

R150 Certificate of patent or registration of utility model

Ref document number: 5819077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees